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ABSTRACT
With the recent advance in computer vision techniques and the
growing utility of real-time human pose detection and tracking,
deep learning-based pose estimation has been intensively studied
in recent years. These studies rely on large-scale datasets of human
pose images, for which expensive annotation jobs are required
due to the complex spatial structure of pose keypoints. In this
work, we present a transfer learning-based pose estimation model
that leverages low-cost synthetic datasets and regressive domain
adaptation, enabling the sample-efficient learning on precise human
poses. In evaluation, we demonstrate that our model achieves the
high accurate pose estimation on a dataset of golf swing images,
which is targeted for a virtual golf coaching application.

CCS CONCEPTS
• Computing methodologies; •Machine learning; • Learning
paradigms;

KEYWORDS
Pose estimation, Synthetic data, Domain adaptation

ACM Reference Format:
Wonje Choi and Honguk Woo*. 2022. Transfer Learning based Precise Pose
Estimation with Insufficient Data. In 2022 the 5th International Conference
on Machine Vision and Applications (ICMVA) (ICMVA 2022), February 18–
20, 2022, Singapore, Singapore. ACM, New York, NY, USA, 6 pages. https:
//doi.org/10.1145/3523111.3523118

1 INTRODUCTION
Pose estimation for human bodies refers to a computer vision task
of processing camera images or videos as input to generate the
spatial location information of human body joints or semantic key-
points (e.g., left shoulder) in real-time. Pose estimation is considered
fundamental for natural understanding on human behaviors, and it
has been adopted in numerous machine learning based applications,
e.g., virtual fitting, pedestrian tracking, virtual sports coaching, etc.

Deep learning techniques such as convolutional neural network
(CNN) models have been used for 2D human pose estimation [4].
In general, these have been developed based on large-scale datasets
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of human pose images with many keypoints, for which much an-
notation labor is required. Thus, when a precise model is needed
for new poses but a dataset for the new poses is not available, the
effort required to build such a dataset is often an issue.

In this paper, we propose a sample-efficient learningmodel for 2D
human pose estimation for which the two-stage transfer learning
scheme with keypoint set extension and synthetic-to-real domain
adaptation techniques is employed. Specifically, we generate a pose-
aware synthetic dataset to extend the number of pose keypoints
from 10 to 21, and then adapt the regressive domain adaptation
scheme to transfer the pose knowledge learned on the synthetic
dataset of 21 keypoints to our task-specific real data. In that way,
we achieve a high-performance pose estimation model that makes
inferences on 21 keypoints without a large-scale dataset of photo-
realistic images annotated with those 21 keypoints.

Our contributions of this paper are two-folded.
• We present the transfer learning-based pose estimation
model by which a set of keypoints can be extended from
a source dataset (i.e., 10 keypoints in the source) to a task-
specific target model (i.e., 21 keypoints in the target).
• We achieve high accuracy on golf swing pose estimation,
e.g., 80.9 mAP, 22.4% higher than a state-of-art method and
4 times higher than the synthetic scratch model.

2 RELATEDWORKS
2.1 Whole-Body Pose Estimation
2D pose estimation aims at predicting key parts on detected ob-
jects, and it has become a popular research topic for its wide use in
computer vision applications. Recently, deep learning-based pose
estimation techniques [5, 6, 11, 14, 15, 19–21] have shown a sig-
nificant progress thanks to the availability of large-scale training
datasets such as MPII [2] and COCO keypoint datasets [10]. There
have been numerous deep learning models based on CNN for pose
estimation, e.g., facial keypoint detection [8, 17] and hand pose
estimation [12, 13, 18, 24].

Recently, Zhang et al. [22] explored a task of localizing the dense
keypoints of an entire body. Without whole-body annotation, sev-
eral regional keypoint detection models learned from independent
body-part datasets should be assembled to make inferences on
whole-body keypoints. Their whole-body annotation on the COCO
dataset enables the integration of those independent body-part
detection procedures.

2.2 Domain Adaptation for Pose Estimation
In general, domain adaptation deals with the cases where labeled
data for a target domain might not be sufficient to learn but the
knowledge learned from a source dataset in a similar domain to the
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Figure 1: PPE architecture consists of two stages. Keypoint Set Extension, on the left, generates a pose-aware synthetic dataset
and conductsmodel learning. Domain adaptation, on the right, conducts domain adaptation from synthetic data to target data.

target can be leveraged. In pose estimation, adversarial training is
used for domain adaptation where inferences from a pre-trained
source model can provide the pseudo-labels for target image data.

Cao et al. [3] proposed a novel cross-domain adaptation method
to transform the knowledge from labeled animal classes to unla-
beled classes. For pose estimation on unseen four-legged animals,
they exploited the skeleton similarity between pose-labeled do-
mains (i.e., human and labeled animals) and the adversarial training
scheme with a domain discriminator, boosting up the model per-
formance using the pseudo labeling module with progressively
increasing reliability. Li et al. [9] presented a multi-scale domain
adaptation module and online coarse-to-fine pseudo label updating
strategy to reduce the domain gap between synthetic and real data.

Jiang et al. [7] proposed the unsupervised domain adaptation
method for regression tasks by exploring the sparsity of regres-
sion space in keypoint detection model outputs and narrowing the
difference between regression and classification. They treated the
regressive domain adaptation problem as a minimax game with an
adversarial regressor. We adopt this approach as our baseline for
keypoint domain adaptation.

3 METHOD
In this section, we present our method for precise pose estimation
(PPE) with two stages, (1) keypoint set extension and (2) synthetic-
to-real domain adaptation. Figure 1 illustrates the overall framework
architecture.

3.1 Keypoint Set Extension
In keypoint set extension, we first create pose-aware synthetic
data and then train a model on the synthetic data. The synthetic
data is created to bridge the gap between a source (i.e., COCO key-
point dataset) and a task-specific target dataset (i.e., golf swing
dataset), where each synthetic golf swing image is set to have the
same keypoint types as the real golf swing image. In doing so,
original 10 keypoints of a whole-body are derived from the source
and additional task-specific 11 keypoints are automatically anno-
tated by computer-generated imagery (CGI) software according to
target data samples. A simulated environment is implemented in
CGI where animated characters and their skeleton coordinates are

pre-defined. Then, transfer learning is conducted for learning to
infer those newly added 11 keypoints, while the knowledge on the
source such as the keypoint detection capability on COCO can be
properly maintained. This is effective since our synthetic dataset is
aligned with both source and target keypoints, although the num-
ber of keypoints is different; the source has 10 but the target has 21
keypoints.

In transfer learning, we initialize a model fsyn for synthetic
dataset Dsyn with the parameters of pre-trained model fS from
source dataset DS . The model fsyn is then fine-tuned by Dsyn , i.e.,
minimizing the loss Lext based on mean-square error (MSE),

Lext
(
fsyn

)
= E(x,y)∼Dsyn

[
∥ fsyn (x) − y∥2

]
(1)

where x and y denote synthetic image data and ground truth key-
points, respectively.

3.2 Domain Adaptation from Synthetic to Real
To achieve a high-performance PPE model, we employ a domain
adaptation scheme by which a model learned on the synthetic
dataset (which is generated by the keypoint set extension) is fine-
tuned for target data samples. Specifically, we adapt a state-of-the-
art algorithm of domain adaptation for keypoint detection tasks,
RegDA [7], to enhance the PPE performance by exploiting the
knowledge on original 10 keypoints that are common in both the
source and target domains.

Our PPE model f = fsyn is structurally divided into regressor r
and feature generatorψ , where r corresponds to the last layer of
f andψ corresponds to the other layers, i.e., f = r ◦ψ . The same
structure is used for adversarial regressor radv , so fadv = radv ◦ψ .
In domain adaptation, we minimize the expected error on target
dataset DT .

errDT = E(xt ,yt )∼DT [L (f (xt ) ,yt )] (2)

In [23], this error is bounded by the sum of empirical error on
the synthetic dataset errDsyn (f ), empirical disparity discrepancy d ,
ideal error, and complexity terms. Thus, we can optimize the model
f with

min
[
errDsyn (f ) + df ,F

(
Dsyn ,DT

) ]
. (3)
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Figure 2: Image samples of three datasets in Table 1, where the first row contains the source (COCO), the second row contains
the synthetic (golf swing of avatars), and the last row contains the target (golf swing of humans).

Table 1: Dataset

Dataset
Features Source Synthetic Target

Name COCO [10] Avatar Golf Swing
Keypoints 10 (17) 21 21
Samples 156,165 23,766 3,424

Complexity High Low Low

where F is hypothesis space, and empirical disparity discrepancy
d is defined as

df ,F
(
Dsyn ,DT

)
= supfadv ∈F[

Ex∼DT L (fadv (x) , f (x)) − Ex∼DsynL (fadv (x) , f (x))
]
. (4)

To optimize the objective in Eq. (3), we minimize expected error
errDsyn (f ) for synthetic dataset Dsyn , train fadv to maximize
Ex∼DT L(fadv (x), f (x)) − Ex∼DsynL(fadv (x), f (x)), and train f

to minimize empirical disparity discrepancy in Eq. (4), in the same
way as [7]. This proceeds through the objective functions below.
Objective 1. To minimize expected error errDsyn (f ) and the second
term of Eq. (4) for synthetic dataset Dsyn , we use the loss function
defined as

Lob j1 (f , fadv ) = E(xs ,ys )∼Dsyn [L (f (xs ) , ys ) + L (fadv (xs ) , f (xs ))] (5)

where L denotes the KL divergence loss.
Objective 2. To maximize the first term in Eq. (4), we find the
function fadv that maximized Ex∼DT L(fadv (x), f (x)). Then, we
optimize radv by using ground-false loss LF such that L increases
when LF decreases.

Lob j2 (radv ) = Ext∼DT LF (fadv (xt ) , f (xt )) (6)

Objective 3. To minimize empirical disparity discrepancy in Eq. (4),
we optimizeψ by using the loss defined as

Lob j3 (ψ ) = Ext∼DT L (fadv (xt ) , f (xt )) . (7)

Following the above three objective functions, we consider an ad-
ditional loss form to make adaptation more effective. Since source
model fS can provide more accurate outputs for corresponding
10 keypoints of target dataset DT than the outputs of synthetic

Algorithm 1 Learning for PPE
Dataset: DS , Dsyn , DT
Models: fS , /* pre-trained on DS */ fsyn , f = r ◦ψ ,
fadv = radv ◦ψ
/* Keypoint Set Extension */
fsyn ← fS
loop
for each x ,y ∈ Dsyn do
loss = Lext (fsyn )
optimize(fsyn , loss)

end for
end loop
/* Domain Adaptation from Synthetic to Real */
f← fsyn , η, µ: coefficient of loss
loop
for each x ,y ∈ Dsyn and xt ∈ DT do
loss = η(Lob j1(f , fsyn ) + Lob j2(radv ) + Lob j3(ψ )) + µLдd (ψ )
optimize((f , fadv ), loss)

end for
end loop
return f

model f , we use the outputs of fS as ground-truth. This minimizes
the expected error on DT directly. Therefore, we can minimize the
empirical disparity discrepancy more effectively by optimizingψ .
Then, the guidance loss is defined as

Lдd (ψ ) = Ext∼DT [L (f (xt ) , fS (xt )) + L (fadv (xt ) , fS (xt ))]
(8)

which completes the definition of our loss function,

LPPE = η
(
Lob j1 + Lob j2 + Lob j3

)
+ µLдd (9)

where η and µ are coefficient. The learning algorithm using this
loss is in Algorithm 1.

4 EXPERIMENTS
In this section, we evaluate our method by showing experiment
results on three different datasets in Table 1.
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4.1 Dataset
Source Dataset. We use the COCO (Microsoft Common Objects
in Context) keypoint dataset with 156,165 samples, where the coor-
dinates of human pose keypoints are annotated for each image. It
covers a wide variety of viewpoints, backgrounds, sizes, and types
of human poses, as exampled in the first row of Figure 2. Note that
in our experiments, we use only 10 keypoints as our source data
(among existing 17 keypoints in the COCO keypoint dataset).

Synthetic Dataset. We generate the pose-aware synthetic
dataset with 23,766 samples using the professional software. It
is intended to cover more diversity of viewpoints, backgrounds
and types of avatar poses than a task-specific target dataset with a
small number of samples, yet avatars generated in this synthetic
dataset might appear different from real-world humans in the target
dataset; several samples are shown in the second row of Figure 2.
Since the software tool that we used for synthetic data generation
produces highly precise and accurate coordinates for keypoints in
avatars, it is inherently vulnerable to end up with over-fitting when
a pose estimation model is learned only on this dataset.

Target Dataset. We use a dataset of real-world, photo-realistic
images with 3,424 golf swing pose samples, where each is manually
annotated for 21 keypoints. The number of samples is small, com-
pared to the source and synthetic datasets, and this small dataset
setting causes the problem of insufficient data for machine learning;
several samples are shown in the last row of Figure 2. Note that we
use this dataset only for evaluation and use only a small number of
the samples restrictively in case of model training.

4.2 Implementation
4.2.1 Implementation for backbone model learning. Table 2 depicts
hyperparameter settings for our backbone model with HRNet [16].
We use Adam optimizer and batch size 32 in a single GPU server.
For scratch model learning on each dataset, the learning rate is set
to 1e-3, and it drops to 1e-4 at 90 epochs and 1e-5 at 120 epochs.
The total training is 140 epochs. For keypoint set extension, the
learning rate is fixed to 25e-5 during 100 epochs. We use Object
Keypoint Similarity (OKS) [1] as our evaluation metric,

OKS =

∑
i exp

(
−d2i /2s

2k2i

)
δ (vi > 0)∑

i δ (vi > 0)
(10)

where di denotes the Euclidean distance between the detected key-
point and corresponding ground-truth,vi denotes the visibility flag
of ground-truth, and s denotes the object scale. Note that ki de-
notes a per-keypoint constant that controls falloff; for newly added
keypoints, ki is set to 0.89 uniformly. We use standard average
precision (i.e., mAP; the mean of AP scores at each keypoint) with
thresholds of OKS = 0.50, 0.55, . . . , 0.90, 0.95).

4.2.2 Implementation for domain adaptation. Table 3 depicts hy-
perparameter settings for domain adaptation. We adopt mini-batch
SGD with momentum of 0.7 and batch size 32 in a single GPU
server. To fine-tune with target data, the training of 60 epochs is
conducted. The trade-off coefficient η for RegDA [7] is set to 3.5. It
is empirically observed that the coefficient is maintained on η of
our loss function LPPE in Eq. (9). Similarly, coefficient µ of LPPE
is set to 1. In whole-body evaluation on keypoints, we use OKS

Table 2: Hyperparameters for backbone model learning

Hyperparameter Value

Optimizer Adam
Learning Rate 1e-3, 23e-5

Epoch 140,100
Batch Size 32

Per-keypoint Standard Deviation 0.89
Evaluation Metric OKS(mAP)

Table 3: Hyperparameters for domain adaptation

Hyperparameter Value

Optimizer SGD
Learning Rate 1e-1

Epoch 60
Batch Size 32
Regressor 2 convolutional layers

η
µ

3.5
1

Evaluation Metric PCK, OKS

based mAP as metric. For individual keypoint evaluation, we use
Percentage of Correct Keypoints (PCK) as metric.

4.3 Experiment Results
4.3.1 Performance of Scratch Models. Figure 3 shows the differ-
ence among datasets, where our backbone HRNet model is learned
individually on the three datasets described in Table 1. Both the
target scratch model (Target in the x-axis) and the synthetic model
(Synthetic) achieve high accuracy of 95.2 and 100 mAP, respectively.
Their performance degrades close to zero for different datasets (i.e.,
Target, Synthetic, Source in the legend), indicating that the syn-
thetic (i.e., Avatar) and target data (i.e., Golf Swing) do not share the
same feature space. The source models (Source in the x-axis) show
high performance of 76.5 mAP on the source dataset (Source in the
legend) but show relatively low performance for the other datasets.
However, if we consider the accuracy only for the common key-
points of the source and target datasets, we achieve relatively high
performance of 94.1 mAP (by Target* in the legend). It is because
the source and target features share similarity. This implies that
the source (i.e., COCO) and target data (i.e., Golf Swing) share the
feature space partially in common.

4.3.2 PPE Performance. Table 4 illustrates the PPE performance in
both PCK (for individual keypoint detection) and OKS (for whole-
body keypoint detection) on the evaluation dataset of realistic golf
swing data, where each row corresponds to different models in
comparison.

Our model (Ours) has significantly improved the performance
in both PCK and OKS, by 22.4% over RegDA and by more than 4
times over the synthetic scratch model.

In Figure 4, we also visualize the results before and after learn-
ing PPE models, synthetic scratch model and ground-truth. The
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Figure 3: Comparison of scratch models. The x-axis denotes the scratch model from certain dataset and the y-axis denotes
the achieved performance on each dataset. The data labeled Target* indicates the accuracy of keypoints that exist in both the
source and target dataset.

Table 4: Accuracy on PPE

Augmented Keypoints (PCK) Total (OKS)
Method nose eyes ears ankles toes spine club Target

Synthetic scratch 0.26 0.15 0.09 0.39 0.26 0.05 0.12 14
RegDA 0.95 0.95 0.95 0.76 0.46 0.34 0.53 66.1
Ours 0.99 0.99 0.97 0.98 0.55 0.53 0.57 80.9

Target scratch 0.99 0.99 0.98 1 0.64 0.63 0.63 0.92

Figure 4: Qualitative results for the target dataset by each method. From the first column to the last, we have the inference
outputs from the source model, the scratch model for synthetic, and our PPE model, and ground-truth samples.

first column shows the prediction of the source model. The model
from source cannot detect additional keypoints. The second column
shows the prediction of the scratch model on the synthetic dataset.
The model often fails detecting several keypoints, yielding inac-
curate prediction results. The third column represents the output
of our model, showing no difference from the ground truth in the
fourth column.

4.4 Ablation Study
We also conduct an ablation study to illustrate howmuch each stage
affects the PPE model performance. The configuration in Table 5
includes a backbone model for synthetic dataset and loss used for
adaptation to the target dataset (i.e., Ours at the first row consists
of backbone model from keypoint set extension and the loss of PPE,

54



ICMVA 2022, February 18–20, 2022, Singapore, Singapore Wonje Choi and Honguk Woo

Table 5: Ablation study

Configuration Augmented Keypoints (PCK) Total (OKS)
Method Backbone Loss nose eyes ears ankles toes spine club Target

Ours EXT LPPE 0.99 0.99 0.97 0.98 0.55 0.53 0.57 80.9
Syn. scratch LPPE 0.97 0.97 0.96 0.93 0.45 0.45 0.56 77.9

EXT LReдDA. 0.98 0.98 0.96 0.98 0.57 0.42 0.57 76
RegDA Syn. scratch LReдDA. 0.95 0.95 0.95 0.76 0.46 0.34 0.53 66.1

denoted as LPPE ). From second to fourth row, we replace each con-
figuration from one of RegDA [7] where backbone is scratch model
trained on synthetic dataset (i.e., Syn. scratch at the second row)
and loss function of RegDA is used, denoted as LReдDA. The re-
sults show that each stage of ours affects performance improvement
independently. The whole-body accuracy increases through both
stages, but the performance improvement of individual keypoint
between both stages has trade-off.

5 CONCLUSION
In this paper, we addressed the problem of limited data on precise
pose estimation (PPE) and presented a novel deep learning-based
model for PPE by employing transfer learning and domain adap-
tation techniques. For real-world applications, we validated the
performance gain of our model, demonstrating the high accuracy
on golf swing pose estimation with augmented keypoints up to 21
from original 10 keypoints for the task-specific target domain.

The direction of our future work is to develop a PPE model based
on generative adversarial networks (GAN) with robust accuracy on
various image types.
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