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Abstract

Recent video-text models can retrieve relevant001
videos based on text with a high accuracy, but002
to what extent do they comprehend the seman-003
tics of the text? Can they discriminate between004
similar entities and actions? To answer this, we005
propose an evaluation framework that probes006
video-text models with hard negatives. We au-007
tomatically build contrast sets, where true tex-008
tual descriptions are manipulated in ways that009
change their semantics while maintaining plau-010
sibility. Specifically, we leverage a pre-trained011
language model and a set of heuristics to cre-012
ate verb and person entity focused contrast sets.013
We apply these in the multiple choice video-to-014
text classification setting. We test the robust-015
ness of recent methods on the proposed auto-016
matic contrast sets, and compare them to ad-017
ditionally collected human-generated counter-018
parts, to assess their effectiveness. We see that019
model performance suffers across all methods,020
erasing the gap between recent CLIP-based021
methods vs. the earlier methods.022

1 Introduction023

Relating video and text modalities is one of the024

important goals in vision and language. Video is a025

complex signal where people and objects act and026

interact with each other through space and time.027

Thus correctly associating a textual description and028

a video requires understanding of entities, their029

actions and much more, making it a hard problem.030

One of the popular ways of training and evaluat-031

ing video-text models is via cross-modal matching.032

Often the task is formulated as a retrieval problem,033

where the goal is to select the correct match among034

many (e.g. thousand) candidates, and distractors035

are picked randomly (Yu et al., 2018). Another036

way is via multiple-choice prediction, where the037

goal is to pick the true match out of several (e.g. 5)038

candidates (Torabi et al., 2016). The latter allows039

for more controlled choice of negatives, which are040

typically selected from other videos. Commonly,041

A: A girl feeding a brown horse.                               

B: A girl rides a brown horse.                                

C: Football team playing football on a field. 

D: The man is drinking beer.     

E: Two men playing a video game.

A: Over her shoulders, HARRY glances at   
    RON, who lowers his gaze for a moment.

B: Over her shoulders RON glances at  
    HARRY, who lowers his gaze for a moment.

C: He tries to shake him off.

D: HARRY studies it.

E: RON whispers to HARRY.


Verb Manipulation

Entity Manipulation

GT 
Predicted

GT 

Predicted

Figure 1: Samples of our video-to-text tasks on
the MSR-VTT (Xu et al., 2016) and LSMDC
dataset (Rohrbach et al., 2017; Park et al., 2020). A
hard negative option is added by manipulating verb
(top) and entity (bottom) in the ground truth sentence.
Two SOTA methods MMT (Gabeur et al., 2020) and
CLIP4CLIP (Luo et al., 2021) incorrectly choose the
manipulated sentence (option B) in both these cases.

the retrieval setting is used during training to avoid 042

capturing any specific multiple-choice patterns or 043

biases, while both are used for evaluation. 044

Recent methods that leverage the large-scale 045

CLIP model (Radford et al., 2021) show significant 046

improvement in cross-modal matching, specifically, 047

in the retrieval setting (Fang et al., 2021; Luo et al., 048

2021). They outperform the prior state-of-the-art 049

methods, often based on the Multimodal Trans- 050

former design (Miech et al., 2020; Gabeur et al., 051

2020; Lei et al., 2021). However, we know that of- 052

ten model performance is “over-estimated” due to 053

the lack of challenging samples in evaluation. For 054

instance, Gardner et al. (2020) show that model per- 055

formance on several NLP tasks and one image-text 056

task is much lower on contrast sets, which are test 057

samples with small perturbation done by human 058

experts in a way that changes the gold label. 059

In this work, we are investigating whether the 060

video-text models also struggle in an evaluation 061

framework that probes them with hard negatives. 062

Instead of using human-designed contrast sets that 063

are not easily scalable, we propose an automated 064

pipeline that can generate contrast sets via verb and 065

human entity manipulation. Our manipulations are 066

carefully designed to preserve fluency but change 067
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semantics of the textual descriptions, making them068

invalid for a given video. We focus on entities and069

verbs to evaluate if the model can truly understand070

“who did what" in a video. Inspired by (Li et al.,071

2020; Morris et al., 2020), we leverage a gener-072

ative T5 language model (Raffel et al., 2020) to073

manipulate the verb phrase and use heuristics to074

swap person entities. Note that our pipeline does075

not require a trained video-text model in the loop.076

We apply our automatic manipulations to two077

popular video-text benchmarks, MSR-VTT (Xu078

et al., 2016) and LSMDC (Rohrbach et al., 2017).079

We additionally collect human generated contrast080

sets to compare with our automatic ones. To make081

sure that our automatic negatives are of high qual-082

ity, we also confirm that humans can successfully083

select the correct description for a given video with084

our hard negatives. Finally, we benchmark sev-085

eral video-text models on our contrast sets. We086

find that all methods degrade in performance with087

the introduction of hard negatives in the multiple-088

choice setting (Figure 1). This includes the recent089

CLIP-based works that demonstrated large gains in090

the retrieval setting. This shows that all methods091

have difficulty discriminating between entities and092

verbs when the remaining context is unchanged.093

We observe that model performance drops espe-094

cially on cases such as verb antonym swaps, where095

fine-grained action understanding is important.096

2 Related Work097

Defending and generating adversarial examples098

(Jia et al., 2019; Jin et al., 2020) have been mostly099

explored in NLP since the reign of pre-trained lan-100

guage models (LMs) (Devlin et al., 2019). Li et al.101

(2020); Garg and Ramakrishnan (2020); Morris102

et al. (2020) show that substituting words in a sen-103

tence with masked LMs (Devlin et al., 2019; Liu104

et al., 2019) can successfully mislead the classifica-105

tion and entailment model predictions to be incor-106

rect. Template-based (McCoy et al., 2019; Glock-107

ner et al., 2018) and manually crafted (Gardner108

et al., 2020) perturbations on evaluation datasets109

have also been studied for textual entailment.110

Language-based adversarial examples can be col-111

lected to study the robustness of vision-language112

models as well. Shekhar et al. (2017) intro-113

duces FOIL-COCO dataset to evaluate the vision-114

language model’s decision when associating im-115

ages with both correct and "foil" captions. Hen-116

dricks and Nematzadeh (2021) show that vision-117

language Transformers are worse at verb under- 118

standing than nouns. New versions of the VQA 119

dataset (Antol et al., 2015) are proposed to study 120

robustness of VQA models (Shah et al., 2019; Li 121

et al., 2021). Our work is different in that we 122

use pre-trained LMs to introduce perturbations and 123

evaluate robustness of video-language models. 124

3 Designing Contrast Sets 125

In this section we present our approach to automati- 126

cally constructing text-based contrast sets for video- 127

language tasks. Suppose we are given a video Vi 128

and description si. Contrast sets Ĉi = {ŝ1, ..., ŝi} 129

are designed such that ŝi is semantically inconsis- 130

tent with Vi and yet models incorrectly select ŝi 131

over si in a video-to-text multiple-choice setting. 132

While there are different ways to create valid Ĉi, 133

we investigate manipulating 1) person entities and 134

2) verb phrases in the original descriptions. Quali- 135

tative examples of Ĉi are shown in the Appendix. 136

3.1 Contrast sets for Person Entities 137

First, we investigate swapping the name or iden- 138

tity of a person. The LSMDC dataset (Rohrbach 139

et al., 2017; Park et al., 2020) includes movie de- 140

scriptions with character identities (e.g. Harry Pot- 141

ter), and a list of characters present in each movie 142

along with their gender. We replace each charac- 143

ter’s identity with one from the same movie and 144

with the same gender, to prevent the language statis- 145

tics alone from detecting the swapped IDs. 146

For the MSR-VTT dataset (Xu et al., 2016) we 147

do not have the identities, however 80% of videos 148

have gender cues in the descriptions. Thus the con- 149

trast sets are created by swapping the gender of a 150

person mentioned in a sentence and the correspond- 151

ing pronouns (e.g., A woman is pushing her stroller 152

→ A man is pushing his stroller). This is done with 153

a template that maps gender-sensitive words and 154

pronouns to their counterparts (see Appendix). 155

3.2 Contrast Sets for Verb Phrases using 156

Language Models 157

The above rule-based strategies cannot be directly 158

translated to create contrast sets for verb phrases: 159

1) a substitute verb phrase is not guaranteed to be 160

inconsistent with a video, and 2) the sentence may 161

look unnatural and no longer be textually plausible. 162

Based on their success in adversarial attack gen- 163

eration (Li et al., 2020; Garg and Ramakrishnan, 164

2020; Morris et al., 2020), we instead leverage pre- 165
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trained language models (LMs) to automatically166

manipulate the verb phrases.167

We identify verb phrases in a sentence using168

Spacy (Honnibal and Montani, 2017), replace them169

with a mask token [MASK], and select top K170

phrases that best fit the mask token using probabil-171

ity scores from a LM. Different from prior work172

(Li et al., 2020), we use T5-base model (Raffel173

et al., 2020) instead of masked language models174

(Devlin et al., 2019; Liu et al., 2019) to easily sup-175

port generating multi-word candidates. We addi-176

tionally finetune T5 to learn verb phrases in the177

downstream training data with unsupervised de-178

noising objective (Raffel et al., 2020). This is done179

to mitigate the distribution shift between ground180

truth and generated descriptions.181

We then filter the K sentence candidates with182

the following criteria: 1) There is no verb in the183

sentence. 2) Verbs are rare or unseen in training184

descriptions. 3) The sentence has a high perplexity185

obtained by GPT2-XL (Radford et al., 2019) to en-186

sure grammaticality and plausibility (Morris et al.,187

2020). Lastly, we check that the semantics of a188

candidate is inconsistent with the original sentence.189

This is when a) the candidate verb is an antonym1190

of original verb, or b) the word embedding (Mrkšić191

et al., 2016) of candidate and original verb and their192

sentence encodings (Reimers and Gurevych, 2019)193

both have low cosine similarity scores.194

3.3 Human-Generated Verb Contrast Sets195

Are language models capable of generating con-196

trast sets of good quality? To answer this question,197

we follow the original contrast sets work (Gardner198

et al., 2020), and create negatives manually to see if199

the performance on machine and human generated200

contrast sets is similar. We use the Amazon Me-201

chanical Turk (AMT) platform and ask workers to202

modify a verb phrase such that a sentence becomes203

inconsistent with a video (see Appendix).204

4 Experiments205

4.1 Datasets and Multiple Choice Design206

MSR-VTT (Xu et al., 2016) is composed of 10K207

YouTube videos each paired with 20 natural de-208

scriptions and is typically evaluated on retrieval209

performance with 1000 video text pairs as candi-210

dates in the test set. The multiple choice version211

(Yu et al., 2018) has 2,990 test videos as queries,212

and a positive caption with 4 random captions from213

1Extracted using VerbNet (Schuler, 2005).

other videos as 5 answer options. We label this split 214

as the Random MC. We design another MC prob- 215

lem by replacing one negative option with one from 216

our contrast sets. In particular, Gender MC swaps 217

gender in an original sentence; VerbLM MC and 218

VerbH MC include verb-based negatives generated 219

by our approach and by humans. 220

LSMDC (Rohrbach et al., 2017) includes short 221

movie clips and captions. Characters in these cap- 222

tions are labeled as SOMEONE and we cannot con- 223

struct contrast sets for person-entities. We instead 224

use captions in (Park et al., 2020) that include the 225

character identities. We create a new training/test 226

split using the same movies in training and test so 227

that the test identities have been seen during train- 228

ing. We call this modified dataset LSMDC-IDs. 229

Using this set, Random MC is newly defined with 230

4 negative captions drawn randomly from different 231

clips of the same movie. ID MC swaps the char- 232

acter IDs (Section 3.1) as negatives, and Verb MC 233

includes the verb contrast sets, as before. 234

4.2 Video-Text Models and Evaluation 235

We benchmark Transformer (Vaswani et al., 2017) 236

based video-language models in our experiments. 237

Multi Modal Transformer (MMT) (Gabeur et al., 238

2020) learns the joint representation between text 239

and multiple modalities in videos. CLIP-Straight 240

(Portillo-Quintero et al., 2021) applies frozen CLIP 241

features (Radford et al., 2021) for zero-shot predic- 242

tion. Inspired by Dzabraev et al. (2021), we also 243

extend MMT to take frozen CLIP features as input, 244

which we denote as MMT-CLIP. CLIP4CLIP (Luo 245

et al., 2021) and CLIP2Video (Fang et al., 2021) 246

directly finetune CLIP with temporal pooler and 247

are the state-of-the-art in retrieval tasks. ViT-B/32 248

model is used for CLIP experiemnts, see Appendix 249

C for more implementation details. We train the 250

above models with a contrastive loss to learn the 251

joint video-text representation. In MC settings, we 252

mark it as correct, if a ground truth sentence is 253

scored the highest. We also report video-to-text (V 254

→ T) Recall@1 for retrieval evaluation. 255

4.3 Results 256

Table 1 shows results on the MSR-VTT dataset. 257

In video-to-text retrieval, we see a significant gap 258

in performance between the CLIP-finetuned mod- 259

els and all other models; even CLIP-Straight out- 260

performs MMT in this metric. Next, we see that 261

Random MC is nearly solved by almost all models. 262

However there is a significant drop in performance 263
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V → T Random Gender VerbLM VerbH
Approach (R@1) MC MC MC MC

MMT 27.0 97.6 84.0 83.4 80.3
MMT-CLIP 30.8 97.2 84.0 80.9 78.3
CLIP-Straight 27.2 91.1 69.6 65.4 64.1
CLIP4CLIP 43.1 98.4 82.7 83.7 80.2
CLIP2Video 43.3 98.3 78.5 81.1 79.0

Human - - - 92.7 94.5

Table 1: Method comparison on MSR-VTT dataset.
Human is majority vote over 3 judges.

V → T Random ID VerbLM VerbH
Approach R@1 MC MC MC MC

MMT 17.7 73.2 65.2 56.2 65.3
MMT-CLIP 23.8 74.8 70.1 56.9 65.8
CLIP-Straight 4.3 53.3 39.8 38.9 42.8
CLIP4CLIP 25.0 72.9 69.1 54.1 66.3

Human - - - 90.2 93.9

Table 2: Method comparison on LSMDC-IDs dataset.
Human is majority vote over 3 judges.

across all models when evaluated on contrast-264

set based MC. Interestingly, the performance gap265

between MMT and the finetuned CLIP models266

with high retrieval performance (CLIP4CLIP and267

CLIP2Video) is gone in this setting, meaning268

stronger retrieval performance does not guarantee269

robustness to word-level manipulations. We also270

observe that models with frozen CLIP features per-271

form better on Gender MC than Verb MC, and fine-272

tuning the CLIP features on video-language task273

can make the model less sensitive to gender infor-274

mation. Finally, to verify that the automated verb-275

based contrast sets are valid, we note that: models276

on VerbLM MC perform on par with the human277

produced ones VerbH MC, and humans maintain278

accuracy greater than 90% on both contrast sets.2279

Table 2 presents results on the LSMDC-IDs280

dataset. Overall, it is more challenging than MSR-281

VTT, as it often requires more fine-grained under-282

standing. Similar to MSR-VTT, models obtain283

lower performance on contrast-set MC designs.284

While we see that models found VerbLM MC to be285

more difficult than VerbH MC, our automated con-286

trast sets are valid as humans still perform above287

90% for both cases. We also notice that the ID288

swaps are easier than the verb swaps, and CLIP fea-289

tures are helpful in distinguishing character IDs290

(MMT vs. MMT-CLIP). Table 6 in Appendix291

shows that model accuracy drops by at least 13.9%292

when the “negative” IDs appear more frequently in293

2We report majority vote over 3 human judges.

SentBERT CLIP-Text
Approach Sim. Diff. Sim. Diff.

CLIP-Straight 55.4 76.0 55.6 71.0
MMT 70.8 93.5 72.1 89.1
CLIP4CLIP 71.8 94.3 68.9 91.9

Human 92.7 93.5 92.2 94.3

Table 3: Model accuracy on VerbLM MC in MSR-VTT.
We select the subsets with the highest and lowest 15%
(Sim. and Diff.) semantic similarity with the original
sentence. Similarity scores are calculated using: Sent-
BERT in (Reimers and Gurevych, 2019) and zero shot
CLIP (Radford et al., 2021) text embedding.

the training data than the original IDs, meaning the 294

models struggle to identify IDs in the long-tail. 295

Does Semantic Proximity of Verb Contrast Sets 296

Affect Model Accuracy? To answer this, we use 297

off-the-shelf sentence embeddings to measure the 298

semantic proximity b.w. original and hard negative 299

sentences, and select the subsets of the data with the 300

highest and lowest 15% according to these scores 301

(see examples in the Appendix). In Table 3, we 302

see that models can achieve accuracy greater than 303

93% on semantically different examples (Diff.) 304

as measured by SentBERT, i.e., on par with hu- 305

mans. However for contrast sets with high seman- 306

tic similarity (Sim.), model performance is much 307

lower, while human performance is not affected 308

(e.g. CLIP4CLIP drops to 71.8% and humans 309

maintain 92.7% accuracy on SentBERT Sim.). We 310

found that many contrast sets in this subset include 311

antonyms of the original verbs (e.g. pulling vs. 312

pushing).3 Distinguishing such antonyms requires 313

fine-grained understanding of actions, which SOTA 314

video-language models fail to demonstrate. 315

5 Conclusion 316

We present a pipeline to build automatic contrast 317

sets for video and language tasks, focused on ma- 318

nipulating person entities and verb phrases. We 319

show that models struggle on contrast sets com- 320

pared to random negatives, and stronger retrieval 321

models do not show better robustness to hard neg- 322

atives. For verb contrast sets, we find that model 323

performance is strongly correlated with semantic 324

proximity, unlike humans. We leave it as future 325

work to use automatic contrast sets in training to 326

improve model robustness, and designing contrast 327

sets for different concepts/parts of speech. 328

3Recall from Section 3 that we do not apply similarity
threshold for antonyms.
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6 Ethical Considerations329

Our goal is to diagnose performance of video-330

language models on hard negative samples w.r.t.331

verbs and person entities. Overall, we envision332

positive impact from this work, as it aims to ex-333

pose limitations of the existing models. Some of334

our entity swaps focus on apparent gender (as de-335

scribed by humans in the video-text datasets), but336

we do not predict biological sex or gender iden-337

tity. We construct our verb-focused contrast sets338

automatically, using a large generative language339

model, thus potentially some biases present in such340

a model could propagate into our hard negative341

samples. Practitioners who wish to use our contrast342

sets should be mindful of such sources of bias.343
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Male Nouns Female Nouns

man → woman woman → man
men → women women → men, guys
boy → girl girl → boy, guy
boys → girls girls → boys, guys
guy → woman, girl lady → man, guy
guys → women, girls, ladies ladies → men, guys

Table 4: List of gender sensitive words mapped to a
different gender. Note, that singular and plural form is
maintained.

A Contrast Set Construction530

Here, we provide more details on construction of531

each contrast set.532

A.1 Gender Contrast Sets533

Table 4 shows the mapping of gender-sensitive534

words. We use these rules to swap only a single535

word in the sentence. This is to guarantee that536

swapping gender leads to different semantics (e.g.537

man and woman walk together −→ woman and man538

walk together both apply to the same video if all539

words are swapped). If there are more than one540

possible mappings, we randomly sample one from541

a uniform distribution. Lastly, we swap all gender-542

sensitive pronouns that have the same gender as543

original noun. These contrast sets are used for the544

MSR-VTT dataset (Xu et al., 2016).545

A.2 Person ID Contrast Sets546

The first character ID in a sentence is replaced by547

a different character ID that appears in the same548

movie and has the same gender. Among all the549

candidates, the manipulated ID is sampled from a550

uniform distribution. The following character IDs551

in the same sentence have uniform chance of being552

kept or swapped using the same strategy. These553

contrast sets are used for the LSMDC-IDs dataset.554

A.3 Verb Contrast Sets555

Attack Selection We use Spacy to get the POS556

tags, and find verb phrases that match a list of pre-557

defined patterns (verb; verb + preposition).558

Candidate Generation We use T5 model and559

performed beam search (beam size = 50) to gener-560

ate K = 50 multi-word candidates.561

Candidate Constraints We keep a candidate if 562

the lemmatized verbs 4 in it appeared more than 30 563

times in the training set. For fluency, we calculate 564

perplexity score of original and manipulated sen- 565

tence using GPT2-XL (Radford et al., 2019), which 566

we call pplo and pplm. We calculate the normalized 567

difference of perplexity scores ppldiff =
pplo−pplm

pplo
568

to remove a candidate that is less plausible than 569

the original. Specifically, candidates are kept if 570

ppldiff < 0.6, or ppldiff < 1.4∩pplm < 750. Lastly, 571

the semantic inconsistency constraints are satisfied 572

if the word embedding (Mrkšić et al., 2016) of 573

the lemmatized verbs in the candidate and orig- 574

inal sentence have cosine similarity score lower 575

than 0.4, and the sentence embeddings (Reimers 576

and Gurevych, 2019) have cosine similarity score 577

lower than 0.8. 578

B Contrast Set Examples 579

Random examples of automatically constructed 580

contrast sets using descriptions from MSR-VTT 581

and LSMDC-IDs datasets are shown in Table 5. 582

We also illustrate the top/bottom 10% 583

(Sim./Diff.) according to SentBERT similarity, as 584

discussed in the main paper. A few examples from 585

each subset are shown in Figure 2. 586

C Implementation Details 587

• MMT (Gabeur et al., 2020): We use the fol- 588

lowing features extracted from video5: mo- 589

tion from S3D (Xie et al., 2018), audio from 590

VGGish (Hershey et al., 2017), scene embed- 591

dings, face, OCR, Speech, and Appearance. 592

We refer to Miech et al. (2018); Gabeur et al. 593

(2020) for more details about the features. 594

For MSR-VTT, we use the released check- 595

point from their code6, which is pre-trained 596

on HowTo100M dataset (Miech et al., 2019) 597

and further finetuned on MSR-VTT. 598

For LSMDC-IDs which needs re-training, 599

we used their finetuning code for LSMDC 600

dataset (Rohrbach et al., 2017). The model 601

is trained with max margin ranking loss on 602

1 Nvidia RTX-6000 GPU for 12 hours. Hy- 603

perparameter search was done to find mar- 604

gin of 0.05, batch size of 32, and Adam opti- 605

4https://www.nltk.org/_modules/nltk/
stem/wordnet.html

5https://github.com/albanie/
collaborative-experts

6https://github.com/gabeur/mmt
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Dataset Original Person Entity Verb Phrase

MSRVTT Two men are doing wrestling. Two women are doing wrestling. Two men are dancing.
A man in black shirt is talking
with his two friends.

A woman in black shirt is talk-
ing with her two friends.

A man in black shirt is running
with his two friends.

LSMDC-ID His gaze steely, Jenko lowers his
gun.

His gaze steely, Schmidt lowers
his gun.

His gaze steely, Jenko raises his
gun.

Jenko and Schmidt sit in the rear
pew.

Zach and Schmidt sit in the rear
pew.

Jenko and Schmidt stand in the
rear pew.

Table 5: Examples of person entity and verb phrase hard negatives in MSR-VTT and LSMDC-IDs.

Different 
Semantics

Similar 
Semantics

Original: A man is interviewing 
a woman. SentBERT: 0.43


CLIPText: 0.83

BertScore: 0.82

SentBERT: 0.95

CLIPText: 0.94

BertScore: 0.94

SentBERT: 0.95

CLIPText: 0.99

BertScore: 0.90

Verb Contrastive: A man is talking 
to a baby who is standing on a bed

Original: A man is talking to a 
baby who is laying on a bed

Original: A woman opening 
a package and pulling 
something out.

Verb Contrastive: A woman 
opening a package and pushing 
something out. 

Verb Contrastive: A man is kissing 
a woman.

Original: A group of old 
men are shaking hands.

Verb Contrastive: A group of 
old men are washing hands.

SentBERT: 0.78

CLIPText: 0.80

BertScore: 0.78

Figure 2: Qualitative example of contrast sets that have different and similar semantics with the original sentence
obtained by off the shelf embeddings.

mizer (Kingma and Ba, 2015) with learning606

rate 5e−5. The best model was selected by607

the video-to-text retrieval performance with608

Recall@1. We found training from scratch609

performs better than using pre-trained model.610

This has been also observed by Gabeur et al.611

(2020) for the LSMDC dataset.612

• MMT-CLIP: We replace the appearance fea-613

tures in MMT with frozen CLIP ViTB/32 fea-614

tures and train with the same architecture.615

• CLIP-Straight (Portillo-Quintero et al.,616

2021): CLIP(ViTB-32) (Radford et al., 2021)617

features are aggregated via mean pooling to618

approximate video representation. This video619

representation and text embedding from CLIP 620

are combined to perform retrieval and MC in 621

a zero shot manner. 622

• CLIP4CLIP (Luo et al., 2021): We use the 623

hyperparameters from the finetuning code7 to 624

reproduce their results. We use mean pooling 625

for the similarity calculator and CLIP model is 626

initialized with ViTB-32 weights. The model 627

was trained with 4 Nvidia RTX-6000 GPUs 628

for 5 epochs (48 gpu hours). The best model 629

was selected by using Recall@1 in video-to- 630

text retrieval. 631

7https://github.com/ArrowLuo/CLIP4Clip
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• CLIP2Video (Fang et al., 2021): We used632

the released checkpoint on MSR-VTT using633

their code base8. This model is not used634

for LSMDC-IDs because finetuning code was635

not provided. CLIP model is initialized with636

ViTB-32 weights.637

D Multiple Choice Details638

Here we provide more details about our evaluation639

data. Note, that we use 5 text candidates (1 posi-640

tive and 4 negative) for all multiple choice (MC)641

settings.642

D.1 MSR-VTT643

We use the standard train/val/test split in MSRVTT644

dataset (Xu et al., 2016).645

• Retrieval: 1,000 ground truth video-text pairs646

in the test set (Yu et al., 2018).647

• Random MC: 2,990 videos and all negative648

options are drawn randomly from other videos649

(Yu et al., 2018).650

• Gender MC: 2,477 video-text instances. Us-651

ing the original descriptions from Random652

MC, a single negative is drawn from gender653

contrast sets to replace one of the options in654

Random MC (the remaining 3 are kept). Note,655

that not all videos involved people or con-656

tained gender-sensitive words in descriptions,657

hence some instances are filtered.658

• VerbLM MC: 2,554 video-text instances. Con-659

structed using the same strategy as in Gender660

MC but a single negative is drawn from verb661

contrast sets generated by language models.662

Instances are filtered when there are no valid663

verb contrast sets satisfying constraints in Sec-664

tion A.3.665

• VerbH MC: 2,554 video-text instances. We666

use the instances in VerbLM MC, and a nega-667

tive is drawn from human designed verb con-668

trast sets.669

D.2 LSDMC-IDs670

We define a new split using LSMDC descriptions671

with character IDs (proper names) (Park et al.,672

2020). Note, that Rohrbach et al. (2017); Park673

et al. (2020) use development and test sets where674

videos come from distinct movies than the training675

8https://github.com/CryhanFang/
CLIP2Video

Overall Rare ∆

MMT 65.2 48.4 16.8
MMT-CLIP 70.1 56.2 13.9
CLIP4CLIP 69.1 54.2 14.9

Table 6: Accuracy for ID MC in LSMDC-IDs dataset.
We calculate accuracy when the character ID in original
sentence is more rare than the swapped ID (column
labeld as Rare). ∆ is the difference between the two
accuracies and we see the best model (MMT-CLIP) has
the lowest difference. See Section 4.3 for more details.

data, meaning that IDs in test data are not seen 676

in training. To overcome this issue, we split their 677

training descriptions into 80%/10%/10%/ ratio to 678

create new training/validation/test sets that share 679

the same movies and identities across splits. 680

• Retrieval: 7,010 ground truth video-text pairs. 681

• Random MC: 7,010 videos, negative text op- 682

tions drawn randomly from different videos 683

but the same movie. 684

• ID MC: 7,010 video-text instances. We re- 685

place one negative in Random MC with the 686

one from ID contrast sets. 687

• VerbLM MC: 7,010 video-text instances. We 688

replace one negative in Random MC with one 689

from the language model generated verb con- 690

trast sets. 691

• VerbH MC: 3,500 video-text instances. We 692

replace one negative in Random MC with one 693

from the human designed verb contrast sets 694

(we only crowdsourced 3,500 instances). 695

E Human Annotation Details 696

We ran two different human annotations, one to 697

evaluate our VerbLM MC and another to manually 698

design verb contrast sets. Figures 3 and 4 show the 699

respective HIT UIs. We use Amazon Mechanical 700

Turk interface to get a pool of annotators from 701

native Enlgish speaking countries and with high 702

approval rate, and pay them $15 hour on average 703

which is above a minimum wage. 704

F Dataset Details 705

We include additional information on the MSR- 706

VTT (Xu et al., 2016) and LSMDC (Rohrbach 707

et al., 2017) datasets. MSR-VTT contains diverse 708

YouTube videos and corresponding crowdsourced 709
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Figure 3: AMT UI for conducting human evaluation in the MC setting with contrast sets.
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Figure 4: AMT UI for collecting human-generated verb contrast sets.
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descriptions in English language. LSMDC con-710

tains movie clips and associated descriptions from711

scripts or Audio Description, also in English. Both712

datasets are distributed for research use. The li-713

cense, personally identifiable information (PII),714

and consent details of each dataset are in the re-715

spective papers. Since LSMDC contains clips from716

movies, some may contain nudity or violence, etc.717
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