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Abstract

3D object detection is fundamentally important for various emerging applications,
including autonomous driving and robotics. A key requirement for training an
accurate 3D object detector is the availability of a large amount of LiDAR-based
point cloud data. Unfortunately, labeling point cloud data is extremely challenging,
as accurate 3D bounding boxes and semantic labels are required for each potential
object. This paper proposes a unified active 3D object detection framework, for
greatly reducing the labeling cost of training 3D object detectors. Our framework
is based on a novel formulation of submodular optimization, specifically tailored
to the problem of active 3D object detection. In particular, we address two fun-
damental challenges associated with active 3D object detection: data imbalance
and the need to cover the distribution of the data, including LiDAR-based point
cloud data of varying difficulty levels. Extensive experiments demonstrate that
our method achieves state-of-the-art performance with high computational effi-
ciency compared to existing active learning methods. The code is available at
https://github.com/RuiyuM/STONE

1 Introduction

In many emerging applications such as autonomous driving, it is critical to localize objects in a 3D
scene for accurate scene understanding [8, 56]. This is usually achieved by using a 3D detection
model based on LiDAR point cloud data with oriented bounding boxes and semantic labels. While
highly accurate recognition and localization of objects can be achieved due to recent advancements
in deep learning, this performance often comes at the expense of requiring a large volume of labeled
point cloud data, which is much more costly to collect compared to typical RGB images [51, 52].

Active learning (AL) is the standard method for reducing labeling costs in machine learning [7, 45].
AL often starts with a small labeled set and iteratively selects the most informative samples for
label acquisition from a large pool of unlabeled data, given a labeling budget. The informativeness,
of a selected sample, can be measured in various ways. For example, by computing the sampling
uncertainty as measured by maximum Shannon entropy [48, 32] or estimated model changes or
finding the most representative samples to avoid sample redundancy [36, 17, 40] by using greedy
coreset algorithms [44, 18] or clustering-based approaches [38, 57, 3, 42].

Active learning has proven highly effective in reducing labeling costs for recognition tasks, but
its application in LiDAR-based object detection remains limited and under-explored [11, 22, 43].
Compared to standard recognition tasks, there are two fundamental challenges: 1) Depending on the
specific scene, each category involves different difficulty levels (EASY, MODERATE, or HARD), which
are determined by the size, occlusion level, and truncation of 3D objects. Ideally, the selected labeled
point cloud data should include varying difficulty levels. 2) Each 3D scene can contain multiple
objects, leading to highly imbalanced label distributions in the point cloud data. For example, most
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point clouds include cars, but not cyclists. Addressing data imbalance is thus crucial for selecting
informative point clouds to train the 3D object detector.

In a recent study, CRB [35] proposed three stages to label unlabeled point clouds hierarchically,
ensuring they are concise, representative, and geometrically balanced. One of the critical components
of CRB is to achieve label balance in individual point clouds. However, it cannot guarantee the label
distribution is balanced across all the labeled point clouds. More recently, KECOR [34] was proposed
for characterizing sample informativeness in both classification and regression tasks with a unified
measurement. The main idea is to select a subset of point clouds that maximizes the kernel coding
rate. This approach enables the selection of representative samples from the unlabeled point cloud.
However, it does not address the issue of data imbalance.

In this paper, we propose a unified submodular optimization framework, called STONE, for active
3D object detection, to address limitations in existing methods. Our framework leverages submodular
functions [12], a classical tool for measuring set quality, due to its well-known property of diminishing
returns. Building on these fundamental results, we introduce a novel formulation of submodular
optimization for active 3D object detection. This formulation not only ensures that the selected
point cloud achieves maximal coverage of the unlabeled point cloud but also addresses the issue
of data imbalance. Based on the formulation, we propose a two-stage algorithm. Firstly, we
select representative point clouds using a submodular function based on gradients computed from
hypothetical labels using Monte Carlo dropout [13]. Secondly, we employ a greedy search algorithm
to select unlabeled point clouds, aiming to balance the data distribution as measured by another
submodular function. Our work makes the following core contributions. 1) We introduce the first
submodular optimization framework for active 3D object detection, addressing two fundamental
challenges in this domain. 2) We develop a simple and efficient two-stage algorithm within the
framework for selecting representative point clouds and addressing the issue of data imbalance. 3) We
extensively validate the proposed framework on real-world autonomous driving datasets, including
KITTI [15] and Waymo Open dataset [52], achieving state-of-the-art performance in active 3D
object detection. Furthermore, additional results in active 2D object detection demonstrate the high
generalizability of our proposed method.

2 Related Works

Active Learning (AL) has been a deeply studied topic in machine learning [7, 45], which involves
alleviating labeling annotation costs by selecting the most representative samples from a pool
of unlabeled data, all the while not comprising model performance. Broadly speaking, AL can
be categorized into two strategies - uncertainty sampling and representative/diversity sampling.
Algorithms under representative/diversity sampling select subsets of data that act as stand-ins or
surrogates for the entire dataset [1]. Prior works have explored coreset-based subset selection [44, 18],
clustering algorithms [38, 57, 3], and generative adversarial learning [16]. In uncertainty sampling
[31], samples are selected by maximizing the Shannon entropy [32] of the posterior probability,
minimizing the model’s subsequent training error through variance reduction [6], based on the
maximum gradient magnitude [46], and considering the disagreement among a committee of model
hypotheses [47, 54]. Hybrid sampling strategies are proposed recently [25, 1, 26, 20], combining
representative/diversity and uncertainty sampling, like BADGE [1], where the authors propose to use
the gradient magnitude with respect to the classifier’s parameters as a measure of uncertainty. This
approach selects samples whose gradients cover a wide range of directions.

Active Learning for 3D Object Detection. While AL has been actively studied and applied to image
classification and regression tasks, it has recently been garnering interest in the 3D object detection
community. Initial works like MC-MI [11] make use of Monte-Carlo (MC)-dropout [14] and Deep
Ensembles [30] to compute the Shannon entropy in the predicted labels and mutual information
between class predictions and model parameters. CONSENSUS [43] estimates uncertainty using
ensembles for 2D/3D object detection. While these works relied on generic metrics to measure
prediction uncertainty, two other works on 3D object detection, CRB [35] and KECOR [34], were
proposed recently. In CRB, the method greedily searches and samples unlabeled point clouds that
exhibit concise labels, representative features, and geometric balance. KECOR shows that, for sample
selection, maximizing the kernel coding rate is beneficial and improves over task-specific AL methods
for 3D detection, at fast-running times.
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Submodular Optimization. Submodular functions (see Section 3), and thereby optimization, have
found wide applications in the selection of data subsets [58, 29], active learning [27, 28], speech
recognition [59, 60], continual learning [53], and hyper-parameter tuning [24]. The effectiveness
of submodular functions primarily stems from their ability to model diversity via clustering in
representation learning. This enhances their capacity to discriminate between different data subsets
or classes while ensuring the preservation of unique and relevant features.

3 Background

3D Object Detection. LiDAR-based 3D object detection aims to localize and recognize objects
in point cloud data using oriented bounding boxes and semantic labels. Point clouds are typically
generated by LiDAR sensors by emitting pulsed light waves into the surrounding environment and
then analyzing the time difference of receiving the bounced-back pulses. The newly generated
orderless point Pi = {(x, y, z, r)} is represented by xyz spatial coordinates and reflectance r. Based
on the point cloud data, ground-truth bounding boxes can be labeled as Bi = {bi}Ni

i=1 where bi ∈ R7

which include the relative center xyz spatial coordinates to the object ground planes, the box size, the
heading angle, and the box label, with their associated bounding box semantic labels Ci = {ci}Ni

i=1.
Ni represents the number of bounding boxes in the i-th point cloud. In 3D object detection, a 3D
objector Mθ with parameters θ first extracts logits fi from the raw points. These logits are then
processed, resulting in modified logits f ′

i , which are subsequently used by a classification head for
predicting the semantic label. Additionally, a regression head will be used to predict the bounding
boxes. Finally, the output of the 3D detector is the predicted bounding box {b′i}

Ni
i=1, which includes

the semantic labels {c′i}
Ni
i=1 for each bounding box, where c′i ∈ {1, 2, . . . , C} with C being the total

number of semantic classes, e.g., cars, cyclists and pedestrians.

Active Learning for 3D Object Detection. Active 3D object detection aims to reduce the labeling
cost for training the 3D detector. In the beginning stage, a small number of labeled point clouds DL

are randomly selected from the unlabeled data pool DU to train the backbone 3D object detection
model. During active learning, for each query iteration q ∈ {1, 2, . . . , Q}, a given active learning
method will select Γ number of unlabeled point clouds from DU . These selected point clouds are
then given to a human annotator for labeling the bounded boxes and semantic labels, and the labeled
point clouds DS = {Pj , Bj}j∈[Nq ] along with the previously selected point clouds are combined to
create selected point clouds DL = DL ∪DS for the backbone model to re-train. When the query
round Q is reached or the total queried bounding box number, or budget, NQ is reached, it will stop
repeating the above process, where NQ =

∑Q
q=1 Nq .

Submodular Functions and Optimization. A set function f, in the discrete space, defined as follows:
f :2D→ R, where 2D is a power set of D with f coming from the discrete space in R2n , is considered
submodular if it satisfies the following property of diminishing returns,

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B) (1)
∀ A,B ⊆ D. A similar alternative property is,

f(A ∪ {x})− f(A) ≥ f(B ∪ {x})− f(B) (2)
∀ A,B ⊆ D, A ⊆ B and x /∈ B [2]. Additionally, f is strictly monotone if f(A) < f(B) for A⊆B. An
important example of a submodular function, in the context of active learning, is the Shannon entropy
[48]. We refer the reader to [2] for proof of the submodularity of the Shannon entropy [48].

In order to maximize the representativeness of samples or subsets, a natural solution is to maximize f
in the form of maxA∈S f(A) with S being a constrained set and S⊆2D. The idea is to select a subset
set that would accept feasible solutions. Since f is monotone submodular, such discrete maximization
problems, being NP-complete [10], can be guaranteed to be approximated to a factor of 1 - 1

e ≈ 0.63
[37] if maximized under S using a greedy approximation algorithm [2].

4 Algorithms

4.1 A Submodular Optimization Approach to Active 3D Object Detection

To tackle the core challenges of active 3D object detection, we propose a unified framework grounded
in submodular optimization. Our objective is to select a set of unlabeled point clouds that are (1)
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Figure 1: STONE: An illustrative pipeline of our proposed active learning method for 3D object
detection leveraging submodular functions.

representative, including various levels of difficulty, and, (2) preservative of the label distribution of
the selected samples.

To achieve the first goal, we leverage a submodular function f1 to measure the representativeness
of the selected unlabeled point clouds DS with respect to the whole unlabeled set DU . This can be
achieved by minimizing the absolute difference between f1(DU ) and f1(DS) since DS⊂DU . This
translates to maximizing the absolute difference f1(DS)− f1(DU ). To achieve the second goal, we
leverage a different submodular function f2 to ensure that once the selected unlabeled point clouds
DS are added to the labeled set DL, the overall quality, as measured by label distribution, will not
decrease. In sum, we aim to select unlabeled point clouds DS from the unlabeled pool DU that
optimize the following two objectives,

max
DS⊂DU

[f1(DS)− f1(DU )] + [f2(DL)− f2(DL ∪DS)] (3)

Unlike existing active learning methods that rely on sample uncertainty, such as Shannon entropy
[48, 55], which tends to select difficult point clouds, our proposed formulation selects samples
of varying difficulty levels. Additionally, unlike existing algorithms [44, 18] or clustering-based
approaches [38, 57, 3], our formulation also considers the selected labeled point clouds to prevent
data imbalance when training a 3D detector. The formulation is also general, allowing for different
choices of submodular functions. In practice, we use a feature-based submodular function [59, 2] as
f1 and the entropy of the label distribution as f2. Although the proposed formulation is motivated by
the problem of active 3D object detection, it can also be useful for active learning problems in similar
domains, such as 2D object detection, as we will demonstrate in the experiments. Finding the set
DS that solves Equation 3 is NP-complete [10]. Therefore, we propose a simple algorithm called
STONE to efficiently solve the problem as will be detailed below.

4.2 STONE

In order to optimize the submodular optimization framework in Equation 3, we have designed an
active learning pipeline with two stages, aligning with the dual objectives of the submodular criteria.
To enhance computational efficiency and simplify optimization, we have implemented a hierarchical
structure to eliminate unselected samples at each stage, with the remaining samples comprising
our final selection. Initially, we select Γ1 samples using the proposed Gradient-Based Submodular
Subset Selection (GBSSS), which maximizes diversity and coverage while minimizing redundancy
from DU . Subsequently, we select Γ2 samples from Γ1 through Submodular Optimization for Class
Balancing (SDMCB). A detailed explanation of these stages is provided in the following paragraphs.
We illustrate our proposed pipeline in Figure 1.
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4.2.1 Gradient-Based Submodular Subset Selection (GBSSS)

To address the challenge outlined in the introduction—arising from variations in object size, occlusion,
and truncation, which introduce different levels of difficulty across categories—we need to identify
representative and diverse samples not only across categories but also within each category with
varying difficulty levels. This challenge can be addressed by using a submodular function f1 for
maximizing f1(DS) − f1(DU ). In the proposed gradient-based submodular subset selection, we
select a subset of unlabeled point clouds from DU that maximizes gradient feature coverage while
ensuring diversity.

Due to the absence of ground-truth semantic labels in the pool of unlabeled point clouds, we employ
Monte Carlo dropout (MC-dropout) [13] at the detector head for each point cloud Pi to generate
multiple regression predictions, as in [35]. By averaging these predictions, we obtain regression
hypothetical labels as well as the classification hypothetical labels. We then calculate the loss function
Li of the 3D detector Mθ, with parameters θ, using the classification and regression hypothetical
labels. Following backpropagation, we extract gradients ∇θLi from the fully connected (FC) layer
of the detector head.

However, when the dataset is highly imbalanced, as is usually the case in 3D object detection, the
gradients generated by the above approach become inaccurate for classes with fewer samples [39].
To address this issue, we introduce two novel reweighing approaches for handling regression loss
Lreg and classification loss Lcls in 3D object detection for a better computation of the gradients for
rare classes. In particular, after calculating the regression loss for each bounding box, we calculate
the average loss Lc

reg for class c based on the regression hypothetical labels. For a given label c,
the regression loss reweighing factors can be expressed as wc =

1
nc

, where nc is the number of the
bounding boxes that belong to class c. We then normalize wc as w̃c =

wc

max(wc)
. The purpose of doing

so is two-fold - 1) The class-specific weights in Lc
reg are uniformly scaled to prevent bias toward

frequently occurring classes. 2) This approach helps reduce overfitting to bounding boxes associated
with those classes. Then, we perform an element-wise multiplication between w̃c and Lc

reg to re-scale
the loss, for each class c, and compute the mean, across all the semantic classes C, to get the final
reweighed regression loss L̂reg, as L̂reg = 1

C

∑C
c=1 w̃c · Lc

reg. The reweighed regression loss L̂reg

places more emphasis on classes with fewer samples, which is critical for computing the gradient.

Inspired by the theoretical formulation in [4], we additionally introduce a new classification reweigh-
ing loss function designed to handle class imbalances by adapting the classification margins according
to the label distribution during the active learning stage. In essence, for rare classes, the distance
of the samples from the decision boundary i.e., the margin, would have to be penalized more. This
way the generalization error of minor classes can be improved without worsening the performance
on frequent classes. However, penalizing the rare classes more might affect the margins of frequent
classes, leading to a complex trade-off [4]. In order to balance this, for the i-th point cloud, we
leverage a margin vector mi, where the margin for class c is defined as mi,c =

1√
nc

(nc is the class
frequency of class c). We then subtract the predicted logits fi by the margin vector mi to reweigh the
predicted logits. Finally, the reweighed logits and hypothetical classification labels ŷi are used in the
classification loss function Lcls to compute the class-balanced classification loss L̂cls as,

L̂cls = Lcls(ŷi, fi −mi) (4)

We then use the class-balanced detection loss L̂ = L̂reg + L̂cls to compute the gradient for each
point cloud. After obtaining the gradients, we use a feature-based submodular function [59] f1 to
select the top Γ1 diverse samples from DU ,

max
DS⊂DU ,|DS |=Γ1

∑
Pi∈DS

g
(
µ(∇θL̂i)

)
(5)

where g(x) = log(1 + x). The concavity of g(x) ensures that the marginal gain of adding more
instances of similar features decreases as more such instances are added. This means that the function
will favor adding elements that introduce new features rather than redundant ones. For the score
function [59], µ(·), we use gradients distribution entropy H(∇θL) as the measure of informativeness.
More details are given in the Appendix. A greedy algorithm is then applied to iteratively add samples
to a subset, providing the most significant increase in marginal gain until the target size, Γ1, is
reached.
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4.2.2 Submodular Diversity Maximization for Class Balancing (SDMCB)

Figure 2: The proposed STONE method
more effectively maintains the balance of
label distribution in active 3D object detec-
tion. The plots show the cumulative label
distribution entropy values on KITTI [15]
validation set split with PV-RCNN [49].

One of the main challenges for active 3D object detec-
tion is that each 3D scene can contain multiple semantic
classes, such as cars and cyclists. As the queried point
clouds increase, it will inevitably introduce an imbal-
anced label distribution in DL, eventually resulting in
performance drops. This situation is more prominent
in autonomous driving datasets. A recent study, CRB,
attempts to address this imbalance issue by introducing
individual point cloud balancing. However, it cannot
guarantee a balanced label distribution in DU across
multiple active learning queries. In Figure 2, we illus-
trate the imbalance in label distribution entropy caused
by existing methods [35, 34], particularly KECOR,
where label imbalance begins to increase as the number
of query rounds rises. Aiming to alleviate this label
imbalance, we utilize entropy calculated from the predicted label distribution as the submodular func-
tion f2. This approach supports the principle of diminishing returns as DL becomes more balanced.
Our method is divided into two steps. In Step 1, we select point clouds which have balanced label
distribution based on the hypothetical labels. In Step 2, from the selected ones, we further choose a
subset that can be labeled to ensure that the label distribution is balanced in the labeled set DL.

Step 1: Balance the label distribution of individual point cloud. To balance each individual point
cloud, we select the top K most balanced samples according to their individual point cloud label
distribution entropy. This selection process applies a heuristic that maximizes the immediate gain in
entropy. To calculate the probability pi,c of a specific label c within point cloud Pi, we first normalize
the count of predicted label c, denoted as nc, by the total number of predicted bounding boxes Ni in
Pi. This normalization is done using a softmax function and adjusts the raw count of label c to reflect
its proportion relative to the total number of labels. Next, the entropy of the individual point cloud,
H(Pi), is calculated as follows,

H(Pi) = −
C∑

c=1

pi,c log pi,c, pi,c =
enc /Ni∑C
c=1 e

nc/Ni

(6)

We calculate H(Pi) for each unlabeled point cloud Pi ∈ DU and identify the top K1 point cloud
samples with the highest entropy values.

Step 2: Balance the label distribution of labeled point clouds. We then aim to choose a subset
of point clouds from the selected ones in Step 1 for balancing the label distribution of the labeled
point clouds. To achieve this, we follow a similar approach from the previous step to calculate label
probability. Instead of normalizing nc by the number of bounding boxes Ni in the point cloud Pi,
we first compute the sum of the number of labeled bounding boxes NL,c of a certain class c in the
labeled set and nc, which represents the total number of objects belonging to class c once the point
cloud Pi is labeled. Then we compute the sum of total labeled bounding boxes NL and Ni to find γi,c
which represents the normalized number of predicted label c. Finally, we calculate p̃i,c indicating
the cumulative label probability of certain class c once the point cloud Pi is labeled. The cumulative
entropy H(P̃i) of the cumulative label probability then can be computed as,

H(P̃i) = −
C∑

c=1

p̃i,c log p̃i,c, p̃i,c =
eγi,c∑C
c=1 e

γi,c

, γi,c =
NL,c + nc

NL +Ni
(7)

H(P̃i) can be used to measure label balancing after the point cloud Pi is added into the labeled set. To
construct the final selected point clouds in the current query round q, we use a greedy search algorithm
to iteratively select samples from DU that maximizes the cumulative entropy, to finally select the top
Γ2 samples. Thus, using this two-stage progressive approach, we achieve both individual point cloud
label balance and label balance across all the labeled point clouds which is crucial for the real-world
application of active 3D object detection.
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5 Experiments and Results

5.1 Experimental Setup

Datasets. For our experiments, we use the KITTI dataset [15], one of the commonly used datasets
in autonomous driving tasks. The dataset consists of 3,712 training samples and 3,769 validation
samples, which include a total of 80,256 labeled objects. These objects include cars, pedestrians, and
cyclists, each annotated with class categories and bounding boxes. We also use the more challenging
dataset for 3D object detection in autonomous driving - the Waymo Open dataset [52]. It includes
158,361 training samples and 40,077 testing samples. In the KITTI dataset, task difficulty levels
are defined as EASY for fully visible objects, MODERATE for partially occluded objects, and HARD
for significantly occluded objects. For the Waymo test set, the framework categorizes difficulty into
two levels: LEVEL 1 with more than five LiDAR points inside the ground-truth bounding box and
LEVEL 2 with less or equal to five points. The sampling intervals are set to 1 and 10 for KITTI and
Waymo Open, respectively.

Baselines. We compare our work against several generic active learning baselines, 1) RANDOM:
Naive sampling strategy that randomly selects fixed samples at every round; 2) ENTROPY [55, 41]:
Selects samples with the highest degree of uncertainty as measured by entropy of the sample’s
posterior probability; 3) LLAL [62]: Task-agnostic method with a parametric module that chooses
samples where the model is likely to make wrong predictions, based on an indicative loss; 4)
CORESET [44]: Greedy furthest-first method using the core-set selection on both labeled and
unlabeled embeddings. 5) BADGE [1]: Batch-mode AL method to select diverse samples, with high
gradient magnitude, that span a wide range of directions in the gradient space.

We also draw contrasts between our method and AL methods (and variants) for 2D/3D detection,
6) MC-MI [11]: Uses MC-dropout [14] to estimate model uncertainty and mutual information to
select the most uncertain point cloud samples; 7) MC-REG [35]: Uses several rounds of MC-dropout
[14] to approximate the regression uncertainty and picks samples with the greatest variance for
labeling; 8) LT/C [22]: Adapted from 2D detection, it selects samples based on both localization
uncertainty and classification confidence to improve model performance; 9) CONSENSUS [43]:
Employs ensemble-based uncertainty estimation and continuous training to reduce labeling efforts.
10) CRB [35] and 11) KECOR [34]. To compare the performance of our method on the 2D object
detection task, we compare with 12) AL-MDN [5]: Constructs mixture density networks to estimate
probability distributions for the outputs of localization and classification heads.

Evaluation Metrics. To maintain fairness with the baselines on KITTI, we measure the performance
using Average Precision (AP) for 3D and Bird Eye View (BEV) detection, with rotated Intersection
over Union (IoU) thresholds of 0.7 for cars and 0.5 for pedestrians and cyclists, following [49]. For
the Waymo Open, performance is measured using Average Precision (AP) and Average Precision
Weighted by Heading (APH), with IoU thresholds of 0.7 for vehicles and 0.5 for pedestrians and
cyclists.

Implementation Details. We train our proposed method and all baselines on a GPU cluster with 4
NVIDIA RTX A5000 GPUs. To make fair comparisons, we adopt the implementation settings as
outlined in CRB. All the baselines use PV-RCNN [49] as the backbone detection model.

• Training settings. For KITTI and Waymo Open, the training batch sizes are set to 6 and 4
respectively. However, the evaluation batch sizes are set to 16 for both datasets. We optimize
the network parameters using Adam with a fixed learning rate of 0.01. For all the methods,
we perform 5 stochastic forward passes of the MC-Dropout [14].

• Active learning parameters. For KITTI, we set Γ1 and Γ2 to 400 and 300 respectively. In
the case of Waymo Open, Γ1 and Γ2 are set to 2,000 and 1,200 respectively. To ensure
fairness, Nq is set to 100 in all the methods.

5.2 Results

KITTI Dataset Results. We evaluate the performance of STONE against other baseline methods in
Table 1. We clearly notice that STONE outperforms all the prior active learning methods, irrespective
of the detection difficulty level and backbone model. In particular with PV-RCNN [49] as backbone,
on average, we observe 3D AP improvements of 1.47%, 0.84%, and 1.24%, over CRB for the EASY,
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Table 1: 3D AP(%) scores on KITTI validation set with 1% queried bounding boxes, using PV-RCNN
as the backbone detection model.

CAR Pedestrian Cyclist Average

Method EASY MOD. HARD EASY MOD. HARD EASY MOD. HARD EASY MOD. HARD

CORESET [44] 87.77 77.73 72.95 47.27 41.97 38.19 81.73 59.72 55.64 72.26 59.81 55.59
BADGE [1] 89.96 75.78 70.54 51.94 46.24 40.98 84.11 62.29 58.12 75.34 61.44 65.55
LLAL [62] 89.95 78.65 75.32 56.34 49.87 45.97 75.55 60.35 55.36 73.94 62.95 58.88

MC-REG [35] 88.85 76.21 73.47 35.82 31.81 29.79 73.98 55.23 51.85 66.21 54.41 51.70
MC-MI [11] 86.28 75.58 71.56 41.05 37.50 33.83 86.26 60.22 56.04 71.19 57.77 53.81
CONSENSUS [43] 90.14 78.01 74.28 56.43 49.50 44.80 78.46 55.77 53.73 75.01 61.09 57.60
LT/C [22] 88.73 78.12 73.87 55.17 48.37 43.63 83.72 63.21 59.16 75.88 63.23 58.89
CRB [35] 90.98 79.02 74.04 64.17 54.80 50.82 86.96 67.45 63.56 80.70 67.81 62.81
KECOR [34] 91.71 79.56 74.05 65.37 57.33 51.56 87.80 69.13 64.65 81.63 68.67 63.42

STONE 92.09 80.27 75.44 66.1 58.84 52.70 88.31 67.14 64.01 82.17 68.75 64.05

MODERATE, and HARD evaluation modes. We observe improvements of 0.54%, 0.08%, and 0.63%
over KECOR respectively.

From Figure 3, it is evident that regardless of the detection difficulty level, STONE consistently
surpasses other baseline methods. Specifically, compared to the previous state-of-the-art methods
KECOR and CRB, with 1% of labeled bounding boxes from the entire pool of unlabeled point clouds
at the HARD difficulty level, STONE is on average 0.9% higher than KECOR and 1.9% higher than
CRB. Although STONE requires 37% more annotated bounding boxes than KECOR, it achieves
higher accuracy in earlier query rounds, resulting in faster training times due to fewer epochs and
active queries needed. Compared to CRB, even with 36% more labeled bounding boxes at the final
round of active queries, STONE is still on average 0.84% higher across all the difficulty levels.

Figure 3: 3D mAP (%) of AL baselines on the KITTI validation set with PV-RCNN.

Figure 4: 3D mAP (%) of AL baselines on the Waymo Open validation set with PV-RCNN.
Waymo Open Dataset Results. To further test the generality and robustness of STONE, we also
evaluate our approach on the Waymo Open dataset using the APH score as the performance metric
across the two levels of difficulty LEVEL 1 and LEVEL 2. As shown in Figure 4, STONE surpasses
other baseline methods as the number of bounding boxes increases. Compared to previous state-
of-the-art methods KECOR and CRB at 25,000 bounding boxes, STONE achieves higher accuracy
for both levels of detection difficulty. Our method uses fewer active learning loops than KECOR,
meaning it reaches a 2% higher APH score with fewer training epochs. Additionally, when comparing
STONE with CRB in the final active learning round, STONE achieves a 1% higher APH score on
average with 24% fewer bounding boxes.

2D Object Detection Results. We also demonstrate the generalizability of our method on a 2D object
detection task. We perform experiments on the PASCAL VOC [9] dataset, that contains 20 object
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classes. For the experiments, we use VOC07 trainval and VOC07+12 trainval to train a Single Shot
MultiBox Detector (SSD) [33] with a VGG-16 backbone [50], and test on VOC07 test. We follow the
training guidelines and setup as outlined in AL-MDN [5] to reproduce the results. For all methods,
Nq is set to be 1000 for a total of three queries. In Table 2, we summarize the results in terms of mean
Average Precision (mAP), noting that our method either outperforms or is comparable to all baseline
methods. In the first query, we observe improvements of 2.93% and 2.43% over AL-MDNgmm and
AL-MDNeff respectively. Our method, while achieving a balance in label distribution, also scales
well to large datasets with more semantic labels.

Table 2: VOC07 [9]: mAP(%) of STONE against
AL baselines.

mAP in % (# images)

Method 1st (2k) 2nd (3k) 3rd (4k)

RANDOM [33] 62.43±0.10 66.36±0.13 68.47±0.09
ENTROPY [41] 62.43±0.10 66.85±0.12 68.70±0.18
CORESET [44] 62.43±0.10 66.57±0.20 68.57±0.26
LLAL [62] 62.47±0.16 67.02±0.11 68.90±0.15
MC-DROPOUT [11] 62.43±0.19 67.10±0.07 69.39±0.09
ENSEMBLE [19] 62.43±0.10 67.11±0.26 69.26±0.14
AL-MDNgmm [5] 62.43±0.10 67.32±0.12 69.43±0.11
AL-MDNeff [5] 62.91±0.16 67.61±0.17 69.66±0.17

STONE 65.34±0.34 67.01±0.47 69.03±0.55

Computational Complexity. STONE achieves
significant GPU memory savings compared to
KECOR, which computes gradients of the out-
put of the ROI head’s fully connected shared
layer, resulting in a gradient matrix of high di-
mensions and memory. In contrast, STONE fo-
cuses gradient computation on the outputs of the
classification and regression loss layers within
the ROI head, which are much lower in dimen-
sionality. On the KITTI dataset, with a batch
size of 6 (for a fair comparison), our method
consumes 10 GB of GPU memory, whereas
KECOR consumes 24 GB, which is 140% more
GPU memory. Additionally, STONE maintains
a similar running time to KECOR.

Table 3: Ablation on the reweighing factor.

3D AP in %

Components EASY MOD. HARD

w/o reweighing factor 80.81 68.78 62.88
w/o reweighing factor on Lreg 80.32 69.64 63.59
w/o reweighing factor on Lcls 80.22 68.08 62.93
none 83.03 70.33 65.33

Table 4: Stage-wise performance comparisons.

3D AP in % Bounding Boxes

Stages EASY MOD. HARD

GBSSS 79.60 66.50 62.78 2623
GBSSS + SDMCB (Step 1) 80.37 67.80 63.17 1571
GBSSS + SDMCB (Step 2) 79.30 68.86 64.63 2473
SDMCB 80.13 67.83 62.69 1484
SDMCB (Step 1) 80.98 60.44 64.31 1567
SDMCB (Step 2) 80.66 63.36 64.5 2514
All 83.03 70.33 65.33 1530

6 Ablation Study

We perform ablation studies, on KITTI, to assess the efficacy of our approach and to better understand
the key mechanisms and components involved. In the ablation study, all the experiments use 5 rounds
of active learning selection, acquiring a total of 500 point clouds for annotation. We present and
discuss additional ablation experiments in the Appendix (8).

Contributions of L̂reg and L̂cls. Given that our method incorporates both regression loss L̂reg

and classification loss L̂cls to handle potential class imbalance, we have carried out extensive
experiments to analyze their impact on model performance. We first investigated whether regression
or classification loss has a greater impact by using gradients generated from each loss separately
during the active learning stage. The results showed that using only L̂reg resulted in an average 3D
AP drop of 0.77% for HARD while using only L̂cls resulted in an average 3D AP drop of 3.12% for
HARD on the KITTI validation dataset. This indicates that L̂cls has a larger impact on our model’s
performance, and both losses are essential for optimal results.

Effect of the reweighing factor. To further evaluate the reweighing factor’s importance on our
method’s performance, we perform three crucial experiments. In Table 3 (row 1), we study the effect
of not having the reweighing factor on both the regression and classification losses. We observe
performance drops of 3.78%, 1.55%, and 2.45% for the EASY, MODERATE, and HARD levels of
difficulty, respectively. We also observe similar performance drops in Table 3 (row 2) and Table 3 (row
3) with no reweighing factor for the regression or classification loss, respectively. This fundamental
issue arises because, in contrast to classification tasks where a single loss function is typically
considered, detection tasks require the simultaneous optimization of multiple loss components.
Specifically, reweighing only the classification or regression loss in detection tasks can disrupt the
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Table 5: 3D mAP(%) scores on KITTI validation set with 1% queried bounding boxes, using
SECOND [61] as the backbone detection model.

3D Detection average mAP BEV Detection average mAP

Method EASY MOD. HARD EASY MOD. HARD

Random 66.33 55.48 51.53 75.66 63.77 59.71

CORESET [44] 66.86 53.22 48.97 73.08 61.03 56.95

LLAL [62] 69.19 55.38 50.85 76.52 63.25 59.07

BADGE [1] 69.92 55.60 51.23 76.07 63.39 59.47

BAIT [21] 69.45 55.61 51.25 76.04 63.49 53.40

CRB [35] 72.33 58.06 53.09 78.84 65.82 61.25

KECOR [34] 74.05 60.38 55.34 80.00 68.20 63.20

STONE 76.86 64.04 58.75 82.14 70.82 65.68

balance within the model, as it does not adequately model the interdependencies between these loss
functions, leading to the suboptimal performance of the detector.

Relevance of each stage. In Table 4, we examine the importance and the relevance of each stage
of our method. We assess the performance using 3D AP (%) and the number of bounding boxes
annotated with 500 point cloud selections. From Table 4 we observe that the removal of any single
component leads to a drop in 3D AP performance. In particular, using the GBMSS stage only leads
to a drop of 3D AP by 3.43%, 3.83%, and 2.55% for the EASY, MODERATE and HARD difficulty
levels respectively. In such a scenario, the bounding boxes annotated increase by 71.43%, which
shoots up the labeling cost. It is interesting to note that while using only the SDMCB stage results in
annotating the lowest bounding boxes, it also leads to a drop in performance. In conclusion, both
stages of our method are necessary for the optimal selection of samples, with a lower labeling cost, to
ensure the efficiency and accuracy of the proposed active learning method.

Backbone-agnostic performance. In all of the experiments in this paper, we use PV-RCNN as
the backbone detection model. However, to show the invariance of our method towards a change
in the backbone, we perform experiments with SECOND [61], a widely used 3D object detector.
The results, as shown in Table 5, indicate that STONE achieves a 3.4% higher 3D mAP score at
the HARD level and 2.43% higher mAP score at the HARD level in BEV detection compared to the
state-of-the-art method, KECOR. This demonstrates the performance and generality of the proposed
approach.

7 Conclusion

In this paper, we propose a novel approach called STONE, a unified active 3D object detection
methodology, based on submodular optimization. We provide a robust and compute-efficient solution
by proposing a two-stage algorithm that first utilizes a submodular function based on the gradients
using the Monte Carlo dropout [13] to select representative point clouds. We then apply a greedy
search algorithm to balance the data distribution due to the possibility of having an imbalance
across all the labeled point clouds. Extensive experiments on benchmark autonomous driving
datasets, including KITTI [15] and Waymo Open [52] datasets, demonstrate the effectiveness and
generalization of our method.

Limitations. One limitation of the proposed method is that it does not reduce the running time of
existing active 3D detection methods, which is primarily due to the large number of unlabeled point
clouds. In future work, we will investigate more efficient methods for active 3D object detection.

Societal Impact. The proposed method will be important for several real-world applications such as
autonomous driving and robotics, by reducing the cost of labeling.
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8 Appendix

8.1 Additional Ablation Studies

Impact of different submodular functions. We evaluate STONE with different submodular func-
tions used in stage 1 i.e., GBMSS, and report the results in Table 6. Submodular functions such as
facility location have demonstrated effectiveness in modeling representativity and diversity [23], as
well as in active learning [28, 27]. We employ these functions in our GBMSS study to assess their
effectiveness. In terms of performance measured by 3D AP, we observe results similar to those of
STONE. However, it comes with an extremely high labeling cost with a 50.98% rise in bounding
box annotations. With the max coverage submodular function, we see slight performance drops of
1.57%, 0.06%, and 0.65% for the EASY, MODERATE and HARD difficulty levels respectively. Overall,
our method attains the best results in terms of 3D average precision (AP) while maintaining a low
labeling budget.

Table 6: Impact of different submodular functions.
3D AP in % Bounding Boxes

Submodular functions EASY MOD. HARD

Facility location 82.91 70.64 65.98 3121
Max coverage 81.46 69.47 64.68 1674
STONE 83.03 70.33 65.33 1530

Table 7: Sensitivity to thresholds Γ1, Γ2.
3D AP in %

Components EASY MOD. HARD

Γ1: 400, Γ2: 200 82.32 68.24 64.08
Γ1: 400, Γ2: 300 83.03 70.33 65.33
Γ1: 500, Γ2: 200 78.62 67.44 63.77
Γ1: 500, Γ2: 200 80.70 69.18 64.01
Γ1: 600, Γ2: 200 82.53 68.90 63.82
Γ1: 600, Γ2: 300 81.67 67.47 64.72

Sensitivity to thresholds Γ1 and Γ2. We conduct a sensitivity analysis of model performance to
different variants of thresholds Γ1 and Γ2, at all difficulty levels, to understand their importance
in our method. We report the 3D AP (in %) across six different combinations in Table 7 with 500
point-cloud selections. For the MODERATE and HARD difficulty levels, we observe fluctuations
within 2.89% and 1.56% (compared to the lowest). This suggests that our method is relatively stable
with the best Γ1 and Γ2 being 400 and 300 respectively.

Table 8: Performance comparisons of STONE and
AL baselines using 3D AP(%) scores on the KITTI
validation set (HARD level) with PV-RCNN as the
backbone architecture.

Method 3D AP % using 1% (bounding box) 2% 3%

CRB 62.81 65.43 69.93
KECOR 63.42 67.25 71.70
STONE 64.05 66.83 70.86

Table 9: Performance comparisons of
STONE and AL baselines using 3D
AP(%) scores on the KITTI validation
set (HARD level) with SECOND [61] as
the backbone architecture.

Method 3D AP % using 1% (bounding box) 2% 3%

CRB 53.09 55.67 57.01
KECOR 55.34 57.56 58.92
STONE 58.75 60.33 61.89

Effect of % labeled bounding boxes. To ensure a fair comparison with the previous state-of-the-art
methods CRB [35] and KECOR [34], we leveraged 1% of the labeled bounding boxes. Referring to
Tables 8 and 9, as more labeled bounding boxes are added to the training, the results get better. It is
worth noting that the KECOR method marginally surpasses STONE when using 2% and 3% of the
bounding box. This is because the STONE method, when utilizing the PV-RCNN backbone, tends to
select scenes with more objects. As a result, STONE reaches the bounding box limit very early in the
active learning stage. The slightly better results achieved by KECOR are due to it querying more
scenes and being trained over more epochs. In active 3D object detection, the goal is to label as few
bounding boxes as possible to achieve good performance. Therefore, it is critical to maintain high
performance with a smaller number of labeled bounding boxes, as demonstrated by STONE.
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