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MARVEL: Modular Abstention for Reliable and Versatile Expert LLMs
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Abstract

Effectively calibrating abstention—the capabil-
ity of models to refuse to answer when inappro-
priate—remains a significant challenge for large
language models (LLMs). Improper abstention
calibration typically results in either excessive re-
fusal, reducing the practical utility of the model,
or insufficient refusal, which produces unreliable
and potentially harmful outputs. Existing methods
typically depend heavily on domain-specific fine-
tuning, requiring extensive retraining or carefully
crafted, domain-specific datasets for each new sce-
nario, limiting scalability and efficiency. To ad-
dress this, we introduce MARVEL, a lightweight
modular abstention framework motivated by the
observation that different tasks naturally require
distinct abstention mechanisms and rationales.
MARVEL dynamically integrates two distinct ex-
pert modules: Task Experts, which are specialized
adapters finetuned for specific tasks, and Absten-
tion Experts, trained explicitly to identify and
articulate various abstention rationales (e.g., un-
safe queries or ambiguous requests). Crucially,
MARVEL achieves precise and justified absten-
tion without the need for retraining the original
task-specific adapters. Our empirical evaluations
cover two broad task categories: query-focused
tasks, where abstention depends on query content
alone, and model-capability tasks, where absten-
tion is driven by model confidence. Results show
that MARVEL consistently enhances abstention
accuracy and overall model reliability with at least
7.2% increase for in-domain and 5.6% for out-of-
domain scenarios over base LLMs. MARVEL sur-
passes strong baseline approaches like data merg-
ing and weight merging, offering greater flexibil-
ity, interpretability, and broader generalization.

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on ICML 2025 Workshop on Reliable and Responsible Foundation
Models. Do not distribute.

1. Introduction
Large language models (LLMs) (Brown et al., 2020; Tou-
vron et al., 2023; Jiang et al., 2023) demonstrate strong
capabilities across various tasks but frequently suffer from
reliability issues, such as hallucinations (Ji et al., 2023) and
misleading outputs (Zhou et al., 2023; Anwar et al., 2024),
limiting their practical utility—particularly in high-stake
applications (Li et al., 2024; Singhal et al., 2023; Sandmann
et al., 2024) where accuracy and trustworthiness are essen-
tial. One promising avenue to address these reliability chal-
lenges is abstention (Wen et al., 2024b; Feng et al., 2024a;
Brahman et al., 2024a). Poorly calibrated abstention can
cause undesirable outcomes: excessive refusal (over-refusal)
decreases model utility, while insufficient abstention results
in hallucinations and unreliable outputs(Wen et al., 2024a).
Previous work demonstrates that domain-specific abstention
training, such as refusal-aware fine-tuning (Zhang et al.,
2024a; Wolfe et al., 2024), effectively enhances reliabil-
ity within targeted contexts. However, these methods have
scalability limitations, demanding substantial retraining or
tailored dataset generation for each new domain or model.
Meanwhile, it remains unclear whether abstention can be
effectively trained independently as a domain-agnostic meta-
skill, generalizing across various tasks.

In this paper, we address the following research ques-
tion: How can we develop a plug-in abstention frame-
work that provides versatile abstention expertise with mini-
mal resource requirements? Given a set of existing LoRA
adapters (Hu et al., 2022a) specialized for various tasks, our
goal is to equip these adapters with high-fidelity abstention
capabilities—refusing only when justified and identifying
the corresponding abstention category—without retraining
the original task-specific LoRAs. Inspired by recent post-
training modular-based architectures (Huang et al., 2024;
Wu et al., 2024; Muqeeth et al., 2024; Feng et al., 2024c;
Kang et al., 2025), we introduce MARVEL, a modular ab-
stention framework utilizing token-level harmonization to
improve abstention accuracy. MARVEL comprises two
kinds of experts: Task Experts, specialized adapters address-
ing specific tasks, and Abstention Experts, trained to recog-
nize and articulate diverse abstention rationales (e.g., safety
concerns, humanizing requests). By harmonizing these ex-
perts at the token level, MARVEL dynamically balances
task proficiency with abstention performance (refusing to
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answer incorrectly while limiting over-refusal), ensuring
precise and justified abstention decisions.

Empirically, we assess MARVEL in two main scenarios: (1)
model-capability task contexts, and (2) query-focused task
settings. Building on the definitions from Wen et al. (2024b),
model-capability tasks are those that focus on abstention-
aware task performance, and where the primary reason for
abstaining may be due to low confidence in answering cor-
rectly, whereas query-focused tasks involve abstention de-
cisions based solely on the content of the queries (whether
they can be appropriately answered). In model-capability
tasks across domains such as knowledge, medicine, and
science, MARVEL consistently improves performance over
baseline LLMs, achieving an average increase of 7.3%. In
query-focused tasks, specializing in one abstention category
improves performance across others but may increase over-
refusal rates. We find that while merging abstention-aware
training data achieves the highest overall abstention perfor-
mance on query-focused tasks, this setting exhibits more
over-refusal than MARVEL and leads to fewer gains than
MARVEL on model-capability tasks.

In summary, our key contributions are as follows:

• We propose MARVEL, a lightweight modular abstention
framework that enhances model reliability by effectively
refusing inappropriate queries. MARVEL achieves this
without the need for larger or teacher models, human
supervision during routing data generation, significant
additional computational resources, or increased overhead
in active parameters.

• We show improvements in abstention ability of aver-
age 7.3% in various task domains including knowl-
edge, medicine, and science. We also demonstrate
MARVEL’s consistent performance improvements across
query-focused tasks, achieving at least 7.2% improve-
ment on in-domain and 5.6% on out-of-domain scenarios
over baseline LLMs, while demonstrating minimal over-
refusal.

• We conduct comprehensive ablation studies examining
the roles of modularity and various routing strategies,
finding that dynamic routing effectively aligns tasks with
appropriate abstention experts. We further demonstrate
that MARVEL robustly generalizes to out-of-distribution
tasks, with the top-1 routing strategy consistently achiev-
ing the best performance.

2. Method: MARVEL
2.1. Problem Statement

Our objective is to endow a pretrained language model with
high-fidelity abstention—the ability to refuse only when

justified and to articulate why—while preserving, or even
enhancing, normal task performance. We target settings
with minimal computational budget, tiny seed datasets, and
negligible parameter overhead.

Let Θ0 be a frozen base LLM and assume two groups of
seed sets including tasks and abstention, each of which may
be sourced either from existing publicly-available corpora
or quickly synthesized by prompting Θ0 itself. Our goal is
to produce a lightweight Mixture-of-LoRA-Experts model,
ΘMARVEL, that improves model’s reliability across tasks.

2.2. Modular Abstention with Token-level
Harmonization Framework

We propose MARVEL shown in Figure 1, a token-level har-
monization framework within a Mixture of LoRA Experts
architecture to improve abstention quality. Our approach
interleaves: (i) Task Experts: specialized adapters focused
on solving particular tasks; and (ii) Abstention Experts: spe-
cialized adapters trained to recognize and articulate different
reasons for abstention (e.g., Requests with Safety Concerns,
Humanizing Requests). By harmonizing contributions at
the token level, we dynamically weigh signals from both
task proficiency and abstention category, ensuring that the
model only abstains when truly warranted and choosing the
most appropriate abstention experts.

2.2.1. BUILDING TASK & ABSTENTION EXPERTS

MARVEL distinguishes two complementary sets of LoRA
experts: (i) Task Experts {∆Θtask

j }nt
j=1, each fine-tuned to

maximise proficiency on a concrete task T task
j , and (ii) Ab-

stention Experts {∆Θabs
k }na

k=1, each specialised to recog-
nise a specific abstention category Rk (e.g. Requests with
Safety Concerns, Humanizing Requests).

Task Expert Each Task Expert is trained on small slices of
publicly available datasets or benchmarks without any re-
fusal information, formatting them into instruction–response
pairs:

Dtask
j = {(x(j)

i , y
(j)
i )}Ni=1.

Abstention Expert Abstention Experts is trained on small
sets of fully refusal data.

Dabs
k = {(x(k)

i , ⟨ABSTAINRk
⟩)}Mi=1.

These examples fully support specific abstention category
training without relying on proprietary data or additional
parameters.

LoRA Parameterization. Starting from a frozen base
model Θ0, we attach a low-rank adapter to every linear
sublayer. Denote by θ0 ∈Rd×k the weight matrix of one
such sub-layer and by

θexpert = θ0+∆θ = θ0+θBθA, θB∈Rd×r, θA∈Rr×k, r≪min(d, k)
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Incomplete
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Unsupported

requests

Routing Distribution

Question: A young patient has been admitted with A and had massive hemorrhage. 

He needs to be transfused with large amounts of fluids. Which IV cannula is 

preferred? A:  Grey B: Green C: Blue D: Pink. 

Anchor LLM: C: Blue. Blue IV 

cannulas are typically used…

...

MARVEL: I'm sorry, I cannot answer 

this question. … without additional 

context or information about the 

patient's condition, it is not possible to 

provide an accurate answer.

Answer:

Figure 1: Overview of our MARVEL framework. MARVEL dynamically integrates two types of expert modules—Task
Experts (e.g., medical expert) and Abstention Experts (specialized in different abstention categories). Through a token-
level harmonization process, MARVEL learns routing distributions to optimally combine experts at each token. This
adaptive routing mechanism is seamlessly integrated within transformer blocks, enabling precise and interpretable abstention
behaviors without retraining task-specific adapters.

the LoRA-augmented weights. The forward pass for an
input x becomes

h = θexpertx = θ0x+ θBθAx.

During specialisation, only θB and θA are updated.

Hence MARVEL yields two expert banks

Etask = {∆Θtask
j }nt

j=1, Eabs = {∆Θabs
k }na

k=1.

2.2.2. MIXTURE OF TASK AND ABSTENTION EXPERTS

MARVEL employs a learned routing mechanism that dy-
namically selects and combines these experts, enabling the
model to identify not only when abstention is necessary but
also chooses the most suitable abstention experts based on
each task, thereby enhancing the model’s interpretability,
reliability, and effectiveness without retraining the original
task-specific modules.

Formally, for each task j, we define a routing dataset:

Droute = {(x(j)
i , ⟨ABSTAIN ⟩)} ∪ {(x(j)

i , y
(j)
i )}.

where x(j)
i is the input instance from task j that Task expert

is not able to answer correctly and ⟨ABSTAIN⟩ denotes the
abstention message for that instance.

MARVEL harmonises the signals of all experts per token.
For time-step t (token index t) and hidden state xt we com-
pute

ht−1 = θ0xt +

nt∑
j=1

αt,j ∆θtask
j xt +

na∑
k=1

βt,k ∆θabs
k xt.

Token router. The gating vectors αt∈Rnt and βt∈Rna

are produced by a shared token router g( · ; θr):

[αt ∥βt] = top−k
(
softmax(θrxt)

)
, θr∈R(nt+na)×k,

where top-k keeps only the k largest coefficients.

Training the router. We jointly optimise θr with all ex-
pert banks frozen, using the routing dataset Droute

j :

L(θr) = −E(inst,resp)∼Droute
j

[
logPΘ0

(
resp | inst; θr, Etask, Eabs

)]
.

The loss encourages the router to (i) route content tokens
to the correct task experts and (ii) route tokens that should
be refused/abstained to the matching abstention experts,
enabling MARVEL to abstain only when truly warranted.
Crucially, the frozen base weights θ0 remain active in every
layer, preventing over-specialisation and preserving general
capability competence.

3. Experimental Settings
Training Abstention Experts We train abstention experts
using the CoCoNot dataset (Brahman et al., 2024a), which
includes example queries across five distinct abstention cat-
egories, including Requests with Safety Concerns, Humaniz-
ing Requests, Incomplete requests, Unsupported requests,
and Indeterminate request. We train one Abstention Expert
for each of the five categories.1

1These categories are not intended to be exhaustive, but rather
serve as a starting point for experimentation; additional abstention
experts can be incorporated as needed.
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Table 1: Main results on model-capability tasks for two anchor LLMs (Mistral-7B-Instruct and LLaMA-3-8B-instruct).
MARVEL demonstrates consistent improvements over each anchor model across tasks and abstention metrics, and outper-
forms other merging methods. Each column’s best performance is in bold and second-best performance is underscored. E.R
= Effective Reliability; R.A. = Reliable Accuracy; A.A. = Abstention Accuracy.

Method
Knowledge (MMLU) Medicine (MedMCQA) Science (SciFact) Avg.

E.R. R.A. A.A. E.R. R.A. A.A. E.R. R.A. A.A. E.R. R.A. A.A.

Anchor Model

Mistral-7B-Instruct .203 .616 .667 -.008 .494 .644 .253 .674 .763 .149 .595 .691

Merging Methods (Task Experts + Abstention Experts)

Data Merging .229 .625 .658 -.030 .482 .563 .259 .648 .721 .153 .585 .647
TIES Merging .217 .692 .689 -.012 .492 .619 .266 .650 .689 .157 .611 .666
DARE Merging .177 .611 .692 .010 .509 .741 .184 .608 .667 .124 .576 .700

MARVEL (Ours) .192 .629 .725 .024 .521 .736 .263 .713 .823 .160 .621 .761

Anchor Model

LLaMA-3-8B-instruct .216 .608 .610 .142 .571 .571 .069 .536 .563 .142 .572 .581

Merging Methods (Task Experts + Abstention Experts)

Data Merging .227 .614 .618 .160 .580 .580 .150 .581 .616 .179 .592 .605
TIES Merging .010 .505 .505 .008 .504 .504 -.086 .456 .456 -.023 .488 .488
DARE Merging .058 .529 .529 .026 .513 .513 -.154 .420 .420 -.023 .487 .487

MARVEL (Ours) .236 .620 .627 .172 .586 .586 .261 .653 .704 .223 .620 .639

Training Task Experts We construct each task expert as
a LoRA (Hu et al., 2022a) trained only on the task data for
an individual dataset without any refusal examples. We train
a separate expert for each of the following datasets repre-
senting specific domains, Knowledge (MMLU (Hendrycks
et al., 2021)), Medicine (MedMCQA) (Pal et al., 2022),
and Science (SciFact) (Wadden et al., 2020). These Task
Experts are then merged with Abstention Experts through
MARVEL’s router.

Data for Training the MARVEL Routing Method For
each task, routing data is created by running inference with
its corresponding Task Expert on the validation split of that
dataset. We identify incorrect responses from the Task Ex-
pert and replace these with appropriate abstention messages(
e.g. “I’m sorry, I cannot answer this question”) form the
routing dataset. Routing weights for Task and Abstention
Experts are learned by finetuning on each routing dataset.

Baseline Merging Methods To assess the effectiveness of
MARVEL, we compare its performance against other merg-
ing baselines that use the same number of active parameters
during inference:

• Data Merging (Chung et al., 2024): Leverages all absten-
tion category data to train a single Abstention Expert.

• TIES (Task-Independent Expert Summation) Merging
(Yadav et al., 2023): Combines multiple specialized Lo-
RAs into a single adapter using fixed weights.

• DARE (Drop And REscale) Merging (Yu et al., 2024):
Learns an optimal linear combination of multiple LoRA
adapters via a regularized least-squares fit on calibration
data.

Evaluation Datasets We evaluate MARVEL across two
task categories: (i) Model-capability tasks, focused on task
performance and abstention due to low model confidence—
represented by the datasets MMLU (Hendrycks et al., 2021),
MedMCQA (Pal et al., 2022), and SciFact (Wadden et al.,
2020) and (ii) Query-focused tasks, where abstention deci-
sions are based solely on query content (Wen et al., 2024b).
For query-focused tasks, we evaluate abstention on the test
splits of CoCoNot and leverage its contrast sets (containing
queries that are answerable) to quantify over-abstention.

We additionally report performance on out-of-domain
(OOD) datasets (those not used to train a Task Expert) as
an investigation of generalization. Specifically, we test on
Hellaswag (Zellers et al., 2019) and MedQA (Jin et al.,
2021)) as examples of OOD model-capbility tasks and Am-
bigQA (Min et al., 2020), XSTest (Röttger et al., 2024), and
SelfAware (Yin et al., 2023)) as examples of OOD query-

4



220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Submission and Formatting Instructions for ICML 2024

Table 2: Main results on query-focused tasks. While Data Merging shows the highest average abstention performance,
MARVEL demonstrates clear improvements in abstention from the base LLM while maintaining low rates of over-abstention.
Abstention performance of individual abstention experts and other merging methods is comparable to MARVEL, though
these other settings exhibit strong over-abstention behavior. Each column’s best performance is in bold and second best
performance is underscored. All numbers except “Over Abstention” indicate the model’s abstention rate on queries that
should be refused, while “Over Abstention” indicates the model’s over-refusal rate on a contrast set. Results for LLaMA-3-
8B-instruct are provided in the Appendix (see Table 7).

Method Safety Humanizing Incomplete Unsupported Indeterminate Avg.↑ Over ↓
concerns requests requests requests requests Abstention Abstention

Mistral-7B-Instruct 57.5 58.8 52.5 50.0 26.3 49.0 2.0

Abstention experts

Safety concerns 84.1 84.1 59.7 64.6 46.3 67.8 93.0
Humanizing requests 53.6 90.2 67.7 68.2 51.2 66.2 86.7
Incomplete requests 53.7 75.6 65.8 58.5 47.5 62.7 91.6
Unsupported requests 67.0 78.0 65.8 69.5 48.7 65.8 93.4
Indeterminate requests 56.1 81.7 68.3 65.8 43.9 63.2 81.3

Merging Methods

Data Merging 86.5 98.7 79.2 79.2 97.5 88.2 11.6
TIES Merging 59.7 85.3 70.7 69.5 54.8 68.0 97.2
DARE Merging 52.4 90.1 68.2 67.1 48.7 65.3 95.9

MARVEL (Ours) 65.8 84.1 64.6 74.3 46.3 67.0 4.95

focused tasks. All questions from AmbigQA are ambiguous
and should be refused by the model, while XSTest and Self-
Aware contain both queries that should and should not be
refused.

Evaluation Metrics For model-capability tasks, we re-
port three metrics that balance model utility with appropri-
ate refusal behavior: (i) Effective Reliability (E.R.) (Wen
et al., 2024b; Si et al., 2023; Whitehead et al., 2022), which
strikes a balance between reliability and coverage, i.e., of all
questions, how many more are answered correctly than in-
correctly; (ii) Reliable Accuracy (R.A.) (Wen et al., 2024b;
Feng et al., 2024b), which indicates to what extent LLM-
generated answers can be trusted when they do not abstain,
i.e., of all questions answered, how many are correct; and
(iii) Abstention Accuracy (A.A.) (Feng et al., 2024b), which
evaluates the system’s overall performance when incorpo-
rating abstention. For query-focused tasks where all queries
should be refused, we report the abstention rate (i.e., task
accuracy) and when appropriate, the over-abstention rate on
a contrast set to quantify excessive refusal.

Implementation Details We adopt Mistral-7B-Instruct-
v0.3 (Jiang et al., 2023) and LLaMA-3-8B-instruct
(AI@Meta, 2024) as the anchor model for our experiments.
Hyperparameters for LoRA are as follows: rank is 16, alpha

2The AmbigQA dataset lacks a contrast set for over-abstention
evaluation.

is 32; all experts adopt the same set of hyperparameters.
For each abstention category, we randomly sample 800
prompt–refusal pairs to train the abstention expert. For each
task, we randomly sample up to 200 data samples to train
the task expert. For routing data, we randomly sample up to
200 data samples to train the router.

4. Results
In Table 1, we present comparative results of different merg-
ing methods for improving reliability across three model-
capability tasks: MMLU, MedMCQA, and SciFact. Table 2
shows results of Abstention Experts and merging methods
in query-focused settings; we show performance across the
five abstention categories from Brahman et al. (2024a), on
both the abstain queries and the contrast sets. All Task and
Abstention Experts build upon the same anchor LLMs and
use the same LoRA tuning settings.

MARVEL consistently outperforms other baseline merg-
ing methods on model-capability tasks Compared to
static merging methods such as Data Merging, TIES, and
DARE, MARVEL demonstrates more consistent improve-
ments in abstention performance across all three task
datasets. For Mistral-7B-Instruct, although TIES and DARE
achieve notable improvements on certain metrics (e.g., TIES
attains high reliability accuracy on MMLU, and DARE
achieves the best abstention accuracy on MedMCQA), gains
are not consistent across metrics and tasks. MARVEL
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Table 3: Out-of-distribution generalization results on
model-capability tasks. MARVEL outperforms other
merging methods across these OOD benchmarks.

Method
Hellaswag MedQA

E.R. R.A. A.A. E.R. R.A. A.A.

Mistral-7B-Instruct .318 .683 .724 .018 .510 .582

Merging Methods

Data Merging .311 .685 .754 -.033 .482 .563
TIES Merging .292 .688 .758 -.043 .468 .642
DARE Merging .277 .662 .742 -.032 .459 .641

MARVEL (Ours) .314 .712 .787 .029 .518 .631

Table 4: Out-of-distribution generalization on query-focused tasks.
“Abstain” indicates the model’s abstention rate, while “Over-abstain”
indicates its over-refusal rate.

Model Abstain (%) ↑ Over-abstain (%) ↓
AmbigQA2 XStest SelfAware XStest SelfAware

Mistral-7B-Instruct 33.2 41.4 11.7 11.99 4.10

Merging Methods

Data Merging 69.4 65.2 22.3 12.79 17.20
TIES Merging 69.1 64.5 19.1 16.70 13.20
DARE Merging 48.1 55.5 18.8 13.90 9.20

MARVEL (Ours) 62.3 61.7 17.1 13.59 8.90

achieves the highest average scores on effective reliability
(0.171), reliable accuracy (0.625), and abstention accuracy
(0.757). For LLaMA-3-8B-instruct, MARVEL consistently
outperforms all other merging methods across all tasks and
metrics.

These results support the advantage of MARVEL’s compo-
sitional architecture, which may be able to more effectively
adapt to the abstention needs of different tasks.

MARVEL achieves balanced improvements on query-
focused tasks while demonstrating significantly less over-
refusal We observe that employing specialized abstention
experts improves abstention performance significantly in
their target domains and in other abstention domains com-
pared to the base LLM, but they over-abstain egregiously.
For instance, the Safety concerns expert achieves high av-
erage abstention performance (67.8%) but with substantial
over-abstention (93.0%).

MARVEL, on the other hand, effectively addresses this
limitation by achieving balanced improvements in absten-
tion performance (67.0%) while maintaining a significantly
lower over-abstention rate (4.95%). MARVEL consistently
enhances performance across all 5 abstention categories
compared the base LLM (Mistral) and performs comparable
to individual abstention experts.

On query-focused tasks, Data Merging stands out as a
highly-performant merging method, achieving the highest
average abstention rate (88.2%) while maintaining a reason-
able over-abstention rate (11.6%). Other merging methods
(TIES and DARE) show comparable abstention performance
to MARVEL but also exhibit significant over-abstention.

5. Analysis
Generalizability to OOD Tasks While MARVEL demon-
strates advantages on versatile task benchmarks such as
MMLU, MedMCQA, and SciFact, it is important to evalu-
ate its generalizability to tasks outside the original training
scope, as well as its susceptibility to potential issues like

specialization-induced forgetting. We present a general-
izability evaluation on out-of-distribution (OOD) model-
capability tasks such as Hellaswag and MedQA in Ta-
ble 3,and query-focused tasks such as Ambigqa, XSTest
and SelfAware in Table 4, none of which were directly in-
cluded during MARVEL’s training.

For OOD model-capability tasks, we evaluate MARVEL’s
generalization by testing the variant trained on MMLU
against Hellaswag, and the variant trained on MedMCQA
against MedQA. MMLU and Hellaswag both focus on com-
monsense knowledge, while MedMCQA and MedQA per-
tain to the medical domain. Although each pair shares a
domain, they differ in distribution. Results in Table 3 indi-
cate that MARVEL generally outperforms the base LLM
and other merging methods across these OOD benchmarks.
On Hellaswag, MARVEL achieves top performance 0.314
in Effective Reliability comparing against other merging
methods, 0.712 in Reliability Accuracy, and 0.787 in Absten-
tion Accuracy. Similarly, on MedQA, MARVEL achieves
the highest Effective Reliability (0.029) and Reliability
Accuracy (0.518), with competitive Abstention Accuracy
(0.631). These findings support MARVEL’s generalization
capabilities. Results in Table 4 show that Data Merging
demonstrates the strongest abstention performance on query-
focused tasks, though it also exhibits highly over-abstention
in OOD settings. MARVEL performs reasonable well when
considering both abstention and over-refusal.

Optimal Routing Varies By Task We evaluate the impact
of various router configurations, as shown in Table 5 and
Table 6. These configurations differ primarily in the number
of experts the router selects at each step (i.e., top-k routing).
In all cases, the full pool of five abstention experts remains
available, but only the k experts with the highest router
scores are activated for inference. This setup allows us
to isolate the effect of routing granularity on MARVEL’s
performance.

In Table 5, focusing on the top-k routing strategy, we ob-
serve that routing to the top-1 expert delivers strong perfor-
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Table 5: Results for different router configurations in MARVEL on model-capability tasks. Ablation experiments show that
there is no clear scaling improvements gained by routing to more experts. Routing to the top-1 expert shows best results on
average, followed by routing to all 5 experts.

Method
Knowledge (MMLU) Medicine (MedMCQA) Science (Scifact) Avg.

E.R. R.A. A.A. E.R. R.A. A.A. E.R. R.A. A.A. E.R. R.A. A.A.

Mistral-7B-Instruct .203 .616 .667 -.008 .494 .644 .253 .674 .763 .149 .595 .691

Top-k Routing

w/ Top-1 Expert .192 .629 .725 .024 .521 .736 .263 .713 .823 .160 .621 .761
w/ Top-2 Experts .200 .636 .732 .009 .508 .732 .251 .698 .808 .153 .614 .757
w/ All Experts (5) .204 .638 .731 .016 .514 .738 .251 .697 .806 .157 .616 .758

Table 6: Results for different router configurations in MARVEL on query-focused tasks. Again, no clear scaling is observed;
routing to the top-1 expert shows best average abstention performance.

Method Safety Humanizing Incomplete Unsupported Indeterminate Avg.
concerns requests requests requests requests Abstention

Mistral-7B-Instruct 57.5 58.8 52.5 50.0 26.3 49.0

Top-k Routing

w/ Top-1 Expert 65.8 84.1 64.6 74.3 46.3 67.0
w/ Top-2 Experts 62.1 84.1 63.4 64.6 49.9 64.8
w/ All Experts 65.8 84.1 64.6 69.5 51.2 65.3

Figure 2: Routing analysis that shows routing distributions over various experts for each benchmark, averaging the weights
across tokens within individual tasks.
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mance across domains, especially Medicine and Science,
for model-capability tasks. These results suggest that identi-
fying and utilizing the single most relevant abstention expert
may provide the optimal balance of accuracy and efficiency.
While routing to the top-2 experts offers similar outcomes,
it does not surpass the efficiency or simplicity benefits of
the top-1 approach.

Table 6 indicates that using the top-1 expert configura-
tion generally yields the highest average abstention rate
(67.0%) for query-focused tasks, outperforming both the
top-2 (64.8%) and All Experts (65.3%) configurations.

Interestingly, using all experts simultaneously reduces per-

formance, indicating that incorporating additional, poten-
tially less relevant experts may introduce noise and diminish
overall effectiveness. Given these insights, the top-1 expert
configuration emerges as the most efficient and effective
routing strategy for MARVEL.

Dynamic Routing Aligns Tasks with Various Abstention
Experts To ensure interpretability, it is essential to under-
stand how MARVEL assigns tasks to its respective absten-
tion experts. By examining the routing distributions for three
specific tasks (MMLU, MedMCQA, SciFact) across five dis-
tinct abstention experts, we investigate whether MARVEL
successfully routes queries to the most appropriate expert.
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Figure 2 presents the aggregate routing distributions for each
of the three model-capability tasks. Weights are averaged
across tokens and layers within individual experts.

We first observe that MARVEL’s router allocates different
abstention experts for the three tasks. The task expert gener-
ally has a large weight distribution. For abstention experts,
“Humanizing” and “Incomplete” experts primarily handle
abstention for SciFact, the “Safety" expert is predominantly
active for MMLU, and a relatively balanced distribution
across the five abstention experts is observed for MedM-
CQA. These observations underscore the router’s capability
to autonomously align task queries with relevant absten-
tion expertise. However, we acknowledge that the highly
weighted abstention experts do not necessarily correspond
to the primary reasons for abstention in these tasks (there
are no ground truth reasons for abstention) and further study
is necessary to develop this weight distribution as an inter-
pretability tool.

6. Related Work
Abstention in LLMs Several methods have been devel-
oped to improve language models’ ability to abstain by
using supervised fine-tuning on datasets that explicitly in-
clude abstention signals. For instance, Yang et al. (2023)
propose an honesty alignment protocol in which any incor-
rect or uncertain outputs are replaced with clear refusals
(e.g., “I don’t know”), and the model is then fine-tuned on
this modified data—leading to stronger abstention behaviors.
In a similar vein, Zhang et al. (2024b) introduce R-tuning, a
refusal-aware fine-tuning technique that creates dedicated
training sets to bolster abstention skills, demonstrating its
effectiveness across multiple tasks. Yet, Feng et al. (2024b)
report that instruction-tuning with abstention data often fails
to generalize across different domains and model architec-
tures. Researchers have also explored parameter-efficient
fine-tuning (PEFT) approaches. For example, Wolfe et al.
(2024) apply QLoRA (Dettmers et al., 2023), finding that
smaller or weaker models exhibit the greatest gains in ab-
stention after tuning. Building on efficiency and stability,
Brahman et al. (2024b) show that LoRA (Hu et al., 2022b)
can avoid common pitfalls of full fine-tuning—such as over-
refusal and catastrophic forgetting—while still substantially
improving abstention performance. More recently, Mei et al.
(2024) present HiddenGuard, which employs representa-
tion routers to enable context-sensitive moderation, with
a particular focus on safety and query-specific abstention.
Our approach, however, extends beyond safety-oriented use
cases by covering additional abstention categories.

Mixture of Experts Several lines of work have aimed at
unifying multiple specialized modules within a single model.
For example, Mixture-of-Experts (MoE) approaches—such

as GLAM (Du et al., 2022) and Mixtral (Jiang et al.,
2024)—use dynamic routing to dispatch inputs to large,
implicitly trained experts, thereby achieving scalability at
the expense of significantly increased parameter counts. By
contrast, static model-merging techniques, including TIES
(Yadav et al., 2023) and DARE (Yu et al., 2024), consoli-
date independently trained models into a unified network
by resolving parameter conflicts and redundancy; however,
once merged, these models remain fixed during inference.
More recently, methods like that proposed by Mavromatis
et al. (2024) have focused on deriving optimal weights for
combining multiple LLMs dynamically at inference time.
Additionally, expert construction methods have evolved,
with frameworks such as MOLE (Wu et al., 2024) leverag-
ing richly annotated corpora, and PHATGOOSE (Muqeeth
et al., 2024) and MBC (Ostapenko et al., 2024) utilizing
pre-existing specialist models to build their experts. In the
realm of lightweight frameworks, SelfMoE (Kang et al.,
2025) introduces a lightweight mixture-of-LoRA-experts ar-
chitecture but relies heavily on the quality of synthetic data
generated. While Prabhakar et al. (2024) demonstrated that
model merging could surpass data-mixing strategies, their
results were limited to scenarios involving only two skill
experts. In contrast to these previous methods, MARVEL
learns a dynamic routing policy across multiple experts,
enabling token-level expert selection without relying on
large-scale synthetic datasets.

7. Limitation
While MARVEL shows strong performance in improv-
ing models’ reliability through abstention, several limita-
tions remain. First, the abstention categories we focus on
(e.g., safety, incompleteness, unsupported requests) serve as
strong starting points but are not comprehensive. MARVEL
is highly extensible—new abstention experts can be added to
accommodate emerging categories or domain-specific needs.
Our approach assumes access to reliable expert-specific data,
which may be limited in low-resource or ambiguous settings.
Additionally, our evaluation focuses on English benchmarks;
generalization to multilingual or culturally diverse contexts
is an open challenge.

8. Impact Statement
This work introduces a novel approach to improve the relia-
bility of language models by enabling precise and justified
abstention from inappropriate or uncertain requests. How-
ever, they may also introduce opacity if refusal reasons
aren’t clearly communicated, or reduce utility if overly con-
servative. Future work should refine abstention criteria and
improve transparency to align with user expectations.
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9. Conclusion
In conclusion, we introduce MARVEL, a modular absten-
tion framework designed to effectively enhance the relia-
bility of large language models to abstain from answering
without incurring a significant resource overhead. By har-
monizing task and abstention experts at the token level,
MARVEL dynamically balances task execution with absten-
tion decisions, addressing scalability limitations of previous
domain-specific approaches.

Empirical results demonstrate MARVEL’s generalizability
and robustness. It consistently achieves optimal absten-
tion performance across multiple domain-specific model-
capability contexts and query-focused scenarios, outper-
forming base LLMs and existing adaptor merging baselines.
Detailed analyses confirm the effectiveness of MARVEL’s
routing mechanism, highlighting distinct abstention exper-
tise requirements across different tasks. Overall, MARVEL
offers a practical and scalable solution for improving LLM
abstention capabilities. Its extensibility offers the potential
to enhance refusal performance and LLM trustworthiness
across various tasks.
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A. Additional results
We apply MARVEL to the anchor model LLaMA-3-8B-instruct (AI@Meta, 2024). Our experiments indicate that MARVEL
achieves superior performance compared to baseline approaches.

Table 7: Main results on query-focused tasks. MARVEL achieves the best average performance compared to other baselines.
Each column’s best performance is in bold and second best performance is underscored. All numbers indicate the model’s
abstention rate on queries that should be refused.

Method Safety Humanizing Incomplete Unsupported Indeterminate Avg.↑
concerns requests requests requests requests Abstention

LLaMA-3-8B-instruct 60.9 48.7 26.8 23.1 43.9 40.7

Abstention experts

Safety concerns 70.7 62.1 25.6 43.9 62.1 52.9
Humanizing requests 65.8 60.9 21.9 29.2 53.6 46.3
Incomplete requests 69.5 57.3 34.1 32.9 56.0 50.0
Unsupported requests 70.7 71.9 31.7 47.5 58.5 56.1
Indeterminate requests 68.2 67.0 32.9 34.1 70.7 54.6

Merging Methods

Data Merging 70.7 65.8 28.0 42.6 62.1 53.8
TIES Merging 68.2 65.8 29.2 35.3 64.6 52.6
DARE Merging 64.6 60.9 20.7 32.9 51.2 46.1

MARVEL (Ours) 71.9 63.4 31.7 54.8 65.8 57.5
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