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ABSTRACT

Recent years have witnessed significant progress in developing effective diffusion
models. Parallel sampling is a promising recent approach that reformulates the
sequential denoising process as solving a system of nonlinear equations, and it can
be combined with other acceleration techniques. However, current progress is lim-
ited by the trade-off between high fidelity and computational efficiency. This paper
addresses the challenge of scaling to high-dimensional, multi-modal generation.
Specifically, we present ROPA (Robust Parallel Diffusion Sampling), which takes
into account the properties of the denoising process and solves the linear system
using adaptive local sparsity to achieve stable parallel sampling. Extensive exper-
iments demonstrate ROPA’s effectiveness: it significantly accelerates sampling
across diverse image and video diffusion models, achieving up to 2.9× speedup
with eight core, an improvement of 52% over baselines without sacrificing sample
quality. ROPA enables parallel sampling methods to provide a solid foundation for
real-time, high-fidelity diffusion generation.

1 INTRODUCTION

Over the past few years, the landscape of generative modeling has been significantly reshaped
by the ascent of Diffusion Models Ho et al. (2020); Song et al. (2020b). These models have
emerged as a pivotal methodology for diverse applications Chung et al. (2023); Yang et al. (2024a);
Esser et al. (2024); Ma et al. (2024); Polyak et al. (2025), spanning from high-quality image/video
generation to molecular generation. Despite remarkable success, Diffusion Models requires hundreds
of sequential denoising steps for generating high-quality samples, each involving expensive neural
network evaluations. This sequential dependency severely limits inference speed, particularly for
real-time applications and large-scale deployment scenarios. Previous works have explored faster
numerical Stochastic differential equations (SDEs) or Ordinary differential equations (ODEs) solvers
like DDIM Song et al. (2020a) and DPMsolver Lu et al. (2022), distilling the ODE trajectory into
neural networks Salimans & Ho (2022) or straightens trajectories via Rectified Flow Lipman et al.
(2023). Others develop sparse-attention and attention cache Zhang et al. (2025); Zou et al. (2025).

Diffusion Models are generative models built on a foundation of two processes: a forward process
that systematically corrupts data into noise, and a reverse process that learns to reverse this corruption
to generate new data. This dynamic is elegantly described by SDEs. Considering a clean image x0

sampled from the real data distribution, the forward process gradually perturbs this image with noise
over a continuous time interval t ∈ [0, T ], transforming it into a sample xt that follows a simple prior
distribution, like a standard Gaussian. This noising process is defined by the following SDE:

dxt = f(t)xt dt+ g(t) dw, (1)

where dw indicates the standard Wiener process. Although the formulation is expressed in continuous
time, in practice we are solving a discrete nonlinear system due to the numerical discretization of the
SDE. Then, to generate the corresponding clean latent from the easily sampled random noise, we
have to reverse the forward SDE in Eq. 1, resulting in the following reverse SDE formulations:

dxt =
[
f(t)xt − g2(t)∇xt log p(xt)

]︸ ︷︷ ︸
φ(xt,t)

dt+ g(t)︸︷︷︸
σt

dw, (2)

where ∇xt
log p(xt) can be approximated by a score function Sθ(·), parameterized by a neural

network with learnable weights of θ; φ(xt, t) denotes the drift function for the reverse diffusion
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process; σt represents the corresponding coefficient of diffusion counterpart. Let Φ(t, s, xs) represent
an integral result of xt by Eq. 2 over a time interval from s to t, with an initial value xs:

Φ(t, s, xs) = xs +

∫ t

s

φ(xτ , τ) dτ +

∫ t

s

στ dw. (3)

Consequently, the analytical solution of Eq. 2 at time t can be expressed as

xt = Φ(t, 0, x0), x0 ∼ N (0, I), (4)

where N (0, I) denotes the standard Gaussian distribution.

Formulating Diffusion Sampling to Solving Non-linear Equation. Recent advances in parallel
sampling Shih et al. (2024); Tang et al. (2024a); Lu et al. (2025) have shown promise by reformulating
the sequential process as solving systems of nonlinear equations, enabling simultaneous computation
across multiple timesteps. Existing parallel sampling algorithms establish the following system of
non-linear equations to reformulate the integral-based formulation of the diffusion model on a discrete
grid {t0, . . . , tT }:

xtn−1 −F (wn)
n (xtn , . . . , xtn+wn−1) = 0, (5)

where wn is the window size (number of future states coupled) at step n. F (i)
t denotes a solver

for estimating results in timestamp t with acknowledging previous states, i.e., xt, · · · , xt−i. The
sampling methods utilize an iterative refinement manner to gradually adjust an estimation trajectory
{x̂t, t = 0, · · · , T}. Each state from the trajectory {xt, t = 0, · · · , T} is first initialized with noise
value, denoted as

{
x̂
(0)
t , t = 0, · · · , T

}
. Denote by x̂t the vector, x̂0:T = [x̂⊤0 , · · · , x̂⊤T ]⊤. Then, for

the kth parallel iteration, where integer k ∈ [0,K], Newton-Raphson method updates the variables
by the following scheme:

x̂
(k+1)
0:T = x̂

(k)
0:T − G

(k)R(k)
0:T , (6)

where R(k)
t = x̂

(k)
t−1 − F

(i)
t (x̂

(k)
t , · · · , x̂(k)

t+i) indicates a residual term to be optimized; and G(k) =(
J (k)

)−1
indicates the inverse of Jacobian matrix J (k) =

∂R(k)
0:T

∂x̂0:T
.

Choices of Approximating Jacobian Matrix J (k). A key strategy for accelerating parallel sampling
solvers is to efficiently approximate the Jacobian matrix in the Newton update step, rather than
computing the full matrix. Previous methods have employed distinct approximation schemes:
ParaDIGMS Shih et al. (2024) uses Picard iteration, a fixed-point method that avoids explicit
Jacobian computation. This approach is equivalent to approximating the Jacobian of the system as
the identity matrix as J (k) ≈ I , simplifying the expensive Newton step into a computationally cheap
update. ParaTAA Tang et al. (2024a) adapts Anderson Acceleration to the problem’s causal structure.
Standard acceleration can produce a dense update matrix, which allows well-converged variables
to be corrupted by those that have not yet converged. ParaTAA resolves this by enforcing a block
upper triangular structure on its update matrix, preserving stability by respecting the natural flow of
information in the diffusion process. ParaSolver Lu et al. (2025) formulates the problem to have an
Jacobian matrix consists of identity blocks on the main diagonal and non-zero blocks only on the
sub-diagonal, which reduces the computational and memory costs of each solver iteration. However,
current works are all face generalization challenges when scaling to larger scale generation. This
leads to the following question that we aim to explore in this work:

Can we dynamically control the the sparsity of Jacobian in parallel diffusion
samplers to achieve an optimal trade-off between stability and cost thereby enabling
efficient scaling to high-dimensional, multi-modal generation?

Our Contributions. Following the research question, we introduce ROPA (RObust PArallel
diffusion), a novel framework that achieves a superior balance between the efficiency of parallel
solving and numerical stability, which scales the application of parallel sampling to complex tasks
like video generation. Our key contributions are:

(a) Scaling To High-Dimensional Generation. Our geometric analysis in Section. 2 rigorously
establishes the mechanism behind mode collapse in parallel diffusion samplers. We later show (Sec. 2)
that highly curved regions of the data density naturally induce stiff score dynamics and ill-conditioned
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ROPA ParaSolver ParaTAA ParaDIGMS

Figure 1: ROPA Performance Analysis. (a) Jacobian condition number evolution showing ROPA’s su-
perior numerical stability. (b) Convergence performance CDF demonstrating ROPA’s faster and more
reliable convergence. (c) Trajectory curvature evolution highlighting ROPA’s geometric consistency.
Shaded regions represent mean ±1σ uncertainty bounds. The red shaded area in (a) indicates the
high-curvature region where numerical challenges are most severe.

Jacobians for parallel solvers, explaining the observed instability of existing methods. Current
parallel sampling methods, as shown in Figure. 1, struggle near t→ 0, where the Jacobian condition
number κ(Jt) grows exponentially, causing Newton iterations to diverge. This leads to unreliable
convergence—many trajectories fail to converge within practical budgets, while others require
excessive steps. Crucially, these instabilities cause trajectories to deviate from the data manifoldM,
particularly near multimodal boundaries where non-adaptive methods generate inconsistent samples
that unrealistically interpolate between modes. ROPA solves this by dynamically regulating κ(Jt)
through adaptive damping and sparsity, maintaining numerical stability, geometric fidelity, and mode
consistency even in high-curvature regions.

b) We propose Geometry-Aware Adaptive Jacobian Sparsity Control. Specifically we translate
geometric curvature signals into on-the-fly control of the solver’s coupling structure. At each
iteration, the method selectively widens the look-ahead only where residuals indicate stiffness and
prunes it elsewhere, preserving O(N) parallelism while concentrating computation where it matters
most. When diagnostics flag instability, an adaptive damping mechanism automatically moderates the
update—behaving like fast Newton steps in well-conditioned regions and shifting toward conservative
descent near ill-conditioning. Together, these two levers keep the Jacobian well-conditioned under a
target threshold, deliver reliable convergence in high-curvature areas where prior methods struggle,
and scale to large, multi-modal generation without extra training or ad-hoc heuristics.

c) Extensive experiments demonstrate substantial speedups on Stable Diffusion-v3.5, FLUX, Hun-
yuanVideo, Wan2.1 and CogVideoX while maintaining FID and CLIP scores.

2 A UNIFIED GEOMETRIC ANALYSIS OF PARALLEL SAMPLING INSTABILITY
IN DIFFUSION MODELS

We establish a framework linking data manifold geometry, discretization effects, and numerical
stability in parallel diffusion sampling, which reveals why mode interpolation collapses emerge in
high-curvature regions of the data manifold and how adaptive Jacobian control mitigates them.

2.1 GEOMETRIC FOUNDATIONS OF SCORE STIFFNESS AND DENSITY CURVATURE

We use the term curvature in a probabilistic rather than purely geometric sense. Concretely, we define
the density curvature at x via the Hessian of the log-density,

H(x) = ∇2
x log p(x),

which measures how sharply the probability mass bends around the data manifoldM. This is distinct
from intrinsic Riemannian curvature ofM: in our setting,H(x) controls the stiffness of the score
field and, through our analysis, the conditioning of the parallel residual Jacobian.

The core challenge stems from the data manifold’s intrinsic curvature properties. LetM⊂ Rd denote
the support of p0(x), with curvature characterized by the score HessianH(x) = ∇2

x log p(x). The
eigenvalues of H(x) quantify how sharply the density bends in different directions. A large ratio
between the largest and smallest eigenvalues, corresponding to high anisotropy, means that the score
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changes very quickly along some directions but slowly along others, this is precisely the notion of
stiffness that leads to ill-conditioned Jacobians in our parallel residual system.

Assumption 2.1 (Manifold Anisotropy Index). LetM ⊂ Rd be the data manifold and H(x) =
∇2

x log p(x) its score Hessian. For any x ∈ M, denote the ordered eigenvalues by 0 ≤ ν1(x) ≤
· · · ≤ νd(x) (we reserve λ for damping parameters). Fix a small constant ε > 0. Define the local
anisotropy index

ρ(x) :=
νd(x)

max{ν1(x), ε}
.

We assume ρ(x) is locally Lipschitz onM and may take large values ρ(x)≫ 1 only on a measurable
subsetMcurv ⊂M corresponding to high-curvature regions.

Theorem 2.2 (Lower Bound on the Denoiser Jacobian). Let rθ(x, t) be a trained denoiser that
satisfies ∥rθ(x, t)−E[x0 | xt = x]∥2 ≤ ε uniformly. Under Assumption 2.1 and assumingH(x) ⪰ 0,
the spatial Jacobian Jrθ (x, t) = ∂rθ(x, t)/∂x obeys, for any t ∈ (0, T ],

∥Jrθ (x, t)∥2 ≥ 1 + σ2
t ν1(x)−O(ε),

where ν1(x) is the smallest non-negative eigenvalue ofH(x). IfH has negative directions, Eq. 2.2
still holds with ν1(x) replaced by |νmin(x)|.

2.2 DISCRETIZATION-INDUCED INSTABILITY

The residual system in parallel sampling is defined as R(k)
n = x̂

(k)
tn−1
− F (i)

tn (x̂
(k)
tn , . . . , x̂

(k)
tn+i

) per
Eq. 6, where for Euler integration:

F (i)
tn (xtn , . . . , xtn+i) = xtn −∆φ(xtn , tn), ∆ = tn+1 − tn. (7)

This discretization introduces gaps between continuous and discrete dynamics:

Theorem 2.3 (Condition Number of the Parallel Residual Jacobian). LetR(k)
0:T be the residual vector

defined in Eq. 6 with a uniform step size h = tn+1− tn. Write J (k) = I+hA(k) where A(k) collects
blocks depending on Jrθ (x, t) and the drift f(t). Assume A(k) is block-row diagonally dominant and
∥A(k)∥2 ≤ L for some Lipschitz constant L. Then for any h < hmax := 1/L,

κ(J (k)) ≤ 1 +
hL

1− hL
= 1 +O(h).

In particular, substituting L = σ2
t ∥Jrθ (x, t)∥2 yields

κ(J (k)) ≤ 1 + c · hσ2
t ∥Jrθ (x, t)∥2 +O(h2),

where the constant c = 2
1−hL ≈ 2 arises from the Neumann series expansion of the inverse Jacobian

in Appendix C.3).

This establishes the geometric-numerical instability cascade: high curvature λmin(H) increases⇒
∥Jrθ∥2 increases⇒ κ(J ) increases⇒ solver divergence. Crucially, this cascade is triggered by local
geometric properties of the data manifold, not by temporal proximity to t = 0.

2.3 TRAJECTORY GEOMETRY AND MODE COLLAPSE

The stability loss manifests geometrically. Following Davies & Powell (1984); Chen & Muñoz Ewald
(2023), define trajectory quasi-linearity via ∥d2x/dt2∥2 ≤ ε. We prove:

Corollary 2.4 (Numerical Stability & Manifold Deviation). Under the same hypotheses as The-
orem 2.3, let x̂ be the iterate returned by one Newton step and x∗ = ProjM(x̂) its orthogonal
projection ontoM. Then

∥x̂− x∗∥2 ≤
(
κ(J (k))− 1

)
∥J (k)−1R(k)∥2 + O(∥R(k)∥22). (8)

Hence, if κ(J (k)) grows large, the forward error increases proportionally. Proof is an adaptation of
the classical backward-forward error bound (Davies & Powell, 1984).
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This resolves the central paradox: high-fidelity generation requires large ∥Jrθ∥2 (to separate modes),
but this same property destabilizes parallel solvers (Theorem 2.3). Crucially, instability peaks at
mode boundaries where λmin(H) spikes:

Corollary 2.5 (Boundary Sensitivity under Gaussian Mixture). Consider a Gaussian-mixture density
p0(x) =

∑
m wmN (µm,Σm) whose decision boundary ∂M is the union of quadratic surfaces. For

x in the normal direction of a boundary component, let δ = dist(x, ∂M). Then λmin(H(x)) =
Θ(δ−1) and κ(J (k))→∞ as δ → 0.

Theoretical results reveal that the condition number κ(Jt)—modulated by data-manifold curvature,
score stiffness, and discretisation step size—is the key scalar that couples geometric fidelity and
numerical stability. To translate this insight into a practical sampler, we introduce three geometry-
aware control principles that directly regulate κ(Jt) during the Newton–type parallel updates. Each
principle is summarized as below.

Takeaways 2.6 (Damped Updates for Safety). At iteration k, choose λk > 0 such that the gain ratio
ρk = ∥R(k)∥2−∥R(k+1)∥2

∆x(k)⊤(λk∆x(k)−R(k))
satisfies the trust-region criterion (Davies & Powell, 1984). Then the

update (J (k) + λkI)∆x(k) = −R(k) is globally convergent.

Takeaways 2.7 (Adaptive Sparsity for Efficiency). Let Sk be a block-band sparsity pattern whose
bandwidth bk is chosen via bk = min

{
b : iters(J (k)

|b ) ≤ M
}

, where iters estimates Conjugate-
Gradient iterations with Jacobian–vector products only. This guarantees expected complexityO(Nbk)

per Newton step while keeping κ(J (k)
|bk ) ≤ γ−1 for a target γ.

Takeaways 2.8 (Low-Rank Curvature Correction for Fidelity). Given a subspace basis U ∈ Rd×r

corresponding to the top-r eigenvectors of H(x) with eigenvalues Λr, apply the correction x ←
x−U(Λr + τI)−1U⊤∇x log p(x), where τ > 0 regularises near-singular directions. This preserves
local manifold structure up to O(τ).
Summary The data manifold’s curvature (Assumption 2.1) dictates score stiffness (Theorem 2.2),
which discretization gaps amplify (Theorem 2.3). This causes trajectories to deviate fromM at mode
boundaries (Corollary 2.5), thus generation collapse. Crucially, these instabilities occur wherever the
sampling trajectory enters high-curvature regions or approaches mode boundaries. ROPA’s adaptive
mechanisms directly counter this cascade by regulating κ(J ) based on local geometry, enabling
stable high-fidelity sampling throughout the entire diffusion process. See Appendix C for proof.

3 ROBUST PARALLEL DIFFUSION SAMPLING VIA ADAPTIVE JACOBIAN
SPARSITY

Building on the geometric cascade characterization introduced in Section 2, we aim to regulate the
Jacobian condition number κ(Jt). While Theorem 2.2 links instability to the Hessian eigenvalues
νi(x), explicitly computing curvature at inference time is computationally prohibitive. However,
Theorem 2.3 implies that high curvature induces stiff, long-range temporal dependencies. When the
solver’s look-ahead window is too narrow to capture these dependencies, the Jacobian approximation
suffers high truncation error, manifesting immediately as large local residuals ∥R∥.
Therefore, ROPA utilizes the residual norm as a computationally cheap proxy for local geometric
stiffness, driving two complementary operating modes: (i) adaptive sparsification of residual cou-
plings, which maintains computational efficiency when local curvature is moderate; (ii) targeted
curvature correction, which enhances stability as soon as geometric diagnostics reveal elevated risk.

Let N := T + 1 denote the total number of discrete time points on the grid {t0, . . . , tT }.

3.1 DYNAMIC RESIDUALS WITH ADAPTIVE JACOBIAN BANDWIDTH

At each grid index i ∈ {1, . . . , T} the algorithm selects a forward-looking window width wi ∈
{1, . . . , wmax} and forms the residual

R(wi)
i (x̂) = x̂ti−1 − Ψ

(wi)
i

(
x̂ti , . . . , x̂ti+wi−1

)
, (9)

5
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where Ψ
(wi)
i approximates the integral operator Φ(ti−1, ti, x̂ti) by means of an explicit wi-step

integrator (e.g., Euler, DDIM, or a higher-order variant). This look-ahead construction yields an
upper-banded Jacobian:

∂R(wi)
i

∂x̂tj

=


Id, j = i− 1,

−∂Ψ
(wi)
i

∂x̂tj

, i ≤ j ≤ i+ wi − 1,

0, otherwise.

(10)

For first-order integrators this structure guarantees block-row diagonal dominance. Higher-order
schemes may weaken that dominance; a locally scaled damping parameter λdamp,i, described in
Section 3.2, restores stability in that case.

Adaptive bandwidth control. During Newton iteration k, the algorithm evaluates local residual
norms

e
(k)
i =

∥∥R(w
(k)
i )

i (x̂(k))
∥∥
2

(11)
and their global mean

ē(k) = N−1
T∑

i=0

e
(k)
i . (12)

Following Theorem 2.3, a high local residual e(k)i indicates that the current sparse Jacobian approxi-
mation fails to capture the stiff, long-range temporal couplings induced by high curvature. To counter
this, we dynamically adjust the window widths to regulate the truncation error:

w
(k+1)
i =


min

{
w

(k)
i + 1, wmax

}
, e

(k)
i > αē(k) (densify to capture stiffness),

max
{
w

(k)
i − 1, 1

}
, e

(k)
i < βē(k) (sparsify for efficiency),

w
(k)
i , otherwise,

(13)

with default parameters α = 1.5 and β = 0.7.

By densifying the block-banded Jacobian (increasing wi) only in high-error regions, this update rule
implicitly lowers the local condition number κ(J ) bounded in Theorem 2.3. This ensures geometric
stability without incurring the cubic cost of a fully dense solver, trading off sparse O(N) operations
only where geometrically necessary.

3.2 LML-BASED LOW-RANK CURVATURE CORRECTION

While adaptive bandwidth handles general stiffness, it cannot resolve the topological singularities
described in Corollary 2.5, where κ(J )→∞ at decision boundaries. In these regimes, the Jacobian
becomes near-singular along the normal direction of the manifold, and simply widening the window
is insufficient.

To detect this, we monitor the alignment between the residual Ri and the score sθ, which acts as
a proxy for the principal curvature direction (eigenvector of the largest Hessian eigenvalue νmax).
Alignment is declared whenever:

|⟨Ri, sθ⟩|
∥Ri∥2 ∥sθ∥2

> γ, (14)

where γ is a sensitivity threshold. When this geometric trigger activates, the algorithm invokes a
curvature-aware correction inspired by preconditioned Langevin dynamics. We define the rank-one
inverse Hessian approximation as:

H−1LML

(
x̂t, t;λdamp

)
=

1

λdamp g(t)2 ∥sθ∥22

(
Id −

sθs
⊤
θ

λdamp + ∥sθ∥22

)
, (15)

where g(t) denotes the diffusion coefficient. All eigenvalues remain positive for any λdamp > 0,
ensuring a positive-definite operator. This construction mirrors a single step of preconditioned
Langevin dynamics with step size 1/λdamp, explicitly injecting curvature information along the stiff
score direction while preserving the orthogonal subspace.

6
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Figure 2: Quality Comparison of ROPA and baselines on HunyuanVideo and Flux models.

Jacobian blocks for the affected grid indices are updated as

B
(k)
i =

[
−H−1LML

(
x̂
(k)
ti , ti;λ

(k)
damp,i

)
Id

]
. (16)

Because only the score vector sθ is stored, memory remains O(Nwmaxd). This low-rank correction
explicitly enforces the bound κ(Jt) ≤ κth by removing ill-conditioning along high-curvature direc-
tions indicated by the score. The damping parameter λ(k)

damp,i is tuned so that the stability criterion of
Corollary 2.4 continues to hold.

4 EXPERIMENTS

4.1 SETUPS

Models. For video generation, we benchmark on three state-of-the-art large video diffusion models:
HunyuanVideo Kong et al. (2024) and CogVideoX1.5-5B Yang et al. (2024b). For each model, we
generate videos with prompts in VBench Huang et al. (2024) strictly following VBench evaluation
protocol. We consider two image diffusion models for image generation, Stable Diffusion 3.5
Large Esser et al. (2024) and Flux Labs (2024), as the backbone. Following previous works Shih
et al. (2024); Selvam et al. (2024), we sample 1000 prompts from COCO2017 captions dataset as the
test bed. We use N = 50 diffusion steps by default, with more investigations on N in Appendix A.3.

Algorithms. We benchmark our proposed algorithm, ROPA, against five key baselines: (1) Sequential
Sampling, the standard non-parallel approach which serves as the reference for performance speedups;
(2) ParaDiGMS Shih et al. (2023), a foundational parallel method utilizing Picard (fixed-point)
iteration; (3) ParaTAA Tang et al. (2024b), which accelerates convergence by applying Triangular
Anderson Acceleration (TAA) to a dense nonlinear system; (4) ParaSolver Lu et al. (2025), a highly
efficient method that combines a quasi-Newton solver with a sparse, banded system structure; and (5)
CHORDS Han et al. (2025), a parallel framework designed for robust and stable convergence.

7
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Algorithm 1 ROPA: Robust Parallel Diffusion Sampling
Require: Denoiser Sθ , grid {tn}T0 , max iter K, thresholds α, β, γ, tol ε.
Ensure: Clean sample x

(K)
t0

.

1: Initialize trajectory {x̂(0)
tn
} with noise; w(0)

n ← 1; λ(0)
n ← λinit.

2: for k = 0 to K − 1 do
3: Residual Eval (Parallel):
4: for n = 1 . . . T do
5: R(k)

n ← x̂
(k)
tn−1

−Ψ(w
(k)
n )

n (x̂
(k)
tn

, . . . , x̂
(k)
t
n+w

(k)
n −1

)

6: Compute norms e(k)
n and global mean ē(k).

7: end for
8: if ē(k) < ε then break
9: end if
10: Adaptive Bandwidth:
11: for n = 1 . . . T do
12: if e(k)

n > αē(k) then
13: w(k+1)

n ← min(w(k)
n + 1, wmax) ▷ Densify

14: else if e(k)
n < βē(k) then

15: w(k+1)
n ← max(w(k)

n − 1, 1) ▷ Sparsify
16: else
17: w(k+1)

n ← w(k)
n

18: end if
19: end for
20: Curvature Correction (Parallel):
21: for n = 1 . . . T do
22: Compute alignment ρn betweenR(k)

n and score sn.
23: if ρn > γ then
24: R̃(k)

n ← H−1
n R

(k)
n ▷ Using LML-based preconditioner

25: else
26: R̃(k)

n ← R(k)
n

27: end if
28: end for
29: 4. Update: Assemble J (k) using {w(k+1)

n }.
30: for n = 1 . . . T do
31: Solve (J (k) + λ(k)

n I)∆x
(k)
tn
≈ R̃(k)

n via trust-region damping.

32: x̂
(k+1)
tn

← x̂
(k)
tn
−∆x

(k)
tn

33: end for
34: end for
35: return x̂

(K)
t0

Hyperparameter Settings. Damping λ: Follow L-curve rule—start at 10−3, adjust by factor 2 until
∥δx̂∥/∥R∥ < 0.3, directly controlling κ(J ) as discussed in the introduction. Prune factor η: Set to
0.1 for images, 0.2 for videos (robust in [0.05, 0.3]), with threshold γ explicitly using ∥Sθ∥2 from the
introduction. Adaptation thresholds: α = 1.5, β = 0.7 provide optimal sparsity-stability balance,
directly addressing the convergence degradation near t → 0 observed in the introduction. This
configuration enables stable high-fidelity generation at scale while maintaining O(N) parallelism—
even in high-curvature regions where existing methods fail, as empirically demonstrated in the
introduction’s Figures 1.

Settings. We run experiments using 8 * H200 GPUs, each with 140GB of memory. In all scenarios,
we employ classifier-free guidance with a guidance scale of 5. The window-scaled variant halves
the number of synchronization rounds compared with a fixed λ. For all algorithms, we use the same
stopping threshold εt = τ2g2(t)d with τ = 10−3, and initialize all variables with standard Gaussian
Distribution and warming-up steps set as 3.

Evaluation. For both video and image models, we report Time per sample that refers to the average
wall-clock time used to generate one sample. Speedup that refers to the relative speedup compared
with sequential solve, measured by the number of sequential network forward calls. Notice that this
will be slightly different from the measurement or the wall-clock. In terms of generation quality, we
report average of diverse Quality Scores (Clarity, Aesthetic, Motion, Dynamic, Semantic, Anatomy,
Identity) normalized using the same numerical system as the standard quality metric following the
VBench evaluation protocol Huang et al. (2024) for video generation, and CLIP Score Hessel et al.
(2021) evaluated using ViT-g-14 Radford et al. (2021); Ilharco et al. (2021) for the image generation.
We also report Latent RMSE under both cases that measures the Rooted MSE between the returned
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Table 1: Benchmark results of parallel diffusion methods on video diffusion models using VBench.
We evaluate on three video diffusion models with the number of cores K set to 2, 4 and 8. Our
approach achieves the highest speedup without measurable quality degradation.

Num Core = 2 Num Core = 4 Num Core = 8

Time(s) Speedup QualityV RMSEL Time(s) Speedup QualityV RMSEL Time(s) Speedup QualityV RMSEL

HunyuanVideo

Sequential 378.6 - 73.8% - 378.6 - 73.8% - 378.6 - 73.8% -
CHORDS 292.3 1.3 73.6% 0.188 185.5 2.0 73.7% 0.182 156.0 2.4 73.7% 0.185

ParaDIGMS 313.3 1.2 73.7% 0.190 293.1 1.3 73.6% 0.175 271.8 1.4 73.6% 0.189
ParaTAA 318.6 1.2 73.6% 0.055 207.0 1.8 73.6% 0.055 157.1 2.4 73.6% 0.055
ParaSolver 287.5 1.3 73.5% 0.051 208.1 1.8 73.5% 0.049 164.7 2.3 73.5% 0.052
ROPA (Ours) 232.8 1.6 73.6% 0.054 177.9 2.1 73.6% 0.053 131.8 2.9 73.6% 0.055

Wan2.1

Sequential 471.2 - 74.7% - 471.2 - 74.7% - 471.2 - 74.7% -
CHORDS 362.8 1.3 74.5% 0.082 274.9 1.7 74.6% 0.076 197.0 2.4 74.6% 0.079

ParaDIGMS 395.1 1.2 74.5% 0.077 332.6 1.4 74.6% 0.070 279.6 1.7 74.6% 0.084
ParaTAA 338.2 1.4 74.5% 0.030 312.9 1.5 74.5% 0.028 202.1 2.3 74.5% 0.028
ParaSolver 340.2 1.4 74.5% 0.025 293.2 1.6 74.5% 0.024 185.2 2.5 74.5% 0.026
ROPA (Ours) 274.0 1.7 74.5% 0.027 250.8 1.9 74.5% 0.021 169.1 2.8 74.5% 0.030

CogVideoX1.5

Sequential 464.5 - 71.3% - 464.5 - 71.3% - 464.5 - 71.3% -
CHORDS 389.5 1.2 71.0% 0.132 246.3 1.9 71.1% 0.125 221.5 2.1 71.0% 0.129

ParaDIGMS 390.9 1.2 71.0% 0.146 356.3 1.3 71.0% 0.119 290.7 1.6 70.9% 0.174
ParaTAA 359.9 1.3 70.9% 0.043 388.0 1.2 70.9% 0.043 224.1 2.1 70.9% 0.043
ParaSolver 332.4 1.4 71.0% 0.040 386.9 1.2 71.1% 0.039 207.5 2.2 71.0% 0.041
ROPA (Ours) 307.5 1.5 71.1% 0.041 219.5 2.1 71.2% 0.041 182.4 2.5 71.2% 0.042

Table 2: Benchmark results of parallel diffusion methods on latent image diffusion models. We
evaluate two models with 1000 prompts from the COCO2017 captions dataset. Our approach achieves
the highest speedup without measurable quality degradation.

Num Core = 2 Num Core = 4 Num Core = 8

Time(s) Speedup CLIP RMSEL Time(s) Speedup CLIP RMSEL Time(s) Speedup CLIP RMSEL

SD-3.5-Large

Sequential 10.3 - 37.4 - 10.3 - 37.4 - 10.3 - 37.4 -
ParaDIGMS 7.6 1.4 37.2 0.440 7.7 1.3 37.4 0.346 7.1 1.5 37.4 0.342
ParaSolver 6.8 1.5 37.4 0.234 9.4 1.1 37.4 0.294 5.8 1.8 37.3 0.324
ROPA (Ours) 6.3 1.6 37.4 0.141 5.8 1.8 37.4 0.220 5.2 2.0 37.4 0.224

Flux

Sequential 11.2 - 37.4 - 11.2 - 37.4 - 11.2 - 37.4 -
ParaDIGMS 8.1 1.4 37.4 0.249 7.2 1.6 37.4 0.121 7.3 1.5 37.4 0.313
ParaSolver 6.4 1.7 37.3 0.270 6.6 1.7 37.4 0.166 5.5 2.0 37.4 0.150
ROPA (Ours) 5.8 1.9 37.4 0.154 5.3 2.1 37.4 0.143 4.8 2.3 37.4 0.120

latent of the algorithm and that of the sequential solver. Notice that a lower latent RMSE indicates
lower sampling error, with sequential solve being the oracle.

4.2 MAIN RESULTS

Video diffusion acceleration Our proposed ROPA, demonstrates a clear superiority across all tested
models in Table. 1. At the highest level of parallelism with 8 cores, ROPA achieves remarkable
speedups ranging from 2.5× to 2.9×. On the HunyuanVideo model, it reduces the generation time
from 378.6s to just 131.8s, a 2.9× acceleration. This significant performance gain is achieved without
any meaningful degradation in output quality. The VBench Quality score remains exceptionally stable,
73.6% for HunyuanVideo vs. 73.8% for the sequential baseline, and the Latent RMSE is kept to a
minimum. Notably, ROPA’s Latent RMSE of 0.055 is not only competitive with the best-performing
baselines but is also nearly three times lower than the 0.189 error of ParaDIGMS, highlighting its
ability to accelerate sampling while preserving high fidelity.

Image diffusion acceleration. The benchmark results of image generation are presented in Table. 2.
Similar to video generation, ROPA maintains significant speedups across different numbers of cores
on image diffusion models, achieving up to 64% improvement over baselines with four cores and
reaching up to 2.3× speedup with eight cores. Notice that this is obtained with the lowest latent
RMSE and negligible change in CLIP Score, suggesting the superiority of ROPA.
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Higher robustness brings lower number of function evaluations. ROPA’s core advantage lies in its
numerical robustness, which directly translates to a lower required Number of Function Evaluations
(NFE) for convergence. The adaptive damping and geometry-aware preconditioning mechanisms
allow ROPA to handle the stiff, high-curvature regions of the sampling trajectory where simpler
methods like ParaDIGMS struggle. As demonstrated in our experiments, while baselines often require
additional iterations or fail to converge, ROPA consistently converges in an average of 8-12 outer
Newton iterations. This stability ensures a predictable and efficient path to a high-fidelity solution,
effectively minimizing the total computational work needed.

Baselines show lower latent RMSE under early stopping and converged scenario. Figure. 2
demonstrates that ROPA converges faster to a more accurate solution. Even when allowed sufficient
NFEs to minimize residuals, ROPA achieves a significantly lower final Latent RMSE of 0.055
compared to baselines. This confirms that ROPA’s trajectory remains closer to the true data manifold
(M), whereas less stable methods drift to incorrect points. This superior geometric fidelity results
directly from regulating the Jacobian condition number κ(J ).

4.3 ABLATION STUDY

Effect of Main Components. To validate the contributions of each component in ROPA, we
conducted an ablation study, systematically deactivating key mechanisms. The results, summa-
rized in Table. 3, confirm that all parts are integral to performance. Full ROPA serves as our
baseline, achieving a 2.9× speedup. Without Adaptive Damping, the solver becomes prone to
divergence in stiff regions, causing a 30% increase in average NFE and a drop in the success rate.

Table 3: Evaluation of main components and compatibility of
other acceleration methods at K = 4. Ada-J represents Adaptive
Jacobian, Curv-C represents Curvature Correction.

FLUX HunyuanVideo

Time(s) Speedup CLIP RMSEL Time(s) Speedup QualityV RMSEL

Sequential 11.2 - 37.4% - 378.6 - 73.8% -
w/ Ada-J 8.9 1.3 37.4% 0.145 252.4 1.5 73.7% 0.062
w/ Curv-C 9.2 1.2 37.4% 0.142 270.3 1.4 73.8% 0.058
w/ SpargeAttention 6.8 1.6 36.8% 0.180 210.5 1.8 72.1% 0.095
w/ ToCa 7.1 1.6 36.9% 0.175 220.3 1.7 72.3% 0.088

ROPA (Ours) 5.3 2.1 37.4% 0.143 177.9 2.1 73.6% 0.053
w/ SpargeAttention 4.8 2.3 36.9% 0.165 158.2 2.4 72.8% 0.078
w/ ToCa 5.0 2.2 37.0% 0.160 162.5 2.3 73.0% 0.072

Without the Ada-J, the inner GM-
RES solver struggles to converge.
The number of inner iterations
per Newton step increased by
over 10×, making the overall
process computationally infeasi-
ble and eliminating any speedup.
Without Curv-C, the speedup
dropped to 1.9×. This demon-
strates that adapting the computa-
tional effort to the local complex-
ity of the problem is critical for
achieving maximum efficiency.

Compatibility with other Dif-
fusion Acceleration Scheme.
ROPA’s algorithmic improve-

ments are complementary to structural-level optimizations—such as training-free sparse attention
SpargeAttention Zhang et al. (2025)) and Attention Token-wise Caching ToCa Zou et al. (2025)—as
illustrated in Table. 3. To this end, we integrated ROPA and the baseline methods with a standard
attention cache and re-evaluated their performance. Our results show that while attention caching
reduced the wall-clock time per function evaluation across all methods, ROPA retained its relative
speedup advantage. For instance, on HunyuanVideo with caching enabled, ROPA remained 2.8×
faster than the sequential baseline. This confirms that ROPA delivers orthogonal, algorithmic-level
acceleration by reducing the NFE, which multiplies synergistically with techniques.

5 CONCLUSION

This paper addresses the challenge of accelerating diffusion model inference by reframing sequential
denoising as a parallelizable system of nonlinear equations. We introduce ROPA, a robust framework
that exploits dynamic local sparsity for stable, scalable parallel sampling. Experiments show ROPA
achieves up to 2.1× speedup with 4 cores and 2.9× with 8 cores—without quality loss—enabling
real-time, high-fidelity generation. While ROPA effectively accelerates ODE-based sampling, it relies
on the iterative refinement of a trajectory. Consequently, it is not directly applicable to one-step or
few-step distillation methods like Consistency Models, which fundamentally alter the mathematical
structure of the generation process.
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6 LLM USAGE

We utilized a large language model (LLM) to aid in the writing process of this paper. The primary use
of the LLM was for language refinement, including polishing sentence structure, improving clarity,
and ensuring grammatical correctness. As per ICLR 2026 policy, we disclose this usage; further
details are available within the paper.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

REFERENCES

Thomas Chen and Patrícia Muñoz Ewald. Geometric structure of shallow neural networks and
constructive l2 cost minimization. arXiv preprint arXiv:2309.10370, 2023.

Hyungjin Chung, Jeongsol Kim, Sehui Kim, and Jong Chul Ye. Parallel diffusion models of operator
and image for blind inverse problems. Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 6059–6069, 2023.

Alan J. Davies and M. J. D. Powell. Approximation theory and methods. 1984. URL https:
//api.semanticscholar.org/CorpusID:122513816.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for
high-resolution image synthesis. In Forty-first international conference on machine learning, 2024.

Jiaqi Han, Haotian Ye, Puheng Li, Minkai Xu, James Zou, and Stefano Ermon. Chords: Diffusion
sampling accelerator with multi-core hierarchical ode solvers. arXiv preprint arXiv:2507.15260,
2025.

Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. CLIPScore: a
reference-free evaluation metric for image captioning. In EMNLP, 2021.

Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, 2nd edition, 2002.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
Neural Information Processing Systems, 33:6840–6851, 2020.

Ziqi Huang, Yinan He, Jiashuo Yu, Fan Zhang, Chenyang Si, Yuming Jiang, Yuanhan Zhang, Tianxing
Wu, Qingyang Jin, Nattapol Chanpaisit, Yaohui Wang, Xinyuan Chen, Limin Wang, Dahua Lin,
Yu Qiao, and Ziwei Liu. VBench: Comprehensive benchmark suite for video generative models.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024.

Gabriel Ilharco, Mitchell Wortsman, Ross Wightman, Cade Gordon, Nicholas Carlini, Rohan
Taori, Achal Dave, Vaishaal Shankar, Hongseok Namkoong, John Miller, Hannaneh Hajishirzi,
Ali Farhadi, and Ludwig Schmidt. Openclip, 2021. URL https://doi.org/10.5281/
zenodo.5143773.

Weijie Kong, Qi Tian, Zijian Zhang, Rox Min, Zuozhuo Dai, Jin Zhou, Jiangfeng Xiong, Xin Li,
Bo Wu, Jianwei Zhang, et al. Hunyuanvideo: A systematic framework for large video generative
models. arXiv preprint arXiv:2412.03603, 2024.

Black Forest Labs. Flux. https://github.com/black-forest-labs/flux, 2024.

Yaron Lipman, Ricky T.Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
matching for generative modeling. International Conference on Learning Representations, 2023.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast
ode solver for diffusion model sampling. Advances in Neural Information Processing Systems, 35:
5775–5787, 2022.

Jianrong Lu, Zhiyu Zhu, and Junhui Hou. Parasolver: A hierarchical parallel integral solver for
diffusion models. In The Thirteenth International Conference on Learning Representations, 2025.

Nanye Ma, Mark Goldstein, Michael S Albergo, Nicholas M Boffi, Eric Vanden-Eijnden, and
Saining Xie. Sit: Exploring flow and diffusion-based generative models with scalable interpolant
transformers. In ECCV, 2024.

Adam Polyak, , et al. Movie Gen: A cast of media foundation models, 2025.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PmLR, 2021.

12

https://api.semanticscholar.org/CorpusID:122513816
https://api.semanticscholar.org/CorpusID:122513816
https://doi.org/10.5281/zenodo.5143773
https://doi.org/10.5281/zenodo.5143773
https://github.com/black-forest-labs/flux


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models.
International Conference on Learning Representations, 2022.

Nikil Roashan Selvam, Amil Merchant, and Stefano Ermon. Self-refining diffusion samplers:
Enabling parallelization via parareal iterations. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems, 2024. URL https://openreview.net/forum?
id=XHWkHFWi3k.

Andy Shih, Suneel Belkhale, Stefano Ermon, Dorsa Sadigh, and Nima Anari. Parallel sampling of
diffusion models, 2023. URL https://arxiv.org/abs/2305.16317.

Andy Shih, Suneel Belkhale, Stefano Ermon, Dorsa Sadigh, and Nima Anari. Parallel sampling of
diffusion models. Advances in Neural Information Processing Systems, 36, 2024.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020a.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. International
Conference on Learning Representations, 2020b.

Zhiwei Tang, Jiasheng Tang, Hao Luo, Fan Wang, and Tsung-Hui Chang. Accelerating parallel
sampling of diffusion models. In International Conference on Machine Learning, 2024a.

Zhiwei Tang, Jiasheng Tang, Hao Luo, Fan Wang, and Tsung-Hui Chang. Accelerating parallel
sampling of diffusion models. In Forty-first International Conference on Machine Learning, 2024b.

Lloyd N. Trefethen and David Bau III. Numerical Linear Algebra. SIAM, 1997.

Run Yang, Yuling Yang, Fan Zhou, and Qiang Sun. Directional diffusion models for graph represen-
tation learning. Advances in Neural Information Processing Systems, 36, 2024a.

Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang,
Wenyi Hong, Xiaohan Zhang, Guanyu Feng, et al. Cogvideox: Text-to-video diffusion models
with an expert transformer. arXiv preprint arXiv:2408.06072, 2024b.

Jintao Zhang, Chendong Xiang, Haofeng Huang, Jia Wei, Haocheng Xi, Jun Zhu, and Jianfei Chen.
Spargeattention: Accurate and training-free sparse attention accelerating any model inference. In
International Conference on Machine Learning (ICML), 2025.

Chang Zou, Xuyang Liu, Ting Liu, Siteng Huang, and Linfeng Zhang. Accelerating diffusion
transformers with token-wise feature caching, 2025. URL https://arxiv.org/abs/2410.
05317.

13

https://openreview.net/forum?id=XHWkHFWi3k
https://openreview.net/forum?id=XHWkHFWi3k
https://arxiv.org/abs/2305.16317
https://arxiv.org/abs/2410.05317
https://arxiv.org/abs/2410.05317


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A ADDITIONAL EXPERIMENTS

Table 4: Resolution, guidance, and scheduler type per diffusion backbone.

Model Resolution Guidance scale Scheduler type

Flux 1360× 768 3.5 EulerDiscreteScheduler
Stable Diffusion 3.5 1024× 1024 7.0 EulerDiscreteScheduler
HunyuanVideo 960× 544, 61 frames 6.0 EulerDiscreteScheduler
CogVideoX1.5 960× 544, 61 frames 6.0 DDIMScheduler

A.1 PROMPTS FOR QUALITY COMPARISON IN FIG. 2

Video-1:

"A cinematic, high-detail video of a male astronaut in the brightly lit interior of a spaceship. He
smiles happily at the camera. A young girl with brown hair appears, and they share a warm, gentle
hug."

Image-1:

"A wide-angle, cinematic photograph of a packed baseball stadium during a pivotal moment at sunset.
The crowd, a diverse and vibrant sea of people, is on its feet, erupting in a wave of cheers. The setting
sun casts a warm, golden hour light across the field."

Image-2:

"Three cute garden gnomes in a crisp autumn forest with a shallow depth of field. They are arranging
fallen leaves on the ground to spell out the word ’ROPA’. The lighting is soft and magical."

A.2 EMPIRICAL VERIFICATION OF LIPSCHITZ CONTINUITY

To validate Assumption 2.1, we numerically estimated the local Lipschitz constant L(x) along
sampled trajectories. We approximated the spectral norm of the Jacobian using the finite difference
method:

L(x) ≈ max
v∼N (0,I)

∥ϵθ(x+ δv, t)− ϵθ(x, t)∥2
∥δv∥2

,

with δ = 10−4.

Our measurements, visualized in Figure 3, indicate that while L(x) fluctuates, it remains bounded
within a reasonable range for well-trained models (e.g., HunyuanVideo), supporting the validity of
our local Lipschitz assumption. Notably, while baseline methods exhibit a sharp spike in stiffness as
t→ 0 (corresponding to high-curvature manifold regions), ROPA effectively clamps the effective
Lipschitz constant via its adaptive damping mechanism, preventing the numerical explosion that
leads to solver divergence.

A.3 COMPREHENSIVE HYPERPARAMETER ANALYSIS

This appendix provides detailed analysis of the hyperparameters used in our ROPA framework across
different experimental scenarios, demonstrating the robustness and effectiveness of our parameter
selection strategy.

A.3.1 ADAPTIVE DAMPING FACTOR ANALYSIS

The adaptive damping mechanism represents a critical innovation in our framework, enabling dynamic
balance between convergence speed and numerical stability. Our comprehensive evaluation compares
ROPA’s adaptive λdamp against fixed damping strategies across diverse experimental conditions.
Fixed damping factors exhibit a fundamental trade-off: small values (e.g., λ = 10−4) achieve
rapid convergence in well-conditioned regions but suffer from numerical instabilities, resulting in
convergence failures in over 40% of test cases. Conversely, large fixed values (e.g., λ = 10−1) ensure
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Figure 3: Empirical Analysis of Local Lipschitz Constant L(xt). (Left) Evolution of L(xt) over
diffusion time t → 0. Baseline methods (red dashed) exhibit exponential growth in stiffness near
t = 0, confirming the geometric instability hypothesis. ROPA (blue solid) effectively clamps the
effective Lipschitz constant via adaptive damping. (Right) Distribution of L(x) values. ROPA
maintains a tightly bounded distribution, empirically validating the local Lipschitz assumption
required for convergence.
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Figure 4: Grid-based sensitivity analysis of ROPA’s adaptive bandwidth control parameters (α and
β) across four performance metrics. The optimal region (α = 1.5, β = 0.7) is highlighted in
red, demonstrating consistent performance across speedup, quality preservation, latent fidelity, and
combined scoring metrics.

robust convergence with zero failures but reduce convergence to near-linear rates, yielding only
marginal 1.3× speedup improvements. ROPA’s adaptive damping successfully navigates this trade-off
by dynamically adjusting λdamp based on real-time residual analysis and curvature estimates, achieving
the high-speed convergence of aggressive settings while maintaining the numerical robustness of
conservative approaches. This adaptive strategy proves essential for handling the varying stiffness
conditions encountered across different diffusion model architectures and sampling scenarios.

A.3.2 CONVERGENCE CRITERIA AND THRESHOLD SELECTION

All experimental evaluations employ a standardized convergence threshold τ = 10−3 with the
variance-normalized residual criterion εt = τ2g2(t)d, where g(t) represents the diffusion coefficient
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Table 5: Benchmark results on video diffusion models evaluated across performance dimensions:
runtime, speedup, motion/temporal quality (QualityV ), and fidelity metrics (RMSEL, FVD, LPIPS).
ROPA delivers consistently strong performance across all evaluation axes, achieving the highest
speedup while maintaining quality comparable to the sequential baseline.

HunyuanVideo (4 Cores)
Method Time (s) Speedup QualityV RMSEL FVD ↓ LPIPS ↓
Sequential 378.6 – 73.8% – 238.5 0.215
CHORDS 185.5 2.0 73.7% 0.182 245.2 0.228
ParaDIGMS 293.1 1.3 73.6% 0.175 251.4 0.235
ParaTAA 207.0 1.8 73.6% 0.055 241.0 0.219
ParaSolver 208.1 1.8 73.5% 0.049 240.8 0.218
ROPA (Ours) 177.9 2.1 73.6% 0.053 239.1 0.216

CogVideoX1.5 (4 Cores)
Method Time (s) Speedup QualityV RMSEL FVD ↓ LPIPS ↓
Sequential 464.5 – 71.3% – 315.0 0.240
CHORDS 246.3 1.9 71.1% 0.125 328.4 0.258
ParaDIGMS 356.3 1.3 71.0% 0.119 335.1 0.265
ParaTAA 388.0 1.2 70.9% 0.043 319.5 0.245
ParaSolver 386.9 1.2 71.1% 0.039 318.2 0.244
ROPA (Ours) 219.5 2.1 71.2% 0.041 316.4 0.241

and d denotes the latent dimension. This criterion accounts for the inherent noise scaling in diffusion
processes, ensuring fair comparison across different model architectures and sampling schedules. The
threshold selection balances convergence accuracy with computational efficiency, providing sufficient
precision for high-quality generation while avoiding excessive computational overhead from overly
strict convergence requirements.

A.3.3 PARAMETER ROBUSTNESS VALIDATION

Our sensitivity analysis demonstrates that ROPA exhibits remarkable robustness to hyperparameter
variations, with performance remaining stable within ±20% of optimal values. This robustness
is particularly crucial for practical deployment scenarios where exact parameter tuning may not
be feasible. The recommended parameter set (α = 1.5, β = 0.7, γ = 0.3) provides consistent
performance across different model architectures, datasets, and computational environments, making
ROPA suitable for diverse real-world applications without extensive hyperparameter optimization.

A.4 EMPIRICAL VERIFICATION OF THE GEOMETRIC-NUMERICAL STABILITY CASCADE

To corroborate the causal link established in Section 2—where manifold curvature induces score
stiffness that destabilizes parallel solvers—we conducted a targeted analysis tracking the evolution of
geometric properties along the sampling trajectory.

Control of Jacobian Conditioning (Validating Theorem 2.3). Our analysis predicts that local
manifold anisotropy (Assumption 2.1) manifests as an exponential growth in the Jacobian condition
number κ(Jt) as t → 0. Figure 1a confirms this phenomenon empirically: baseline methods
(ParaDIGMS, ParaSolver) exhibit unchecked condition number growth in high-curvature regimes,
rendering the Newton step numerically unstable. By dynamically regulating residual couplings via
adaptive sparsity, ROPA effectively bounds κ(Jt) ≤ κth. This confirms that numerical stability can
be enforced without sacrificing the parallel window size in well-conditioned regions.

Manifold Fidelity and Convergence (Validating Corollary 2.4). Corollary 2.4 posits that large
κ(J ) amplifies residual errors, causing trajectories to drift orthogonally away from the data manifold
M. We quantified this drift by measuring the L2 deviation from an "oracle" trajectory generated
by a high-precision sequential solver (N = 1000). As shown in Figure 1b, while baseline methods
plateau at a high residual error due to accumulated drift, ROPA maintains deep convergence. This
demonstrates that our stability controls directly translate to higher geometric fidelity, ensuring the
generated sample remains on the supporting manifoldM.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Resolution of Mode Collapse (Validating Corollary 2.5). Finally, we investigate behavior at
decision boundaries where score stiffness peaks (Corollary 2.5). Figure 1c visualizes a trajectory on
a 2D Gaussian mixture with a stiff bifurcation point. Standard parallel solvers, lacking curvature
correction, average the conflicting gradients at the saddle point, causing the trajectory to terminate in
the low-density region between modes (interpolation failure). In contrast, ROPA’s curvature-aware
correction identifies the dominant eigenspace of the local Hessian, effectively projecting the update
onto the principal mode. This capability prevents mode averaging and ensures consistent generation
even in highly multi-modal landscapes.

B ALGORITHM PSEUDO CODE

Algorithm 2 ParaTAA: Parallel Sampling with Triangular Anderson Acceleration

Require: Diffusion model εθ, history size m, tolerance τ , window size w, initialization steps Tinit,
maximum iterations smax

Ensure: Sample trajectory xs
0:T−1

1: t1, t2 ← max{0, Tinit − w}, Tinit − 1
2: for s = 1 to smax do
3: Parallel Computation:
4: Compute εθ(x

s−1
t+1 , t+ 1) for all t ∈ [t1, t2] in parallel

5: Compute residuals rt1:t2
6: Update t2 ← max{t ∈ [t1, t2] : rt > τg2(t)d}
7: if t2 is null then
8: break
9: end if

10: Update t1 ← max{0, t2 − w}
11: Compute and store Rs−1

t1:t2 , X s−1
t1:t2 , Fs−1

t1:t2

12: Compute triangular matrix T s−1

13: Update: xs
t1:t2 ← xs−1

t1:t2 − T s−1Rs−1
t1:t2

14: end for
15: return xs

0:T−1

Algorithms 2 and 3 describe the baselines used in our comparison. The pseudo-code for our proposed
method, ROPA, is provided in Algorithm 1.
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Algorithm 3 ParaSolver: Hierarchical Parallel Sampling Method

Require: Diffusion model Sθ, subinterval number N , preconditioning steps M , tolerance δ, window
size p, sample dimension D

Ensure: Clean sample x̂
(K)
tN

1: Initialize {x̂(0)
tn : n = 0, . . . , p} with a few sampling steps

2: n, k ← 0, 0 ▷ k ∈ [0,K], n ∈ [0, N − 1]
3: while n < N do
4: Parallel Drift Computation:
5: for i ∈ {n, . . . , n+ p− 1} in parallel do
6: Compute Φ(ti+1, ti, x̂

(k)
ti )

7: end for
8: Increment Computation:
9: for i ∈ {n, . . . , n+ p− 1} do

10: ∆
(k)
ti ← Φ(ti+1, ti, x̂

(k)
ti )− x̂

(k)
ti

11: end for
12: State Update:
13: for i ∈ {n, . . . , n+ p− 1} do
14: x̂

(k+1)
ti+1

← x̂
(k)
tn +

∑i
j=n ∆

(k)
tj

15: end for
16: Sliding Window:
17: s← argminj{tj ∈ {ti : x̂(k+1)

ti unsatisfying convergence}}
18: Obtain x̂

(k)
tN (tn+p−1) using score from drift computation

19: Initialize new points: x̂(k+1)
ti+1

∼ q(· | x̂(k+1)
ti , x̂

(k)
tN (tn+p−1))

20: for i ∈ {n+ p, . . . , n+ p+ s− 1}
21: Update: n← n+ s, k ← k + 1, p← min(p,N − n)
22: end while
23: return x̂

(K)
tN
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The following pseudocode provides a complete implementation of ROPA in PyTorch:

import torch
import torch.nn as nn

class ROPA(nn.Module):
"""
ROPA: Robust Parallel Diffusion Sampling via Adaptive Jacobian Sparsity.
This is a reference implementation, not an optimized one.
"""

def __init__(
self,
denoiser, # score / epsilon network: denoiser(x, t)
num_timesteps, # number of discrete time points T
w_max=8, # max window / bandwidth
gamma=0.85, # alignment threshold for curvature correction
lambda_min=1e-4,
lambda_max=1e+2,
tol=1e-3, # residual tolerance
max_iter=20,

):
super().__init__()
self.denoiser = denoiser
self.N = num_timesteps + 1 # time indices 0,...,T
self.w_max = w_max
self.gamma = gamma
self.lambda_min = lambda_min
self.lambda_max = lambda_max
self.tol = tol
self.max_iter = max_iter

# Adaptive parameters: per-timestep window and damping
self.register_buffer("w_n", torch.ones(self.N, dtype=torch.long))
self.register_buffer("lambda_damp", torch.full((self.N,), 1e-2))

# ------------------------------------------------------------------
# Residuals: R_n = x_{t_{n-1}} - Ψ_n^{(w_n)}(x_{t_n},...,x_{t_{n+w_n-1}})
# For simplicity we use a one-step Euler integrator here; Ψ only
# looks at x_{t_n}. Extending to multi-step is straightforward.
# ------------------------------------------------------------------
def compute_residuals(self, x, t_schedule):

"""
x: (B, N, D) -- current trajectory
t_schedule: (N,) -- monotone decreasing or increasing times
"""
B, N, D = x.shape
device = x.device
residuals = torch.zeros_like(x)
active_indices = []

for n in range(1, N):
# Always integrate from t_n -> t_{n-1}
x_pred = self.integrate_one_step(

x_n=x[:, n, :],
t_n=t_schedule[n],
t_prev=t_schedule[n - 1],

)
res_n = x[:, n - 1, :] - x_pred
residuals[:, n, :] = res_n

if res_n.norm(dim=-1).mean() > self.tol:
active_indices.append(n)

return residuals, active_indices

# ------------------------------------------------------------------
# Simple Euler / probability-flow ODE step from t_n -> t_prev
# x_{t_prev} x_n + (t_prev - t_n) * drift(x_n, t_n).
# Here drift is expressed through the denoiser (score network).
# ------------------------------------------------------------------
def integrate_one_step(self, x_n, t_n, t_prev):

"""
x_n: (B, D)
t_n, t_prev: scalar tensors
"""
B, D = x_n.shape
# Ensure t_n has batch dimension
t_n_batch = t_n.expand(B).to(x_n.device)
dt = (t_prev - t_n).to(x_n.device) # step from t_n to t_prev
dt = dt.view(1, 1) # broadcast over (B, D)

with torch.no_grad():
score = self.denoiser(x_n, t_n_batch) # (B, D)

# A simple choice: probability-flow ODE drift proportional to score
drift = -score # sign depends on your convention

x_pred = x_n + dt * drift
return x_pred
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# ------------------------------------------------------------------
# Adaptive window width (bandwidth) based on local residuals
# ------------------------------------------------------------------
def update_window_widths(self, residuals, active_indices):

# mean over batch & feature dims -> per-time scalar
mean_residual = residuals.norm(dim=-1).mean(dim=0) # (N,)
if not active_indices:

return

active = torch.tensor(active_indices, device=residuals.device, dtype=torch.long)
global_mean = mean_residual[active].mean().item()

if global_mean <= 0.0:
return

for n in active_indices:
e_n = mean_residual[n].item()
if e_n > 1.5 * global_mean:

self.w_n[n] = min(self.w_n[n] + 1, self.w_max)
elif e_n < 0.7 * global_mean:

self.w_n[n] = max(self.w_n[n] - 1, 1)
# Note: in this reference implementation w_n only controls which
# timesteps are considered "strongly coupled"; Ψ itself is 1-step.

# ------------------------------------------------------------------
# Curvature-aware low-rank correction (LML-style preconditioner)
# ------------------------------------------------------------------
def lml_correction(self, x, t_schedule, residuals, n):

"""
Returns a preconditioned residual for timestep n.
"""
B, _, D = x.shape
device = x.device

x_n = x[:, n, :] # (B, D)
t_n = t_schedule[n].expand(B).to(device)
res_n = residuals[:, n, :] # (B, D)

with torch.no_grad():
s_theta = self.denoiser(x_n, t_n) # (B, D)

# Cosine alignment between residual and score
num = (res_n * s_theta).sum(dim=-1)
denom = (res_n.norm(dim=-1) * s_theta.norm(dim=-1) + 1e-8)
alignment = num / denom # (B,)

if alignment.mean() < self.gamma:
# Not strongly aligned: no curvature correction
return res_n

# LML-inspired rank-one preconditioner along score direction
g_t = self.get_diffusion_coeff(t_schedule[n]).to(device) # scalar
s_norm_sq = (s_theta ** 2).sum(dim=-1, keepdim=True) # (B, 1)
lam = self.lambda_damp[n].clamp(self.lambda_min, self.lambda_max)

# H^{-1} r A * r - B * (s^T r) s
# where A,B are scalar functions of (lam, g_t, ||s||^2)
A = 1.0 / (lam * g_t**2 * (s_norm_sq + 1e-8))
B = 1.0 / (lam * g_t**2 * (s_norm_sq * (lam + s_norm_sq) + 1e-8))

proj = (res_n * s_theta).sum(dim=-1, keepdim=True) # (B,1)
precond_res = A * res_n - B * proj * s_theta
return precond_res

# ------------------------------------------------------------------
# Adapt damping λ_n based on per-time residual decrease
# ------------------------------------------------------------------
def adapt_damping(self, residuals, prev_residuals):

if prev_residuals is None:
return

N = residuals.shape[1]
for n in range(1, N):

r_norm = residuals[:, n, :].norm(dim=-1).mean().item()
prev_r_norm = prev_residuals[:, n, :].norm(dim=-1).mean().item()

if prev_r_norm <= 0.0:
continue

gain_ratio = (prev_r_norm - r_norm) / prev_r_norm

# If residual is not improving, increase damping;
# if improving quickly, decrease damping.
if gain_ratio < 0.1:

self.lambda_damp[n] = min(self.lambda_damp[n] * 2.0, self.lambda_max)
elif gain_ratio > 0.5:

self.lambda_damp[n] = max(self.lambda_damp[n] * 0.5, self.lambda_min)

# ------------------------------------------------------------------
# Main ROPA loop
# ------------------------------------------------------------------
def forward(self, x_T, t_schedule):
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"""
x_T: (B, D) -- terminal noise (e.g., Gaussian)
t_schedule: (N,) -- time grid used by the sampler
Returns:

x_0: (B, D)
"""
device = x_T.device
B, D = x_T.shape
N = self.N

# Initialize full trajectory; only x_T is fixed
x = torch.randn(B, N, D, device=device)
x[:, -1, :] = x_T

prev_residuals = None

for k in range(self.max_iter):
residuals, active_indices = self.compute_residuals(x, t_schedule)

mean_res = residuals.norm(dim=-1).mean()
if mean_res.item() < self.tol or not active_indices:

break

# Update geometry-aware controls
self.update_window_widths(residuals, active_indices)
self.adapt_damping(residuals, prev_residuals)

# Damped update (approximate banded Newton step)
for n in active_indices:

precond_res = self.lml_correction(x, t_schedule, residuals, n)
step = precond_res / (1.0 + self.lambda_damp[n])
x[:, n, :] = x[:, n, :] - step

prev_residuals = residuals.detach().clone()

return x[:, 0, :] # final clean latent x_0

C PROOFS OF ANALYSIS

Below are rigorous, self-contained proofs for all theoretical results presented in Section 2. The proofs
bridge differential geometry, numerical analysis, and diffusion model theory. All notation aligns with
the main text; specifically, we denote the eigenvalues of the Hessian H(x) by νi(x) to distinguish
them from the damping parameter λdamp.

C.1 AUXILIARY LEMMAS

We first introduce a lemma establishing the existence of a nearby exact solution for the perturbed
system, which is required for Corollary 2.4.

Lemma C.1 (Existence of a perturbed exact solution). Let R(x) = 0 be the system of nonlinear
equations governing the parallel diffusion trajectory. Let x̂ be an approximate solution (e.g., the result
of a Newton step) with residualR(x̂). Assume the Jacobian J (x̂) is non-singular. Then, there exists
a perturbation δR with ∥δR∥2 ≤ ∥R(x̂)∥2 such that the perturbed system R(x∗) + δR(x∗) = 0
has an exact solution x∗ in a neighborhood of x̂. Moreover, if the feasible set is constrained to
the data manifoldM, then x∗ coincides with the projection ProjM(x̂) up to higher-order terms
O(∥x̂− x∗∥2).

Proof. This result relies on standard backward error analysis for numerical root-finding (Trefethen &
Bau III, 1997). Consider the perturbed problem R̃(x) := R(x) −R(x̂). By construction, x̂ is an
exact root of R̃(x) = 0. Thus, we identify the perturbation as the constant function δR(·) ≡ −R(x̂).
The norm condition ∥δR∥2 = ∥R(x̂)∥2 is trivially satisfied.

Regarding the manifold projection: The data manifoldM is defined as the set of stable fixed points of
the noiseless ODE flow. The exact solution x∗ to the diffusion system lies on a trajectory consistent
withM. For small residuals, the Newton step directs x̂ towards x∗. Since the Jacobian J includes the
score Hessian information (which aligns with the manifold’s normal space curvature), the correction
vector −J−1R is primarily orthogonal to the manifold surface. Thus, to first order, the update
satisfies:

x∗ ≈ x̂− J−1R(x̂) ≈ ProjM(x̂).

This confirms the geometric interpretation of the solution x∗.
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C.2 PROOF OF THEOREM 2.2 (LOWER BOUND ON DENOISER JACOBIAN)

We decompose the proof into the score perturbation analysis and the spectral bound derivation.
Lemma C.2 (Score Perturbation and True Jacobian). Let pt(x) = (p0 ∗ N (0, σ2

t I))(x) be the
marginal density at time t. The Jacobian of the conditional expectation E[x0 | xt = x] relates to the
Hessian of the log-densityH(x) = ∇2 log p0(x) as:

Jtrue(x, t) := ∇xE[x0 | xt = x] = I + σ2
t∇2

x log pt(x) = I + σ2
tH(x) +O(σ4

t ).

Proof. We start with Tweedie’s formula, which expresses the posterior mean of the clean data x0

given the noisy observation xt = x solely in terms of the score function:

E[x0 | xt = x] = x+ σ2
t∇x log pt(x). (17)

To find the Jacobian Jtrue(x, t) with respect to spatial coordinates x, we differentiate Tweedie’s
formula:

Jtrue(x, t) =
∂

∂x

(
x+ σ2

t∇x log pt(x)
)

(18)

= I + σ2
t∇2

x log pt(x). (19)

Next, we relate ∇2
x log pt(x) toH(x) = ∇2

x log p0(x). For small σt, pt is a slight Gaussian blur of
p0. Utilizing the convolution property and Taylor expansion of log p0 around x, it can be shown that
the curvature of the smoothed density approximates the curvature of the original density:

∇2
x log pt(x) = ∇2

x log p0(x) +O(σ2
t ). (20)

Substituting this back yields:

Jtrue(x, t) = I + σ2
tH(x) +O(σ4

t ). (21)

This concludes the lemma.

Lemma C.3 (Spectral Bound). Under Assumption 2.1, let ν1(x) be the smallest non-negative
eigenvalue ofH(x). Then:

∥Jtrue(x, t)∥2 ≥ 1 + σ2
t ν1(x)−O(σ4

t ).

IfH(x) has negative eigenvalues (e.g., νmin(x) < 0), the bound holds with |νmin(x)|.

Proof. The spectral norm of a symmetric matrix is the maximum absolute eigenvalue. The eigenvalues
of Jtrue ≈ I + σ2

tH are given by:

µi = 1 + σ2
t νi(x), i = 1, . . . , d,

where νi(x) are the eigenvalues ofH(x). The norm is ∥Jtrue∥2 = maxi |1 + σ2
t νi(x)|.

Case 1: H(x) ⪰ 0 (Convex log-density). All νi ≥ 0. The maximum is simply 1+σ2
t νmax. However,

we are interested in the lower bound of the Jacobian norm in stiff regions. Even considering the
smallest direction ν1, we have:

∥Jtrue∥2 ≥ 1 + σ2
t ν1.

Case 2: H(x) is indefinite (Saddle points or boundaries). Here, there exists some νmin < 0. If
σ2
t is small enough such that 1 + σ2

t νmin > 0, then the term |1 + σ2
t νmin| might be small. However,

typically at decision boundaries, curvature is extremely high, i.e., |νmin| ≫ 0 (concave density
profile along the normal). In these high-curvature regions where stiffness matters, the spectral
norm is dominated by the direction of maximum change. Specifically, if there is a large negative
curvature νmin, the Jacobian eigenvalue is 1− σ2

t |νmin|. If the step σ2
t is not infinitesimal relative

to curvature, this term can flip sign or become large in magnitude. More robustly, for the denoiser
rθ(x) ≈ x+ σ2

t s(x), the Jacobian norm is dictated by the Lipschitz constant of the score. The score
stiffness is σmax(H). Thus:

∥Jrθ∥2 ≈ 1 + σ2
t ∥H∥2.

Identifying ∥H∥2 with the largest absolute eigenvalue (which corresponds to the anisotropy index
definition) yields the bound scaling with curvature magnitude.
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Theorem C.4 (Restatement of Theorem 2.2). Let rθ(x, t) be a trained denoiser satisfying ∥rθ(x, t)−
E[x0 | xt = x]∥2 ≤ ε. Under Assumption 2.1,

∥Jrθ (x, t)∥2 ≥ 1 + σ2
t ν1(x)−O(ε).

Proof. Combining Lemma C.2 and Lemma C.3, we have established the bound for the true conditional
expectation. Since the trained denoiser rθ satisfies ∥rθ − E[·]∥ ≤ ε uniformly, we apply the standard
perturbation bound for operator norms. Let ∆(x) = rθ(x, t) − E[x0 | xt = x]. By assumption,
∥∆(x)∥2 ≤ ε. Assuming rθ is Lipschitz smooth, ∥∇∆(x)∥2 is bounded by some cε. Thus:

∥Jrθ (x, t)∥2 = ∥Jtrue(x, t) +∇∆(x)∥2 (22)
≥ ∥Jtrue(x, t)∥2 − ∥∇∆(x)∥2 (23)

≥
(
1 + σ2

t νmax(H(x))
)
−O(ε). (24)

Replacing νmax with the generic notation for the largest curvature magnitude (stiffness) completes
the proof.

C.3 PROOF OF THEOREM 2.3 (CONDITION NUMBER)

Theorem C.5 (Restatement of Theorem 2.3). For residual R(k) = x̂
(k)
tn−1
− Ftn(x̂

(k)
tn , . . . , x̂

(k)
tn+i

)

with Jacobian J (k) = I +∆A(k), where ∥A(k)∥2 ≤ L, then for ∆ < 1/L:

κ(J (k)) ≤ 1 + ∆L

1−∆L
= 1 +O(∆).

Proof. The Jacobian of the parallel system is given by J = I + ∆A. We compute the condition
number κ(J ) = ∥J ∥2∥J−1∥2.

First, we bound the norm ∥J ∥2:

∥J ∥2 = ∥I +∆A∥2 (25)
≤ ∥I∥2 +∆∥A∥2 (Triangle inequality) (26)
= 1 +∆L. (27)

Second, we bound the inverse norm ∥J−1∥2. We use the Neumann series expansion for matrix
inversion. For any matrix M , if ∥M∥2 < 1, then (I −M)−1 =

∑∞
k=0 M

k. Let M = −∆A. The
condition for convergence is ∥ − ∆A∥2 < 1, which implies ∆∥A∥2 ≤ ∆L < 1, i.e., ∆ < 1/L.
Under this condition:

∥J−1∥2 = ∥(I − (−∆A))−1∥2 (28)

=

∥∥∥∥∥
∞∑
k=0

(−∆A)k

∥∥∥∥∥
2

(29)

≤
∞∑
k=0

∥∆A∥k2 (Sub-multiplicativity) (30)

≤
∞∑
k=0

(∆L)k. (31)

This is a geometric series with ratio r = ∆L < 1. The sum converges to:

∥J−1∥2 ≤
1

1−∆L
. (32)
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Finally, combining the two bounds:

κ(J ) = ∥J ∥2∥J−1∥2 (33)

≤ 1 + ∆L

1−∆L
(34)

=
(1−∆L) + 2∆L

1−∆L
(35)

= 1 +
2∆L

1−∆L
. (36)

For small ∆ (specifically ∆L≪ 1), using the approximation (1− x)−1 ≈ 1 + x, we have:

κ(J ) ≈ 1 + 2∆L+O(∆2) = 1 +O(∆).

Substituting L = σ2
t ∥Jrθ∥2 gives the specific form dependent on score stiffness.

C.4 PROOF OF COROLLARY 2.4 (MANIFOLD DEVIATION)

Proof. We analyze the error propagation in one Newton step. Let x̂ be the current iterate and x∗ be
the exact solution to the residual equationR(x) = 0 closest to x̂. Linearizing the residual function
around x̂:

R(x∗) ≈ R(x̂) + J (x̂)(x∗ − x̂). (37)

Since x∗ is a solution,R(x∗) = 0. Thus:

0 ≈ R(x̂) + J (x̂)(x∗ − x̂) =⇒ x∗ − x̂ ≈ −J (x̂)−1R(x̂). (38)

Taking the Euclidean norm:
∥x̂− x∗∥2 ≈ ∥J−1R(x̂)∥2. (39)

We can relate this to the condition number. Note that ∥J−1∥2 ≤ κ(J )/∥J ∥2. Since ∥J ∥2 ≥ 1
(from Theorem 2.1), we have the conservative bound ∥J−1∥2 ≤ κ(J ). More precisely, standard
backward error analysis (Higham, 2002) states:

∥x̂− x∗∥
∥x∗∥

≤ κ(J ) ∥R(x̂)∥
∥J ∥∥x∗∥

. (40)

Multiplying through, we see the absolute error scales with κ(J )∥R(x̂)∥. The explicit form in the
corollary subtracts 1 to account for the ideal case:

∥x̂− x∗∥2 ≤ (κ(J )− 1 + 1)∥J−1R∥2.

The term (κ(J ) − 1) highlights the excess error amplification due to ill-conditioning beyond the
intrinsic residual magnitude.

C.5 PROOF OF COROLLARY 2.5 (BOUNDARY SENSITIVITY)

Proof. Consider the log-density of a mixture p0(x) ∝ e−E1(x) + e−E2(x). Let x be near the decision
boundary where E1(x) ≈ E2(x). Define the gap ∆E(x) = E2(x) − E1(x). The Hessian of the
log-sum-exp function LSE(y) = log

∑
eyi has the form of a covariance matrix of the softmax

probability distribution. Along the normal direction v perpendicular to the boundary, the second
derivative behaves as:

v⊤H(x)v ≈ −1

4
∥∇E1 −∇E2∥2 · sech2(∆E(x)/2). (41)

The distance to the boundary δ is proportional to ∆E(x). For small δ, the probability mass con-
centrates sharply. Specifically, if we model the boundary as the intersection of two Gaussians with
variance σ2, the transition happens over a length scale σ. The effective curvature νmin scales as
−1/σ2. If we consider the distance δ from the exact manifold support (limit σ → 0), the Hessian
eigenvalue diverges:

νmin ≈ −
C

δ
. (42)
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Substituting this into the results of Theorem 2.2 and Theorem 2.3:

∥Jrθ∥2 ≈ 1 + σ2
t

C

δ
, (43)

κ(J ) ≈ 1 + ∆

(
1 +

Cσ2
t

δ

)
. (44)

As δ → 0 (approaching the sharp boundary), κ(J )→∞.

D PROOFS OF ROPA’S THEORETICAL GUARANTEES

Here we formalize the guarantees for the adaptive mechanisms in ROPA. We denote the global
trajectory vector by x(k) at Newton iteration k, and the state at time tn by xtn . We distinguish
Hessian eigenvalues ν from the damping parameters λ.

D.1 CONDITION NUMBER CONTROL

Theorem D.1 (Condition Number Bound via Adaptive Sparsity). Let Jtrue be the exact Jacobian
of the full coupled system. Let J (k) be the block-banded approximation constructed by ROPA
using bandwidths w

(k)
n and damping λ

(k)
damp,n. Assume the off-diagonal couplings of Jtrue decay

exponentially with time distance (a property of parabolic diffusion operators). Then, there exist
bandwidths wn and damping factors λn such that:

κ(J (k)) ≤ κth.

Proof. We analyze the spectrum of the preconditioned operator. The condition number is determined
by the spread of eigenvalues. We control this via two mechanisms: bandwidth (truncation error) and
damping (eigenvalue shifting).

1. Bandwidth and Spectral Radius Control. Let E = Jtrue − J (k)
band be the truncation error matrix

resulting from restricting the Jacobian to bandwidth {wn}. For diffusion processes, the coupling
strength between xtn and xtn+k

decays as the diffusion kernel width relative to the time gap.

By the **Gershgorin Circle Theorem**, the eigenvalues of the approximate matrixJ (k)
band are contained

in the union of discs centered at diagonal entries, with radii equal to the sum of absolute off-diagonal
entries. Increasing wn includes more off-diagonal mass into the matrix, effectively reducing the
"leakage" mass ∥E∥∞ outside the band. ROPA’s adaptive rule increases wn when residuals are high
(a proxy for strong coupling). This ensures that the truncation error ∥E∥2 is kept below a threshold δ,
keeping the spectrum of J (k) close to the well-conditioned regime of the true operator.

2. Damping and Eigenvalue Shifting. Even with zero truncation error, the local Jacobian block
Jn may be ill-conditioned due to high curvature νmax. The damping operation Jλ = J + λI shifts
the spectrum:

κ(Jλ) =
λ+ νmax

λ+ νmin
. (45)

To enforce κ ≤ κth, we require:

λ ≥ νmax − κthνmin

κth − 1
. (46)

ROPA’s trust-region mechanism (checking gain ratios) implicitly finds this λ. When κ is large,
the standard Newton step fails to reduce residuals, causing the gain ratio to drop and triggering an
increase in λ until the condition above is satisfied. Thus, κ(J (k)) is deterministically bounded.

D.2 CONVERGENCE ANALYSIS

Theorem D.2 (Local Convergence with LML Correction). Under the bounding conditions of Theo-
rem D.1, and assuming the LML correction is applied when alignment γ is high, the ROPA iterations
converge linearly with a small contraction factor ρ≪ 1 (approaching superlinear) to a solution x∗

on the manifoldM.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Proof. Consider the error propagation ek+1 = x(k+1) − x∗. The approximate Newton update is:

x(k+1) = x(k) − (J (k))−1R(x(k)).

Standard perturbation theory for Newton methods gives the error bound:

∥ek+1∥ ≤ ∥J−1(J − J (k))∥︸ ︷︷ ︸
Approximation Error

∥ek∥+ C∥ek∥2︸ ︷︷ ︸
Newton Quadratic Term

. (47)

Convergence requires the linear coefficient (contraction factor) to be < 1. The term (J − J (k))
represents the error in the Jacobian approximation. In high-curvature regions, this error is dominated
by the stiffest eigenvector vmax corresponding to νmax. The LML Correction (Eq. 12) explicitly
constructs a rank-1 approximation of this inverse Hessian component:

H−1LML ≈ (Jstiff)
−1

.

By substituting this correction into the update rule when alignment is detected, ROPA effectively
"preconditions" the stiffest direction, rendering the term ∥J−1(J − J (k))∥ ≈ 0 along the normal
vector ofM. For tangent directions, the adaptive bandwidth ensures the error is small. Thus, the
contraction factor ρ is minimized, ensuring robust convergence ek+1 ≤ ρek even in stiff regimes
where standard parallel solvers diverge.

D.3 COMPLEXITY ANALYSIS

Theorem D.3 (Expected Linear Complexity). The expected computational cost per Newton step of
ROPA is O(N), where N is the number of time steps.

Proof. The complexity is dominated by the linear solve of the block-banded system. For a block-
banded matrix of size N ×N (block size d) with bandwidth w, the Cholesky or LU factorization
cost is Cost(w) ≈ N · d · (w · d)2 = O(Nw2).

The bandwidth wn is adaptive. From **Assumption 2.1 (Anisotropy Index)**, the manifoldM
exhibits high curvature (requiring large wmax) only on a measurable subset Mcurv. Let pstiff =
µ(Mcurv)/µ(M) be the probability of the trajectory traversing a high-curvature region. The expected
bandwidth is:

E[w] = pstiff · wmax + (1− pstiff) · wbase. (48)
Since wmax is a small constant (typically 8 ∼ 16) independent of N , the expected bandwidth isO(1).
Therefore, the expected total cost is:

E[Cost] =
∑
k

O(NE[w]2) = O(N). (49)

This confirms that ROPA scales linearly with sequence length, preserving the efficiency advantage of
parallel sampling.

26


	Introduction
	A Unified Geometric Analysis of Parallel Sampling Instability in Diffusion Models
	Geometric Foundations of Score Stiffness and Density Curvature
	Discretization-Induced Instability
	Trajectory Geometry and Mode Collapse

	Robust Parallel Diffusion Sampling via Adaptive Jacobian Sparsity
	Dynamic Residuals with Adaptive Jacobian Bandwidth
	LML-Based Low-Rank Curvature Correction

	Experiments
	Setups
	Main Results
	Ablation Study

	Conclusion
	LLM Usage
	Additional Experiments
	Prompts for quality comparison in Fig. 2
	Empirical Verification of Lipschitz Continuity
	Comprehensive Hyperparameter Analysis
	Adaptive Damping Factor Analysis
	Convergence Criteria and Threshold Selection
	Parameter Robustness Validation

	Empirical Verification of the Geometric-Numerical Stability Cascade

	Algorithm Pseudo Code
	Proofs of Analysis
	Auxiliary Lemmas
	Proof of Theorem 2.2 (Lower Bound on Denoiser Jacobian)
	Proof of Theorem 2.3 (Condition Number)
	Proof of Corollary 2.4 (Manifold Deviation)
	Proof of Corollary 2.5 (Boundary Sensitivity)

	Proofs of ROPA's Theoretical Guarantees
	Condition Number Control
	Convergence Analysis
	Complexity Analysis


