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ABSTRACT

Recent years have witnessed significant progress in developing effective diffusion
models. Parallel sampling is a promising recent approach that reformulates the
sequential denoising process as solving a system of nonlinear equations, and it can
be combined with other acceleration techniques. However, current progress is lim-
ited by the trade-off between high fidelity and computational efficiency. This paper
addresses the challenge of scaling to high-dimensional, multi-modal generation.
Specifically, we present ROPA (Robust Parallel Diffusion Sampling), which takes
into account the properties of the denoising process and solves the linear system
using adaptive local sparsity to achieve stable parallel sampling. Extensive exper-
iments demonstrate ROPA’s effectiveness: it significantly accelerates sampling
across diverse image and video diffusion models, achieving up to 2.9 x speedup
with eight core, an improvement of 52% over baselines without sacrificing sample
quality. ROPA enables parallel sampling methods to provide a solid foundation for
real-time, high-fidelity diffusion generation.

1 INTRODUCTION

Over the past few years, the landscape of generative modeling has been significantly reshaped
by the ascent of Diffusion Models |[Ho et al.| (2020); |Song et al.| (2020b). These models have
emerged as a pivotal methodology for diverse applications |(Chung et al|(2023); Yang et al.| (2024a);
Esser et al.|(2024); Ma et al.|(2024); |Polyak et al.|(2025), spanning from high-quality image/video
generation to molecular generation. Despite remarkable success, Diffusion Models requires hundreds
of sequential denoising steps for generating high-quality samples, each involving expensive neural
network evaluations. This sequential dependency severely limits inference speed, particularly for
real-time applications and large-scale deployment scenarios. Previous works have explored faster
numerical Stochastic differential equations (SDEs) or Ordinary differential equations (ODEs) solvers
like DDIM |Song et al.| (2020a) and DPMsolver |Lu et al.| (2022), distilling the ODE trajectory into
neural networks [Salimans & Ho|(2022) or straightens trajectories via Rectified Flow Lipman et al.
(2023)). Others develop sparse-attention and attention cache |Zhang et al.| (2025)); Zou et al.| (2025)).

Diffusion Models are generative models built on a foundation of two processes: a forward process
that systematically corrupts data into noise, and a reverse process that learns to reverse this corruption
to generate new data. This dynamic is elegantly described by SDEs. Considering a clean image x(
sampled from the real data distribution, the forward process gradually perturbs this image with noise
over a continuous time interval ¢ € [0, T'], transforming it into a sample x; that follows a simple prior
distribution, like a standard Gaussian. This noising process is defined by the following SDE:

dzy = f(t)z, dt + g(t) dw, (1

where dw indicates the standard Wiener process. Although the formulation is expressed in continuous
time, in practice we are solving a discrete nonlinear system due to the numerical discretization of the
SDE. Then, to generate the corresponding clean latent from the easily sampled random noise, we
have to reverse the forward SDE in Eq. [I] resulting in the following reverse SDE formulations:

doy = [f(t)mt — g2(t)Vzt logp(mt)] dt + ¢(t) dw, )
(w¢,t) \‘7/
p(zy,t t

where V, log p(x;) can be approximated by a score function Sy(-), parameterized by a neural
network with learnable weights of 0; ¢(x¢,t) denotes the drift function for the reverse diffusion
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process; o, represents the corresponding coefficient of diffusion counterpart. Let (¢, s, x5 ) represent
an integral result of z; by Eq.[ZJover a time interval from s to ¢, with an initial value z:

¢ t
@(t,s,xs):ms—i—/ go(xT,T)dT—i—/ o, dw. 3)

Consequently, the analytical solution of Eq.[2]at time ¢ can be expressed as
zy = ®(t,0,10), x0~N(0,I), 4)
where A/ (0, I) denotes the standard Gaussian distribution.

Formulating Diffusion Sampling to Solving Non-linear Equation. Recent advances in parallel
sampling Shih et al.|(2024); Tang et al.[(20244a); Lu et al.|(2025) have shown promise by reformulating
the sequential process as solving systems of nonlinear equations, enabling simultaneous computation
across multiple timesteps. Existing parallel sampling algorithms establish the following system of
non-linear equations to reformulate the integral-based formulation of the diffusion model on a discrete
grid {tg, ..., tr}:

2o,y — FS (@, we ) =0, (5)

where w,, is the window size (number of future states coupled) at step n. }"t(l) denotes a solver
for estimating results in timestamp ¢ with acknowledging previous states, i.e., Xy, -+ ,¢+—;. The
sampling methods utilize an iterative refinement manner to gradually adjust an estimation trajectory
{#,t =0,---,T}. Each state from the trajectory {x¢,¢ = 0,--- ,T'} is first initialized with noise

value, denoted as {:%EO), t=0,-- ,T}. Denote by 3, the vector, Zo.7 = [&4 -+ ,47] . Then, for

the k" parallel iteration, where integer k € [0, K], Newton-Raphson method updates the variables
by the following scheme:

i = gy — GPRE, ©)

where ng) = @gﬁ)l — ]-'t(i) (@,E’“), e ,:%Ei)i) indicates a residual term to be optimized; and G(*) =
_ 1)
(T™) ! indicates the inverse of Jacobian matrix J*) = 2Rz

0Zo.1 *

Choices of Approximating Jacobian Matrix .7 (¥). A key strategy for accelerating parallel sampling
solvers is to efficiently approximate the Jacobian matrix in the Newton update step, rather than
computing the full matrix. Previous methods have employed distinct approximation schemes:
ParaDIGMS |Shih et al| (2024) uses Picard iteration, a fixed-point method that avoids explicit
Jacobian computation. This approach is equivalent to approximating the Jacobian of the system as
the identity matrix as 7 %) ~ I, simplifying the expensive Newton step into a computationally cheap
update. ParaTAA [Tang et al.| (2024a) adapts Anderson Acceleration to the problem’s causal structure.
Standard acceleration can produce a dense update matrix, which allows well-converged variables
to be corrupted by those that have not yet converged. ParaTAA resolves this by enforcing a block
upper triangular structure on its update matrix, preserving stability by respecting the natural flow of
information in the diffusion process. ParaSolver |Lu et al.|(2025) formulates the problem to have an
Jacobian matrix consists of identity blocks on the main diagonal and non-zero blocks only on the
sub-diagonal, which reduces the computational and memory costs of each solver iteration. However,
current works are all face generalization challenges when scaling to larger scale generation. This
leads to the following question that we aim to explore in this work:

Can we dynamically control the the sparsity of Jacobian in parallel diffusion
samplers to achieve an optimal trade-off between stability and cost thereby enabling
efficient scaling to high-dimensional, multi-modal generation?

Our Contributions. Following the research question, we introduce ROPA (RObust PArallel
diffusion), a novel framework that achieves a superior balance between the efficiency of parallel
solving and numerical stability, which scales the application of parallel sampling to complex tasks
like video generation. Our key contributions are:

(a) Scaling To High-Dimensional Generation. Our geometric analysis in Section. [2] rigorously
establishes the mechanism behind mode collapse in parallel diffusion samplers. We later show (Sec.[2)
that highly curved regions of the data density naturally induce stiff score dynamics and ill-conditioned
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Figure 1: ROPA Performance Analysis. (a) Jacobian condition number evolution showing ROPA’s su-
perior numerical stability. (b) Convergence performance CDF demonstrating ROPA’s faster and more
reliable convergence. (c) Trajectory curvature evolution highlighting ROPA’s geometric consistency.
Shaded regions represent mean +10 uncertainty bounds. The red shaded area in (a) indicates the
high-curvature region where numerical challenges are most severe.

Jacobians for parallel solvers, explaining the observed instability of existing methods. Current
parallel sampling methods, as shown in Figure. [T} struggle near ¢ — 0, where the Jacobian condition
number x(7;) grows exponentially, causing Newton iterations to diverge. This leads to unreliable
convergence—many trajectories fail to converge within practical budgets, while others require
excessive steps. Crucially, these instabilities cause trajectories to deviate from the data manifold M,
particularly near multimodal boundaries where non-adaptive methods generate inconsistent samples
that unrealistically interpolate between modes. ROPA solves this by dynamically regulating «(J;)
through adaptive damping and sparsity, maintaining numerical stability, geometric fidelity, and mode
consistency even in high-curvature regions.

b) We propose Geometry-Aware Adaptive Jacobian Sparsity Control. Specifically we translate
geometric curvature signals into on-the-fly control of the solver’s coupling structure. At each
iteration, the method selectively widens the look-ahead only where residuals indicate stiffness and
prunes it elsewhere, preserving O (V) parallelism while concentrating computation where it matters
most. When diagnostics flag instability, an adaptive damping mechanism automatically moderates the
update—behaving like fast Newton steps in well-conditioned regions and shifting toward conservative
descent near ill-conditioning. Together, these two levers keep the Jacobian well-conditioned under a
target threshold, deliver reliable convergence in high-curvature areas where prior methods struggle,
and scale to large, multi-modal generation without extra training or ad-hoc heuristics.

¢) Extensive experiments demonstrate substantial speedups on Stable Diffusion-v3.5, FLUX, Hun-
yuanVideo, Wan2.1 and CogVideoX while maintaining FID and CLIP scores.

2 A UNIFIED GEOMETRIC ANALYSIS OF PARALLEL SAMPLING INSTABILITY
IN DIFFUSION MODELS

We establish a framework linking data manifold geometry, discretization effects, and numerical
stability in parallel diffusion sampling, which reveals why mode interpolation collapses emerge in
high-curvature regions of the data manifold and how adaptive Jacobian control mitigates them.

2.1 GEOMETRIC FOUNDATIONS OF SCORE STIFFNESS AND DENSITY CURVATURE

We use the term curvature in a probabilistic rather than purely geometric sense. Concretely, we define
the density curvature at x via the Hessian of the log-density,

H(z) = V3 logp(z),

which measures how sharply the probability mass bends around the data manifold M. This is distinct
from intrinsic Riemannian curvature of M: in our setting, 7{(x) controls the stiffness of the score
field and, through our analysis, the conditioning of the parallel residual Jacobian.

The core challenge stems from the data manifold’s intrinsic curvature properties. Let M C R? denote
the support of po (), with curvature characterized by the score Hessian H(z) = V2 log p(z). The
eigenvalues of H(x) quantify how sharply the density bends in different directions. A large ratio
between the largest and smallest eigenvalues, corresponding to high anisotropy, means that the score
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changes very quickly along some directions but slowly along others, this is precisely the notion of
stiffness that leads to ill-conditioned Jacobians in our parallel residual system.

Assumption 2.1 (Manifold Anisotropy Index). Let M C R? be the data manifold and H(z) =
V2 log p(x) its score Hessian. For any x € M, denote the ordered eigenvalues by 0 < v;(z) <
-+« < yg(x) (we reserve A for damping parameters). Fix a small constant € > 0. Define the local

anisotropy index
.7 va(z)
plz) = max{v(x), €}

We assume p(z) is locally Lipschitz on M and may take large values p(z) > 1 only on a measurable
subset Mcyry C M corresponding to high-curvature regions.

Theorem 2.2 (Lower Bound on the Denoiser Jacobian). Let r¢(x,t) be a trained denoiser that
satisfies ||ro(z,t) —Elzo | 2, = a]||2 < € uniformly. Under Assumption2.1jand assuming H(x) = 0,
the spatial Jacobian J,,(x,t) = Org(x,t)/0x obeys, for any t € (0,T],

1Ty (2, )2 = 1+ of 1 () — Ofe),

where vy (x) is the smallest non-negative eigenvalue of H(x). If H has negative directions, Eq.
still holds with v (x) replaced by |Vmin ().

2.2 DISCRETIZATION-INDUCED INSTABILITY
The residual system in parallel sampling is defined as RSZ") = igi)_ L ]-'fi) (:Icgf), . ,igil) per
Eq.[6l where for Euler integration:

ft(z)(a:tn, s @y, ) =Xy, — A@(xg,,th), A =thpr —ty. @)

This discretization introduces gaps between continuous and discrete dynamics:

Theorem 2.3 (Condition Number of the Parallel Residual Jacobian). Let R(()k% be the residual vector
defined in Eq. @with a uniform step size h = t, 1 —t,,. Write 7% = I + hA®) where A®) collects
blocks depending on J,,(x,t) and the drift f(t). Assume A*) is block-row diagonally dominant and
|A%®)||y < L for some Lipschitz constant L. Then for any h < hpay == 1/L,

hL

R(IT®) < 1+ = 1+ O(h).

In particular, substituting L = o2 ||J,., (z,t)||2 yields

R(T®) < 14 hof||Jp, (2,8)]|2 + O(R?),

where the constant ¢ =
in Appendix|C.3).

This establishes the geometric-numerical instability cascade: high curvature A, (#H) increases =
[T+, ||2 increases = k(J) increases = solver divergence. Crucially, this cascade is triggered by local
geometric properties of the data manifold, not by temporal proximity to ¢ = 0.

ﬁ = 2 arises from the Neumann series expansion of the inverse Jacobian

2.3 TRAJECTORY GEOMETRY AND MODE COLLAPSE

The stability loss manifests geometrically. Following Davies & Powell (1984);/Chen & Muiioz Ewald
(2023), define trajectory quasi-linearity via ||d?z /dt*|2 < €. We prove:

Corollary 2.4 (Numerical Stability & Manifold Deviation). Under the same hypotheses as The-
orem let & be the iterate returned by one Newton step and x* = Proj (&) its orthogonal
projection onto M. Then

13 =22 < (s(T™) = 1) [TETRD |y + O(IRM). ®)

Hence, if k(J (k)Y grows large, the forward error increases proportionally. Proof is an adaptation of
the classical backward-forward error bound (Davies & Powell, |1984).
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This resolves the central paradox: high-fidelity generation requires large || J,, ||2 (to separate modes),
but this same property destabilizes parallel solvers (Theorem 23)). Crucially, instability peaks at
mode boundaries where A, (H) spikes:

Corollary 2.5 (Boundary Sensitivity under Gaussian Mixture). Consider a Gaussian-mixture density
po(x) =Y, WinN (fm, X)) whose decision boundary OM is the union of quadratic surfaces. For
x in the normal direction of a boundary component, let 6 = dist(x, OM). Then Apin(H(z)) =
O(0") and k(T*)) — coas § — 0.

Theoretical results reveal that the condition number x(J; )—modulated by data-manifold curvature,
score stiffness, and discretisation step size—is the key scalar that couples geometric fidelity and
numerical stability. To translate this insight into a practical sampler, we introduce three geometry-
aware control principles that directly regulate x(7;) during the Newton—type parallel updates. Each
principle is summarized as below.

Takeaways 2.6 (Damped Updates for Safety). At iteration k, choose A\, > 0 such that the gain ratio
IRM |z — RV ||

Pk = RpoT e AT RS satisfies the trust-region criterion (Davies & Powell, |1984). Then the
update (J*) + X\ I)Az*) = —R*) is globally convergent.

Takeaways 2.7 (Adaptive Sparsity for Efficiency). Let Sy, be a block-band sparsity pattern whose
bandwidth by, is chosen via b, = min{ b: iters(jlék)) <M }, where iters estimates Conjugate-

Gradient iterations with Jacobian—vector products only. This guarantees expected complexity O(Nby,)

(k)

y, ) < " foratarget .

per Newton step while keeping /f(J‘
Takeaways 2.8 (Low-Rank Curvature Correction for Fidelity). Given a subspace basis U € R%*"
corresponding to the top-r eigenvectors of H(x) with eigenvalues A,., apply the correction z <
r—U(A,. +7I)7'U TV, log p(x), where T > 0 regularises near-singular directions. This preserves
local manifold structure up to O(7).

Summary The data manifold’s curvature (Assumption@) dictates score stiffness (Theorem @),
which discretization gaps amplify (Theorem[2.3)). This causes trajectories to deviate from M at mode
boundaries (Corollary [2.5), thus generation collapse. Crucially, these instabilities occur wherever the
sampling trajectory enters high-curvature regions or approaches mode boundaries. ROPA’s adaptive
mechanisms directly counter this cascade by regulating «(J) based on local geometry, enabling
stable high-fidelity sampling throughout the entire diffusion process. See Appendix [C|for proof.

3 ROBUST PARALLEL DIFFUSION SAMPLING VIA ADAPTIVE JACOBIAN
SPARSITY

Building on the geometric cascade characterization introduced in Section[2] we aim to regulate the
Jacobian condition number £(7;). While Theorem [2.2|links instability to the Hessian eigenvalues
v;(x), explicitly computing curvature at inference time is computationally prohibitive. However,
Theorem [2.3]implies that high curvature induces stiff, long-range temporal dependencies. When the
solver’s look-ahead window is too narrow to capture these dependencies, the Jacobian approximation
suffers high truncation error, manifesting immediately as large local residuals ||R|.

Therefore, ROPA utilizes the residual norm as a computationally cheap proxy for local geometric
stiffness, driving two complementary operating modes: (i) adaptive sparsification of residual cou-
plings, which maintains computational efficiency when local curvature is moderate; (ii) targeted
curvature correction, which enhances stability as soon as geometric diagnostics reveal elevated risk.

Let N := T + 1 denote the total number of discrete time points on the grid {to, ..., {7}

3.1 DYNAMIC RESIDUALS WITH ADAPTIVE JACOBIAN BANDWIDTH

At each grid index ¢ € {1,...,T} the algorithm selects a forward-looking window width w; €
{1, ..., Wmax} and forms the residual
ngb)(ﬁ) = )A(ti71 - \Ilgwl) (}A(tm ce 7)Acti+wi71)a (9)
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where \115”” approximates the integral operator ®(¢;_1,t;,X:,) by means of an explicit w;-step

integrator (e.g., Euler, DDIM, or a higher-order variant). This look-ahead construction yields an
upper-banded Jacobian:

L, J=1—-1,
aR\" o)
— = i < i< _ 10
0%y, B 0%y, tejsitwi—l (4
0, otherwise.

For first-order integrators this structure guarantees block-row diagonal dominance. Higher-order
schemes may weaken that dominance; a locally scaled damping parameter Agamp,:, described in
Section [3.2] restores stability in that case.

Adaptive bandwidth control. During Newton iteration k, the algorithm evaluates local residual
norms

()
el = R & W), (1)
and their global mean
T
e = N3 e (12)
i=0

Following Theorem a high local residual egk) indicates that the current sparse Jacobian approxi-

mation fails to capture the stiff, long-range temporal couplings induced by high curvature. To counter
this, we dynamically adjust the window widths to regulate the truncation error:

min{wgk) + 1, Wiax }» ez(-k) > aé®)  (densify to capture stiffness),

wEkH) = max{wgk) -1, 1}, egk) < pe*)  (sparsify for efficiency), (13)

k .
wZ( ) , otherwise,

with default parameters o = 1.5 and g8 = 0.7.

By densifying the block-banded Jacobian (increasing w;) only in high-error regions, this update rule
implicitly lowers the local condition number £(7) bounded in Theorem This ensures geometric
stability without incurring the cubic cost of a fully dense solver, trading off sparse O(N') operations
only where geometrically necessary.

3.2 LML-BASED LOW-RANK CURVATURE CORRECTION

While adaptive bandwidth handles general stiffness, it cannot resolve the topological singularities
described in Corollary where k(J) — oo at decision boundaries. In these regimes, the Jacobian
becomes near-singular along the normal direction of the manifold, and simply widening the window
is insufficient.

To detect this, we monitor the alignment between the residual R; and the score sy, which acts as
a proxy for the principal curvature direction (eigenvector of the largest Hessian eigenvalue vy x).
Alignment is declared whenever:

[(Ri, s0)

IRill2 lIsoll2
where 7y is a sensitivity threshold. When this geometric trigger activates, the algorithm invokes a
curvature-aware correction inspired by preconditioned Langevin dynamics. We define the rank-one
inverse Hessian approximation as:

Hib (%606 Adamp) = ! (Id 808 ) (15)
t d = T Fhai. 2 -y T oe

PR Adgamp 9(t)* [|s0]13 Adamp + [Isol13 /)

where g(t) denotes the diffusion coefficient. All eigenvalues remain positive for any Agamp > 0,

ensuring a positive-definite operator. This construction mirrors a single step of preconditioned

Langevin dynamics with step size 1/Agamp, explicitly injecting curvature information along the stiff

score direction while preserving the orthogonal subspace.

> (14)
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Figure 2: Quality Comparison of ROPA and baselines on HunyuanVideo and Flux models.

Jacobian blocks for the affected grid indices are updated as

k —1 (a(k k
B = [ -Hph (" tAl ) Ta]. (16)
Because only the score vector sy is stored, memory remains O( N w,axd). This low-rank correction
explicitly enforces the bound x(7;) < ku by removing ill-conditioning along high-curvature direc-

(k) i tuned so that the stability criterion of

tions indicated by the score. The damping parameter Ay, . ;

Corollary [2:4] continues to hold.

4 EXPERIMENTS

4.1 SETUPS

Models. For video generation, we benchmark on three state-of-the-art large video diffusion models:
HunyuanVideo (2024) and CogVideoX1.5-5B [Yang et al.| (2024b). For each model, we
generate videos with prompts in VBench [Huang et al.|(2024) strictly following VBench evaluation
protocol. We consider two image diffusion models for image generation, Stable Diffusion 3.5
Large [Esser et al.| (2024) and Flux (2024), as the backbone. Following previous works
let al.| (2024); Selvam et al|(2024)), we sample 1000 prompts from COCO2017 captions dataset as the
test bed. We use N = 50 diffusion steps by default, with more investigations on IV in Appendix [A73]

Algorithms. We benchmark our proposed algorithm, ROPA, against five key baselines: (1) Sequential
Sampling, the standard non-parallel approach which serves as the reference for performance speedups;
(2) ParaDiGMS (2023)), a foundational parallel method utilizing Picard (fixed-point)
iteration; (3) ParaTAA [Tang et al.[(2024b)), which accelerates convergence by applying Triangular
Anderson Acceleration (TAA) to a dense nonlinear system; (4) ParaSolver [Lu et al.| (2025)), a highly
efficient method that combines a quasi-Newton solver with a sparse, banded system structure; and (5)
CHORDS (2025)), a parallel framework designed for robust and stable convergence.
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Algorithm 1 ROPA: Robust Parallel Diffusion Sampling

Require: Denoiser Sy, grid {t,,,}g, max iter K, thresholds o, 3, v, tol .
(K)
to -

Ensure: Clean sample «
1: Initialize trajectory {:Ei?l)} with noise; wg)) <+~ 1; )\519) < Ainit-
2: fork =0to K — 1do

Residual Eval (Parallel):
forn=1...7Tdo

Compute norms eELk) and global mean &) .

3:

4:

5:

6:

7: end for

8: if &%) < ¢ then break

9:  endif

10: Adaptive Bandwidth:

11: forn=1...Tdo

12: it e > ae® then

13: wﬁl"*l) — min(wslk) + 1, Wmax) > Densify
14: elseif e(*) < &™) then

15: wflk+1) — max(wff) —-1,1) > Sparsify
16: else

17: ux,ELk+1) — wfbk)

18: end if

19: end for

20: Curvature Correction (Parallel):

21: forn=1...Tdo

22: Compute alignment p,, between Rg‘) and score S, .

23: if p,, > ~ then

24: 7@5;“) «— H ' Rg‘”) > Using LML-based preconditioner
25: else

26: R R(K)

27: end if

28: end for

29: 4. Update: Assemble 7 *) using {w(F+D 1.
30:  forn=1...Tdo

31: Solve () + A;F)I)Azi? ~ R via trust-region damping.
. (k41 Lk k

32: ;c;” ) .’Iii”) - A:l:fn)

33: end for

34: end for

35: return iif)

Hyperparameter Settings. Damping \: Follow L-curve rule—start at 10~2, adjust by factor 2 until
[I62]| /IRl < 0.3, directly controlling x(7) as discussed in the introduction. Prune factor 7: Set to
0.1 for images, 0.2 for videos (robust in [0.05, 0.3]), with threshold  explicitly using ||Sp||? from the
introduction. Adaptation thresholds: o = 1.5, 8 = 0.7 provide optimal sparsity-stability balance,
directly addressing the convergence degradation near ¢ — 0 observed in the introduction. This
configuration enables stable high-fidelity generation at scale while maintaining O(N') parallelism—
even in high-curvature regions where existing methods fail, as empirically demonstrated in the
introduction’s Figures|I]

Settings. We run experiments using 8§ * H200 GPUs, each with 140GB of memory. In all scenarios,
we employ classifier-free guidance with a guidance scale of 5. The window-scaled variant halves
the number of synchronization rounds compared with a fixed A. For all algorithms, we use the same
stopping threshold e, = 72¢?(¢)d with 7 = 1072, and initialize all variables with standard Gaussian
Distribution and warming-up steps set as 3.

Evaluation. For both video and image models, we report Time per sample that refers to the average
wall-clock time used to generate one sample. Speedup that refers to the relative speedup compared
with sequential solve, measured by the number of sequential network forward calls. Notice that this
will be slightly different from the measurement or the wall-clock. In terms of generation quality, we
report average of diverse Quality Scores (Clarity, Aesthetic, Motion, Dynamic, Semantic, Anatomy,
Identity) normalized using the same numerical system as the standard quality metric following the
VBench evaluation protocol Huang et al.|(2024) for video generation, and CLIP Score Hessel et al.
(2021)) evaluated using ViT-g-14 Radford et al.|(2021)); Ilharco et al.|(2021]) for the image generation.
We also report Latent RMSE under both cases that measures the Rooted MSE between the returned



Under review as a conference paper at ICLR 2026

Table 1: Benchmark results of parallel diffusion methods on video diffusion models using VBench.
‘We evaluate on three video diffusion models with the number of cores K set to 2, 4 and 8. Our
approach achieves the highest speedup without measurable quality degradation.

Num Core =2 Num Core =4 Num Core =8
Time(s) Speedup Quality, RMSE, Time(s) Speedup Quality,, RMSE, Time(s) Speedup Quality,, RMSE,
Sequential 378.6 73.8% 378.6 73.8% 378.6 73.8%

CHORDS 292.3 1.3 73.6% 0.188 1855 2.0 73.7% 0182 156.0 24 73.7%  0.185
ParaDIGMS ~ 313.3 1.2 73.7%  0.190 293.1 1.3 73.6% 0.175 2718 1.4 73.6%  0.189

HunyuanVideo
ParaTAA 3186 12 73.6% 0.055 207.0 1.8 73.6% 0.055 157.1 2.4 73.6%  0.055
ParaSolver 287.5 1.3 73.5%  0.051 208.1 1.8 73.5% 0.049 1647 2.3 73.5%  0.052
ROPA (Ours) 2328 1.6 73.6% 0.054 1779 2.1 73.6% 0.053 131.8 2.9 73.6%  0.055
Sequential 4712 - 74.7% - 471.2 - 74.7% - 471.2 - 74.7% -
CHORDS 362.8 1.3 74.5%  0.082 274.9 1.7 74.6% 0.076 1970 24  746% 0.079

Wan2.1 ParaDIGMS ~ 395.1 1.2 74.5%  0.077 332.6 1.4 74.6%  0.070 279.6 1.7 74.6%  0.084
ParaTAA 338.2 1.4 74.5% 0.030 3129 15 74.5%  0.028 202.1 2.3 74.5%  0.028

ParaSolver 340.2 1.4 745%  0.025 2932 1.6 745% 0.024 1852 25 74.5%  0.026
ROPA (Ours) 274.0 1.7 745%  0.027 2508 1.9 745% 0.021 169.1 2.8 74.5%  0.030

Sequential 464.5 - 71.3% - 464.5 - 71.3% - 464.5 - 71.3% -
CHORDS 389.5 1.2 71.0%  0.132 2463 1.9 71.1% 0125 2215 2.1 71.0%  0.129

CogVideoX1.5 ParaDIGMS ~ 390.9 1.2 71.0% 0.146  356.3 1.3 71.0%  0.119  290.7 1.6 70.9%  0.174
ParaTAA 359.9 1.3 70.9%  0.043  388.0 1.2 70.9%  0.043 224.1 2.1 70.9%  0.043
ParaSolver 332.4 1.4 71.0%  0.040 386.9 1.2 71.1%  0.039 2075 22 71.0%  0.041
ROPA (Ours) 307.5 1.5 711% 0.041 2195 2.1 71.2% 0.041 1824 25 71.2% 0.042

Table 2: Benchmark results of parallel diffusion methods on latent image diffusion models. We
evaluate two models with 1000 prompts from the COCO2017 captions dataset. Our approach achieves
the highest speedup without measurable quality degradation.

Num Core =2 Num Core =4 Num Core =8
Time(s) Speedup CLIP RMSE;, Time(s) Speedup CLIP RMSE[, Time(s) Speedup CLIP RMSE,
Sequential 10.3 - 37.4 - 10.3 - 37.4 - 10.3 - 37.4 -
ParaDIGMS 7.6 1.4 372 0440 7.7 1.3 374 0346 7.1 1.5 374 0342
SD-3.5-Large  ParaSolver 6.8 15 374 0234 94 1.1 374 0294 58 1.8 373 0324
ROPA (Ours) 6.3 1.6 374 0.141 5.8 1.8 374 0.220 52 20 374 0224
Sequential 11.2 - 374 - 11.2 - 37.4 - 11.2 - 37.4 -
ParaDIGMS 8.1 1.4 374 0249 7.2 1.6 374 0.121 7.3 1.5 374 0313
Flux ParaSolver 6.4 1.7 373 0.270 6.6 1.7 374 0.166 5.5 20 374 0.150

ROPA (Ours) 5.8 1.9 374 0154 53 2.1 374 0.143 4.8 23 374 0.120

latent of the algorithm and that of the sequential solver. Notice that a lower latent RMSE indicates
lower sampling error, with sequential solve being the oracle.

4.2 MAIN RESULTS

Video diffusion acceleration Our proposed ROPA, demonstrates a clear superiority across all tested
models in Table. E} At the highest level of parallelism with 8 cores, ROPA achieves remarkable
speedups ranging from 2.5x to 2.9 x. On the HunyuanVideo model, it reduces the generation time
from 378.6s to just 131.8s, a 2.9 x acceleration. This significant performance gain is achieved without
any meaningful degradation in output quality. The VBench Quality score remains exceptionally stable,
73.6% for HunyuanVideo vs. 73.8% for the sequential baseline, and the Latent RMSE is kept to a
minimum. Notably, ROPA’s Latent RMSE of 0.055 is not only competitive with the best-performing
baselines but is also nearly three times lower than the 0.189 error of ParaDIGMS, highlighting its
ability to accelerate sampling while preserving high fidelity.

Image diffusion acceleration. The benchmark results of image generation are presented in Table.
Similar to video generation, ROPA maintains significant speedups across different numbers of cores
on image diffusion models, achieving up to 64% improvement over baselines with four cores and
reaching up to 2.3 speedup with eight cores. Notice that this is obtained with the lowest latent
RMSE and negligible change in CLIP Score, suggesting the superiority of ROPA.
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Higher robustness brings lower number of function evaluations. ROPA’s core advantage lies in its
numerical robustness, which directly translates to a lower required Number of Function Evaluations
(NFE) for convergence. The adaptive damping and geometry-aware preconditioning mechanisms
allow ROPA to handle the stiff, high-curvature regions of the sampling trajectory where simpler
methods like ParaDIGMS struggle. As demonstrated in our experiments, while baselines often require
additional iterations or fail to converge, ROPA consistently converges in an average of 8-12 outer
Newton iterations. This stability ensures a predictable and efficient path to a high-fidelity solution,
effectively minimizing the total computational work needed.

Baselines show lower latent RMSE under early stopping and converged scenario. Figure. 2]
demonstrates that ROPA converges faster to a more accurate solution. Even when allowed sufficient
NFEs to minimize residuals, ROPA achieves a significantly lower final Latent RMSE of 0.055
compared to baselines. This confirms that ROPA’s trajectory remains closer to the true data manifold
(M), whereas less stable methods drift to incorrect points. This superior geometric fidelity results
directly from regulating the Jacobian condition number (/7).

4.3 ABLATION STUDY

Effect of Main Components. To validate the contributions of each component in ROPA, we
conducted an ablation study, systematically deactivating key mechanisms. The results, summa-
rized in Table. [3] confirm that all parts are integral to performance. Full ROPA serves as our
baseline, achieving a 2.9x speedup. Without Adaptive Damping, the solver becomes prone to
divergence in stiff regions, causing a 30% increase in average NFE and a drop in the success rate.

Without the Ada-J, the inner GM-

Table 3: Evaluation of main components and compatibility of RES solver struggles to converge.
other acceleration methods at K = 4. Ada-J represents Adaptive The number of inner iterations

Jacobian, Curv-C represents Curvature Correction. per Newton step increased by
over 10x, making the overall
FLUX HunyuanVideo process computationally infeasi-

ble and eliminating any speedup.

Time(s) Speedup CLIP RMSE[, Time(s) Speedup Qualityy, RMSE, Without Curv-C. the speedup

Sequential 11.2 - 374% - 378.6 - 73.8% - : _
w/ Ada-J 8.9 1.3 374% 0.145 2524 1.5 73.7%  0.062 dropped to 1 9>< . This demon
w/ Cury-C 92 12 374% 0.142 2703 14 738% 0058  Sstrates that adapting the computa-
w/ SpargeAttention 6.8 1.6 36.8% 0.180 2105 1.8 72.1%  0.095 tional effort to the local Complex_
w/ ToCa 7.1 1.6 369% 0.175 2203 1.7 72.3%  0.088 lty of the problem is critical for

ROPA (Ours) 53 21 374% 0143 1779 21 736% 005 achieving maximum efficiency.
w/ SpargeAttention 4.8 23 369% 0.165 1582 24 72.8%  0.078
w/ ToCa 5.0 22 37.0% 0.160 162.5 2.3 73.0%  0.072 Compatibility with other Dif-

fusion Acceleration Scheme.

ROPA’s algorithmic improve-
ments are complementary to structural-level optimizations—such as training-free sparse attention
SpargeAttention |Zhang et al.[(2025)) and Attention Token-wise Caching ToCa|Zou et al.| (2025)—as
illustrated in Table. [3} To this end, we integrated ROPA and the baseline methods with a standard
attention cache and re-evaluated their performance. Our results show that while attention caching
reduced the wall-clock time per function evaluation across all methods, ROPA retained its relative
speedup advantage. For instance, on HunyuanVideo with caching enabled, ROPA remained 2.8 x
faster than the sequential baseline. This confirms that ROPA delivers orthogonal, algorithmic-level
acceleration by reducing the NFE, which multiplies synergistically with techniques.

5 CONCLUSION

This paper addresses the challenge of accelerating diffusion model inference by reframing sequential
denoising as a parallelizable system of nonlinear equations. We introduce ROPA, a robust framework
that exploits dynamic local sparsity for stable, scalable parallel sampling. Experiments show ROPA
achieves up to 2.1x speedup with 4 cores and 2.9x with 8 cores—without quality loss—enabling
real-time, high-fidelity generation. While ROPA effectively accelerates ODE-based sampling, it relies
on the iterative refinement of a trajectory. Consequently, it is not directly applicable to one-step or
few-step distillation methods like Consistency Models, which fundamentally alter the mathematical
structure of the generation process.

10
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6 LLM USAGE

We utilized a large language model (LLM) to aid in the writing process of this paper. The primary use
of the LLM was for language refinement, including polishing sentence structure, improving clarity,
and ensuring grammatical correctness. As per ICLR 2026 policy, we disclose this usage; further
details are available within the paper.

11
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A ADDITIONAL EXPERIMENTS

Table 4: Resolution, guidance, and scheduler type per diffusion backbone.

Model Resolution Guidance scale Scheduler type
Flux 1360 x 768 35 EulerDiscreteScheduler
Stable Diffusion 3.5 1024 x 1024 7.0 EulerDiscreteScheduler
HunyuanVideo 960 x 544, 61 frames 6.0 EulerDiscreteScheduler
CogVideoX1.5 960 x 544, 61 frames 6.0 DDIMScheduler

A.1 PROMPTS FOR QUALITY COMPARISON IN FIG. 2]

Video-1:

"A cinematic, high-detail video of a male astronaut in the brightly lit interior of a spaceship. He
smiles happily at the camera. A young girl with brown hair appears, and they share a warm, gentle
hug."

Image-1:

"A wide-angle, cinematic photograph of a packed baseball stadium during a pivotal moment at sunset.
The crowd, a diverse and vibrant sea of people, is on its feet, erupting in a wave of cheers. The setting
sun casts a warm, golden hour light across the field."

Image-2:

"Three cute garden gnomes in a crisp autumn forest with a shallow depth of field. They are arranging
fallen leaves on the ground to spell out the word "ROPA’. The lighting is soft and magical."

A.2 EMPIRICAL VERIFICATION OF LIPSCHITZ CONTINUITY

To validate Assumption we numerically estimated the local Lipschitz constant L(x) along
sampled trajectories. We approximated the spectral norm of the Jacobian using the finite difference
method:

leo (z + v, t) — ep(z,t)]|2

v~N(0,1) ||5UH2 ’

L(z) =~

with § = 10~

Our measurements, visualized in Figure 3| indicate that while L(x) fluctuates, it remains bounded
within a reasonable range for well-trained models (e.g., HunyuanVideo), supporting the validity of
our local Lipschitz assumption. Notably, while baseline methods exhibit a sharp spike in stiffness as
t — 0 (corresponding to high-curvature manifold regions), ROPA effectively clamps the effective
Lipschitz constant via its adaptive damping mechanism, preventing the numerical explosion that
leads to solver divergence.

A.3 COMPREHENSIVE HYPERPARAMETER ANALYSIS

This appendix provides detailed analysis of the hyperparameters used in our ROPA framework across
different experimental scenarios, demonstrating the robustness and effectiveness of our parameter
selection strategy.

A.3.1 ADAPTIVE DAMPING FACTOR ANALYSIS

The adaptive damping mechanism represents a critical innovation in our framework, enabling dynamic
balance between convergence speed and numerical stability. Our comprehensive evaluation compares
ROPA’s adaptive Agamp against fixed damping strategies across diverse experimental conditions.
Fixed damping factors exhibit a fundamental trade-off: small values (e.g., A\ = 10~%) achieve
rapid convergence in well-conditioned regions but suffer from numerical instabilities, resulting in
convergence failures in over 40% of test cases. Conversely, large fixed values (e.g., A = 10~!) ensure

14
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Figure 3: Empirical Analysis of Local Lipschitz Constant L(z;). (Left) Evolution of L(x;) over
diffusion time ¢ — 0. Baseline methods (red dashed) exhibit exponential growth in stiffness near
t = 0, confirming the geometric instability hypothesis. ROPA (blue solid) effectively clamps the
effective Lipschitz constant via adaptive damping. (Right) Distribution of L(x) values. ROPA
maintains a tightly bounded distribution, empirically validating the local Lipschitz assumption
required for convergence.

ROPA Hyperparameter Sensitivity Analysis
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Figure 4: Grid-based sensitivity analysis of ROPA’s adaptive bandwidth control parameters (o and
() across four performance metrics. The optimal region (o« = 1.5, = 0.7) is highlighted in
red, demonstrating consistent performance across speedup, quality preservation, latent fidelity, and
combined scoring metrics.

robust convergence with zero failures but reduce convergence to near-linear rates, yielding only
marginal 1.3x speedup improvements. ROPA’s adaptive damping successfully navigates this trade-off
by dynamically adjusting Agamp based on real-time residual analysis and curvature estimates, achieving
the high-speed convergence of aggressive settings while maintaining the numerical robustness of
conservative approaches. This adaptive strategy proves essential for handling the varying stiffness
conditions encountered across different diffusion model architectures and sampling scenarios.

A.3.2 CONVERGENCE CRITERIA AND THRESHOLD SELECTION

All experimental evaluations employ a standardized convergence threshold 7 = 1072 with the
variance-normalized residual criterion e; = 72g%(t)d, where g(t) represents the diffusion coefficient

15
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Table 5: Benchmark results on video diffusion models evaluated across performance dimensions:
runtime, speedup, motion/temporal quality (Qualityy,), and fidelity metrics (RMSEy,, FVD, LPIPS).
ROPA delivers consistently strong performance across all evaluation axes, achieving the highest
speedup while maintaining quality comparable to the sequential baseline.

HunyuanVideo (4 Cores)
Method Time (s) Speedup Quality;,, RMSE; FVD] LPIPS|
Sequential 378.6 - 73.8% - 238.5 0.215
CHORDS 185.5 2.0 73.7% 0.182 245.2 0.228
ParaDIGMS 293.1 1.3 73.6% 0.175 251.4 0.235
ParaTAA 207.0 1.8 73.6% 0.055 241.0 0.219
ParaSolver 208.1 1.8 73.5% 0.049 240.8 0.218
ROPA (Ours) 177.9 2.1 73.6% 0.053 239.1 0.216

CogVideoX1.5 (4 Cores)
Method Time (s) Speedup Quality;,, RMSE; FVD] LPIPS |
Sequential 464.5 - 71.3% - 315.0 0.240
CHORDS 246.3 1.9 71.1% 0.125 3284 0.258
ParaDIGMS 356.3 1.3 71.0% 0.119 335.1 0.265
ParaTAA 388.0 1.2 70.9% 0.043 319.5 0.245
ParaSolver 386.9 1.2 71.1% 0.039 318.2 0.244
ROPA (Ours) 219.5 2.1 71.2% 0.041 316.4 0.241

and d denotes the latent dimension. This criterion accounts for the inherent noise scaling in diffusion
processes, ensuring fair comparison across different model architectures and sampling schedules. The
threshold selection balances convergence accuracy with computational efficiency, providing sufficient
precision for high-quality generation while avoiding excessive computational overhead from overly
strict convergence requirements.

A.3.3 PARAMETER ROBUSTNESS VALIDATION

Our sensitivity analysis demonstrates that ROPA exhibits remarkable robustness to hyperparameter
variations, with performance remaining stable within +20% of optimal values. This robustness
is particularly crucial for practical deployment scenarios where exact parameter tuning may not
be feasible. The recommended parameter set (« = 1.5, = 0.7,y = 0.3) provides consistent
performance across different model architectures, datasets, and computational environments, making
ROPA suitable for diverse real-world applications without extensive hyperparameter optimization.

A.4 EMPIRICAL VERIFICATION OF THE GEOMETRIC-NUMERICAL STABILITY CASCADE

To corroborate the causal link established in Section 2—where manifold curvature induces score
stiffness that destabilizes parallel solvers—we conducted a targeted analysis tracking the evolution of
geometric properties along the sampling trajectory.

Control of Jacobian Conditioning (Validating Theorem [2.3). Our analysis predicts that local
manifold anisotropy (Assumption [2.1)) manifests as an exponential growth in the Jacobian condition
number k(J;) as t — 0. Figur confirms this phenomenon empirically: baseline methods
(ParaDIGMS, ParaSolver) exhibit unchecked condition number growth in high-curvature regimes,
rendering the Newton step numerically unstable. By dynamically regulating residual couplings via
adaptive sparsity, ROPA effectively bounds x(J;) < k. This confirms that numerical stability can
be enforced without sacrificing the parallel window size in well-conditioned regions.

Manifold Fidelity and Convergence (Validating Corollary [2.4). Corollary [2.4] posits that large
k(J) amplifies residual errors, causing trajectories to drift orthogonally away from the data manifold
M. We quantified this drift by measuring the Lo deviation from an "oracle" trajectory generated
by a high-precision sequential solver (N = 1000). As shown in Figure[Ib, while baseline methods
plateau at a high residual error due to accumulated drift, ROPA maintains deep convergence. This
demonstrates that our stability controls directly translate to higher geometric fidelity, ensuring the
generated sample remains on the supporting manifold M.
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Resolution of Mode Collapse (Validating Corollary 2.5). Finally, we investigate behavior at
decision boundaries where score stiffness peaks (Corollary 2.5). Figure [Tk visualizes a trajectory on
a 2D Gaussian mixture with a stiff bifurcation point. Standard parallel solvers, lacking curvature
correction, average the conflicting gradients at the saddle point, causing the trajectory to terminate in
the low-density region between modes (interpolation failure). In contrast, ROPA’s curvature-aware
correction identifies the dominant eigenspace of the local Hessian, effectively projecting the update
onto the principal mode. This capability prevents mode averaging and ensures consistent generation
even in highly multi-modal landscapes.

B ALGORITHM PSEUDO CODE

Algorithm 2 ParaTAA: Parallel Sampling with Triangular Anderson Acceleration

Require: Diffusion model €y, history size m, tolerance 7, window size w, initialization steps Tin;,
maximum iterations Sy,ax
Ensure: Sample trajectory x§.,_;
L: tla t2 <~ max{(), T‘inil - U)}, Tinit -1
2: for s = 11to spax do

3: Parallel Computatlion:

4: Compute g (27, ;,t + 1) forall ¢ € [t1, 5] in parallel
5: Compute residuals 74, .1,
6:  Update ty « max{t € [t1,t2] : 7y > Tg*(t)d}
7: if t5 is null then
8: break
9: end if
10 Update 1 < max{0,ts —w}
11: Compute and store R, , X750, Fiob
12: Compute triangular matrix 771
13: Update: =5, < =i — T°" R}
14: end for

15: return z{._;

Algorithms [2] and 3| describe the baselines used in our comparison. The pseudo-code for our proposed
method, ROPA, is provided in Algorithmm
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Algorithm 3 ParaSolver: Hierarchical Parallel Sampling Method

Require: Diffusion model Sy, subinterval number N, preconditioning steps M, tolerance §, window
size p, sample dimension D

Ensure: Clean sample :%,Ef)
1: Initialize {i"gg) :n=0,...,p} with a few sampling steps
2: m,k <« 0,0 >kel0,K],ne€[0,N—1]
3: whilen < N do

Parallel Drift Computation:

fori € {n,...,n+ p— 1} in parallel do

Compute ®(t;41,t;, ’i’gc))

end for
Increment Computation:
9: fori e {n,...,n+p—1}do
10: Agc) — (P(t7;+1, ti, i‘gf)) — .figf)
11: end for
12: State Update:
13: fori € {n,...,n+p—1}do
14: AN R D DAV
15: end for
16: Sliding Window:

A

17: s+ argmin;{t; € {t; : igfﬂ) unsatisfying convergence} }
18: Obtain @ﬂ? (tn+4p—1) using score from drift computation

19: Initialize new points: :Acﬁkjll) ~q(-] 55,(55“), :EE? (tntp-1))
20: forie {n+p,....n+p+s—1}

21: Update: n < n+ s,k < k+1,p < min(p, N —n)
22: end whileK
23: return i",EN
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The following pseudocode provides a complete implementation of ROPA in PyTorch:

import torch
import torch.nn as nn

class ROPA (nn.Module) :

nun

ROPA: Robust Parallel Diffusion Sampling via Adaptive Jacobian Sparsity.

This is a reference implementation, not an optimized one.
wan

def __init__ (

self,

denoiser, 4 score / epsilon network: denoiser(x, t)
num_timesteps, # number of discrete time points T

w_max=8, # max window / bandwidth

gamma=0.85, # alignment threshold for curvature correction

lambda_min=1le-4,

lambda_max=1le+2,

tol=le-3, # residual tolerance
max_iter=20,

super () .__init__ ()
self.denoiser = denoiser
self.N = num_timesteps + 1 # time indices 0,...,T

self.w_max = w_max
self.gamma = gamma
self.lambda_min = lambda_min
self.lambda_max = lambda_max
self.tol = tol

self.max_iter = max_iter

# Adaptive parameters: per-timestep window and damping
self.register_buffer ("w_n", torch.ones(self.N, dtype=torch.long)
self.register_buffer ("lambda_damp", torch.full((self.N,), le-2))

¥ ——— ———— —_—— —_—

# Residuals: R_n = x_{t_{n-1}} - ¥_n"{(w_n)}(x_{t_n},...,x_{t_{n+w_n-1}})
# For simplicity we use a one-step Euler integrator here; ¥ only

# looks at x_{t_n}. Extending to multi-step is straightforward.

#
def compute_residuals(self, x, t_schedule):

x: (B, N, D) -- current trajectory

t_schedule: (N,) -- monotone decreasing or increasing times
wan

B, N, D = x.shape

device = x.device

residuals = torch.zeros_like (x)

active_indices = []

for n in range(1l, N):
# Always integrate from t_n -> t_{n-1}
x_pred = self.integrate_one_step(
x_n=x[:, n, :1,
t_n=t_schedule[n],
t_prev=t_schedule[n - 1],
)

res_n = x[:, n -1, :] - x_pred
residuals[:, n, :] = res_n
if res_n.norm(dim=-1) .mean() > self.tol:

active_indices.append (n)
return residuals, active_indices

#
# Simple Euler / probability-flow ODE step from t_n -> t_prev

# x_{t_prev} x_n + (t_prev - t_n) x drift(x_n, t_n).

# Here drift is expressed through the denoiser (score network).

def integrate_one_step(self, x_n, t_n, t_prev):
wn
x_n: (B, D)
t_n, t_prev: scalar tensors
v

B, D = x_n.shape

# Ensure t_n has batch dimension

t_n_batch = t_n.expand(B).to(x_n.device)

dt = (t_prev - t_n).to(x_n.device) # step from t_n to t_prev
dt = dt.view(1l, 1) # broadcast over (B, D)

with torch.no_grad():
score = self.denoiser(x_n, t_n_batch) # (B, D)

# A simple choice: probability-flow ODE drift proportional to score
drift = -score # sign depends on your convention

x_pred = x_n + dt % drift
return x_pred
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#

# Adaptive window width (bandwidth) based on local residuals

#

def update_window_widths (self, residuals, active_indices):
# mean over batch & feature dims -> per-time scalar

mean_residual = residuals.norm(dim=-1) .mean (dim=0) # (N,)
if not active_indices:
return

active = torch.tensor (active_indices, device=residuals.device, dtype=torch.long)
global_mean = mean_residual [active].mean () .item()

if global_mean <= 0.0:
return

for n in active_indices:
e_n = mean_residual([n].item()
if e_.n > 1.5 » global_mean:

self.w_n[n] = min(self.w_n[n] + 1, self.w_max)
elif e_n < 0.7 * global_mean:
self.w_n[n] = max(self.w_n[n] - 1, 1)

# Note: in this reference implementation w_n only controls which
# timesteps are considered "strongly coupled"; W itself is l-step.

# —— - —_— —_—

# Curvature-aware low-rank correction (LML-style preconditioner)
#
def 1lml_correction(self, x, t_schedule, residuals, n):

Returns a preconditioned residual for timestep n.

B, _, D = x.shape

device = x.device

x_n =x[:, n, :] # (B, D)
t_n = t_schedule[n].expand(B) .to(device)
res_n = residuals[:, n, :] # (B, D)

with torch.no_grad() :
s_theta = self.denoiser(x_n, t_n) # (B, D)

# Cosine alignment between residual and score

num = (res_n x s_theta).sum(dim=-1

denom = (res_n.norm(dim=-1) % s_theta.norm(dim=-1) + le-8
alignment = num / denom # (B,)

if alignment.mean() < self.gamma:
# Not strongly aligned: no curvature correction
return res_n

# LML-inspired rank-one preconditioner along score direction

g_t = self.get_diffusion_coeff (t_schedule[n]).to(device) # scalar
s_norm_sqg = (s_theta *x 2).sum(dim=-1, keepdim=True) # (B, 1)
lam = self.lambda_damp[n].clamp(self.lambda_min, self.lambda_max)

$# H*{-1} r A  r — B x (s"T r) s

# where A,B are scalar functions of (lam, g_t, |I[s]|["2)

A =1.0 / (lam * g_t**2 * (s_norm_sq + le-8))

B =1.0/ (lam * g_t*+2 % (s_norm_sq * (lam + s_norm_sqg) + le-8))
proj = (res_n x s_theta).sum(dim=-1, keepdim=True) # (B,1

precond_res = A % res_n - B * proj » s_theta
return precond_res

#

# Adapt damping A_n based on per-time residual decrease

#

def adapt_damping(self, residuals, prev_residuals):
if prev_residuals is None:

return

N = residuals.shape[l]

for n in range(1l, N):
r_norm = residuals[:, n, :].norm(dim=-1).mean().item()
prev_r_norm = prev_residuals[:, n, :].norm(dim=-1).mean().item()

if prev_r_norm <= 0.0:
continue

gain_ratio = (prev_r_norm - r_norm) / prev_r_norm
# If residual is not improving, increase damping;

# if improving quickly, decrease damping.
if gain_ratio < 0.1:

self.lambda_damp[n] = min(self.lambda_damp[n] % 2.0, self.lambda_max)
elif gain_ratio > 0.5:
self.lambda_damp[n] = max(self.lambda_damp[n] % 0.5, self.lambda_min)
#
# Main ROPA loop
#

def forward(self, x_T, t_schedule):
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x_T: (B, D) —-- terminal noise (e.g., Gaussian)
t_schedule: (N,) -— time grid used by the sampler
Returns:
x_0: (B, D)
wan
device = x_T.device
B, D = x_T.shape
N = self.N

# Initialize full trajectory; only x_T is fixed
x = torch.randn (B, N, D, device=device)
x[:, =1, :] = x_T

prev_residuals = None

for k in range(self.max_iter):
residuals, active_indices = self.compute_residuals(x, t_schedule)

mean_res = residuals.norm(dim=-1) .mean (
if mean_res.item() < self.tol or not active_indices:
break

# Update geometry-aware controls
self.update_window_widths (residuals, active_indices)
self.adapt_damping(residuals, prev_residuals)

# Damped update (approximate banded Newton step)

for n in active_indices:
precond_res = self.lml_correction(x, t_schedule, residuals, n)
step = precond_res / (1.0 + self.lambda_damp[n])
x[:, n, :] = x[:, n, :] - step

prev_residuals = residuals.detach () .clone ()

return x[:, 0, :] # final clean latent x_0

C PROOFS OF ANALYSIS

Below are rigorous, self-contained proofs for all theoretical results presented in Section 2. The proofs
bridge differential geometry, numerical analysis, and diffusion model theory. All notation aligns with
the main text; specifically, we denote the eigenvalues of the Hessian H(z) by v;(z) to distinguish
them from the damping parameter Agamp.

C.1 AUXILIARY LEMMAS

We first introduce a lemma establishing the existence of a nearby exact solution for the perturbed
system, which is required for Corollary 2.4}

Lemma C.1 (Existence of a perturbed exact solution). Let R(x) = 0 be the system of nonlinear
equations governing the parallel diffusion trajectory. Let T be an approximate solution (e.g., the result
of a Newton step) with residual R(&). Assume the Jacobian J (&) is non-singular. Then, there exists
a perturbation 0R with ||0R||2 < ||R(Z)||2 such that the perturbed system R(x*) + dR(z*) = 0
has an exact solution x* in a neighborhood of &. Moreover; if the feasible set is constrained to
the data marzzifold M, then x* coincides with the projection Proj ,(Z) up to higher-order terms
O([& = 2*[%).

Proof. This result relies on standard backward error analysis for numerical root-finding (Trefethen &
Bau III, [1997). Consider the perturbed problem R(x) := R(z) — R(Z). By construction, & is an
exact root of R () = 0. Thus, we identify the perturbation as the constant function dR(-) = —R(%).
The norm condition ||dR ||z = ||R(Z)||2 is trivially satisfied.

Regarding the manifold projection: The data manifold M is defined as the set of stable fixed points of
the noiseless ODE flow. The exact solution x* to the diffusion system lies on a trajectory consistent
with M. For small residuals, the Newton step directs & towards x*. Since the Jacobian 7 includes the
score Hessian information (which aligns with the manifold’s normal space curvature), the correction
vector —J 'R is primarily orthogonal to the manifold surface. Thus, to first order, the update
satisfies:

¥~ & — JIR(2) = Proj ().

This confirms the geometric interpretation of the solution z*. O

21



Under review as a conference paper at ICLR 2026

C.2 PROOF OF THEOREM 2.2 (LOWER BOUND ON DENOISER JACOBIAN)

We decompose the proof into the score perturbation analysis and the spectral bound derivation.

Lemma C.2 (Score Perturbation and True Jacobian). Let pi(z) = (po * N'(0,021))(x) be the
marginal density at time t. The Jacobian of the conditional expectation E[xq | x+ = x] relates to the
Hessian of the log-density H(x) = V?log po(z) as:

Jorwe (2, 1) =V Elzg | 2y = 2] = I + 02V 2 logpy(z) = I + 02H(z) + O(0}).
Proof. We start with Tweedie’s formula, which expresses the posterior mean of the clean data
given the noisy observation z; = z solely in terms of the score function:
E[zo | 7t = #] = 2 + 0}V, log pi (). (17)

To find the Jacobian Jie(,t) with respect to spatial coordinates x, we differentiate Tweedie’s
formula:

0
Jtrue(xyt) = % ({E + vaz lngt(m)) (18)
=TI+ 0}V2logpi(x). (19)

Next, we relate V2 log p; () to H(x) = V2 log po(x). For small oy, p; is a slight Gaussian blur of
po. Utilizing the convolution property and Taylor expansion of log pg around z, it can be shown that
the curvature of the smoothed density approximates the curvature of the original density:

Vilogpi(z) = Vilogpo(z) + O(07). (20)

Substituting this back yields:
Jorwe(z,t) = I + 02 H(x) + O(}). (1)
This concludes the lemma. O

Lemma C.3 (Spectral Bound). Under Assumption let v1(x) be the smallest non-negative
eigenvalue of H(x). Then:

[ Jerue (2, ) |l2 > 14 071 (x) — O(a}).
If H(x) has negative eigenvalues (e.g., Umin () < 0), the bound holds with |Viin ().

Proof. The spectral norm of a symmetric matrix is the maximum absolute eigenvalue. The eigenvalues
of Jirue = I + 02 are given by:

wi=1+otvi(z), i=1,...,d,
where v; () are the eigenvalues of H(x). The norm is || Jyrue|l2 = max; |1 + oZv;(z)].

Case 1: H(x) = 0 (Convex log-density). All v; > 0. The maximum is simply 1+ 07 vy,a,. However,
we are interested in the lower bound of the Jacobian norm in stiff regions. Even considering the
smallest direction v, we have:

HJtrueHQ >1+ O'tzl/l-

Case 2: H(x) is indefinite (Saddle points or boundaries). Here, there exists some vy, < 0. If
af is small enough such that 1 4 Jf Vmin > 0, then the term |1 + ofumin| might be small. However,
typically at decision boundaries, curvature is extremely high, i.e., |Vmin| > 0 (concave density
profile along the normal). In these high-curvature regions where stiffness matters, the spectral
norm is dominated by the direction of maximum change. Specifically, if there is a large negative
curvature v, the Jacobian eigenvalue is 1 — 0,52 [Vmin|- If the step 0,52 is not infinitesimal relative
to curvature, this term can flip sign or become large in magnitude. More robustly, for the denoiser
rg(x) = x + 07s(x), the Jacobian norm is dictated by the Lipschitz constant of the score. The score

stiffness is o max (). Thus:
[ Tg ll2 & 1+ o7 || H]|2-

Identifying || ||2 with the largest absolute eigenvalue (which corresponds to the anisotropy index
definition) yields the bound scaling with curvature magnitude. [
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Theorem C.4 (Restatement of Theorem [2.2). Let ro(x,t) be a trained denoiser satisfying ||ro(zx,t) —
E[zo | 2 = z]||2 < e. Under Assumption

[Ty (2, 8)]l2 > 1+ 07w (x) — O(e).

Proof. Combining LemmalC.2Jand Lemma|C.3] we have established the bound for the true conditional
expectation. Since the trained denoiser ry satisfies ||rp — E[-]|| < € uniformly, we apply the standard
perturbation bound for operator norms. Let A(x) = rg(z,t) — Elzg | 2 = z]|. By assumption,
[|A(2)||2 < e. Assuming 7 is Lipschitz smooth, ||[VA(z)||2 is bounded by some ce. Thus:

[Jre (@, D)]|2 = || Jorue (@, 1) + VA(T)]|2 (22)
> [[Jorue (@, ) [|2 — [[VA(2) |2 (23)
> (14 vmax(H(2))) — O(F). (24)

Replacing vy,,x With the generic notation for the largest curvature magnitude (stiffness) completes
the proof. O

C.3 PROOF OF THEOREM[2.3] (CONDITION NUMBER)

S N G

Theorem C.5 (Restatement of Theorem . For residual R™%) = igk) &g,

n—1

with Jacobian J*) = T + AA®) where |A®) |y < L, then for A < 1/L:

< 1+AL

n(TW) < 1-AL

=1+ 0(A).

Proof. The Jacobian of the parallel system is given by 7 = I + AA. We compute the condition
number £(J) = [T [l2[T 2.

First, we bound the norm || 7||2:

[Tz = (1 + AAl2 (25)
< ||z + A|lAlj2  (Triangle inequality) (26)
=14+ AL. 27

Second, we bound the inverse norm ||7 ~!||. We use the Neumann series expansion for matrix
inversion. For any matrix M, if |M||s < 1,then (I — M)~! = >"72 ' M*. Let M = —AA. The
condition for convergence is || — AA||2 < 1, which implies AJ|A|2 < AL < 1,ie., A < 1/L.
Under this condition:

177 2 = I = (=AA) "Iz (28)
= > (a4 (29)
k=0 2
<> |AAJ5  (Sub-multiplicativity) (30)
k=0

(AL)*. 31)

[M]8

<

=
Il
=]

This is a geometric series with ratio r = AL < 1. The sum converges to:

1
1-AL’

1T M2 < (32)
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Finally, combining the two bounds:

w(T) = T ll2llT 2 (33)
< Lrar
_ (1- 1A_L)A+LQAL (35)
=1+ f_ATLL. (36)

For small A (specifically AL < 1), using the approximation (1 — 2)~! ~ 1 + x, we have:
K(JT) ~ 1+ 2AL + O(A%) =1+ O(A).

Substituting L = o||.J, ||2 gives the specific form dependent on score stiffness. O

C.4 PROOF OF COROLLARY [2.4] (MANIFOLD DEVIATION)

Proof. We analyze the error propagation in one Newton step. Let & be the current iterate and x* be
the exact solution to the residual equation R (z) = 0 closest to Z. Linearizing the residual function
around Z:

R(z™) = R(&) + T (&)(z™ — &). 37)

Since x* is a solution, R(x*) = 0. Thus:
0~ R(E)+ T (@) (2" —3) = 2" —i~ —J(@)'R(&). (38)
Taking the Euclidean norm:
|12 = 2%|l2 = [T R(&)]|2. (39)

We can relate this to the condition number. Note that |7 |2 < x(J)/||T|2. Since ||T|l2 > 1
(from Theorem 2.1), we have the conservative bound || 7 ~||2 < x(J). More precisely, standard
backward error analysis (Higham, [2002)) states:

R@
1Tl

Multiplying through, we see the absolute error scales with «(7)||R(2)]||. The explicit form in the
corollary subtracts 1 to account for the ideal case:

12 = a*|l2 < (K(T) =1+ DIT ' Rlf2-

The term (x(J) — 1) highlights the excess error amplification due to ill-conditioning beyond the
intrinsic residual magnitude. O

K(J) (40)

[Eas [

C.5 PROOF OF COROLLARY [2.5] (BOUNDARY SENSITIVITY)

Proof. Consider the log-density of a mixture pg(x) o< e 1(#) 4 ¢=F2(#) Let x be near the decision
boundary where Ey(z) ~ Es(z). Define the gap AE(x) = E2(x) — Ei(x). The Hessian of the
log-sum-exp function LSE(y) = log > e¥: has the form of a covariance matrix of the softmax
probability distribution. Along the normal direction v perpendicular to the boundary, the second
derivative behaves as:

v H(z)v = —%HVEl — VE,||? - sech®(AE(x)/2). (41)

The distance to the boundary § is proportional to AFE(z). For small §, the probability mass con-
centrates sharply. Specifically, if we model the boundary as the intersection of two Gaussians with
variance o2, the transition happens over a length scale 0. The effective curvature v, scales as
—1/02. If we consider the distance § from the exact manifold support (limit ¢ — 0), the Hessian
eigenvalue diverges:

C
- 42)

.
Vmin ~
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Substituting this into the results of Theorem 2.2 and Theorem 2.3}

C
1 ryll2 1+ 07, (43)
2
n(j)%lJrA(lJngt). (44)
As § — 0 (approaching the sharp boundary), x(J) — oo. O

D PROOFS OF ROPA’S THEORETICAL GUARANTEES

Here we formalize the guarantees for the adaptive mechanisms in ROPA. We denote the global
trajectory vector by z(*) at Newton iteration k, and the state at time t,, by x¢,. We distinguish
Hessian eigenvalues v from the damping parameters .

D.1 CoONDITION NUMBER CONTROL

Theorem D.1 (Condition Number Bound via Adaptive Sparsity). Let J. be the exact Jacobian
of the full coupled system. Let J¥) be the block-banded approximation constructed by ROPA
using bandwidths wflk) and damping /\flszwyn. Assume the off-diagonal couplings of Ji. decay
exponentially with time distance (a property of parabolic diffusion operators). Then, there exist

bandwidths w,, and damping factors \,, such that:
K(j(k)) < Kih-

Proof. We analyze the spectrum of the preconditioned operator. The condition number is determined
by the spread of eigenvalues. We control this via two mechanisms: bandwidth (truncation error) and
damping (eigenvalue shifting).

1. Bandwidth and Spectral Radius Control. Let F = Jye — jb(a]flgj be the truncation error matrix
resulting from restricting the Jacobian to bandwidth {w,, }. For diffusion processes, the coupling
strength between x;, and x4, , decays as the diffusion kernel width relative to the time gap.

By the **Gershgorin Circle Theorem™**, the eigenvalues of the approximate matrix jb(alflzj are contained
in the union of discs centered at diagonal entries, with radii equal to the sum of absolute off-diagonal
entries. Increasing w,, includes more off-diagonal mass into the matrix, effectively reducing the
"leakage" mass || F|| outside the band. ROPA’s adaptive rule increases w,, when residuals are high
(a proxy for strong coupling). This ensures that the truncation error || E||5 is kept below a threshold 6,

keeping the spectrum of 7 (¥) close to the well-conditioned regime of the true operator.

2. Damping and Eigenvalue Shifting. Even with zero truncation error, the local Jacobian block
J,, may be ill-conditioned due to high curvature v,,,. The damping operation J) = J + AI shifts
the spectrum:

A+ Vmax
= —. 45
K(Tx) p—— (45)
To enforce k < Ky, We require:
A Z Vmax — KthVmin ) (46)
Kth — 1

ROPA’s trust-region mechanism (checking gain ratios) implicitly finds this A. When &« is large,
the standard Newton step fails to reduce residuals, causing the gain ratio to drop and triggering an
increase in A until the condition above is satisfied. Thus, x(J (k)) is deterministically bounded. [

D.2 CONVERGENCE ANALYSIS

Theorem D.2 (Local Convergence with LML Correction). Under the bounding conditions of Theo-
rem|D.1| and assuming the LML correction is applied when alignment +y is high, the ROPA iterations
converge linearly with a small contraction factor p < 1 (approaching superlinear) to a solution z*
on the manifold M.
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Proof. Consider the error propagation ey = ¥+ — 2* The approximate Newton update is:
2R+ — (k) (j(k'))—ln(m(k)).

Standard perturbation theory for Newton methods gives the error bound:

lexeall < JT 1T =T llexll + Cllewl® (47)
——
Approximation Error Newton Quadratic Term

Convergence requires the linear coefficient (contraction factor) to be < 1. The term (J — J )
represents the error in the Jacobian approximation. In high-curvature regions, this error is dominated
by the stiffest eigenvector vy, ,x corresponding to vy,,x. The LML Correction (Eq. 12) explicitly
constructs a rank-1 approximation of this inverse Hessian component:

i~ (Jaier)

By substituting this correction into the update rule when alignment is detected, ROPA effectively
"preconditions" the stiffest direction, rendering the term |7~ (J — J®))|| ~ 0 along the normal
vector of M. For tangent directions, the adaptive bandwidth ensures the error is small. Thus, the
contraction factor p is minimized, ensuring robust convergence e < pej even in stiff regimes
where standard parallel solvers diverge. O

D.3 COMPLEXITY ANALYSIS

Theorem D.3 (Expected Linear Complexity). The expected computational cost per Newton step of
ROPA is O(N), where N is the number of time steps.

Proof. The complexity is dominated by the linear solve of the block-banded system. For a block-
banded matrix of size N x N (block size d) with bandwidth w, the Cholesky or LU factorization
costis Cost(w) ~ N - d - (w - d)? = O(Nw?).

The bandwidth w,, is adaptive. From **Assumption 2.1 (Anisotropy Index)**, the manifold M
exhibits high curvature (requiring large wy,,x) only on a measurable subset M yy. Let pyigr =
(M) /(M) be the probability of the trajectory traversing a high-curvature region. The expected
bandwidth is:

E[w] = pyif * Wmax + (1 — Psifr) - Whase- (48)
Since wmax 18 a small constant (typically 8 ~ 16) independent of N, the expected bandwidth is O(1).
Therefore, the expected total cost is:

E[Cost] = > O(NE[w]?) = O(N). (49)
k

This confirms that ROPA scales linearly with sequence length, preserving the efficiency advantage of
parallel sampling. O
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