
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FROM REWARD SHAPING TO Q-SHAPING: ACHIEVING
UNBIASED LEARNING WITH LLM-GUIDED KNOWL-
EDGE

Anonymous authors
Paper under double-blind review

ABSTRACT

Q-shaping is an extension of Q-value initialization and serves as an alternative to
reward shaping for incorporating domain knowledge to accelerate agent training,
thereby improving sample efficiency by directly shaping Q-values. This approach
is both general and robust across diverse tasks, allowing for immediate impact
assessment while guaranteeing optimality. We evaluated Q-shaping across 20 dif-
ferent environments using a large language model (LLM) as the heuristic provider.
The results demonstrate that Q-shaping significantly enhances sample efficiency,
achieving an 16.87% average improvement across the 20 tasks compared to the
best baseline, and a 226.67% improvement compared to LLM-based reward shap-
ing methods. These findings establish Q-shaping as an effective and unbiased
alternative to conventional reward shaping in reinforcement learning.

1 INTRODUCTION

Reinforcement learning (RL) can solve complex tasks but often faces sample inefficiency. For
example, AlphaGo (Silver et al., 2016) required approximately 4 weeks of training on 50 GPUs,
learning from 30 million expert Go game positions to reach a 57% accuracy. Similarly, training a real
bipedal soccer robot required 9.0× 108 environment steps, amounting to 68 hours of wall-clock time
for the full 1v1 agent (Haarnoja et al., 2024). These cases demonstrate the significant computational
demands of RL.

Figure 1: Agent behavior across different algorithms. "Vanilla" refers to traditional RL algorithms,
"reward shaping" refers to reward shaping-enhanced RL algorithms, and "Q-shaping" refers to
Q-shaping-enhanced RL algorithms. Q-shaping impacts agent behavior quickly, enabling rapid
evolution and improvement in the quality of heuristic functions. In contrast, reward shaping requires
extensive training time before the impact of the heuristic reward becomes apparent.

To improve efficiency, popular methods include (1) imitation learning, (2) residual reinforcement
learning, (3) reward shaping, and (4) Q-value initialization. Yet, each has limitations: imitation
learning requires expert data (Garg et al., 2021; Chang et al., 2024; Kostrikov et al., 2020), residual
RL needs a well-designed controller (Johannink et al., 2019; Trumpp et al., 2023), and Q-value
initialization (Nakamoto et al., 2024) demands precise estimates. Therefore, reward shaping (Xie

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

et al.; Ma et al., 2023) is the most practical approach, as it avoids the need for expert trajectories or
predefined controllers.

Reward shaping methods fall into two main categories: (1) potential-based reward shaping
(PBRS) (Ng et al., 1999) and (2) non-potential-based reward shaping (NPBRS) (Ng et al., 1999).
PBRS provides state-based heuristic rewards and ensures that optimality is preserved by following
the potential function rule, as defined by . NPBRS, on the other hand, refers to reward shaping
methods that do not adhere to the potential function rule, and as a result, the learned policy does not
guarantee optimality. Additionally, reward shaping methods often suffer from a slow verification
process, requiring completion of training to assess the impact of the heuristic reward, which limits
their development, as noted by Ma et al. (2023). Lastly, designing high-quality reward functions
remains a challenging and often frustrating task for researchers, hindering the adoption of these
methods (Ma et al., 2023).

With the growing popularity of large language models (LLMs), LLM-guided reinforcement learning
(RL) has emerged as a promising field. This approach leverages the strong understanding capabilities
of LLMs to guide RL agents in exploration or policy updates. Existing research has focused on two
main areas: LLM-based policy generation and LLM-guided reward design. For example, Chen et al.
(2021); Micheli et al. (2022) utilize LLMs to enhance policy decisions, while Kwon et al. (2023);
Carta et al. (2023); Ma et al. (2023) employ LLMs to design reward structures. Although these works
have improved task success rates, the challenges associated with reward shaping remain unresolved.

In this work, we introduce a novel framework, Q-shaping, which leverages domain knowledge from
large language models (LLMs) to guide agent exploration. Q-shaping offers two key advantages over
reward shaping:

1. Remain Optimality: Q-shaping inspires exploration by modifying Q-values during training
while ensuring that the agent’s optimality remains unaffected upon convergence.

2. Efficient Heuristic Verification: Unlike reward shaping methods, which require waiting
until the end of training to observe the impact of the reward heuristic, Q-shaping enables
experimenters to verify and refine heuristic guidance rapidly during training.

Figure 1 illustrates the agent behavior across different algorithms.

In the "Q-shaping Framework" section, we present theoretical analysis and proofs demonstrating that
Q-shaping preserves optimality while using imprecise Q-values to improve exploration and sample
efficiency. In the experimental section, we use GPT-4o as a heuristic provider and compare Q-shaping
with popular baselines, achieving an average improvement of 16.87% across 20 tasks. Compared to
LLM-guided reward shaping methods like T2R (Xie et al.) and Eureka (Ma et al., 2023), Q-shaping
achieves up to 226.67% improvement in episodic total rewards while enhancing task success rates.

2 RELATED WORK

2.1 HEURISTIC REINFORCEMENT LEARNING

There are four common approaches to incorporating domain knowledge into reinforcement learning
to enhance sample efficiency: (1) Imitation Learning, (2) Residual Policy, (3) Reward Shaping, and
(4) Q-value Initialization.

Imitation Learning requires access to expert trajectories, as demonstrated by works such as GAIL (Ho
& Ermon, 2016), where agents learn by mimicking expert behavior. However, the reliance on high-
quality expert data limits its applicability in complex tasks. Residual Policy (Johannink et al., 2019)
methods involve designing a controller to guide agent actions, but this manual design process restricts
their scalability and generality.

Q-value initialization, although promising, often requires precise Q-value estimates to derive an
effective policy. For instance, Cal-QL (Nakamoto et al., 2024) employs calibrated Q-values to
enhance agent exploration, but these calibrated values still rely on expert knowledge, making Q-value
design more challenging than reward shaping. Consequently, few studies have pursued this direction
due to the inherent difficulty in obtaining accurate Q-values compared to reward shaping.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Reward shaping directly modifies the reward function to influence agent behavior, improving training
efficiency without requiring expert trajectories or manual controller design. This approach has
been refined to address diverse learning scenarios, such as in Inverse Reinforcement Learning (IRL)
(Ziebart et al., 2008; Wulfmeier et al., 2015; Finn et al., 2016) and Preference-based RL (Christiano
et al., 2017; Ibarz et al., 2018; Lee et al., 2021; Park et al., 2022). Additionally, various heuristic
techniques have been introduced, including unsupervised auxiliary task rewards (Jaderberg et al.,
2016), count-based reward heuristics (Bellemare et al., 2016; Ostrovski et al., 2017), and self-
supervised prediction error heuristics (Pathak et al., 2017; Stadie et al., 2015; Oudeyer & Kaplan,
2007).

However, reward shaping often suffers from inaccuracies in the heuristic functions and a slow
verification process, which limits its effectiveness in certain applications.

2.2 LLM\VLM AGENT

LLMs/VLMs can achieve few-shot or even zero-shot learning in various contexts, as demonstrated
by works such as Voyager (Wang et al., 2023), ReAct (Yao et al., 2022), SLINVIT (Zhang et al.,
2024),and SwiftSage (Lin et al., 2024).In the field of robotics, VIMA Jiang et al. (2022) employs
multimodal learning to enhance agents’ comprehension capabilities. Additionally, the use of LLMs
for high-level control is becoming a trend in control tasks (Shi et al., 2024; Liu et al., 2023; Ouyang
et al., 2024).In web search, interactive agents (Gur et al., 2023; Shaw et al., 2024; Zhou et al.,
2023) can be constructed using LLMs/VLMs. Moreover, frameworks have been developed to reduce
the impact of hallucinations, such as decision reconsideration (Yao et al., 2024; Long, 2023), self-
correction (Shinn et al., 2023; Kim et al., 2024), and observation summarization (Sridhar et al.,
2023).

2.3 LLM-ENHANCED RL

Relying on the understanding and generation capabilities of large models, LLM-enhanced RL has
become a popular field (Du et al., 2023; Carta et al., 2023). Researchers have investigated the diverse
roles of large models within reinforcement learning (RL) architectures, including their application
in reward design (Kwon et al., 2023; Wu et al., 2024; Carta et al., 2023; Chu et al., 2023; Yu et al.,
2023; Ma et al., 2023), information processing (Paischer et al., 2022; 2024; Radford et al., 2021), as a
policy generator, and as a generator within large language models (LLMs) (Chen et al., 2021; Micheli
et al., 2022; Robine et al., 2023; Chen et al., 2022). While LLM-assisted reward design has improved
task success rates (Ma et al., 2023; Xie et al.), it often introduces bias into the original Markov
Decision Process (MDP) or fails to provide sufficient guidance for complex tasks. Additionally, the
verification process is time-consuming, which slows down the pace of iterative improvements.

3 NOTATION

Markov Decision Processes. We represent the environment as a Markov Decision Process (MDP)
in the standard form: M := ⟨S,A,R, P, γ, ρ⟩. Here, S and A denote the discrete state and action
spaces, respectively. We use Z := S ×A as shorthand for the joint state-action space. The reward
functionR : Z → Dist([0, 1]) maps state-action pairs to distributions over the unit interval, while
the transition function P : Z → Dist(S) maps state-action pairs to distributions over subsequent
states. Lastly, ρ ∈ Dist(S) represents the distribution over initial states. We denote rM and PM as
the true reward and transition functions of the environment.

For policy definition, the space of all possible policies is denoted as Π. A policy π : S → ∆(A)
defines a conditional distribution over actions given states. A deterministic policy µ : S → A is
a special case of π, where one action is selected per state with a probability of 1. We define an
“activity matrix” Aπ ∈ RS×Z for each policy, encoding π’s state-conditional state-action distribution.
Specifically, Aπ(s, ⟨ṡ, a⟩) := π(a|s) if s = ṡ, otherwise Aπ(s, ⟨ṡ, a⟩) := 0. The value function is
defined as v : Π→ S → R or q : Π→ S ×A → R, both with bounded outputs. The terms q and v
represent discrete matrix representations, where v(s) and q(s, a) specifically denote the outputs of
an arbitrary value function for a given policy at a particular state or state-action pair.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

An optimal policy for an MDP M, denoted by π∗
M, is one that maximizes the expected return

under the initial state distribution: π∗
M := argmaxπ Eρ[v

π
M]. The state-wise expected returns

of this optimal policy are represented by v
π∗
M

M . The Bellman consistency equation for the MDP
M at x is given by BM(x) := r + γPx. Notably, (vπ

M)∗ is the unique vector that satisfies

(vπ
M)∗ = AπBM((vπ

M)∗).We abbreviate q∗ as
(
q
π∗
M

M
)∗

and q∗
ξ as

(
q
π∗
ξ

ξ

)∗
for some MDP ξ.

Datasets We define fundamental concepts essential for fixed-dataset policy optimization. Let
D := {⟨s, a, r, s′⟩}d represent a dataset of d transitions. From this dataset, we can construct a local
MDP D and derive a local optimal Q-value function, denoted as q∗D.

Within the Q-shaping framework, let q̂ denote the Q-function learned from TD estimation and
Q-shaping. The LLM outputs are categorized into two types: goodQ, which encourages exploration,
and badQ, which discourages it. Let GLLM := {(s, a,Q) | Q > 0}d represent the dataset of d
heuristic pairs focused on encouraging agent exploration. Similarly, BLLM := {(s, a,Q) | Q ≤ 0}d
denotes the dataset of d heuristic pairs aimed at preventing exploration. The complete collection of
LLM outputs is given by DLLM := {GLLM , BLLM}.

Convergence An agent is considered to have converged when it reaches 80% of the peak perfor-
mance. The peak performance is defined as the highest performance achieved by any of the baseline
methods.

4 Q-SHAPING FRAMEWORK

In the Q-learning framework, an experience buffer D is used to store transitions from the Markov
Decision Process (MDP), supporting both online and offline training. To estimate the Q-values for
(s, a) pairs, the Temporal-Difference (TD) update method leverages this experience buffer. The
Q-function derived from the trained Q-values determines the policy by maximizing q(s, ·), making
accurate Q-value estimation crucial for policy quality and effective exploration.

To enhance exploration, Q-shaping integrates both the experience buffer and heuristic guidance from
a large language model (LLM) into the Q-value estimation process. The Heuristic TD Update,
which defines this Q-shaping process, is given by:

q̂k+1(s, a)←
{
q̂k(s, a) + αh(s, a), if (s, a) ∈ Dk

LLM \ D,
q̂k(s, a) + α

(
q̂k
TD(s, a) + h(s, a)

)
, if (s, a) ∈ Dk

LLM ∩ D.

where q̂k
TD(s, a) represents the temporal-difference (TD) update estimation of q(s, a) at step k,

expressed as: q̂k
TD(s, a) = r(s, a, s′) + γq̂k(s, a). Here, Dk

LLM denotes the set of (s, a, h(s, a))
pairs provided by the LLM at iteration k.

With this formulation, the Heuristic Bellman Optimal Operator can be expressed as:

q̂k+1(s, a) = Thq̂k(s, a) (1)

= r(s, a) + γ
∑
s′∈S

P (s′|s, a)max
a′

q̂k(s′, a′) + h(s, a), (s, a) ∈ Dk
LLM ∩ D. (2)

4.1 UNBIASED OPTIMALITY

The Q-value represents a high-level abstraction of an agent’s interaction with the environment. It
encapsulates the expected cumulative reward by integrating critical elements such as rewards r,
transition probabilities P , states s, actions a, and the policy π. Changes in any of these components
directly affect the Q-values.

SAC (Haarnoja et al., 2018) and MCTS (Browne et al., 2012) use action-bonus heuristics to enhance
training efficiency but risk biasing the learned policy away from optimality. In contrast, Q-shaping,
supported by Theorem 1, enhances learning with heuristic guidance while ensuring convergence to
the optimal Q-values of the local MDP.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Theorem 1 (Contraction and Convergence of q̂). Let Th be the heuristic Bellman operator for the
sampled MDP D, and let γ ∈ [0, 1) be the discount factor. The operator Th satisfies the following
contraction property in the metric space (X , ∥ · ∥∞):

∥Th(q̂)− Th(q̂′)∥∞ ≤ γ∥q̂− q̂′∥∞,

where q̂, q̂′ ∈ X are any two value functions. Thus, Th is a γ-contraction operator.

As a result, repeated applications of the heuristic Bellman operator through the heuristic Temporal
Difference (TD) update,

q̂← Th(q̂),
will converge to the unique fixed point q̂∗

D. Furthermore, since q̂ and q are updated on the same
MDP and Follow Assumption A.2, the following equivalence holds:

q̂∗
D = q∗

D.

Proof. See Appendix A.2

4.2 UTILIZING IMPRECISE Q VALUE ESTIMATION

At the early training stage, the Q-values for different actions are nearly identical, leading the policy
to execute actions randomly.To address this, we leverage the LLM’s domain knowledge to provide
positive Q-values for actions that contribute to task success and negative Q-values for actions that do
not. The imprecise Q-values provided by the LLM can be categorized into two types: overestimations
and underestimations.

Underestimation of Non-Optimal Actions An agent does not need to fully traverse the entire
state-action space to identify the optimal trajectory that leads to task success. Therefore, imprecise
Q-value estimation can be effectively utilized to guide the agent’s exploration.

For instance, consider a scenario where the agent is required to control a robot arm to operate on
a drawer located in front of it. In this case, actions such as moving the arm backward or upward
are evidently unhelpful in finding the optimal trajectory. Assigning very low Q-values to these
non-contributory actions discourages the agent from exploring them, thereby enhancing sample
efficiency.

Algorithm 1 Q-shaping
1: Require: Good Q-set Gllm, Bad Q-set Bllm provided by

the LLM, RL solver A
2: Goal: Compute the average performance over 10 runs
3: Initialize: Start 20 agents {Agent1,Agent2, . . . ,Agent20}
4: # for each agent, do:
5: agent.explore(steps = 5000)
6: # Apply Q-shaping and Policy-shaping
7: agent.q_shaping(Gllm, Bllm)
8: agent.policy_shaping(Gllm, Bllm)
9: # Further exploration

10: agent.explore(steps = 10000)
11: # Synchronize agents
12: agent.wait()
13: # Remove 10 lower-performing agents
14: agent.remove_if_latter()
15: # Continued exploration and training
16: agent.explore_and_train()
17: Output: Average performance over 10 runs

Overestimation of Near-Optimal Ac-
tions At the initial training phase (it-
eration step k = 0), let action a
be assumed to have the highest es-
timated Q-value for a given state s,
while a∗ denotes the true optimal action.
This assumption leads to the inequal-
ity q̂(s, a∗) < q̂(s, a) < q∗(s, a∗).
Consequently, the agent is predisposed
to explore actions around the subop-
timal a in its search for states, given
that µ(s) = maxa q̂(s, ·) + ϵ, where
ϵ ∼ N (0, δ2) .

However, the number of steps required
to discover the optimal action a∗ is in-
herently constrained by the environment
and the distance between a and a∗. To
expedite this exploration process, we in-
troduce an action aLLM suggested by
the LLM, replacing a via Q-shaping guided by the loss function in Equation 3 to enhance sample
efficiency. Given the assumption |aLLM − a∗| < |a− a∗| < δ, we can express µ(s) = aLLM + ϵ.
Consequently, the agent has a higher chance of selecting a∗, significantly improving the likelihood of
identifying the optimal trajectory.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

In conclusion, by letting the LLM provide the goodQ set and badQ set, the agent is guided to
prioritize exploring actions suggested by the LLM, thereby enhancing sample efficiency. Over time,
as indicated by Hasselt (2010); Fujimoto et al. (2018) and Theorem 1, q̂ converges towards the locally
optimal Q-function. We now present the theoretical upper bound on the sample complexity required
for q̂ to converge to q∗

D for any given MDP D:

Theorem 2 (Convergence Sample Complexity). The sample complexity n required for q̂ to converge
to the local optimal fixed-point q∗

D with probability 1− δ is:

n > O
(
|S|2

2ϵ2
ln

2|S ×A|
δ

)
Proof. See proof at A.4.

Theorem 2 establishes an upper bound on the sample complexity, indicating that the imprecise
Q-values provided by the LLM will be corrected within a finite number of steps. Therefore, any
heuristic values can be introduced during the early training iterations, and the Q-shaping framework
will adapt to inaccurate Q-values over time.

4.3 ALGORITHM IMPLEMENTATION

For the implementation of Q-shaping, we employ TD3 (Fujimoto et al., 2018) as the RL solver
(backbone) and GPT-4o as the heuristic provider, introducing three additional training phases: (1)
Q-Network Shaping (2) Policy-Network Shaping, and (3) High-performance agent selection. Pseudo-
code 1 outlines the detailed steps of the Q-shaping framework.

Q-Network Shaping In the Q-shaping framework, the LLM is tasked with providing a set of
(s, a,Q) pairs to guide exploration. This approach is particularly crucial during the early training
stage when it is challenging for the agent to independently discover expert trajectories. Traditional
RL solvers often require a substantial number of steps to identify the correct path to success, leading
to sample inefficiency. The goal of the Q-shaping framework is to leverage the provided (s, a,Q)
pairs to accelerate exploration and help the agent quickly identify the optimal path.

Env Paper Introduction

Env Config File / Env Web Introduction
class SawyerHandlePressEnvV2(SawyerXYZEnv):
 TARGET_RADIUS: float = 0.02
 def __init__(...)-> None
 self.goal = ...
 self.obj_init_pos = ...
 self.hand_init_pos = ...
 self._random_reset_space = ...
 self.goal_space = ...

Code Template
class EnvName:
 def __init__(self):
 ...

 def good_Q(self, batch_size):
 ...
 return states, actions, q_targets
 def bad_Q(self, batch_size):
 ...
 return states, actions, q_targets

You need to write a Python class that provides functions to
generate (s, a, Q) values based on the environment
description:
Implement good_Q to encourage successful actions and bad_Q
to penalize actions leading to termination.

Provide a complete class with __init__, good_Q, and bad_Q.

General Template

{Env config file}

{Code template}

{Env paper introduction}

class HandlePress:
 def __init__(self):
 ...

 def good_Q(self, batch_size):
 # define states
 # define actions
 # assign q values
 ...
 return states, actions, q_targets

 def bad_Q(self, batch_size):
 # define states
 # define actions
 # assign q values
 ...
 return states, actions, q_targets

LLM Output

LLM

Q-Network

Policy
at-2

at-1

allm

st-2

st-1

st

policy-shaping

q-shaping

policy update

Figure 2: Q-shaping prompt. There is a general code template that specifies the required structure
for the generated code. In addition to the template, three key pieces of information are necessary
to generate an effective heuristic function: the code template, an introduction to the environment
provided in the paper, and the environment configuration file.

To obtain DLLM , we construct a general code template as the prompt as illustrated in Figure
2, supplemented by task-specific environment configuration files and a detailed definition of the
observation and action spaces within the simulator. Subsequently, we apply the loss function
Lq−shaping to update the Q-function:

Lq−shaping(θ) = E(si,ai,Qi)∼Dg
(Qi − q̂θ(si, ai))

2 (3)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Policy-Network Shaping In most reinforcement learning (RL) algorithms, the policy is derived
from the Q-function, where the policy is optimized to execute actions that maximize the Q-value
given a state. The policy update is expressed as:µ(s) = argmaxa q̂(s, ·)
While introducing a learning rate and target policy can help stabilize the training process and prevent
fluctuations in the policy network, this approach often slows down the convergence speed. To
accelerate this adaptation, we introduce a "Policy-Network Shaping" phase designed to allow the
policy to quickly align with the good actions and avoid the bad actions provided by the LLM.

The shaping loss function is defined as:
Lpolicy−shaping = λ1E(s,a)∼GLLM

[
∥µ(s)− a∥2

]
− λ2E(s,a)∼BLLM

[
∥µ(s)− a∥2

]
(4)

, where (s, a) ∼ GLLM and (s, a) ∼ BLLM represent state-action pairs sampled from the LLM-
provided goodQ and badQ sets, respectively, and λ1 and λ2 are hyperparameters controlling the
influence of the LLM-guided shaping.

With this "Policy-Network Shaping" phase, researchers can quickly observe the impact of heuristic
values, facilitating the rapid evolution of heuristic quality, ultimately leading to a more efficient
exploration process and faster convergence to optimal behavior.

High-Performance Agent Selection With Q-network shaping and policy-network shaping, the
Q-shaping framework enables a more rapid verification of the quality of provided heuristic values
compared to traditional reward shaping. This allows the experimenter to selectively retain high-
performing agents for further training while discarding those that underperform. As outlined in
Algorithm 1, following the shaping of the policy and Q-values, each agent is allowed 10,000 steps to
explore. After this exploration phase, weaker agents are removed, and only the top-performing agent
continues with the training process.

5 EXPERIMENT SETTINGS

We investigate the following hypotheses through a series of four experiments:

1. Q-shaping can enhance sample efficiency in reinforcement learning.
2. Q-shaping can adapt to incorrect or hallucinated heuristics while maintaining optimality.
3. Q-shaping outperforms LLM-based reward shaping methods.
4. LLM can design heuristic functions that provide s, a,Q altogether.

Figure 3: Evaluation environments span a diverse set of robot types and tasks, ranging from simple
pendulum systems to humanoid control. The 20 tasks cover a variety of state dimensions, robotic
types, and reward structures

To validate these hypotheses, we conducted three primary experiments and one ablation study. GPT-
4o served as the heuristic provider, while TD3 was employed as the reinforcement learning (RL)
backbone, forming LLM-TD3. As illustrated in Figure 3, Q-shaping and various baseline methods
were evaluated across 20 distinct tasks involving drones, robotic arms, and other robotic control
challenges. Below, we describe the specific experiments and their objectives:

1. Sample Efficiency Experiment: We compare Q-shaping with four baseline methods to
assess its impact on sample efficiency.

2. Comparison with LLM-based Reward Shaping: Q-shaping, which integrates domain
knowledge to assist in agent training, is compared with Text2Reward and Eureka to evaluate
its performance relative to existing LLM-based reward shaping approaches.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

3. LLM Quality Evaluation: Although Q-shaping guarantees optimality, its reliance on
LLM-provided heuristics may influence performance. This experiment evaluates the quality
of different LLM outputs.

4. Ablation Study on Q-shaping phases: Q-shaping introduces three key training phases.
This experiment isolates and examines the contribution of each phase to overall performance.

5. Teachability Experiment: This experiment evaluates the teachability of different LLMs by
analyzing how few interactions can improve code quality and performance.

Figure 4: Learning curve comparison of each algorithm across 20 tasks.

Environments We evaluate Q-shaping and baselines across 20 distinct environments, including
8 from Gymnasium Classic Control and MuJoCo (Todorov et al., 2012), 9 from MetaWorld (Yu
et al., 2020), and 3 from PyFlyt (Tai et al., 2023). Notably, the robotic arm and drone environments
used are less commonly studied, making it unlikely that the LLM was pretrained on these specific
environments.

Baselines For the sample efficiency experiments, we compared Q-shaping against several baseline
algorithms, including CleanRL-PPO, CleanRL-SAC (Huang et al., 2022), DDPG (Lillicrap et al.,
2015), and TD3 (Fujimoto et al., 2018). When evaluating Q-shaping against other reward shaping
methods, we selected Text2Reward and Eureka as baselines. In the LLM-type ablation study, we
assessed the performance of different LLMs: o1-Preview, GPT-4o-Mini, Gemini-1.5-Flash (Team
et al., 2023), DeepSeek-V2 (DeepSeek-AI et al., 2024), and Yi-Large (Young et al., 2024).

- Text2Reward: Text2Reward leverages GPT-4 to generate reward functions from natural language
task descriptions. In this study, we use provided prompts to describe the MetaWorld tasks, with SAC
as the baseline RL algorithm for training policies.

- Eureka: Eureka utilizes an evolutionary algorithm to iteratively evolve reward functions based on
task performance, refining the reward function over successive generations to improve task success
rates. In this work, K (iteration batch size) is set to 8, and N = 5 (search iterations) is used. We use
GPT-4o as the reward generator and CleanRL-PPO as the backbone reinforcement learning algorithm.
The prompts used to generate reward functions are detailed in Appendix B.3.

Figure 5: Q-shaping improvement over the best baseline in each environment and its improvement
over TD3.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Metrics To evaluate sample efficiency, we measure the number of steps required to reach 80% of
peak performance, where peak performance is defined as the highest performance achieved by any
baseline agent. For clarity in visualization, improvements exceeding 150% are truncated to 150%.

Each algorithm is tested 10 times, and the average evaluation performance is reported. Evaluations
are conducted at intervals of 5,000 steps. During each evaluation, the agent is tested over 10 episodes,
and the average episodic return is plotted to form the learning curve.

In our experiment, we do not specify a fixed seed for each run. Using a fixed seed results in a unique
initial state when the environment is reset, which simplifies learning and makes it challenging to
accurately verify the effectiveness and generalization capabilities of each algorithm.

6 RESULTS AND ANALYSIS

Q-Shaping Outperforms Best Baseline by an Average of 16.87% Across 20 Tasks As shown in
Figure 5 and Figure 4, Q-shaping demonstrated a notable improvement over both the best baseline
and TD3 across 20 tasks. On average, Q-shaping improves performance by 16.87% compared to the
best baseline and by 55.39% compared to TD3, highlighting its effectiveness in enhancing sample
efficiency and task performance. This supports H1.

Figure 6: Learning curve comparison between Q-shaping and LLM-based reward shaping methods.
The evaluation was conducted on four Meta-World environments: door-close, drawer-open, window-
close, and sweep-into, with peak performance serving as the basis for comparison.
Q-Shaping Outperforms LLM-Based Reward Shaping Methods by 226.67% Q-shaping
achieved substantial improvements over both the Eureka and T2R baselines, as shown in Figure 6.
The comparison is based on peak performance across the evaluated Meta-World environments.

Table 1: Additional training steps required to derive
effective heuristic functions for LLM-TD3 and Eureka
across four Meta-World environments.

Algorithm door-close-v2 drawer-open-v2 sweep-into-v2 window-close-v2

Eureka 8× 106 8× 106 8× 106 8× 106

LLM-TD3 1.5× 103 2× 103 3× 103 2× 103

Compared to the best baseline, LLM-
TD3 improved by 5.16% in the
door-close task, 81.89% in drawer-
open, 715.67% in window-close, and
103.96% in sweep-into, resulting in an
average peak performance improve-
ment of 226.67%.

LLM-based reward shaping methods,
though capable of improving task suc-
cess rates (Ma et al., 2023; Xie et al.), often bias optimality and, as shown in Table 1, require
substantial time to evaluate the effectiveness of reward heuristics. In contrast, Q-shaping achieves a
226.67% improvement over the best LLM-based reward shaping methods and requires only a few
steps to validate the heuristic function. This supports H2 and H3.

Table 2: Evaluation of LLM Quality in Outputting Heuristic
Values

Metric o1-Preview GPT-4o Gemini DeepSeek-V2.5 yi-large
Template Adherence (%) 100.0 100.0 40.0 100.0 100.0
Correct Q-values (%) 100.0 100.0 60.0 100.0 100.0
Correct State-Action Dim (%) 100.0 100.0 80.0 100.0 100.0
Code Completeness (%) 100.0 100.0 20.0 100.0 100.0
Bug-Free (%) 100.0 100.0 20.0 100.0 100.0
Average (%) 100.0 100.0 44.0 100.0 100.0

Most LLMs Can Provide Correct
Heuristic Functions We evaluated
the quality of LLM-generated heuris-
tic functions from five perspectives:
(1) adherence to the required code
template, (2) correctness of the as-
signed Q-values, (3) accuracy of the
state-action dimension, (4) complete-
ness of the generated code, and (5)

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

presence of bugs in the generated code. Each LLM was prompted 10 times with the same request,
and we quantified their performance using a correctness rate across these metrics.

Table 3: Ablation Study on Additional Training Phases. The study evaluates the impact of three key
training phases—Q-Network Shaping, Policy-Network Shaping, and Agent Selection—across four
Meta-World environments: door-close, drawer-open, window-close, and sweep-into. Effectiveness is
measured by convergence steps, with "Failed" indicating algorithms that did not reach the convergence
threshold within 106 steps.

Phase Environment

Q-shaping Policy-shaping Selection door-close-v2 drawer-open-v2 sweep-into-v2 window-close-v2

× × × Failed Failed Failed 759999
✓ × × Failed 310000 Failed 570000
× ✓ × 30000 340000 Failed 215000
✓ ✓ × 30000 275000 860000 195000
✓ ✓ ✓ 25000 265000 790000 165000

1 2 3 4 5
Interaction Count

59

508

957

1406

1855

2305

Av
er

ag
e

Pe
rfo

rm
an

ce

o1-Preview
GPT-4o
DeepSeek
Yi-Large

Figure 7: Teachability of different LLMs.
The x-axis represents the number of in-
teractions, while the y-axis shows the
average performance across four tasks:
Door-Close, Drawer-Open, Sweep-Into,
and Window-Close.

Correctness of the assigned Q-values means that state-
action pairs (s, a) from the LLM-generated goodQ set
must be assigned Q-values greater than zero, while those
from the badQ set must be assigned Q-values less than or
equal to zero.

The results, as shown in Table 2, indicate that most LLMs,
including o1-Preview, GPT-4o, DeepSeek-V2.5, and yi-
large, provided correct heuristic functions with a 100%
success rate across all evaluation metrics. However, Gem-
ini exhibited poorer performance, achieving only 44% on
average. This supports H4.

Each Training Phase Enhances Sample Efficiency As
shown in Table 3, each training phase enhances sample ef-
ficiency. Q-Network shaping and policy-network shaping
together result in substantial performance gains for TD3.
Additionally, the agent selection phase helps by eliminat-
ing agents that fail to explore effective trajectories in the
early stages of training, providing a slight improvement in
average sample efficiency.

Few Interactions Significantly Improve Code Quality Figure 7 illustrates the teachability of
LLMs within the Q-shaping framework. Remarkably, all models achieved high performance within
just 3 to 4 interactions, suggesting that the primary issue with the initial generated code lies in
parameter tuning rather than structural flaws.

7 CONCLUSION

We propose Q-shaping, an alternative framework that integrates domain knowledge to enhance sample
efficiency in reinforcement learning. In contrast to traditional reward shaping, Q-shaping offers two
key advantages: (1) it preserves optimality, and (2) it allows for rapid verification of the agent’s
behavior. These features enable experimenters or LLMs to iteratively refine the quality of heuristic
values without concern for the potential negative impact of poorly designed heuristics. Experimental
results demonstrate that Q-shaping significantly improves sample efficiency and outperforms LLM-
guided reward shaping methods across various tasks.

We hope this work encourages further research into advanced techniques that leverage LLM outputs
to guide and enhance the search process in reinforcement learning.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.
Unifying count-based exploration and intrinsic motivation. Advances in neural information
processing systems, 29, 2016.

Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I Cowling, Philipp
Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis, and Simon Colton. A survey
of monte carlo tree search methods. IEEE Transactions on Computational Intelligence and AI in
games, 4(1):1–43, 2012.

Thomas Carta, Clément Romac, Thomas Wolf, Sylvain Lamprier, Olivier Sigaud, and Pierre-Yves
Oudeyer. Grounding large language models in interactive environments with online reinforcement
learning. In International Conference on Machine Learning, pp. 3676–3713. PMLR, 2023.

Jonathan D Chang, Dhruv Sreenivas, Yingbing Huang, Kianté Brantley, and Wen Sun. Adversarial
imitation learning via boosting. arXiv preprint arXiv:2404.08513, 2024.

Chang Chen, Yi-Fu Wu, Jaesik Yoon, and Sungjin Ahn. Transdreamer: Reinforcement learning with
transformer world models. arXiv preprint arXiv:2202.09481, 2022.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34:15084–15097, 2021.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in neural information processing
systems, 30, 2017.

Kun Chu, Xufeng Zhao, Cornelius Weber, Mengdi Li, and Stefan Wermter. Accelerating reinforce-
ment learning of robotic manipulations via feedback from large language models. arXiv preprint
arXiv:2311.02379, 2023.

DeepSeek-AI, Aixin Liu, Bei Feng, Bin Wang, , et al. Deepseek-v2: A strong, economical, and
efficient mixture-of-experts language model, 2024. URL https://arxiv.org/abs/2405.
04434.

Yuqing Du, Olivia Watkins, Zihan Wang, Cédric Colas, Trevor Darrell, Pieter Abbeel, Abhishek
Gupta, and Jacob Andreas. Guiding pretraining in reinforcement learning with large language
models. In International Conference on Machine Learning, pp. 8657–8677. PMLR, 2023.

Chelsea Finn, Sergey Levine, and Pieter Abbeel. Guided cost learning: Deep inverse optimal control
via policy optimization. In International conference on machine learning, pp. 49–58. PMLR, 2016.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pp. 1587–1596. PMLR, 2018.

Divyansh Garg, Shuvam Chakraborty, Chris Cundy, Jiaming Song, and Stefano Ermon. Iq-learn:
Inverse soft-q learning for imitation. Advances in Neural Information Processing Systems, 34:
4028–4039, 2021.

Izzeddin Gur, Hiroki Furuta, Austin Huang, Mustafa Safdari, Yutaka Matsuo, Douglas Eck, and
Aleksandra Faust. A real-world webagent with planning, long context understanding, and program
synthesis. arXiv preprint arXiv:2307.12856, 2023.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and
applications. arXiv preprint arXiv:1812.05905, 2018.

Tuomas Haarnoja, Ben Moran, Guy Lever, Sandy H Huang, Dhruva Tirumala, Jan Humplik, Markus
Wulfmeier, Saran Tunyasuvunakool, Noah Y Siegel, Roland Hafner, et al. Learning agile soccer
skills for a bipedal robot with deep reinforcement learning. Science Robotics, 9(89):eadi8022,
2024.

11

https://arxiv.org/abs/2405.04434
https://arxiv.org/abs/2405.04434

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Hado Hasselt. Double q-learning. In J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel, and
A. Culotta (eds.), Advances in Neural Information Processing Systems, volume 23. Curran Asso-
ciates, Inc., 2010. URL https://proceedings.neurips.cc/paper_files/paper/
2010/file/091d584fced301b442654dd8c23b3fc9-Paper.pdf.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. Advances in neural
information processing systems, 29, 2016.

Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty, Kinal
Mehta, and João G.M. Araújo. Cleanrl: High-quality single-file implementations of deep rein-
forcement learning algorithms. Journal of Machine Learning Research, 23(274):1–18, 2022. URL
http://jmlr.org/papers/v23/21-1342.html.

Borja Ibarz, Jan Leike, Tobias Pohlen, Geoffrey Irving, Shane Legg, and Dario Amodei. Reward
learning from human preferences and demonstrations in atari. Advances in neural information
processing systems, 31, 2018.

Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z Leibo, David
Silver, and Koray Kavukcuoglu. Reinforcement learning with unsupervised auxiliary tasks. In
International Conference on Learning Representations, 2016.

Yunfan Jiang, Agrim Gupta, Zichen Zhang, Guanzhi Wang, Yongqiang Dou, Yanjun Chen, Li Fei-Fei,
Anima Anandkumar, Yuke Zhu, and Linxi Fan. Vima: General robot manipulation with multimodal
prompts. In NeurIPS 2022 Foundation Models for Decision Making Workshop, 2022.

Tobias Johannink, Shikhar Bahl, Ashvin Nair, Jianlan Luo, Avinash Kumar, Matthias Loskyll,
Juan Aparicio Ojea, Eugen Solowjow, and Sergey Levine. Residual reinforcement learning for
robot control. In 2019 international conference on robotics and automation (ICRA), pp. 6023–6029.
IEEE, 2019.

Geunwoo Kim, Pierre Baldi, and Stephen McAleer. Language models can solve computer tasks.
Advances in Neural Information Processing Systems, 36, 2024.

Ilya Kostrikov, Ofir Nachum, and Jonathan Tompson. Imitation learning via off-policy distribution
matching. In International Conference on Learning Representations, 2020.

Minae Kwon, Sang Michael Xie, Kalesha Bullard, and Dorsa Sadigh. Reward design with language
models. arXiv preprint arXiv:2303.00001, 2023.

Kimin Lee, Laura Smith, and Pieter Abbeel. Pebble: Feedback-efficient interactive reinforcement
learning via relabeling experience and unsupervised pre-training. arXiv preprint arXiv:2106.05091,
2021.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Bill Yuchen Lin, Yicheng Fu, Karina Yang, Faeze Brahman, Shiyu Huang, Chandra Bhagavatula,
Prithviraj Ammanabrolu, Yejin Choi, and Xiang Ren. Swiftsage: A generative agent with fast and
slow thinking for complex interactive tasks. Advances in Neural Information Processing Systems,
36, 2024.

Huihan Liu, Alice Chen, Yuke Zhu, Adith Swaminathan, Andrey Kolobov, and Ching-An Cheng.
Interactive robot learning from verbal correction. arXiv preprint arXiv:2310.17555, 2023.

Jieyi Long. Large language model guided tree-of-thought. arXiv preprint arXiv:2305.08291, 2023.

Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayaraman,
Yuke Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward design via coding
large language models. In The Twelfth International Conference on Learning Representations,
2023.

Vincent Micheli, Eloi Alonso, and François Fleuret. Transformers are sample-efficient world models.
arXiv preprint arXiv:2209.00588, 2022.

12

https://proceedings.neurips.cc/paper_files/paper/2010/file/091d584fced301b442654dd8c23b3fc9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2010/file/091d584fced301b442654dd8c23b3fc9-Paper.pdf
http://jmlr.org/papers/v23/21-1342.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Mitsuhiko Nakamoto, Simon Zhai, Anikait Singh, Max Sobol Mark, Yi Ma, Chelsea Finn, Aviral
Kumar, and Sergey Levine. Cal-ql: Calibrated offline rl pre-training for efficient online fine-tuning.
Advances in Neural Information Processing Systems, 36, 2024.

Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transformations:
Theory and application to reward shaping. In Icml, volume 99, pp. 278–287, 1999.

Georg Ostrovski, Marc G Bellemare, Aäron Oord, and Rémi Munos. Count-based exploration with
neural density models. In International conference on machine learning, pp. 2721–2730. PMLR,
2017.

Pierre-Yves Oudeyer and Frederic Kaplan. What is intrinsic motivation? a typology of computational
approaches. Frontiers in neurorobotics, 1:108, 2007.

Yutao Ouyang, Jinhan Li, Yunfei Li, Zhongyu Li, Chao Yu, Koushil Sreenath, and Yi Wu. Long-
horizon locomotion and manipulation on a quadrupedal robot with large language models. arXiv
preprint arXiv:2404.05291, 2024.

Fabian Paischer, Thomas Adler, Vihang Patil, Angela Bitto-Nemling, Markus Holzleitner, Sebastian
Lehner, Hamid Eghbal-Zadeh, and Sepp Hochreiter. History compression via language models
in reinforcement learning. In International Conference on Machine Learning, pp. 17156–17185.
PMLR, 2022.

Fabian Paischer, Thomas Adler, Markus Hofmarcher, and Sepp Hochreiter. Semantic helm: A
human-readable memory for reinforcement learning. Advances in Neural Information Processing
Systems, 36, 2024.

Jongjin Park, Younggyo Seo, Jinwoo Shin, Honglak Lee, Pieter Abbeel, and Kimin Lee. Surf:
Semi-supervised reward learning with data augmentation for feedback-efficient preference-based
reinforcement learning. In 10th International Conference on Learning Representations, ICLR
2022. International Conference on Learning Representations, 2022.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In International conference on machine learning, pp. 2778–2787.
PMLR, 2017.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Jan Robine, Marc Höftmann, Tobias Uelwer, and Stefan Harmeling. Transformer-based world models
are happy with 100k interactions. arXiv preprint arXiv:2303.07109, 2023.

Peter Shaw, Mandar Joshi, James Cohan, Jonathan Berant, Panupong Pasupat, Hexiang Hu, Urvashi
Khandelwal, Kenton Lee, and Kristina N Toutanova. From pixels to ui actions: Learning to follow
instructions via graphical user interfaces. Advances in Neural Information Processing Systems, 36,
2024.

Lucy Xiaoyang Shi, Zheyuan Hu, Tony Z Zhao, Archit Sharma, Karl Pertsch, Jianlan Luo, Sergey
Levine, and Chelsea Finn. Yell at your robot: Improving on-the-fly from language corrections.
arXiv preprint arXiv:2403.12910, 2024.

Noah Shinn, Beck Labash, and Ashwin Gopinath. Reflexion: an autonomous agent with dynamic
memory and self-reflection. arXiv preprint arXiv:2303.11366, 2023.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

Abishek Sridhar, Robert Lo, Frank F Xu, Hao Zhu, and Shuyan Zhou. Hierarchical prompting
assists large language model on web navigation. In The 2023 Conference on Empirical Methods in
Natural Language Processing, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Bradly C Stadie, Sergey Levine, and Pieter Abbeel. Incentivizing exploration in reinforcement
learning with deep predictive models. arXiv preprint arXiv:1507.00814, 2015.

Jun Jet Tai, Jim Wong, Mauro Innocente, Nadjim Horri, James Brusey, and Swee King Phang. Pyflyt–
uav simulation environments for reinforcement learning research. arXiv preprint arXiv:2304.01305,
2023.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu
Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable
multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 5026–5033.
IEEE, 2012.

Raphael Trumpp, Denis Hoornaert, and Marco Caccamo. Residual policy learning for vehicle control
of autonomous racing cars. In 2023 IEEE Intelligent Vehicles Symposium (IV), pp. 1–6. IEEE,
2023.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and
Anima Anandkumar. Voyager: An open-ended embodied agent with large language models. arXiv
preprint arXiv:2305.16291, 2023.

Yue Wu, Yewen Fan, Paul Pu Liang, Amos Azaria, Yuanzhi Li, and Tom M Mitchell. Read and
reap the rewards: Learning to play atari with the help of instruction manuals. Advances in Neural
Information Processing Systems, 36, 2024.

Markus Wulfmeier, Peter Ondruska, and Ingmar Posner. Maximum entropy deep inverse reinforce-
ment learning. arXiv preprint arXiv:1507.04888, 2015.

Tianbao Xie, Siheng Zhao, Chen Henry Wu, Yitao Liu, Qian Luo, Victor Zhong, Yanchao Yang, and
Tao Yu. Text2reward: Reward shaping with language models for reinforcement learning. In The
Twelfth International Conference on Learning Representations.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629,
2022.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large language models. Advances in Neural
Information Processing Systems, 36, 2024.

Alex Young, Bei Chen, Chao Li, Chengen Huang, Ge Zhang, Guanwei Zhang, Heng Li, Jiangcheng
Zhu, Jianqun Chen, Jing Chang, et al. Yi: Open foundation models by 01. ai. arXiv preprint
arXiv:2403.04652, 2024.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on robot learning, pp. 1094–1100. PMLR, 2020.

Wenhao Yu, Nimrod Gileadi, Chuyuan Fu, Sean Kirmani, Kuang-Huei Lee, Montserrat Gonzalez
Arenas, Hao-Tien Lewis Chiang, Tom Erez, Leonard Hasenclever, Jan Humplik, et al. Language
to rewards for robotic skill synthesis. In 7th Annual Conference on Robot Learning, 2023.

Shenao Zhang, Sirui Zheng, Shuqi Ke, Zhihan Liu, Wanxin Jin, Jianbo Yuan, Yingxiang Yang,
Hongxia Yang, and Zhaoran Wang. How can llm guide rl? a value-based approach. arXiv preprint
arXiv:2402.16181, 2024.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Yonatan Bisk, Daniel Fried, Uri Alon, et al. Webarena: A realistic web environment for building
autonomous agents. arXiv preprint arXiv:2307.13854, 2023.

Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, Anind K Dey, et al. Maximum entropy inverse
reinforcement learning. In Aaai, volume 8, pp. 1433–1438. Chicago, IL, USA, 2008.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 ADDITIONAL NOTATION

Datasets. In practise, a batch of data will be sampled from a distribution Φ : Dist(Z), which is the
collected local MDP. A batch D′ containing d tuples ⟨s, a, r, s′⟩ is sampled as D′ ∼ Φd, where pairs
⟨s, a⟩ are drawn from Φ, and rewards r and subsequent states s′ are sampled independently from the
reward functionRD(·|⟨s, a⟩) and the transition function PD(·|⟨s, a⟩), respectively.

Given a dataset or batch D,we denote D(⟨s, a⟩) as the multi-set of all ⟨r, s′⟩ pairs, and use n̈D ∈
R|Z| to denote the count vector, where n̈D(⟨s, a⟩) := |D(s, a)|. We define the empirical reward
vector as rD(⟨s, a⟩) :=

∑
r,s′∈D(⟨s,a⟩)

r
|D(⟨s,a⟩)| and empirical transition matrix as PD(s′|⟨s, a⟩) :=∑

r,ṡ′∈D(⟨s,a⟩)
I(ṡ′=s′)
|D(⟨s,a⟩)| for all state-action pairs with n̈D(⟨s, a⟩) > 0. For state-action pairs where

n̈D(⟨s, a⟩) = 0, the maximum-likelihood estimates of reward and transition cannot be clearly defined,
so they remain unspecified. The bounds hold no matter how these values are chosen, so long as rD is
bounded and PD is stochastic. The empirical policy of a dataset D is defined as π̂D(a|s) := |D(⟨s,a⟩)|

|D(⟨s,·⟩)|
except where n̈D(⟨s, a⟩) = 0, where it can similarly be any valid action distribution. The empirical
visitation distribution of a dataset D is computed analogously to the regular visitation distribution but
uses PD in place of P . Thus it’s given by 1

1−γ (I − γAπPD)
−1.

Lemma 1 (Decomposition). For any MDP ξ and policy π, consider the Bellman fixed-point equation
given by, let (vπ

ξ)
∗ be defined as the unique value vector such that (vπ

ξ)
∗ = Aπ(rξ + γPξ(v

π
ξ)

∗),
and let v be any other value vector. Assume that π(a|s) = 1 if a = argmaxa(q

π
ξ)

∗(s, a), otherwise
π(a|s) = 0. We have:

|q∗
ξ(s, µ(s))− q(s, µ(s))| = |

(
(I − γAπPξ)

−1(Aπ(rξ + γPξv)− v)
)
(s)| (5)

Proof.

Aπ(rξ + γPξv)− v = Aπ(rξ + γPξv)− (vπ
ξ)

∗ + (vπ
ξ)

∗ − v

= Aπ(rξ + γPξv)−Aπ(rξ + γPξ(v
π
ξ)

∗) + (vπ
ξ)

∗ − v

= γAπPξ(v − (vπ
ξ)

∗) + ((vπ
ξ)

∗ − v)

= ((vπ
ξ)

∗ − v)− γAπPξ((v
π
ξ)

∗ − v)

= (I − γAπPξ)((v
π
ξ)

∗ − v)

Note that (vπ
ξ)

∗ = Aπ(qπ
ξ)

∗, After we expand the value function we have:

(I − γAπPξ)
−1
(
Aπ(rξ + γPξv)

)
= Aπ(qπ

ξ)
∗ − v

= Aπ(qπ
ξ)

∗ −Aq

By indexing at ⟨s, µ(s)⟩, we have:

|q∗
ξ(s, µ(s))− q(s, µ(s))| = |

(
(I − γAπPξ)

−1(Aπ(rξ + γPξv)− v)
)
(s)|

Lemma 2 (Convergence Bound). Since that s′ and r are sampled independently and identically
distributed (iid) from PD(·|s, a) and RD(·|s, a) respectively. Let D′ denotes the batch of data sample
from D. Then, with probability at least 1− δ, we have:

|q∗
D′(s, µ(s))− q̂(s, µ(s))| ≤

(√
1

2
ln

2|S × A|
δ

)∑
s′

νD′(s′|s0 = s)
1√

n̈D′(⟨s′, µ(s′)⟩)

Proof. See proof at A.3

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A.2 PROOF OF THEOREM 1

Assumption A.1. The heuristic h(s, a) provided by the LLM does not change with the training steps,
i.e., hk(s, a) = h(s, a) for all k = 0, 1, 2,
Assumption A.2. The heuristic h(s, a) is only used during the initial training steps and is removed
after some step k0, i.e., for all training steps k ≥ k0, the heuristic term is not provided.

Note that q is the matrix representation of the Q function. In the proof of this section, we use a more
general Q : RZ → R to represent the Q function. The heuristic TD update for Q̂ iteration is:

Q̂k+1(s, a) = (1− α)Q̂k(s, a) + α

(
r(s, a) + γ

∑
s′∈S

P (s′|s, a)max
a′

Q̂(s′, a′) + h(s, a)

)
.

We can define a Bellman optimal operator Th based on the heuristic TD update as follows:

Q̂k+1(s, a) = ThQ̂k = r(s, a) + γ
∑
s′∈S

P (s′|s, a)max
a′

Q̂k(s′, a′) + h(s, a)

.

Suppose training framework Q-shaping satisfies assumption A.1. Then we prove that the Bellman
optimal operator Th is γ-contraction operator on Q̂:

∥ThQ̂− ThQ̂′∥∞ = γ max
s,a∈S,A

|
∑
s′

P (s′|s, a)[max
a′

Q̂(s′, a′)−max
a′

Q̂′(s′, a′)]|

≤ γ max
s,a∈S,A

|max
s′
|
(
max
a′

Q̂(s′, a′)−max
a′

Q̂′(s′, a′)
)
||

= γ∥Q̂− Q̂′∥∞

The optimal Q-function for the new update formula, without assumption A.2, is defined as:

Q̂∗(s, a) = r(s, a) + γ
∑
s′∈S

P (s′|s, a)max
a′

Q̂∗(s′, a′) + h(s, a)

.

Th is a γ-contraction operator on Q̂. This means that as the number of iterations k increases, Q̂ will
approach the heuristic fixed point, which is biased. Under assumption A.2, the heuristic TD update
will degenerate into the TD update. Without the influence of the heuristic term, the Q-values will be
estimated solely from the local MDP D.

Next, we prove that the converged heuristic-guided Q function is equivalent to the traditional Q
function. Define the following:

ΘH denotes the set of terminal states,
ΘH−1 denotes the set of states one step before the terminal,

...
Θ1 denotes the set of states at the initial step.

For all s ∈ ΘH−1 and some action a, it is clear that Q̂∗(s, a) = Q∗(s, a), because:

Q∗(s, a)|s∈ΘH−1
= Q̂∗(s, a)|s∈ΘH−1

= r(s, a) + γ
∑

s′∈ΘH

1s∈ΘH
max
a′

Q∗(s′, a′) = r(s, a)

For all s ∈ ΘH−2 and some action a, we have:

Q̂∗(s, a)|s∈ΘH−2
= r(s, a) + γ

∑
s′∈ΘH−1

P (s′|s, a)max
a′

Q̂∗(s′, a′)

= r(s, a) + γ
∑

s′∈ΘH−1

P (s′|s, a)max
a′

Q∗(s′, a′)

= Q∗(s, a)|s∈ΘH−2

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

.

With sufficient iterations, we have: Q̂∗ = Q∗ . Specifically, we have: q∗ = q̂∗ for some MDP D.

A.3 PROOF OF LEMMA 2

Let D′ be a batch of data, and D denotes the replay buffer, consider that for any ⟨s, a⟩, the expression
rD′(⟨s, a⟩) + γPD′(⟨s, a⟩)vπ can be equivalently expressed as an expectation of random variables,

rD′(⟨s, a⟩) + γPD′(⟨s, a⟩)v =
1

n̈D′(⟨s, a⟩)
∑

r,s′∈D′(⟨s,a⟩)

r + γv(s′)

each with expected value:

Er,s′∈D′(⟨s,a⟩)[r + γv(s′)] = Er∼RD(·|⟨s,a⟩)
s′∼PD(·|⟨s,a⟩)

[r + γv(s′)] = [rD + γPDv](⟨s, a⟩).

Hoeffding’s inequality indicates that the mean of bounded random variables will approximate their
expected values with high probability. By applying Hoeffding’s inequality to each element in the
|S × A| state-action space and employing a union bound, we establish that with probability at least
1− δ,

|(rD + γPDv)− (rD′ + γPD′v)| ≤ 1

1− γ

√
1

2
ln

2|S × A|
δ

n̈−1
D′

We can left-multiply Aπ and rearrange to get:

|Aπ(rD + γPDv)−Aπ (rD′ + γPD′v)| ≤

(
1

1− γ

√
1

2
ln

2|S × A|
δ

)
Aπn̈

− 1
2

D′

then we left-multiply the discounted visitation of π:

| (I − γAπPD′)
−1

[Aπ(rD + γPDv)−Aπ (rD′ + γPD′v)]| ≤

(
1

1− γ

√
1

2
ln

2|S × A|
δ

)
(I − γAπPD′)

−1
Aπn̈

− 1
2

D′

This matrix: (I − γAπPD′)
−1

Aπn̈
− 1

2

D′ ,belongs to the space R|S|. By indexing at state s, we obtain:

(I − γAπPD′)
−1

Aπn̈
− 1

2

D′ (s) = (1− γ)
∑
s′

ν(s′|s0 = s)
1√

ND′(⟨s, µ(s)⟩)

Finally, by integrate these terms together we have the bound on Lemma 2:

|q∗
D′(s, µ(s))− q(s, µ(s))| ≤

(√
1

2
ln

2|S × A|
δ

)∑
s′

ν(s′|s0 = s)
1√

ND′(⟨s′, µ(s′)⟩)

Given that this inequality is universally applicable to any q, and acknowledging that the heuristic term
h supplied by the LLM serves as a constant within the temporal-difference (TD) update mechanism
of the Q-function, it follows that:

|q∗
D′(s, µ(s))− q̂(s, µ(s))| = |q∗

D′(s, µ(s))− q(s, µ(s))− h(s, µ(s))|

≤

(√
1

2
ln

2|S × A|
δ

)∑
s′

ν(s′|s0 = s)
1√

ND′(⟨s′, µ(s′)⟩)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A.4 PROOF OF THEOREM 2

To get the sample complexity of convergence. By Lemma 2,we have:

|q∗
D′(s, µ(s))− q̂(s, µ(s))| ≤

(√
1

2
ln

2|S × A|
δ

)∑
s′

ν(s′|s0 = s)
1√

ND′(⟨s′, µ(s′)⟩)

=

(√
1

2
ln

2|S × A|
δ

)∑
s′

√
ν(s′|s0 = s)

√
ν(s′|s0 = s)√
ndD′(s, a)

(dD′(s, a) = ND′ (⟨s,a⟩)
|D′|)

=

(√
1

2
ln

2|S × A|
δ

)∑
s′

√
dD′(s, µ(s))

√
dD′(s, µ(s))√
ndD′(s, a)

(ν(s)π(µ(s)|s) ≈ dD′(s, µ(s)))

≤

(√
1
2 ln

2|S×A|
δ

)
√
n

∑
s′

√
dD′(s′, µ(s))

≤

(√
1

2
ln

2|S × A|
δ

)
|S|√
n

Since D′ is sampled iid from replay buffer D, Then, when n > O
(

|S|2
2ϵ2 ln 2|S×A|

δ

)
,we have

|q∗
D(s, µ(s))− q∗(s, µ(s))| ≤ ϵ.

B EXPERIMENT DETAILS

B.1 Q-SHAPING DETAILS

In our experiments, we utilized "gpt-4o" as the language model to provide heuristic Q-values, thereby
accelerating the exploration process in the LLM-TD3 algorithm. The experiments were conducted
on a host equipped with a 48-core CPU, 24 GB of GPU memory, and 120 GB of RAM. For complex
tasks, the agent took approximately 2 to 4 hours to converge, whereas for simpler tasks, convergence
was achieved within 10 to 30 minutes. Table 4 provides a detailed description of the experimental
environment.

Table 4: Experimental Environment

Resource Specification

CPU 48-core Intel Xeon E5-2666 v4
GPU NVIDIA GeForce RTX 4090 (24 GB)
RAM 118.1 GB
Convergence Time (Complex Tasks) 2-4 hours
Convergence Time (Simple Tasks) 10-30 minutes

Hyperparameters LLM-TD3 is built on top of TD3, and doesn’t require parameter tuning. In the
baseline implementation, TD3’s hyperparameters are also fixed for comparison. The hyperparameters
of LLM-TD3 are detailed in Table 5. Table 6 displays the convergence line for each environment.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 5: Hyperparameters of LLM-TD3

Hyperparameter Value

LLM Type gpt-4o
Start Timesteps 5000
Evaluation Frequency 5,000
Exploration Noise (Std) 0.1
Batch Size 256
Discount Factor γ 0.99
Target Network Update Rate (Tau) 0.005
Policy Noise 0.2
Noise Clip 0.5
Policy Update Frequency 2
λ1,λ2 100,10
Hidden Layer Size 512 (10,240 for Humanoid)

Table 6: Convergence Line for Each Environment

Environment Convergence Line

Ant-v4 4480
HalfCheetah-v4 8800
Hopper-v4 2560
Humanoid-v4 4000
InvertedPendulum-v4 800
Pendulum-v1 -200
Walker2D-v4 3700
MountainCarContinuous 0.1
Drawer-Open-Task1 3200
Window-Close-Task1 3200
Button-Press-Task1 3200
Sweep-Into-Task1 2800
Door-Close-Task1 3200
Handle-Press-Task1 3200
Basketball-V2-Task1 360
Coffee-Button-V2-Task1 2960
Soccer-V2-Task1 1600
PyFlyt/QuadX-Ball-In-Cup-V2 3840
PyFlyt/QuadX-Pole-Balance-V2 1600
PyFlyt/QuadX-Hover-V2 880

B.2 BASELINE DETAILS

We use table 7 to list the open source repositories of the algorithms used in the experiment, Figure
8 to present the hyperparameters of cleanRL_SAC, and Figure 9 to present the hyperparameters of
cleanRL_PPO.

Table 7: Baseline Code Source

Algorithm Code Repository

cleanRL_PPO https://github.com/vwxyzjn/cleanrl
TD3 https://github.com/sfujim/TD3
DDPG https://github.com/sfujim/TD3
cleanRL_SAC https://github.com/vwxyzjn/cleanrl

19

https://github.com/vwxyzjn/cleanrl
https://github.com/sfujim/TD3
https://github.com/sfujim/TD3
https://github.com/vwxyzjn/cleanrl

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 8: Hyperparameters of SAC

Hyperparameter Value

Critic Learning Rate 3e-3
Actor Learning Rate 3e-4
Entropy Target − dim(A)
Policy Update Frequency 1
Reward Scale 1

8 , 1
Hidden Layer Size 128

Table 9: Key Hyperparameters of PPO

Hyperparameter Value

Learning Rate 3e-4
Num Steps 2048
Total Timesteps 1e6
Gamma (Discount Factor) 0.99
GAE Lambda 0.95
Clip Coefficient 0.2

B.3 DETAILS OF IMPLEMENTING LLM-BASED REWARD SHAPING METHODS

In this experiment, we evaluate Q-shaping against Text2Reward (T2R) (Xie et al.) and Eureka (Ma
et al., 2023) to compare LLM-based reward shaping approaches.

Text2Reward (T2R): Text2Reward is a framework designed to address the challenge of reward
shaping in reinforcement learning by automating the generation of dense, interpretable reward codes
using large language models (LLMs). This method demonstrates effectiveness across various robotic
and locomotion tasks, achieving success rates comparable to or exceeding those obtained with expert-
designed reward codes (Xie et al.). In our experiment, we implement T2R using the provided prompt
available at GitHub link and Soft Actor-Critic (SAC) as the RL backbone.The hyperparameters listed
in Table 10 are used for the implementation of SAC in the Text2Reward experiment.

Table 10: Key Hyperparameters for SAC Implementation

Hyperparameter Value
Batch Size 512
Policy Network Architecture [256, 256, 256]
Discount Factor (γ) 0.99
Learning Rate 0.0003
Soft Update Coefficient (τ) 0.005
Learning Starts (steps) 25,000
Entropy Coefficient (α) auto_0.1

Eureka:

1. Eureka is a reward design algorithm that leverages the capabilities of LLMs for evolutionary
optimization of reward functions. It uses the environment code as context, generating
executable reward functions in a zero-shot manner, and iteratively improves them through
reflection-based feedback and evolutionary search. Eureka’s robust framework has been
validated across a wide range of RL tasks, outperforming expert-designed rewards in many
scenarios (Ma et al., 2023).

2. Eureka is originally designed to operate within the Isaac Gym simulator, adaptations were
necessary for our experiments to integrate Eureka’s functionality with our environment.
Specifically, the prompt for Eureka was tailored into two configurations: one for initial
code generation and another for refining the code based on feedback. These prompts
are detailed in Eureka Prompt 1: Code Generation and Eureka Prompt
1: Reflection. The first prompt facilitates the generation of foundational reward
programs, while the second focuses on optimizing these codes iteratively to align better with
experimental objectives.

In our implementation of Eureka, we configured the iterative batch size (K) to 8 and the search
iterations (N) to 5. Table 11 summarizes the results of each evolutionary iteration. It shows agent
performance at each run and the improvement of each evolution.

20

https://github.com/xlang-ai/text2reward.git

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Eureka Prompt 1: Code Generation

You are a reward engineer trying to write reward functions to solve reinforcement learning
tasks as effective as possible. Your goal is to write a reward function for the environment
that will help the agent learn the task described in text. Your reward function should use
useful variables from the environment as inputs. As an example, the reward function
signature can be:

1 def compute_reward_shaped(obs: torch.Tensor, action: torch.
Tensor) ->

2

3 Tuple[[float, Dict[str, float]]]
4

5 ...
6 return reward, { }

the obs shape is {batch_size, obs_dim}and action shape is {batch_size, action_dim}. and
batch_size is 1. Make sure any new tensor or variable you introduce is on the same device
as the input tensors.
The Python environment is {task_obs_code_string}. Write a reward function for the
following task: {task_description}.
The output of the reward function should consist of two items: (1) the total reward, (2) a
dictionary of each individual reward component. The code output should be formatted as
a python code string: "“‘python ... “‘".
Some helpful tips for writing the reward function code:

1. You may find it helpful to normalize the reward to a fixed range by applying
transformations like torch.exp to the overall reward or its components.

2. If you choose to transform a reward component, then you must also introduce a
temperature parameter inside the transformation function; this parameter must
be a named variable in the reward function and it must not be an input variable.
Each transformed reward component should have its own temperature variable.

3. Make sure the type of each input variable is correctly specified; a float input
variable should not be specified as torch.Tensor.

4. Most importantly, the reward code’s input variables must contain only attributes
of the provided environment class definition (namely, variables that have the
prefix self.). Under no circumstance can you introduce new input variables.

Eureka Prompt 2: Reflection

You are a reward engineer trying to write reward functions to solve reinforcement learning
tasks as effective as possible. Your goal is to write a reward function for the environment
that will help the agent learn the task described in text. Your reward function should use
useful variables from the environment as inputs. As an example, the reward function
signature can be:

1 def compute_reward_shaped(obs: torch.Tensor, action: torch.
Tensor) -> Tuple[float, Dict[str, float]]:

2 ...
3 return reward, {}

the obs shape is {batch_size, obs_dim}and action shape is {batch_size, action_dim}. and
batch_size is 1. Make sure any new tensor or variable you introduce is on the same device
as the input tensors.
The Python environment is {task_obs_code_string}. Write a reward function for the
following task: {task_description}.
The output of the reward function should consist of two items: (1) the total reward, (2) a
dictionary of each individual reward component. The code output should be formatted as
a python code string: "“‘python ... “‘".
Some helpful tips for writing the reward function code:

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

1. You may find it helpful to normalize the reward to a fixed range by applying
transformations like torch.exp to the overall reward or its components.

2. If you choose to transform a reward component, then you must also introduce a
temperature parameter inside the transformation function; this parameter must
be a named variable in the reward function and it must not be an input variable.
Each transformed reward component should have its own temperature variable.

3. Make sure the type of each input variable is correctly specified; a float input
variable should not be specified as torch.Tensor.

4. Most importantly, the reward code’s input variables must contain only attributes
of the provided environment class definition (namely, variables that have the
prefix self.). Under no circumstance can you introduce new input variables.

{the best code}
We trained a RL policy using the provided reward function code and tracked the values
of the individual components in the reward function as well as global policy metrics such
as success rates and episode lengths after every {epoch_freq} epochs and the maximum,
mean, minimum values encountered:
{data}
Please carefully analyze the policy feedback and provide a new, improved reward function
that can better solve the task. Some helpful tips for analyzing the policy feedback:

1. If the success rates are always near zero, then you must rewrite the entire reward
function.

2. If the values for a certain reward component are near identical throughout, then
this means RL is not able to optimize this component as it is written. You may
consider:
(a) Changing its scale or the value of its temperature parameter,
(b) Re-writing the reward component,
(c) Discarding the reward component.

3. If some reward components’ magnitude is significantly larger, then you must
re-scale its value to a proper range.

Please analyze each existing reward component in the suggested manner above first, and
then write the reward function code.

Table 11: Average episodic returns for the task drawer-open across different evolution rounds (rx)
and agents (ax), evaluated at 200k training steps. rx denotes the evolution round, and ax represents
the agent in that round. The column best indicates the best-performing agent in each round.

Round (rx) a1 a2 a3 a4 a5 a6 a7 a8 Best
r1 1018.77 371.74 1931.21 2117.50 2145.50 2373.34 2483.56 1704.40 a7
r2 1964.78 357.45 1704.17 2268.05 1869.65 2073.90 2124.35 1561.83 a4
r3 2163.36 1123.12 801.96 1993.93 2163.62 1904.10 850.56 428.80 a1
r4 2142.97 839.31 1260.82 1445.53 1665.38 1470.83 433.12 1063.76 a1
r5 928.98 1392.44 1761.59 2123.26 2308.81 1348.77 698.31 1888.74 a5

C PROMPT DETAILS FOR THE Q-SHAPING FRAMEWORK

The Q-shaping framework necessitates a general template to guide the code generation provided by
large language models (LLMs). This template requires three key components: (1) the code template,
(2) the environment description, and (3) the environment configuration file.

Below is a comprehensive overview of the general template:

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

General Prompt

You need to generate a piece of code based on the description of the environment or the
configuration file of the environment.

The purpose of this code is to provide a suitable Q value for (s, a) that you consider good
based on the information provided.For bad (s, a), you can assign a Q-value of 0 or a
lower value to discourage the robot from taking this action.
Requirements:
1. In short, your task is to convert the task description into a Python-style Q (s, a)
2. The environment description typically provides the obs_dim and action_dim, along
with the conditions for terminal states and truncation. Your task is to penalize behaviors
that lead to the end and encourage behaviors that result in high scores.
3. If you are confident, you can use your knowledge to generate (s,a,Q) values that you
believe may lead to success or failure. 4. The code returns s, a, q_targets
5. Generate two functions, def good_Q(self, batch_size), def bad_Q(self, batch_size)
6.TIPS: Action is more important than state, so you should focus on encouraging actions
that lead to success and discouraging actions that lead to failure.
7. When designing bad Q-values, there are no bad states, only bad actions. You need to
clearly identify which state-action pairs lead to termination and avoid those actions.
8. If the description mentions states that lead to termination, you should include them in
the bad Q-values, as assigning a Q-value of 0 to termination states usually accelerates
learning.
9. You can try to encourage as many (s,a) pairs as possible to guide the agent to explore
directions that you believe will lead to success.
10. You should provide a complete class definition, including the __init__, goodQ, and
badQ methods, without omitting any of them.

{code template}

{environment description}

{environment config file}

C.1 ILLUSTRATIVE EXAMPLE: Q-SHAPING FRAMEWORK IN ACTION

To provide a concrete understanding of the Q-shaping framework, we present an example using the
robotic arm task "handle-press-v2". This example illustrates the application of the general
template outlined earlier and demonstrates how the three key components—code template, environ-
ment description, and environment configuration file—come together to generate (s,a,Q) pairs that
effectively guide agent behavior.

C.1.1 ENVIRONMENT DESCRIPTION

The Meta-World benchmark is a suite of 50 diverse robotic manipulation tasks designed to evaluate
reinforcement learning (RL) and meta-reinforcement learning (meta-RL) algorithms. In Yu et al.
(2020), the authors introduce a simulated Sawyer robotic arm and provide detailed definitions of the
observation space, action space, and evaluation metrics.

For the purpose of this paper, we focus on Section 4.1 Actions, Observations, and
Rewards from Yu et al. (2020), which outlines the design of the state space, action space, and
reward functions. These details are critical for understanding how to guide large language models
(LLMs) to generate high-quality (s, a,Q) pairs.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Environment Description

4.1 Actions, Observations, and Rewards In order to represent policies for multiple
tasks with one model, the observation and action spaces must contain significant shared
structure across tasks. All of our tasks are performed by a simulated Sawyer robot.
The action space is a 2-tuple consisting of the change in 3D space of the end-effector
followed by a normalized torque that the gripper fingers should apply. The actions in
this space range between −1 and 1. For all tasks, the robot must either manipulate one
object with a variable goal position, or manipulate two objects with a fixed goal position.
The observation space is represented as a 6-tuple of the 3D Cartesian positions of the
end-effector, a normalized measurement of how open the gripper is, the 3D position of
the first object, the quaternion of the first object, the 3D position of the second object, the
quaternion of the second object, all of the previous measurements in the environment,
and finally the 3D position of the goal. If there is no second object or the goal is not
meant to be included in the observation, then the quantities corresponding to them are
zeroed out. The observation space is always 39 dimensional.

Designing reward functions for Meta-World requires two major considerations. First, to
guarantee that our tasks are within the reach of current single-task reinforcement learning
algorithms, which is a prerequisite for evaluating multi-task and meta-RL algorithms,
we design well-shaped reward functions for each task that make each of the tasks at least
individually solvable.

More importantly, the reward functions must exhibit shared structure across tasks.
Critically, even if the reward function admits the same optimal policy for multiple tasks,
varying reward scales or structures can make the tasks appear completely distinct for the
learning algorithm, masking their shared structure and leading to preferences for tasks
with high-magnitude rewards.

Accordingly, we adopt a structured, multi-component reward function for all tasks, which
leads to effective policy learning for each of the task components. For instance, in a task
that involves a combination of reaching, grasping, and placing an object, let o ∈ R3 be
the object position, where o = (ox, oy, oz), h ∈ R3 be the position of the robot’s gripper,
ztarget ∈ R be the target height of lifting the object, and g ∈ R3 be goal position. With
the above definition, the multi-component reward function R is the combination of a
reaching reward, a grasping reward, and a placing reward or subsets thereof for simpler
tasks that only involve reaching and/or pushing. With this design, the reward functions
across all tasks have a similar magnitude that ranges between 0 and 10, where 10 always
corresponds to the reward-function being solved, and conform to similar structure, as
desired. The full form of the reward function and a list of all task rewards is provided in
Appendix.

C.1.2 ENVIRONMENT CONFIGURATION FILE

The primary purpose of the configuration file is to specify the target object’s location and the initial
position of the robotic arm’s gripper. This information can assist the LLM in generating movement
direction vectors that lead to effective actions.

1 from __future__ import annotations
2

3 from typing import Any
4

5 import numpy as np
6 import numpy.typing as npt
7 from gymnasium.spaces import Box
8

9 from metaworld.envs.asset_path_utils import full_v2_path_for
10 from metaworld.envs.mujoco.sawyer_xyz.sawyer_xyz_env import RenderMode,

SawyerXYZEnv
11 from metaworld.envs.mujoco.utils import reward_utils

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

12 from metaworld.types import InitConfigDict
13

14

15 class SawyerHandlePressEnvV2(SawyerXYZEnv):
16 TARGET_RADIUS: float = 0.02
17

18 def __init__(
19 self,
20 render_mode: RenderMode | None = None,
21 camera_name: str | None = None,
22 camera_id: int | None = None,
23) -> None:
24 hand_low = (-0.5, 0.40, 0.05)
25 hand_high = (0.5, 1.0, 0.5)
26 obj_low = (-0.1, 0.8, -0.001)
27 obj_high = (0.1, 0.9, 0.001)
28 goal_low = (-0.1, 0.55, 0.04)
29 goal_high = (0.1, 0.70, 0.08)
30

31 super().__init__(
32 hand_low=hand_low,
33 hand_high=hand_high,
34 render_mode=render_mode,
35 camera_name=camera_name,
36 camera_id=camera_id,
37)
38

39 self.init_config: InitConfigDict = {
40 "obj_init_pos": np.array([0, 0.9, 0.0]),
41 "hand_init_pos": np.array(
42 (0, 0.6, 0.2),
43),
44 }
45 self.goal = np.array([0, 0.8, 0.14])
46 self.obj_init_pos = self.init_config["obj_init_pos"]
47 self.hand_init_pos = self.init_config["hand_init_pos"]
48

49 self._random_reset_space = Box(
50 np.array(obj_low), np.array(obj_high), dtype=np.float64
51)
52 self.goal_space = Box(np.array(goal_low), np.array(goal_high),

dtype=np.float64)
53

54 @property
55 def model_name(self) -> str:
56 return full_v2_path_for("sawyer_xyz/sawyer_handle_press.xml")
57

58 @SawyerXYZEnv._Decorators.assert_task_is_set
59 def evaluate_state(
60 self, obs: npt.NDArray[np.float64], action: npt.NDArray[np.

float32]
61) -> tuple[float, dict[str, Any]]:
62 (
63 reward,
64 tcp_to_obj,
65 _,
66 target_to_obj,
67 object_grasped,
68 in_place,
69) = self.compute_reward(action, obs)
70

71 info = {
72 "success": float(target_to_obj <= self.TARGET_RADIUS),
73 "near_object": float(tcp_to_obj <= 0.05),
74 "grasp_success": 1.0,

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

75 "grasp_reward": object_grasped,
76 "in_place_reward": in_place,
77 "obj_to_target": target_to_obj,
78 "unscaled_reward": reward,
79 }
80

81 return reward, info
82

83 @property
84 def _target_site_config(self) -> list[tuple[str, npt.NDArray[Any]]]:
85 return []
86

87 def _get_pos_objects(self) -> npt.NDArray[Any]:
88 return self._get_site_pos("handleStart")
89

90 def _get_quat_objects(self) -> npt.NDArray[Any]:
91 return np.zeros(4)
92

93 def _set_obj_xyz(self, pos: npt.NDArray[Any]) -> None:
94 qpos = self.data.qpos.flat.copy()
95 qvel = self.data.qvel.flat.copy()
96 qpos[9] = pos
97 qvel[9] = 0
98 self.set_state(qpos, qvel)
99

100 def reset_model(self) -> npt.NDArray[np.float64]:
101 self._reset_hand()
102

103 self.obj_init_pos = self._get_state_rand_vec()
104 self.model.body("box").pos = self.obj_init_pos
105 self._set_obj_xyz(np.array(-0.001))
106 self._target_pos = self._get_site_pos("goalPress")
107 self.maxDist = np.abs(
108 self.data.site("handleStart").xpos[-1] - self._target_pos[-1]
109)
110 self.target_reward = 1000 * self.maxDist + 1000 * 2
111 self._handle_init_pos = self._get_pos_objects()
112

113 return self._get_obs()
114

115 def compute_reward(
116 self, actions: npt.NDArray[Any], obs: npt.NDArray[np.float64]
117) -> tuple[float, float, float, float, float, float]:
118 assert (
119 self._target_pos is not None
120), "‘reset_model()‘ must be called before ‘compute_reward()‘."
121 del actions
122 obj = self._get_pos_objects()
123 tcp = self.tcp_center
124 target = self._target_pos.copy()
125

126 target_to_obj = obj[2] - target[2]
127 target_to_obj = np.linalg.norm(target_to_obj)
128 target_to_obj_init = self._handle_init_pos[2] - target[2]
129 target_to_obj_init = np.linalg.norm(target_to_obj_init)
130

131 in_place = reward_utils.tolerance(
132 target_to_obj,
133 bounds=(0, self.TARGET_RADIUS),
134 margin=abs(target_to_obj_init - self.TARGET_RADIUS),
135 sigmoid="long_tail",
136)
137

138 handle_radius = 0.02
139 tcp_to_obj = float(np.linalg.norm(obj - tcp))

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

140 tcp_to_obj_init = np.linalg.norm(self._handle_init_pos - self.
init_tcp)

141 reach = reward_utils.tolerance(
142 tcp_to_obj,
143 bounds=(0, handle_radius),
144 margin=abs(tcp_to_obj_init - handle_radius),
145 sigmoid="long_tail",
146)
147 tcp_opened = 0
148 object_grasped = reach
149

150 reward = reward_utils.hamacher_product(reach, in_place)
151 reward = 1.0 if target_to_obj <= self.TARGET_RADIUS else reward
152 reward *= 10
153 return (reward, tcp_to_obj, tcp_opened, target_to_obj,

object_grasped, in_place)

Listing 1: Config file for sawyer-handle-press-v2

C.1.3 CODE TEMPLATE

In the code template section, a Python-style code snippet and its explanation are provided. The Python-
style code defines the expected output format of the LLM, while the accompanying explanation helps
the LLM better understand the structure and purpose of the code.

Code Template

For example:
In the DrawerOpen environment, actions are encouraged when they involve moving the
gripper towards the handle and closing the gripper. Specifically:

Encouraged actions (good Q):

Movement in the direction of the handle (positive y-direction).
Closing the gripper, especially when the gripper is close to the handle.
Discouraged actions (bad Q):

Movement away from the handle (negative y-direction).
Opening the gripper when it is near the handle, or further opening it when it’s already
open.

1 class DrawerOpen:
2 def __init__(self):
3 self.obs_dim = 39 # Observation space dimension
4 self.action_dim = 4 # Action space dimension (dx, dy,

dz, gripper torque)
5 self.maxDist = 0.2 # Maximum distance for drawer

opening
6 self.target_reward = 1000 * self.maxDist + 1000 * 2
7 self.close_gripper_threshold = 0.05 # Distance

threshold to encourage closing the gripper
8

9 def good_Q(self, batch_size):
10 actions = []
11 states = []
12 q_targets = []
13 for _ in range(batch_size):
14 # Generate a state where the gripper is approaching

the handle
15 handle_pos = np.array([0.0, 0.74, 0.09]) #

Approximate handle position

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

16 # Start gripper at a position slightly away from the
handle

17 gripper_pos = handle_pos + np.random.uniform(-0.15,
0.15, size=3)

18 gripper_open = np.random.uniform(0.0, 0.5) #
Gripper partially closed

19

20 # Construct the observation
21 obs = np.zeros(self.obs_dim)
22 obs[:3] = gripper_pos # Gripper position
23 obs[3] = gripper_open # Gripper state
24 obs[4:7] = handle_pos # Handle position
25 obs[7:] = np.random.uniform(-0.1, 0.1, size=self.

obs_dim - 7) # Other observations
26

27 # Generate actions that move the gripper towards the
handle (positive y movement)

28 direction_to_handle = handle_pos - gripper_pos
29 distance_to_handle = np.linalg.norm(

direction_to_handle)
30 if distance_to_handle > 0:
31 action_direction = direction_to_handle /

distance_to_handle
32 else:
33 action_direction = np.zeros(3)
34 action_magnitude = np.random.uniform(0.05, 0.1)
35 action_movement = action_direction *

action_magnitude
36

37 # Encourage closing the gripper when close to the
handle

38 if distance_to_handle < self.close_gripper_threshold
:

39 gripper_action = np.random.uniform(0.5, 1.0) #
Close the gripper more aggressively

40 else:
41 gripper_action = np.random.uniform(0.0, 0.5) #

Keep the gripper partially open
42

43 action = np.concatenate((
44 action_movement, # Move towards the handle
45 [gripper_action] # Gripper action
46))
47

48 # Calculate a higher Q-value for actions that reduce
the distance to the handle and close the gripper

49 new_gripper_pos = gripper_pos + action[:3]
50 new_distance_to_handle = np.linalg.norm(handle_pos -

new_gripper_pos)
51 if new_distance_to_handle < self.

close_gripper_threshold and gripper_action > 0.5:
52 q_value = (1.0 - new_distance_to_handle / self.

maxDist) * 15.0 # Higher reward for closing near the handle
53 else:
54 q_value = max(0.0, 1.0 - new_distance_to_handle

/ self.maxDist) * 10.0
55

56 states.append(obs)
57 actions.append(action)
58 q_targets.append(q_value)
59

60 # Convert lists to tensors
61 states = torch.tensor(states, dtype=torch.float32)

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

62 actions = torch.tensor(actions, dtype=torch.float32).
view(batch_size, self.action_dim)

63 q_targets = torch.tensor(q_targets, dtype=torch.float32)
.view(-1, 1)

64

65 return states, actions, q_targets
66

67 def bad_Q(self, batch_size):
68 actions = []
69 states = []
70 q_targets = []
71 for _ in range(batch_size):
72 # Generate a state where the gripper is far from the

handle
73 gripper_pos = np.array([0.0, 0.5, 0.2]) + np.random.

uniform(-0.1, 0.1, size=3)
74 gripper_open = np.random.uniform(0.5, 1.0) #

Gripper open
75

76 handle_pos = np.array([0.0, 0.74, 0.09]) # Handle
position remains the same

77

78 # Construct the observation
79 obs = np.zeros(self.obs_dim)
80 obs[:3] = gripper_pos # Gripper position
81 obs[3] = gripper_open # Gripper state
82 obs[4:7] = handle_pos # Handle position
83 obs[7:] = np.random.uniform(-1.0, 1.0, size=self.

obs_dim - 7) # Other observations
84

85 # Generate actions that move the gripper away from
the handle or open the gripper further

86 # Positive y direction moves closer to the handle,
so negative y moves away and should be punished

87 action = np.array([
88 np.random.uniform(-1.0, 1.0), # Random x

movement
89 np.random.uniform(-1.0, 0.0), # Negative y

movement (away from handle)
90 np.random.uniform(-1.0, 1.0), # Random z

movement
91 np.random.uniform(-1.0, 0.0) # Torque to

open gripper
92])
93

94 # Assign a low Q-value for bad actions (moving away
from the handle)

95 q_value = 0.0
96

97 states.append(obs)
98 actions.append(action)
99 q_targets.append(q_value)

100

101 # Convert lists to tensors
102 states = torch.tensor(states, dtype=torch.float32)
103 actions = torch.tensor(actions, dtype=torch.float32).

view(batch_size, self.action_dim)
104 q_targets = torch.tensor(q_targets, dtype=torch.float32)

.view(-1, 1)
105

106 return states, actions, q_targets

Listing 2: Code template

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

In the example above, the good_Q method assigns high Q-values to actions likely to lead to success,
whereas bad_Q discourages actions leading to termination. This approach aligns with the principles
outlined in the general template.

C.1.4 LLM OUTPUT

Based on the requirements and suggestions outlined in the General Template, as well as
the observation and action space definitions provided in the Environment Description and
Configuration File, and the Code Template discussed above, the LLM can generate good
Q pairs and bad Q pairs that meet the specified requirements.

Below is the generated code:

1 class HandlePress:
2 def __init__(self):
3 self.obs_dim = 39 # Observation space dimension
4 self.action_dim = 4 # Action space dimension (dx, dy, dz,

gripper torque)
5 self.TARGET_RADIUS = 0.02 # Target radius for pressing the

handle
6 self.handle_init_pos = np.array([0.0, 0.9, 0.0]) # Approximate

handle start position
7 self.target_pos = np.array([0.0, 0.8, 0.14]) # Target position

after pressing
8 self.max_dist = np.abs(self.handle_init_pos[2] - self.target_pos

[2])
9 self.gripper_init_pos = np.array([0.0, 0.6, 0.2]) # Gripper

initial position
10

11 def good_Q(self, batch_size):
12 actions = []
13 states = []
14 q_targets = []
15 for _ in range(batch_size):
16 # Generate gripper position near the handle
17 gripper_pos = self.handle_init_pos + np.random.uniform(-0.8,

0.8, size=3)
18 # gripper_pos[2] += 0.1 # Ensure gripper is above the handle

in z-axis
19 gripper_open = np.random.uniform(-1, 1) # Gripper partially

closed
20

21 # Construct the observation
22 obs = np.zeros(self.obs_dim)
23 obs[:3] = gripper_pos # Gripper position
24 obs[3] = gripper_open # Gripper state
25 obs[4:7] = self.handle_init_pos # Handle position
26 obs[7:] = np.random.uniform(-0.3, 0.3, size=self.obs_dim - 7)

Other observations
27

28 # Generate actions that move the gripper towards the handle
and press it down

29 x_move = np.random.uniform(-0.001, 0.001)
30 y_move = np.random.uniform(-0.001, 0.001)
31 z_move = np.random.uniform(-0.1, -0.08)
32 action_movement = np.array([x_move, y_move, z_move])
33 # Apply torque to press the handle
34 gripper_action = np.random.uniform(-0.001, 0.001) # Apply

torque to press
35

36 action = np.concatenate((
37 action_movement, # Move towards the handle and press

down
38 [gripper_action] # Gripper torque action
39))

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

40

41 # Calculate Q-value based on how much the handle is pressed
towards the target

42 handle_movement = action_movement[2] # Z-axis movement (
pressing down)

43 new_handle_pos_z = self.handle_init_pos[2] + handle_movement
44 handle_to_target = np.abs(new_handle_pos_z - self.target_pos

[2])
45

46 q_value = 10
47 states.append(obs)
48 actions.append(action)
49 q_targets.append(q_value)
50

51 # Convert lists to tensors
52 states = torch.tensor(states, dtype=torch.float32)
53 actions = torch.tensor(actions, dtype=torch.float32).view(

batch_size, self.action_dim)
54 q_targets = torch.tensor(q_targets, dtype=torch.float32).view(-1,

1)
55

56 return states, actions, q_targets
57

58 def bad_Q(self, batch_size):
59 actions = []
60 states = []
61 q_targets = []
62 for _ in range(batch_size):
63 # Generate gripper position far from the handle
64 gripper_pos = self.gripper_init_pos + np.random.uniform(-0.8,

0.8, size=3)
65 gripper_open = np.random.uniform(-1, 1) # Gripper open
66

67 # Construct the observation
68 obs = np.zeros(self.obs_dim)
69 obs[:3] = gripper_pos # Gripper position
70 obs[3] = gripper_open # Gripper state
71 obs[4:7] = self.handle_init_pos # Handle position
72 obs[7:] = np.random.uniform(-1.0, 1.0, size=self.obs_dim - 7)

Other observations
73

74 # Generate actions that move the gripper away from the handle
or lift it up

75 action = np.array([
76 np.random.uniform(-1.0, 1.0), # Random x movement
77 np.random.uniform(0.8, 1.0), # Random y movement
78 np.random.uniform(0.2, 1.0), # Positive z movement (move

up)
79 np.random.uniform(-1.0, 1) # Negative torque (release

pressure)
80])
81

82 # Assign a low Q-value for bad actions
83 q_value = -10
84

85 states.append(obs)
86 actions.append(action)
87 q_targets.append(q_value)
88

89 # Convert lists to tensors
90 states = torch.tensor(states, dtype=torch.float32)
91 actions = torch.tensor(actions, dtype=torch.float32).view(

batch_size, self.action_dim)
92 q_targets = torch.tensor(q_targets, dtype=torch.float32).view(-1,

1)

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

93

94 return states, actions, q_targets

Listing 3: LLM generated code for HandlePress

D LIMITATIONS AND DISCUSSION

In this section, we discuss several limitations of our work and propose promising directions for future
research to address these challenges.

One limitation of the Q-shaping framework is its dependence on the understanding capabilities of
large language models (LLMs). For tasks where the LLM cannot fully comprehend the dynamics of
movement or the control-specific requirements of the task, the framework fails to deliver meaningful
improvement. This limitation constrains the applicability of Q-shaping to domains where task
requirements can be effectively interpreted by the LLM. Models with stronger reasoning capabilities
may be needed to generate valid state-action pairs.

Another limitation is the difficulty of scaling Q-shaping to visual or real-world settings. The frame-
work requires models capable of generating states, but current technology lacks models that can
simultaneously process textual and visual inputs and output comprehensive state-action descriptions.
This gap restricts the ability of Q-shaping to operate effectively in environments where visual data is
a critical component. Future progress in multimodal modeling, such as vision-language models that
integrate text and images, could alleviate this challenge by enabling richer state representations.

By addressing these limitations, Q-shaping has the potential to evolve into a more versatile framework
capable of operating across diverse tasks and environments, ultimately advancing its impact on
reinforcement learning research.

32

