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ABSTRACT

Physics-informed neural networks (PINNs) have gained prominence in recent
years and are now effectively used in a number of applications. However, their
performance remains unstable due to the complex landscape of the loss function.
To address this issue, we reformulate PINN training as a nonconvex-strongly con-
cave saddle-point problem. After establishing the theoretical foundation for this
approach, we conduct an extensive experimental study, evaluating its effectiveness
across various tasks and architectures. Our results demonstrate that the proposed
method outperforms the current state-of-the-art techniques.

1 INTRODUCTION

Mathematical physics is a cornerstone of modern science. It provides powerful tools for theoretical
studies and finds applications in practical fields. One of its central challenges is solving partial
differential equations (PDEs) (Bateman, |1932; |[Evans| 2022). They arise in the formal description
of phenomena ranging from heat diffusion to quantum mechanics and typically take the form of a
boundary value problem involving differential operators on some domain (Yakubov and Yakubov,
1999)). Generally, there is a system of M, equations and M — M,. boundary/initial conditions:

Ri[ul(z) = fi(x), i € [1, M,], €
Bjlu](z) = g;(x), j € [M, +1,M], z € 99,

where fi, g; : R? — R are the scalar functions; R;[u], B;[u] : R? — R are the operators actions
on the mapping v : R? — R™; Q C R? and 9 C R ! are the domain set and its boundary,
respectively. Since exact solutions are rare outside idealized cases, the community is focused on
developing numerical methods. Among the most established techniques are those based on finite
differences (Courant et al., [1967)), volumes (Patankar and Spalding| [1983), and elements (Courant
et al., [1994). Despite high accuracy and computational efficiency of traditional approaches, they
require substantial time to interpolate a new solution (Grossmann et al., 2024, Figures 4b,6b), (Liu
et al., |2024bl Figure 6d-f). This limitation makes them impractical in problems where runtime is
the primary performance metric. A promising direction for addressing this issue lies in machine
learning, due to the low inference time of small neural networks (Guo et al., 2016;|Zhu and Zabaras),
2018 [Yu et al 2018)). Although the concept of approximating the solution with a parametrized
function w(6) is quite old and dates back to the works of [Meade Jr and Fernandez| (1994); |Dis-
sanayake and Phan-Thien| (1994)); |[Lagaris et al.[(1998), it has only recently gained attention under
the name PINN (physics-informed neural network) (Raissi et al.,2019). While initial results in this
area were obtained using MLPs, advanced architectures such as learned activations (Jagtap et al.,
2020ajb), memory (Krishnapriyan et al., 2021} |Cho et al., [2023) and attention (Zhao et al., 2023;
Anagnostopoulos et al.,[2024) have led to significant improvements. Typical of Al-based solutions,
PINNSs are trained through empirical risk minimization (ERM) (Raissi et al., 2019):

(D

M, M 1 N,

mnin | £(0) = D Lei0) + Y Ly (0)|, with £,.4(60) = A > [Rilu(®)])(a7) — fa)]?,
i=1 j=M,+1 " n=1
1 &

Ly,5(0) N, > 1Bi[w(®)](xf) — g(=p))?,
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where {27} {xi};\;”l are the sets of samples belonging to the interior and boundary of €2,
respectively; N,, N, are the sizes of the corresponding datasets.

Despite the successes, PINN's bring their own challenges. Training them via solving the problem ]
is a special case of multi-task learning (Zhang and Yang, [2021)). Indeed, a single model is trained to
approximate all the operators simultaneously. However, they may be of a different nature. Hence,
there is no guarantee that arg mingcgas £(6) minimizes all £, ;(0) and L ;(#) individually. In
practice, their corresponding gradients V£, ;(6), VL, ;(6) have dissimilar magnitudes (see Figure
2 in (Hwang and Lim| 2024)). Consequently, some losses are ignored during optimization. As a
result, the solution is well approximated only on the boundary or only inside the domain when using
basic optimizers (see Figure 1 in (Hwang and Lim), 2024)). Despite significant interest in the area,
there remains no universally effective approach for training PINNs. A scheme that performs well
for one PDE may turn out to be inadequate for another (Hao et al., [2023| Table 3). Selecting an
appropriate optimizer often requires case-by-case search.

Most successful approaches for training PINNs employ weights 7 = (71, ..., 7a) " selected from
the set .S, typically the unit simplex, to balance competing losses for R;[u], B;[u] (Wang et al.,
2021} |Jin et al., [2021; Wang et al., 2022 |Son et al.| |2023; [Hwang and Lim| 2024]). If some operator
is underestimated relative to another one, its weight is increased, as does its contribution to the loss
function. In our work, we consider training PINN as a saddle-point problem (SPP) to move away
from discussing the weight-selection procedure:

M, M
min max [£(0,7)], with Z; miLra(0) + j:%:ﬂ 7Ly ;(0) — ADy(x||7), )

where Dy, (+||7) is the Bregman divergence (Nemirovskij and Yudin, [1983). We introduce the hy-
perparameter \ to enable control over the weights via the penalty for deviating from the reference
distribution 7, typically the uniform one. A similar methodology was considered in (Liu and Wang,
2021). However, the authors provided no theoretical guarantees and examined the Euclidean case,
which may be unsuitable if S has a complex geometry. For example, if S is a unit simplex, then
KL-divegence is the preferable distance measure, particularly because it accounts for relative rather
than absolute changes in weights. To the best of our knowledge, there is no guaranties for the non-
convex problem (2)) and this setting remains empirically underexplored for PINNs. In this work, we
overcome both theoretical and practical challenges to investigate the feasibility of training physics-
informed neural networks as SPPs.

2 RELATED WORKS

2.1 Lo0SS RESCALING IN GENERAL CASE

Earlier, we mentioned that training a physics-informed neural network is a special case of multi-task
learning, where various rescaling techniques had been developed by the time of the emergence of

PINNSs. |Chen et al.|(2018)) suggested treating the weights as trainable functions 7, (). They defined

a separate loss such that the norm of a single task gradient V (7, () L_;(8)) is close to the sum of the
other gradients. A similar approach was explored in (Kendall et al.,|2018)). However, using neural
networks to evaluate the parameters leads to increased memory consumption. As a consequence,
the community has developed a number of computationally less expensive techniques. |Sener and
Koltun| (2018)) proposed solving a quadratic optimization problem on a unit simplex to determine
{mm }M_,. Furthermore, approaches that calculate weights via zero- and first-order statistics have
gained attention due to their combination of efficiency and quality (Liu et al.,|2019; [Yu et al., 2020;
Heydari et al.| [2019; |Chen et al., 2018}; |[Wang et al., 2020).

2.2 Lo0SS RESCALING IN PINNS

The unique challenges posed by PDEs and physical constraints motivated the development of
weighting techniques specifically for PINNs. Wang et al.| (2021) were among the first in this di-
rection. Inspired by ideas behind Adam (Kingma and Ba, 2014)), they proposed a learning rate
annealing procedure that automatically tunes {m,, }5’_, by utilizing the back-propagated gradient
statistics. To mitigate the high variance inherent in the stochastic nature of updates, the authors sug-
gested computing the actual weights as a running average of their previous values. This scheme was
then understood in greater depth (Jin et al., 2021;|Maddu et al., {2022} |Bischof and Kraus} 2025). As



Under review as a conference paper at ICLR 2026

an orthogonal approach, in (Wang et al., [2022), loss rescaling was addressed from a neural tangent
kernel perspective. Despite the advances, it may be computationally expensive. Indeed, the use of
the Jacobian poses a challenge when solving nonlinear equations, as it is not constant in that case
(Bonfanti et al., [2024). In parallel to these commonly used approaches, a number of exotic non-
benchmarked techniques exist. For example, schemes based on likelihood (Xiang et al., 2022} |Hou
et al.,[2023)), augmented Lagrangian (Son et al., 2023) and conjugate cone (Hwang and Lim| [2024)).

2.3 NONCONVEX-STRONGLY CONCAVE SPPs

The theory of SPPs is constructed mostly for convex-concave objectives (Korpelevich, |1976; |Ne-
mirovski, 2004; [Du and Hu, |2019; |Adolphs et al., [2019; Beznosikov et al) 2023)). However, the
problem 2| falls outside of this class, since the complex nature of differential operators implies a
poor non-convex landscape in 6. On the other hand, in terms of the weights 7, £(6,7) is a reg-
ularized linear function, and hence is guaranteed to be strongly concave regardless of the PDE
being solved. Nonconvex-concave (N-C) and nonconvex-strongly concave (N-SC) SPPs remain
poorly understood. Today’s research focuses on modifying two-timescale gradient descent-ascent
(TT-GDA), which has demonstrated success in training GANs (Heusel et al., 2017). Using a double-
loop scheme, Nouiehed et al.|(2019) achieved a e-solution in ) (»;4/52) iterations, where x denotes
the condition number of the objective in the concave component. Assuming max-oracle to be avail-
able, Jin et al.|(2019)) improved this result to o (ﬂz/ 52). In parallel, several triple-loop techniques for
N-C problems were developed (Thekumparampil et al., 2019; |Kong and Monteiro, 2021). However,
algorithms with nested loops are challenging to implement and tune in practice. This is supported by
the observation that the mentioned papers consider simple problems (e.g. classification on MNIST)
for their experiments. At the same time, providing a theoretical analysis directly to TT-GDA posed
a challenge. This was finally done in (Lin et al.l 2020) with a complexity of O (°/). Later, the
result was generalized by |Xu et al.| (2023). They provided unified analysis of single-loop schemes
for N-C problems.

A key drawback of the mentioned methods is the Euclidean setting. This may be inappropriate for
describing the geometry of .S in the problem[2] as it is typically defined as a bounded set to maintain
balance during training (Mohri et al.l [2019; Mehta et al., 2024). Consequently, there is interest in
searching for alternatives. Huang et al.| (2021]) considered a setup that is non-Euclidean in the non-
convex component and Euclidean in the strongly concave one. However, in our paper, we need the
opposite. Indeed, in the problem [2| 6 lies in R¢ and is therefore suited to the Euclidean distance,
while 7 demands a more complicated description. Thus, this work is not suitable for our purposes,
although it provides useful intuition. [Boroun et al.| (2023) employed Frank-Wolfe (Jaggil [2013) to
perform both ascent and descent steps. However, exploiting non-regularized linear approximation
yields sparse values of {m,,, }*._,, which may result in unstable convergence.

3 OUR CONTRIBUTION

Surveying the literature, we observe that currently there is no optimization method capable of achiev-
ing state-of-the-art results across a wide range of PDEs. Each problem has its own dominant method:
LRA (Wang et al., 2021) for Poisson, RAR (Lu et al.l [2021) for Heat, NTK (Wang et al., 2022) for
Wave, and Adam (Kingma and Ba} |2014) for Navier-Stokes. We study the potential of minimizing
the PINN’s objective via the saddle-point problem (2)) in order to make the training porcess robust.
The paper presents a comprehensive theoretical and empirical analysis of this approach.

Approach Poisson Heat Navier-Stokes Wave High dim
Previous best 1.02E-1 2.72E-2 4.70E-2 9.79E-2 4.58E-4
This paper 4.78E-2 1.01E-2 2.24E-2 1.62E-2 1.20E-4

Table 1: Comparison of SOTA results with the proposed method. L2RE is used as a quality metric.

o Theoretical foundation. Studying nonconvex-strongly concave SPPs with non-Euclidean geome-
try of the strongly concave component, we propose a method based on a suitable Bregman proximal
mapping. We develop a rigorous theory, providing guarantees on optimization dynamics.
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e Benchmarking the method. Conducting experiments on 22 benchmark PDEs, we demonstrate
that our approach improves the quality compared to existing optimizers. The proposed algorithm
achieves SOTA results in 77.3% of cases, while the second best has 27.3%. See Tablefor some of
the results.

o Extensive empirical study. We demonstrate numerically, that the proposed weighting scheme re-
duces the gradient magnitudes conflict compared to competing ones. We attribute this as the primary
reason for dominance of our approach across the majority of PDEs. Additionally, we analyze the
computational overhead and examine the robustness of our algorithm to changes in hyperparameters.

4 SETUP

4.1 ASSUMPTIONS

Since our study is motivated by the real-world problem, we address the most general case possible.

First, we require the objective to be smooth with respect to the Euclidean norm.

Assumption 1. The function L(0,7) is L-smooth, i.e. for all (01,71, (02, m2) € RY x S it satisfies
IVL(01,m1) = VL(O2, m2)|| < L[ (61, 7m1)— (02, m2).

Lipschitz continuity of the gradient is commonly imposed in prior work on PINNs (L1 et al., 2023

Assumption 1), (Hwang and Lim, 2024, Theorem 4.5), (Wu et al.,[2024}, Assumption 3.2), (Liu et al.,

2024a, Theorem 1). While this assumption is generally unrealistic for neural networks (Cybenko,

1989), the resulting theoretical insights are consistent with empirical observations. In our paper, we

also identify that the method behaves in a manner aligned with theory.

To enable more accurate selection of the weights 7, we account for the geometry of S by utilizing

the Bregman divergence (Nemirovskij and Yudin, [1983)).

Definition 1. The Bregman divergence corresponding to the distance generating function i : S —
R is defined as

Dy(m1,m2) = (m1) — Y(m2) — (V(m2), 1 — m2).

Earlier, we mentioned the example where D, is the Kullback-Leibler divergence. This is particu-
larly significant for the purposes of this paper, as we choose S as the unit simplex. However, the
theory is established in the general case. Analysis of the problem |Z| requires Dy, to have several
basic properties. In particular, Definition |Z|is valid only if Dy, is bounded from below on S. In the
following, we present an assumption regarding the distance generating function.

Assumption 2. The function 1) is I-strongly convex, i.e. for all 71,75 € S it satisfies
1
b(m) 2 P(m2) + (Vih(ma), my — m2) + 5|2 — m .

Note that this assumption does not reduce the class of neural networks under consideration, as it is
solely related to the choice of regularizer. Additionally, it holds for all commonly used divergences.

4.2 PROPERTIES OF THE OBJECTIVE

The problem [2]is a special case of nonconvex-strongly concave SPPs. In this section, we obtain
several properties of the objective by leveraging its structure. Firstly, we formulate the following.
Lemma 1. Consider the problem underAssumption Then, for every 0 € R? the function L(0, )
is A-strongly concave, i.e. for all my, 7o € S it satisfies

E(Q,m) §£(9,7T2> + <V¢£<977T2)77T1 — 7T2> — % (Dw(ﬂ'l,ﬂ'g) + Dw(ﬂ’z,ﬂj)) .

See the proof in Appendix [E] Thus, Lemma [T] in combination with Assumption [I] shows that the
problem [2] is indeed a nonconvex-strongly concave SPP. Moreover, Assumption [2] entails strong
concavity of £(, ) in . Consequently, it has a single maximum 7*(6) on S for every fixed value
of .

4.3 OPTIMALITY CONDITION

It is challenging to analyze N-SC SPPs using the usual definition of a stationary point. Instead, prior
works equivalently reduce it to a stationary point of a minimization problem (Huang et al., 2021):

®(0) = L(0,7(0)).
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Since S is a bounded convex set, Danskin’s theorem implies that @ is differentiable with V®(0) =
VoL (0, 7*(0)) (Rockafellar, 2015)). The common convergence metric employed in the literature is
the following (Zhang et al.| 2021; Wang et al., 2024} | Xu et al., [2024)).

Definition 2. (e-stationary point) of ®(6). A point 6 is an e-stationary point of @, if
Ve <e.

For N-SC SPPs, convergence in the sense of Definition [ implies convergence to a stationary point
in the standard sense used for SPPs (Lin et al., 2020, Proposition 4.12).

5 ALGORITHMS AND ANALYSIS

5.1 MAIN ALGORITHM

In this section, we follow the trend of investigating N-SC SPPs through modifications of
TT-GDA. Adapting it to the problem we present Bregman Gradient Descent Ascent.
Due to the complex l.ands.cape of the problem to Algorithm 1 BGDA

be solved, the algorithmic schemes we rely on
are extremely simple. Since the parameters #  1: Input: Starting point (6°,7°) € R? x S,
may take any value, it suffices to use the classic number of iterations T'

gradient descent step (Nemirovskij and Yudin Parameters: Stepsizes g, v, > 0

1983) to update them (Line E]) However, the fort=0,..., T —1do

weights are selected from a convex bounded set O+l = 0t — g Vo L(0!, )

described by Non-Euclidean geometry. Conse- it = arg mingeg {g(m)}, where
qpently, we utiliz'ej the Bregman proximal map- a(m) = —x <v7r L0, ), 7T> + Dy (r, )
ping (Nemirovskij and Yudin,|1983)) to perform
the ascent step (Line [5). The subproblem in
Line [5] requires estimating statistics of the objective only once and therefore does not pose any
significant computational difficulties compared to the basic descent step. Moreover, it often has a
closed-form solution. For example, if Dy, is the KL-divergence (Nemirovskij and Yudin, 1983)), then

Wm:< exp{7e (VoL (8',77)):} )
SN exp{ya(VaL(0t,77));}

In the analysis of Algorithm [I] it is fundamental to utilize steps of varying sizes. One possible
explanation is that the landscape of the objective is much better in the strongly concave component.
Consequently, more confident steps can be taken to update the weights. The primary theoretical
challenge in the analysis of the method is to show the convergence of the iterative scheme based
on the metric given in Definition [2| Indeed, for each value of the model parameters §* there is an
optimal point 7w*(#*). To address the technical difficulties, we must show that the method generates
a sequence of points {(0%, 7)}_, for which the distance between 7' and 7*(#?) decreases when
increasing t. Moreover, we have to account for the non-Euclidean geometry of the problem.

Lemma 2. Consider the problem [2| under Assumptions [I| 2| Then, Algorithm [I] produces such
(0", 7") Y=y, that

Dy (7 (6"1), 71 11) < (1 -

bAE

6: end for

i=1

) Dol 0). ) + 26003 [T 2(6) P
where k = L/x is the condition number of L(0, ) in .

See the proof in Appendix[E Lemma shows how the distance between the current weight iterate 7'
and the ideal response 7*(6*) evolves over time. This is a key result needed to prove convergence.
Indeed, since we consider the Euclidean setting in the nonconvex variables 6, the standard inexact
gradient descent analysis implies

T-1 T-1
(0 — B(0°) < — Q) (Z V@(etn?) +0 (1L?) Y Dy(n™(6"), 7).
t=1 t=1
Thus, for a sufficiently small step 7y, it is guaranteed to neglect the inaccuracy of finding the maxi-
mum at the ascent step. By carefully evaluating Dy, (7*(6*), 7*) from above and selecting appropri-
ate 7y, the convergence is obtained. We formulate this fact as a main theorem.
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Theorem 1. Consider the problem 2| under Assumptions Then, Algorithm[l| requires
0 < KALA + K2L2 Dy (% (6°), 7%)

) iterations
22

. . . T-1 *
to achieve an arbitrary e-solution, where €* = L3, " [V®(6")]|%, A = ®(6°) — ®(6*). k = L/x
is the condition number of L(0, ) in 7.

See the proof in Appendix |G| Note that the derived estimate of 7" is worse than that obtained in
(Huang et al.,[2021) for the Euclidean setting. However, if S is a unit simplex intersected with a eu-
clidean ball, it can be significantly improved O (+L/c?) (see Appendixfor the detailed discussion).
The question of improvability in the general case remains open. After examining a large number of
proof approaches, we believe that for GDA-like schemes, it is unimprovable.

5.2 PRACTICAL VERSION OF BGDA

Since neural networks exhibit a complex loss
landscape, it is common practice to run adap-
tive versions of algorithms, even when their  1: Input: Starting point (6°,7°) € R? x S,
theoretical guarantees do not account for such number of iterations 7'

modifications. Following this trend, we de-  2: Parameters: Stepsizes v, 7, > 0

velop an adaptive modification of Algorithm 3: for¢=0,...,T —1do

In Algorithm 2] the gradient VoL (6%, 7t) is  4: mptt = agmb + (1 — aq) VoL (0, 7t)
smoothed with its previous values as a running  5: vé“ = aovh + (1 — as) (Vo L(6Y, 7t))?
average (Line[). In practice, this approach aids  ¢. vl = B, _1_ (1= B) (VL0 71))2
7

Algorithm 2 Adaptive BGDA

in identifying a suitable descent direction more i1l mbt
quickly. Furthermore, we propose accumulat- My = 1t

ing the gradient history to vary the step sizes g S+l — v

(Lines [B] [6). This method is effective, as the 0 L-as
gradient magnitude indicates the loss smooth-  9: il = 1= i

ness locally, which leads to more confident i1 . P
ste df o 10: gttt =9 — Yo =&T

ps and faster convergence. A practice-driven AN

bias correction of calculated statistics is also 11 7+ = arg mingeg {q()}, where
implemented (Lines O). To update model et D t
parameters and weights, Algorithm 2] performs q(m) = %r< e ’W>+ w(m, )
the descent-ascent scheme, identical to Algo- 12: end for

rithm Namely, Adapt iveBGDA utilizes Adam (Kingma and Ba, 2014) and RMSProp (Xu
et al| [2021)) to perform descent and ascent steps, respectively. See Table 2] for justification.

6 NUMERICAL EXPERIMENTS

We now present the empirical analysis of our approach. We employ a vanilla PINN with 5 hidden
layers of size 100. To assess quality, we use L2RE (Hao et al., [2023] Section 3.4). It is more
sensitive to outliers than L1RE. Since the purpose of this paper is to demonstrate the stability of the
proposed approach, we use exactly L2RE.

Empirical analysis is conducted on a Linux server utilizing an NVIDIA TESLA A100 with 80 GB
of GPU memory. To ensure accurate results, we do not allocate the GPU to any external processes
and solve only a single PDE at any given time.

6.1 EXPLORING VARIANTS OF ADAPTIVITY

During the empirical study, we used
Poisson 2d-C to test various combi- Approach Adam+RMS Adam+Adam RMS+RMS

nations of adaptive techniques, such
as Adam (Kingma and Ba} [2014)) and

RMSProp (Xu et al} 2021). It was ) ) )
Adam+RMSProp that turned out to 1able 2: Comparison of approaches to incorporating adap-

be the best one. We attribute this to tivity in Algorithm[I} L2RE is used as a quality metric. We
the fact that Adam allows to account highlight the best result.

for the poor loss landscape in € via gradient smoothing, while the landscape in 7 is strongly convex,
and steps along the current gradient are more appropriate.

L2RE 8.16E-3 4.45E-2 6.02E-1
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6.2 VALIDATION ON PINNacle BENCHMARK

We provide an extensive comparison of Adapt iveBGDA (Algorithm [2) with existing approaches.
To evaluate the learning potential and generalization capabilities of our approach, we consider 22
partial differential equations sourced from PINNacle (Hao et al., 2023) that covers a broad spectrum
of real-world problems. Below, we summarize the main features encountered in the selected PDEs.

e Complex geometry. Some pieces of the region € are cut out. Since the domain ceases to be sim-
ply connected, the solution becomes more complicated, including in terms of numerical retrieval.
Problems of this class often arise in applications. For example, the flow of a fluid through an obsta-
cle.

e Multiple domains. The region {2 is divided into several chunks. When moving from one to
another, the parameters of the PDE change abruptly. The need to perform well for all domains
immediately complicates the task.

e Varying coefficients. The parameters of the PDE vary continuously with the coordinates. Tasks
of this type have a role in many applications from heat transfer in materials to population dynamics.

e Long time. The PDE needs to be solved over a large time interval. This feature is the most difficult
for modern architectures and optimizers.

As competitors, we consider all methods presented in PINNacle (Hao et al., 2023): LBFGS (Byrd
et al.,[1995), Adam (Kingma and Bal |2014), Mult iAdam (Yao et al.|[2023), and combinations of
Adam with RAR (Lu et al.}[2021), LRA (Wang et al., 2021), NTK (Wang et al., 2022).

To show the robustness of Algorithm [2] we do not adjust its hyperparameters. Instead, we tune
them on randomly selected PDE (Poisson 2d-C) and then use the resulting v, = 0.1, 79 = 0.008,
a1 = 0.9, as = 0.999, 5 = 0.999 over all benchmark. To handle the non-convex landscape of
L(0, ) in 6, we linearly reduce vy from the initial value to 0.0004.

Optimizer

PDE Adam LBFGS LRA NTK RAR MultiAdam BGDA (ours)
1d-C | (1.4440.04)E-2 | (1.33£0.01)E-2 | (2.6610.33)E-2 | (1.90£0.02)E-2 | (3.1040.32)E-2 | (4.96+0.38)E-2 | (1.29£0.01)E-2
2d-C | (2.72+0.32)E-1 | (4.68+0.08)E-1 | (2.5840.13)E-1 | (2.83£0.31)E-1 | (3.424+0.24)E-1 | (3.26£0.46)E-1 | (4.2040.10)E-1
2d-C | (3.41£0.15)E-2 NaN (1.11£0.09)E-1 | (1.1440.11)E-2 | (7.53+0.62)E-1 | (2.79£0.25)E-2 | (8.151+0.20)E-3
2d-CG | (5.5040.61)E-2 | (2.93£0.04)E-1 | (4.1140.24)E-2 | (1.35%0.12)E-2 | (6.6440.50)E-1 | (2.76+0.19)E-1 | (1.70£0.51)E-2
3d-CG | (3.944+0.21)E-1 | (7.20£0.16)E-1 | (1.0840.07)E-1 | (8.73£1.32)E-1 | (5.5540.38)E-1 | (3.56+0.43)E-1 | (6.41£0.21)E-2
2d-MS | (6.64£0.49)E-1 | (1.46+0.01)E+0 | (7.8410.65)E-1 | (7.90£0.44)E-1 | (6.524+0.35)E-1 | (6.23£0.33)E-1 | (3.4310.08)E-1
2d-VC | (2.584+0.27)E-1 | (2.28+0.14)E-1 | (2.1340.29)E-1 | (2.071+0.21)E-1 | (1.0540.10)E+0 | (4.944+0.56)E-1 | (2.99£0.19)E-1
2d-MS | (6.71£0.60)E-2 | (1.7440.10)E-2 | (8.65+1.21)E-2 | (4.314+0.46)E-2 | (7.931+0.53)E-2 | (2.05+0.18)E-1 | (1.4040.35)E-2
2d-CG | (3.831+0.47)E-2 | (8.54£0.17)E-1 | (1.1640.12)E-1 | (1.20£0.10)E-1 | (2.5840.17)E-2 | (7.68+0.69)E-2 | (2.49£0.11)E-2
2d-LT | (9.9840.01)E-1 | (1.00£0.00)E+0 | (9.9740.02)E-1 | (1.00£0.00)E+0 | (9.9840.04)E-1 | (9.98+0.04)E-1 | (9.96=0.01)E-1
2d-C | (4.67£0.35)E-2 | (2.1140.05)E-1 NaN (2.01£0.23)E-1 | (4.514+0.31)E-1 | (7.03£0.75)E-1 | (2.35£0.59)E-2
NS 2d-CG | (1.1840.12)E-1 NaN (3.2240.32)E-1 | (2.664+0.30)E-1 | (3.26+0.21)E-1 | (4.51£0.33)E-1 | (7.124+0.27)E-2
2d-LT | (9.91+0.41)E-1 | (9.70£0.07)E-1 | (9.9040.05)E-1 | (9.99£0.01)E-1 | (9.9940.01)E-1 | (1.00£0.00)E+0 | (9.7040.08)E-1
1d-C | (2.8340.18)E-1 NaN (3.651+0.36)E-1 | (9.2040.82)E-2 | (5.6240.57)E-1 | (1.21£0.10)E-1 | (1.63£0.46)E-2
Wave 2d-CG | (1.664-0.02)E+0 | (1.3340.00)E+0 | (1.534-0.10)E+0 | (2.0940.15)E+0 | (1.214-0.09)E+0 | (1.0840.02)E+0 | (7.80+-0.03)E-1
2d-MS | (1.0240.01)E+0 | (1.3640.01)E+0 | (9.9740.36)E-1 | (1.0340.04)E+0 | (1.32+0.08)E+0 | (1.014=0.01)E+0 | (9.35+0.08)E-1

Burgers

Poisson

Heat

Chaotic GS | (1.5840.00)E-1 NaN (9.76£0.05)E-2 | (2.160.00)E-1 | (9.10£0.74)E-2 | (9.364-0.00)E-2 | (9.29+0.00)E-2
KS | (9.9440.09)E-1 NaN (9.58+0.03)E-1 | (9.6140.05)E-1 | (1.02£0.01)E+0 | (9.6940.10)E-1 | (9.514-0.02)E-1
High dim PNd | (2.66=£0.09)E-3 | (4.6940.13)E-4 | (4.87£0.58)E-4 | (4.7740.20)E-3 | (3.374+0.26)E-3 | (4.08£0.11)E-3 | (1.3140.16)E-4
HNd | (3.67£0.00)E-1 | (1.13£0.10)E-4 | (3.9240.07)E-1 | (3.98=£0.01)E-1 | (3.7140.21)E-1 | (3.00£0.04)E-1 | (1.3540.15)E-4
Inverse PInv | (1.03£0.13)E-1 NaN (1.66£0.15)E-1 | (1.7740.23)E-1 | (9.53+0.57)E-2 | (1.3240.08)E-1 | (6.114-0.22)E-2
HInv | (5.23£0.29)E-2 NaN (5.08+0.07)E-2 | (7.7740.38)E-2 | (1.5940.11)E+0 | (7.8740.35)E-2 | (4.33+0.27)E-2

Table 3: Comparison of Adapt iveBGDA to the existing techniques. In all experiments, the model
is trained to the performance limit. L2RE is used as a quality metric. We highlight the best and
the second best results for each PDE.

It can be seen from Table |3| that Adapt iveBGDA (Algorithm [2) is dominant in 77.3% of cases.
The previous record of 27.3% belonged to LRA. In 18.2% of cases, the quality is improved by more
than double. Below, we analyze the performance of our approach in the conducted experiments.

o Standard PDEs without special features (Burgers 1d-C, Burgers 2d-C, NS 2d-C, Wave 1d-C) have
a simpler loss landscape in 6. Nevertheless, Adapt i veBGDA gives a noticeable improvement when
solving tasks from this class.
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o One of the strongest quality gains is observed on problems with multiple subdomains (Poisson 3d-
CG, Poisson 2d-MS). Even without fine-tuning, our approach turns out to be good enough to adapt
to them. Indeed, the saddle-point setting is introduced in order to fairly account for the contribution
of operators to losses. The expected result is a better adaptation to all subdomains simultaneously.

e For problems with complex geometry (Poisson 2d-C, Poisson 2d-CG, Poisson 3d-CG, Heat 2d-
CG, NS 2d-CG, Wave 2d-CG), an improvement is also observed in five out of six cases.

e Unexpectedly, Adapt iveBGDA shows quality gains in exotic settings such as Chaotic or Inverse.

6.3 EXPLORING THE CONFLICTING GRADIENTS

Table 3 illustrates the stability of the proposed
method under changes in problem type, bound-
ary/initial conditions, and domain geometry. To
numerically investigate this phenomenon, we
measure the ratio x = [IV£-(0)l/|v.,(0)] while
solving Poisson 2d-C. We break the iterations into
groups I; = [0,10000), I> = [10000,20000),
I = [20000,30000] and examine the distri-
butions of x1, X2, X3, including their means
X1, X2, X3 and variances 01, 02, 03.

In Figure [T| one can see the dynamics of NTK
(Wang et al] 2021). This optimizer is state-
of-the-art for the selected PDE. From the first
epochs, | VL,.(6)|| demonstrates significant supe-
riority over ||VLy(0)||. At this stage, we observe
X1 = 2487, 01 = 2352. During the next group
of iterations, these ratios hold approximately at
the same level X, = 2342, 09 = 1628; and af-
ter another 10000 they decrease to X3 = 1998,
o3 = 1360. Thus, at the beginning of opti-
mization, the value of x rapidly concentrates ex-
tremely far away from the desired case of equal
magnitudes and then slowly decreases. Conse-
quently, PINN overfits to the boundary condition.

The training process of our method is signifi-
cantly more stable. Figure 2] shows results for the
proposed AdaptiveBGDA. Using this scheme,
weobtain x; = 7,01 = T; Xy = 25, 02 = 27,
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Figure 1: Dynamics of x = IVZ-O)l/|vz,(0)]|
during optimization via NTK. The experiment is
made on Poisson 2d-C. To observe instability,
we break the training into three parts.
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Figure 2: Dynamics of x = IVL-(0)ll/|vc,(0)]
during optimization via Adapt iveBGDA (our
optimizer). The experiment is made on Pois-
son 2d-C. To observe instability, we break the
training into three parts.

X3 = 45, 03 = 127. The pathology is much less pronounced. The resulting improvement is sta-
tistically significant. Indeed, for I; only ~ 9% of the values obtained with NTK fall within the
3o -interval for Adapt iveBGDA. At the same time, for I> and I3 such values do not exist at all.
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The superiority of our method is particularly well demonstrated by the error heat maps. Such a
comparison is presented in Figure [3] In the right part of Figure 3] we observe a significant region
within the interior of the domain where the approximated solution exhibits a large error. The absence
of such a region on the left side of Figure [3] illustrates that we successfully address the issue of
underestimating losses in the interior of the domain.

6.4 EXPLORING THE COMPUTATIONAL OVERHEAD

o rammescon ey | One of the key characteristics of an optimizer is the trade-
off between performance and computational overhead. Since
AdaptiveBGDA (Algorithm [2)) includes an additional update in
Line [TT] compared to competing approaches, conducting such a
study is particularly important.

o NTK

Figure [ shows a direct comparison of the actual runtime of
AdaptiveBGDA (Algorithm [2) and its competitors on the Wave
va, . 1d-C problem. Algorithm 2] achieves convergence approximately
S e  w e e %54 2.5 times faster than state-of-the-art scheme for this PDE. The in-
tersection of deviations at the beginning of training is associated
Figure 4: Comparison of with the rapid convergence of methods. Notably, the model reaches
AdaptiveBGDA to competi- a higher final performance when trained with Adapt i veBGDA.

tors on Wave 1 d'_C- Real time  We also provide a report on time-per-iteration and memory con-
is used as a metric. sumption of AdaptiveBGDA and competing methods when
solving Poisson 2d-C. Table [d] demonstrates that AdaptiveBGDA does not increase com-

Metric Adam LBEGS LRA NTK RAR MultiAdam BGDA
Time (Sec) 7.69 520.41 20.75 18.43 7.71 13.06 7.64
Space (GB)  0.36 0.40 0.77 0.70 0.38 0.69 0.37

Table 4: Comparison of time/space complexity of AdaptiveBGDA and competing methods on Pois-
son 2d-C. The second row of the table shows the time for 1000 iterations in seconds. The third row
shows the peak GPU utilization on storing the optimizer states.

putational bottleneck compared to existing state-of-the-art.  Additionally, we provide mea-
surements of the L2RE as well as the computational cost using several methods that are
not part of PINNacle. Table [3] presents a comparison with SSBroyden (Kiyani et all
2025) and NNCG (Rathore et al. 2024). Below we formulate the list of core observations.
e Algorithm 2] does not experience an increase in iteration time despite the inner minimization step
in Line [TT] Indeed, in the case of the unit simplex with KL-divergence, the ascent Bregman step
has a closed-form expression in terms of the values of the objective components. Thus, updating the
weights requires only a forward pass, which is already performed for updating the model parame-
ters. Consequently, the Adapt iveBGDA does not incur higher computational cost than first-order
methods such as Adam or LBFGS.

e GPU utilization also does not in- i
crease compared to competing meth- Approach L2RE Time (Sec)  Space (Gb)

ods. We attribute this to the fact

BGDA 1.30E-2 8.25 0.24
that the number of model parame-
ters (40K in our experiments) is sig- SSBroyden 1.32E-2 176.69 10.66
nificantly larger than the number of NNCG 1.33E-2 13937.61 2.68

weights (no more than 11 in PINNa-
cle). Consequently, optimizer states
for the weights do not inflate mem-
ory requirements. Since the size of
the model exceeds the size of the differential equation system, we conclude that our method is effi-
cient in this regard.

Table 5: Comparison of time/space complexity of Adaptive-
BGDA and competing methods on Burgers 1d-C.

In light of the above, we suggest that our approach has potential to be as efficient as Adam in terms
of computational workload while achieving accuracy comparable to LRA/NTK.
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7  DISCUSSION

In this paper, we note that even advanced weighting schemes for PINNs do not achieve a fully
balanced optimization process. To address this issue, we reformulate the training problem as the
nonconvex-strongly concave SPP of non-Euclidean nature. In addition to theoretical analysis, we
conduct a comprehensive empirical study. We observe a significant increase in model quality (Table
[3) while preserving the computational efficiency. We also note an increase in the stability of the
optimization process (Figure [2). Specifically, the losses within the domain decrease approximately
as rapidly as those at the boundary, which is empirically noticeable (Figure[3). For additional exper-
iments, see Appendices [AC]
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To ensure reproducibility, we attach the code: https://anonymous.4open.science/r/
pinns-bgda-00D6

A ADDITIONAL EXPERIMENTS

In this section, we provide additional information to accompany the work. In addition, we use
more modern PINN architectures provided in PINNacle (Hao et al., [2023)) to validate the theoretical
insights. Below we summarize their key features.

e gPINN. It is known that the residual (R ;[u]— f;)(x) must be zero inside the domain. Consequently,
its derivative must also be equal to zero. This approach proposes to modify the objective by adding
18/02(Ri[u] — f;)(x)||* as a regularization. In (Yu et al.,2022), it is shown that gPINN has improved
quality of the approximation inside the domain €.

e GAAF. This architecture relies on adaptive activation functions (both layer- and neuron-wise).
(Jagtap et al.| |2020b)) demonstrates the advantages of this approach over vanilla PINNs.

e LAAF. Considers GAAF with slope recovery term. For the details, see (Jagtap et al., 2020a).

Below we provide the comparison of the best known L2REs with ones provided by our approach.
Table [6] demonstrates that our scheme dominates not only for vanilla PINNs, but also for novel

Table 6: Training model PINN architectures via Adapt iveBGDA. In all experiments, the model is

trained to the performance limit. L2RE is used as a quality metric. We highlight the best results
for each PDE and architecture.

gPINN LAAF GAAF

PDE Best Ours Best Ours Best Ours
Burgers 1d-C 2.16E-1 1.36e-2 1.43E-2 1.30E-2 5.20E-2 1.30E-2
2d-C 3.27E-1 5.11E-1 2.77E-1 4.42E-1 2.95E-1 5.09E-1
2d-C 6.87E-1 5.85E-1 7.68E-1 1.38E-2 6.04E-1 4.37E-3
Poisson 2d-CG 7.92E-1 4.45E-1 4.80E-1 1.11E-2 8.71E-1 2.82E-2
3d-CG 4.85E-1 5.65E-1 5.79E-1 5.43E-2 5.02E-1 9.22E-2
2d-MS 6.16E-1 4.55E-1 5.93E-1 3.72E-1 9.31E-1 4.07E-1
2d-vC 2.12E+0 1.01E+0 6.42E-1 2.57E-1 8.49E-1 7.03E-1
Heat 2d-MS 1.13E-1 3.95E-2 7.40E-2 1.85E-2 9.85E-1 6.67E-2
2d-CG 9.38E-2 1.09E-1 2.39E-2 4.06E-2 4.61E-1 1.18E-2
2d-LT 1.00E+0 9.99E-1 9.99E-1 9.98E-1 9.99E-1 9.98E-1
2d-C 7.70E-2 6.22E-2 3.60E-2 8.14E-2 3.79E-2 2.55E-2
NS 2d-CG 1.54E-1 1.11E-1 8.42E-2 1.25E-1 1.74E-1 1.06E-1
2d-LT 9.95E-1 9.63E-1 9.98E-1 9.99E-1 9.99E-1 9.99E-1
1d-C 5.56E-1 6.95E-2 4.54E-1 2.52E-2 6.77E-1 2.97E-2
Wave 2d-CG 8.14E-1 7.82E-1 8.10E-1 7.86E-1 7.94E-1 7.81E-1
2d-MS 1.02E+0 9.09E-1 1.06E+0 9.99E-1 1.06E+0 9.99E-1
Chaotic GS 2.48E-1 9.30E-2 947E-2 9.49E-2 9.46E-2 9.32E-2
KS 9.94E-1 9.68E-1 1.01E+0 9.99E-1 1.00E+0 9.99E-1
High dim PNd 5.05E-3 1.65E-3 4.14E-3 8.00E-4 7.75E-2 1.57E-3
HNd 3.17E-1 9.00E-4 5.22E-1 3.20E-4 5.21E-1 3.20E-4
Inverse PInv 8.03E-2 8.45E-1 1.30E-1 9.49E-2 2.54E-1 1.31E-1
Hlnv 4.84E+0 6.71E-1 5.59E-1 5.16E-2 2.12E-1 5.97E-2

architectures. The percentage of superiority is 81.8% for gPINN, 72.7% for LAAF and 90.1% for
GAAF. Moreover, there is a significant drawdown only for Burgers 2d-C.

B ANOTHER SPP REFORMULATIONS

In this section, we compare BGDA with approaches based on saddle-point reformulation that have
been proposed in the literature. Namely, Augmented Lagrangian relaxation method for PINNs
(AL-PINN) (Son et al., [2023) and dual-dimer method (Liu and Wang, [2021)). AL-PINN re-
formulates the training of PINNS as a constrained optimization problem, where initial and boundary
conditions are enforced through constraints rather than just penalty terms, and solves a max-min
problem during training. dual-dimer introduces weights and and additional maximization simi-
lar to our methodology, but in Euclidean geometry.
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In Table [/| we provide comparison of the best achieved L2REs for AL-PINN and dual-dimer
with ones provided by our approach. All models are trained to the performance limit. Table
demonstrates that our scheme dominates AL-PINN and dual-dimer in 63.6% and 81.8% of
cases, respectively. The consistent superiority over dual-dimer highlights the importance of the
non-Euclidean nature of the proposed descent-ascent scheme.

Table 7: Comparison of Adapt iveBGDA to the AL-PINN. L2RE is used as a quality metric. We
highlight the best result for each PDE.

PDE Case | AL-PINN | dual-dimer | BGDA (this paper)
1d-C 1.28E-2 1.23E-2 1.30E-2
Burgers
2d-C 4.61E-1 4.56E-1 4.21E-1
2d-C 5.97E-1 4.19E-1 8.16E-3
. 2d-CG | 4.09E-1 7.26E-2 1.76E-2
Poisson
3d-CG | 1.99E-1 1.57E-1 4.78E-2
2d-MS | 5.60E-1 3.67E-1 3.48E-1
2d-VC | 2.79E-1 5.99E-1 2.93E-1
Heat 2d-MS | 9.33E-3 8.19E-3 1.88E-2
2d-CG | 1.13E-2 1.14E-2 1.01E-2
2d-LT | 9.97E-1 9.96E-1 9.98E-1
2d-C 1.01E-2 2.31E-2 2.24E-2
NS 2d-CG | 1.13E-1 6.46E-2 7.63E-2
2d-LT | 9.87E-1 9.86E-1 9.75E-1
1d-C 2.84E-1 2.64E-1 1.62E-2
Wave 2d-CG | 8.03E-1 8.01E-1 7.78E-1
2d-MS | 1.00E+0 1.00E+0 8.98E-1
. GS 9.28E-2 9.30E-2 9.30E-2
Chaotic
KS 9.61E-1 9.73E-1 9.53E-1
. . PNd 8.00E-5 4.2E-4 1.20E-4
High dim
HNd 3.60E-4 2.60E-4 1.60E-4
PInv 7.28E-2 7.33E-2 8.59E-2
Inverse
HiInv 7.16E-1 1.08E+0 4.05E-2

C ROBUSTNESS TO VARIATIONS IN HYPERPARAMETERS

In our work, hyperparameters were selected once by tuning to best convergence on Poisson 2d-C
from PINNacle (Hao et al.,|2023). In this section, we study the sensitivity of Adapt i veBGDA to the
choice of hyperparameters. In this experiment, we use Burgers 1d-C. Let us start with varying the
descent 7y and ascent 7y, step sizes. Table[8|demonstrates robustness to variations in step sizes. This

Yo 0.001 0.001 0.001 0.004 0.004 0.004 0.016 0.016 0.016
Yo 0.01 0.1 0.5 0.01 0.1 0.5 0.01 0.1 0.5

L2RE 1.26E-2 1.30E-2 1.28E-2 1.30E-2 1.31E-2 1.31E-2 1.31E-2 130E-2 1.35E-2

Table 8: Robustness of Adapt i veBGDA to variations in 7y, v,. L2ZRE is used as a quality metric.

allows to obtain satisfactory results on the benchmark experiments (see Table [3)) without additional
tuning for each specific PDE. We note that Adapt i veBGDA is also robust to poor tuning of \.

A 0.001 0.005 0.01 0.05

L2RE 1.30E-2 1.26E-2 1.26E-2 1.31E-2

Table 9: Robustness of Adapt iveBGDA to variations in A\. L2RE is used as a quality metric.

D COMPARISON OF THEORETICAL AND EMPIRICAL RESULTS
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— Empiical Convergence guarantees of BGDA are established under the Lips-
- "™ chitz continuity of VL. Despite the idealized nature of this as-
sumption, it provides a reasonably good approximation of real loss
functions, even for large neural networks (Khromov and Singh).
Figure[5]illustrates a comparison between the empirical behavior of
our method and the theoretical convergence. Since theory guar-
antees a decrease in the gradient norm, we measure the conver-
! gence of BGDA according to this criterion. Since the convergence
T e mw_ww ww e bound contains constants that cannot be computed in practice (L,
) ) K, ®(0°) — ®(0*), Dy (r(6°), 7)), we define the theoretical con-
Figure 5: Comparison of yergence function as f(t) = C/vi and check whether there exists
theory and practice for 4 constant C' such that the plot of f(t) lies within the confidence
AdaptiveBGDA interval of the curve corresponding to the gradient norm. In Figure
Bl ¢ = 20811.

On the logarithmic scale, it can be seen that the empirical curve decreases at the same rate as the the-
oretical reference: the slopes of the lines nearly coincide, and the discrepancy between them remains
stable throughout all iterations. This confirms that the actual convergence behavior of BGDA aligns
with the theoretical predictions, and that the theoretical guarantees adequately reflect its practical
dynamics.

We also provide a comparison of the convergence speed of Adapt i veBGDA against the competing
methods on Burgers 1d-C. See Figure|[6|for the results.

Loss:

=—@— AdaptiveBGDA (Our Paper)
O NTK

—&— Adam

—o— MultiAdam

10°

0 250 500 750 1000 1250 1500 1750 2000
Time (sec)

Figure 6: Comparison of Adapt iveBGDA to competitors on Wave Id-C. Training MSE loss is used
as a metric.

E STRONG CONCAVITY OF THE OBJECTIVE
In this section, we prove Lemmal ] It follows obviously from the form of the objective (see [2)) and
Assumption[2}

Lemma 3. (Lemma IZI) Consider the problem IZl under Assumptionlzl Then, for every € R? the
function L(0, ) is A-strongly concave, i.e. for all 1,75 € S it satisfies

£(9,771) < £(0,7r2) + <Vw£(0,71'2),71'1 — 7T2> — % (D¢(W1,7T2) =+ D¢(7T2,7T1)) .

Proof. Note that V2L£(0,7) = —AV?(r). The function £(6, ) is u-strongly concave related to
Dy, if V2L(0,7) < —uV?y(7) (Lu et al., 2018). Therefore, the objective is A-stongly relatively
concave. 0
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F PROOF OF LEMMA

We begin the presentation of the analysis with a key result guaranteeing convergence. It demon-
strates that the distance between 7! and the exact maximum of 7*(6*) has a suitable dynamics with
increasing t.

Lemma 4. (Lemma 2). Consider the problem 2| under Assumptions|[I| [2| Then, Algorithm [I)with
tuning
1
= A S L
produces such { (0%, 7*)}L_,, that

Dy (r*(0"h), 7111 < ( 641 2) Dy (7 (0%), 7%) + 26473 k5| VO (672,
K

where k = L/x is the condition number of L(0, ) in .

Proof. Before proceeding to the proof, let us recall the three-point identity. It plays a key role in the
analysis of Bregman methods.

Dy(z,y) — Dy (z,2) = Dy(2,y) = (Vib(2) = V(y),z — 2). 3)
To begin, we use equation [3]in the form
Dy(m*(0"71), ') =Dy (n(0°F1), 7 (8")) + Dy (m* ("), ')
+ (Vi (r*(0%) — Vo (r'), 7 (0°1) — 77 (6")).

Further, we write the optimality condition for Line 5}
(= VoL, ") + [V (r' ) — Vo (ah)], 7 (0") — 7*T1) > 0.
Applying equation 3] we obtain
—vr (VR L(0",7"), 7 (0") — 7Y + Dy (n*(0"), 7") — Dy (m*(6"), ') — Dy (x*+1, ") > 0.
After re-arranging the terms, we get
Dy(m*(0"), m'"1) < Dy (n*(0"), 7") = Dy (w'F1,1") — 4 (V2 L(0', "), 7(0") — 7' F1) . (5)
Since 7*(0?) is the exact maximum of £(6%, ) in 7, there is another optimility condition
T <Vﬂ£ (0%, 7%(6")), 7 (6") — 7T> > 0.
Substituting 7 = 7¢*! and summing it with equation we derive
Dy (" (6"), 7 *1) <Dy(r*(8"), ') — Dy (" 7rt)
+m (VL0 *( ) = VL0, 7"), 7 (0") — 7' )
<Dy (" (0"), ") — (7T’f+1 "
+ 9 (VoL (0", 77(0") = Vo L(0', 7). 7*(8") — ')
+ vx (VL(0", 7(0")) — (0", "), 7" —mtth).
Now, we are going to utilize the strong concavity of £(, ) in 7:
Yo (VR L(0°, 7%(0")) — VL L(0", 7"), 7* (") — 7*) < ’;WAqu(W*(@t), 7).

Thus, we have

Do(r"(0).4) < (1= 252 ) Dy(* (). ) = Dy(n )

4)

VL
VL

+ Yr <V7T£(9t, 7*(0Y)) — VL0, ), n"t — 7rt+1> .
Next, we apply Cauchy-Schwartz inequality to the scalar product and obtain

Dy(a (0,77 < (1= B52) Dy (0,7 - Dot )

(6,7 (8) = V(8" 7") |2 + 3= " — 712
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Using L-smoothness of £ (see Assumption|[T)), we obtain
A
Dy(r (@) < (1= 552) Dy (0,7 - Dy, )
T L2 ™
i AR U S Lt A

Since 1 is 1-strongly convex (see Assumption [2), we have

+

1
llm = ma||? < Dy (71, m2).
Thus,
A
Dw(ﬂ*(ﬁt),ﬂﬁ_l) < (1 — —72 ) D¢(7T*(0t),7rt) — Dw(wt""lﬂrt)

FyraL?Dy(n*(0Y), 1) + =Dy (xt, 7t ).
«

Choose o = ;. We can derive
Dula (@),5t+1) < (1= 22 49207 ) Do 0.2
Since v, = »/aL?, we have
Dol (@7 < (1= 5.3) Dol (#), 70 ©
Let us return to equation 4] Note that
Vil (0) - Vo't =

S (VoL (8 7%0) = VL0, 7(6)

Thus, there is
Dy (m* (6"1), x+1) =Dy (" (6°1), 7 (6")) + Dy (6), 7'+)
1

b (VRL(0, ) — VL L(0F, 7 (0Y), 7 (01F) — 7 (61))

<Dy(m*(0"1), 7% (6%)) + Dy (z* (6°), 7"+1)
al?

1
w(pty —t+1y L *(pt+1y s (pt
+ EEDu( (0, 74 4 5= D (671), 7 (6)).

Let us choose a = A*/3214. With such a choice, we have

>

1
Dy ("), 7)) < 33k Dy (7 (0"T1), 7 (6)) + (1 + 322) Dy (7*(0"), 7).
K
To deal with Dy, (7*(0*), 7t1), we utilize equation@ As a result, we obtain

— W) Dy(7*(0%), 7). (1)
The rest thing is to prove that the descent step does not dramatically change the distance between
the optimal values of weights. Let us write down two optimality conditions:

(VAL 7*(0Y)), 7 — m*(6")) <0,

(VLT 7% (00h), 7 — 7 (0°T1)) < 0.

Let us substitute 7 = 7*(6**1) into the first inequality and 7 = 7*(6?) into the second one. When
summing them up, we have

(VL0 75 (0)) — VLLOT 7*(01Th)), 7% (0" — (%)) < 0. (8)

On the other hand, we can take advantage of the strong concavity of the objective (see Lemma [I)
and write

Dy (01, 71 < 3364 Dy (" (01, 7 (6) + (1

(VL0 7% (01T1)) — VL6, 7% (%)), 7*(6TT1) — 7% (6"))

)\ */nt */nt+1 *nt+1 *(nt (9)
< =5 [Py (09), 7 (0")) + Dy (*(6"1), 7 (6"))]
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Combining equation [§|and equation 9] we obtain
2

/\Z [Dy(a(8), 7 (6"1)) + D (w* (6"1), 7 (6)]” < L[ (67+1) — 7 (61)|2 - 0"+ — 6.

Applying the strong convexity of distance generating function (Assumption [2) and re-arranging
terms, we obtain

Dy(m*(0"), 7 (071)) + Dy (x (0°71), w* (")) <4r?(|0T" — 0"]]* < 4 n®([ Vo L(0", 7).
Next, we ass and subtract V®(0") and apply Assumption We obtain
Dy (" (60), 7 (0"71)) + Dy (n* (1), 7" (6")) 169347 L? Dy (™ (6), ") + 8757V (") .
Thus, equation [7transforms into
1
Dy (m*(0"h), n' 1) < (1 ~ 592 + 52873&6L2) Dy (7 (0"),7") + 26473 k5| VO (6Y)]2.
With vy < 1/184x*L, we obtain

Dy (r*(0"h), 7111 < ( 641 2) Dy (7 (%), 7%) 4+ 26473 k5| VO (6Y)]2.
K

This completes the proof. O

G PROOF OF THEOREM I

Theorem 2. (Theorem|[I) Consider the problem 2|under Assumptions[I} 2} Then, Algorithm[Ijwith

tuning
= 72’ =\ 92433792 92*33792 H4L
requires
KALA 212Dy (
(9( T p(m(0%), 7 ) iterations
€2
to achieve an arbitrary e-solution, where €? = . Z ||V<I>( ZLA=9(0°)—-®(0%). k = L/

Proof. One can note that ® is 3xL-smooth. Indeed,
IV®(01) = V(6a)|* =||VoL (01, 7" (61)) — VoL(02, 7" (62))|
<IL? [Hel — 05]]* + 2D¢(7r*(91),7r*(92))] <IL? (1 + 4/@2) 1601 — 6>
<9K2L2(|6;, — 022
Thus, we can write
P(OTTY) <B(OY) + (VO(A), 0" — 0%) 4 3kL||6TT" — 672
<®(6') — 0l|VR(8")|? + 373RL|VL (0", 1)
+79(VR(0Y) — VoL(0',7"), V("))
<®(0') — L [VE(O")|? + 373 L{[ VoL (8", 7)|> + L[| V(6') - VoL(e', =)

<0(0") — (5 —693nL) IVR(0)|* + (3 + 633K ) V(") — VoL (0", =)

Note that
439

Y6 9 )
(20 g2k < — 2200
(2 Grrl) < =55

(% + 6")/92RL> < vp.

On the other hand,

Thus, we have

(I)(at+1) Sq)(gt)

<o(¢") -

43
LIV R + 70 [ V(") — VoL (8" 7]

43
2PV |2 + 296 L2,y (x*(81), 7).
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Let us denote 6 = 1 — 1/64x2. Lemmatransforms into
t—1
Dy (m*(8"), ") < 6" Dy (" (6°),7°) + 26475k° Y 6"~ 7|V (67)|°.
j=0
Hence,

4370

O(OF) <@(0") — — VR0 + 270 L?6" Dy (n*(6"), 7°)

t—1

+528y7kOL% > 5|V R(67))2.

j=0
Let us sum up over the iterates ¢ and obtain
T—1
4

a(6") <w(e") - Z V(") |2 + 29012 3 6Dy (6%), 7)

t=1

T—11t—1

+528y3K0L2 > Y 6T VE(67)]°.
t=1 j=0
Next, we use the property of geometric progression and write

4
B(67) <(6°) — 379 Z VDY) + 1289952 L Dy (n* (69, 7°)

T-1
+ 3379293512 Y |[Ve(6")]%.
t=1
Choosing vp < Q/%ML Thus, we derive
T-1 4 272 *(p0\ 0
LA K2L2 Dy (*(6°), ")
- 2 <o (L2 v ’ .
F 2 VeI <0 ("t + .

H ENHANCED RATES ON REGULARIZED SIMPLEX

The theory presented in Appendices [F] [G]is constructed for and arbitrary Bregman divergence. This
is the main reason for the deterioration of the theoretical guarantees compared to the Euclidean
setting. In this section, we look towards the selection of the efficient approach for determining the
set of weights S. We consider a classic approach of using a unit simplex A]lw -1

M
2t v s 203 w1,
m=1

Note that ¢(7) = — E%:r T log 7, goes to infinity at vertices of A}~!. Thus, one cannot
guarantee smoothness of £(6, ) in 7 for every fixed 6. To avoid this, we propose to intersect the
simplex by a euclidean ball. This approach is common in the literature (Mehta et al., |2024)). Thus,
we deal with

S = A{V[_l N BH.H(U,R),
where U = (1/m,..., 1 /m)T.

Lemma 5. The function L(0, ) is Lr-smooth in =, i.e. for all m\,mo € S it satisfies
IVLO, 1) — VLB, 72)|| < La|lmy — ma|*.
Moreover, under strong regularization (R < 1), it is

L, = ©(AM?R).
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Proof. Without loss of generality, consider 7 = (a, b, ..., b), where a = min,,, 7. Note that

1 1
diag (,...,)
m ™

Thus, we need to find max, . m-1 L with |7 — U||? < R?. Let us write
1

IVEL(0, )|l = A

2 1 ? 1 ? 2
| —U|| :(a—M> +(M—1)<b—M> < R% (10)

Then equation |10|transforms into
2
1 (1—aM)? 9
- 7/ < R4
(e=5) +3mar=n <

Solving the one-dimensional optimization problem, we find the Lipschitz constant of V. £(0, 7). If
R <« 1, then

l1—a

Consider b = 5.

A M
Um—0O(R)  1- MO(R)

L, = ~ O(AM?R).

O

Note that this value is negligible. Indeed, R € (0, 1), and M in problems of mathematical physics
(see equation is usually equal to 3—4. Thus, if k, = L=/x appears in the estimate, it is comparable
in magnitude to other constants hidden in the big-O.

Now let us move to an analysis with enhanced rate.

Lemma 6. Consider the problem I under Assumptions I I Let S = A 'n By (U, R). Then,
Algorithm[I)with tuning

L —
arz’ 7 = 1843kl
produces such { (0%, 7)Y, that
1
Dula @), < (1= G ) Dute (00, 7) + 260tV
Hﬂ'

where K = L/\, kn = Ix/x.

Proof. To begin, we use equation [3in the form
Dy(m*(0"1), 7' *1) =Dy (n* (6"F1), 7(8")) + Dy (n™(6"), 7" )
+ (Vi (r(0%) — Vo (r'), 7 (0"1) — 77 (6")).
Further, we write the optimality condition for Line 5}
(= VoL, ") + [V (r' ) — V()] 7 (6") — 7*T1) > 0.

Applying equation 3] we obtain

e (VoL (87,7 (67) — 1) 4+ Dy (6), 1) — Dy (6),7+1) — Dy (x'+1, 1) > 0.
After re-arranging the terms, we get

Dy (m*(0"), ') < Dy (n*(0"),7") — Dy (n"1, 7t) — v (VR L(0", 7), 7*(0") — ' T1) . (12)
Since 7*(0?) is the exact maximum of £(#%, ) in m, there is another optimility condition

Yo (VR L(0°, 7*(0")), 7 (6") — ) > 0.
Substituting 7 = 7*"" and summing it with equation we derive
Dy(x* (8,7 +1) <Dy (7 (6%), 7) — Dy (! wt>

(an

t+1

+m (VL0 7 ( ") = VL', 7"), 7 (0) — 7' )
<Dy (" (0"), ") — (Wt“, ")

+ 9 (VaL(0, 77 (07)) = VL0, "), 7" (0") — 7")

+ 9 (VR L0, 7*(0") — VL0, 7"), nt — ).
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Now, we are going to utilize the strong concavity of £(0, 7) in 7:
Yr (VL(0°,7(0")) — VL L(0", 7"), 7*(6") — 7*) < — 5 )\Dd,(w*(@t),wt).
Thus, we have
Do(a (@) < (1= B52) Dy(x(0),') - Do)
+9x (VR L0, 7 (0") — VL0, 7"), n — ')
Next, we apply Cauchy-Schwartz inequality to the scalar product and obtain
Dy(a (0,7 < (1= B52) Dy (0,7 - Dy,
(', 7 (6") = Vo L(8', ") |2 + JZ |l — .
Using L-smoothness of £(0,7) in 7 (see Lemma/5), we obtain
Do(r (@) = (1= 552) Dy (0,7 - Dy, )

Va2
+ 2
Since 1 is 1-strongly convex (see Assumption [2), we have

T (6) = w2 4 o —

1
§||7T1 — ma||*> < Dy (1, m2).
Thus,

Do((0).+4) < (1= 252 Dy(* (). ) = Do(n )

Choose o« = ~,;. We can derive
A
Duta @), < (12222 49222 ) Dy (0.,

Since v, = /412, we have

1
* (Nt t+1
Dy (m (9)77T+)<<1—W

T

) Dot (0,7 (13)
Let us return to equation [T} Note that
VU (0) — V() = £ (VoL(',7) = Vol (@', 7 (01)
Thus, there is
Dy (" (0"F1), wH1) =Dy (" (0"F1), 7 (6")) + Dy (" (6"), 7' )

(VL0 7H) = Vo L(0",7(0")), 7 (0""") — 7(6"))

(0), 7 (0%) + Dy (n(0%), 7Y
fQMﬂMﬁﬂ+$mWWWfW»
Let us choose o« = >‘3/32Li. With such a choice, we have

D" (077 < 3362 D" 0,7 (00) + (14 355 ) Dot (0),54),
Rﬂ'

L1
X
Dy(m

To deal with Dy (7*(6"), 7'+1), we utilize equation[I3] As a result, we obtain

Dw(ﬂ*(9t+l)’ﬂ't+l) < 33/@iD¢(7r*(9t+1)’77*(9t)) + (1 - 3222) Dw(m(gt)’ﬂt), (14)
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The rest thing is to prove that the descent step does not dramatically change the distance between
the optimal values of weights. Let us write down two optimality conditions:

(VL L6, 7*(6")),m —7*(6")) <0,
(VL0 7% (01Th), 7 — 7 (0°T1)) < 0.
Let us substitute 7 = 7*(9#**1) into the first inequality and 7 = 7*(6#*) into the second one. When
summing them up, we have
(VR L0, 7%(0) — VL LOT 75 (01)), 7% (6'T1) — 7% (%)) < 0. (15)
On the other hand, we can take advantage of the strong concavity of the objective (see Lemma [T)
and write
(VoL (0, 7(071)) = Vo L(0',7*(6")), 7" (6F) — 7(6"))
(16)
< =7 [Dulr* (8,7 (041 + Dy (" (61), 7 (6)]

Combining equation[I5]and equation [T6] we obtain
2

AZ [Dy((6%), 7 (97F1)) + Dy (w (0"T1),7*(0))]” < L2~ (07+1) — 7 (82 - [j0+" — 0" %

Here we can not apply the smoothness in 7. Instead, we have to use the smoothness in (8, 7).
Next, applying the strong convexity of distance generating function (Assumption[2) and re-arranging
terms, we obtain

Dy (w*(0"), 0 (0°71)) + Dy (™ (0°F1), 7 (6")) <4r®(|0"F — 0°[|* < 4y n? | VoL (0", 7).
Next, we ass and subtract V®(6?) and apply Assumption We obtain
Dy(m*(0"), 7 (0"F1)) + Dy (™ (0"1), m* (")) <1695 L* Dy (w*(8), 7") + 84357 V(") *.
Thus, equation [[4] transforms into
1
Dy (m*(0'1), 7 11) < <1 ~ 392 + 528735i/€2L2) Dy (7*(0), ") + 2647 k2 K2 || VO(0Y) ||
K"‘ﬂ'
With vy < 1/184x3xL, we obtain
1
Do(a (0, 7) < (1= iy ) Dl (0 )+ 2003k V(6 P
This completes the proof. O

Next, we modify the main proof to obtain enhanced convergence.

Theorem 3. . Consider the problemunder Assumptions Let S =S =AY""nBU,R).
Then, Algorithm[I|with tuning

_A <. ]2 1
Tm Tz =V 92433792 3kL

o (mLA + L2Dy(m*(6°),7°)
2

requires

) iterations

to achieve an arbitrary e-solution, where £ = ZtT:_ll [V®(0)]?, A = ®(0°) —D(0%). k = L/x,

Kg = L/

Proof. One can note that ® is 3x L-smooth. Indeed,
IV®(01) = VO(0:)* =[IVoL(01, 7" (61)) — VoL (B, 7(02)) ]
<IL? [Hel — 0s]]* + 2Dw(7r*(91),7r*(02))] <IL? (1 + 4;@2) 1601 — 6|
<9k2L2||0; — 0o2.
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Thus, we can write
(1) <D(0) + (VO(0Y), 011! — 6Y) + 3kL||6"T! — 6%
<®(6") = 70| V(") |2 + 393 RL| VoL (8", 7]
+70(V®(0") — Vo L(0",7"), VE(8))
<®(0') — T [VE(O") |2 + 373K L|VoL (8" 7|2 + T V(6') — VoL(®', =)

<0(0") — (5~ 693L) IVR(0)|* + (3 + 633K ) [ VR(0") — VoL (', 7)1
Note that

_ (70 6.2 )<_@
(2 6rrl) < =55

On the other hand,
(% + 6792/<5L> < 7.
Thus, we have

@(0t+1) S(p(et) 43’}/9

IVR(0°) 1 + [ VR(0') — VoL(6, 7")]?

43
<(0') — 55" IV + 290Dy (6). 7).
Let us denote § = 1 — 1/64x2. Lemma@transforms into
t—1
Dy (" (6"), ") < 6" Dy (" (6°),7°) + 26475 r7k° Y 617V R(67)*.
7=0

Hence,

4379

O(0) <@(0") — —~IVR(O)|* + 270 L7 Dy (" (6°), 7°)

t—1

+ 5283 ke kL2 Y 6 Ve (67)|1%.

j=0
Let us sum up over the iterates ¢ and obtain
437 T—1
0
®(07) <@ Z V@0 + 276 L% D 6 Dy (r*(6°), 7°)
t=1
T—1t-1
+ 528y kak”L? Y > 8T VER(67)2.
t=1 =0
Next, we use the property of geometric progression and write
43
B(07) <d(6°) — 9;9 Z VD012 + 128792 L2Dy (r* (6°), 7°)

t=1
T—1
+ 3379293 kS K217 Y |V (62,

t=1

: /43
Choosing vy < mﬁ% 7. Thus, we derive

T-1
1 2 kK3kLAg — KZL2Dy(7*(6°),70)
72 VeI <o (Ze u

Above we discussed that x,; is small, since not many equations appear in the PDEs systems. Thus,
we can focus on x only and proceed to
T-1

LS Iva) < o (MR KR,

T T
This finishes the proof. O
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I STOCHASTIC SETTING

In the current realities of machine learning, it is almost never possible to use all the data to compute
a gradient. Motivated by this fact, we develop a stochastic theory for our scheme. Note that the
computation V. £(6, 7) does not need to perform backward. Therefore, we analyze the stochasticity
in 6 only. Consider a stochastic gradient G (0%, ¢, ) calculated from one randomly selected sample
€.

Assumption 3. Stochastic oracle Gy is unbiased and light-tailed, i.e.
E¢ [Go(0,7,8)] = VoL(0,7), E [|Go(0,7,&) — VoL (0, m)|*] <0 V(0,7) e R x S.

In our analysis, we rely on batching. Namely, we sample a subset of data points and use it to
approximate the gradient. The main difference between Algorithm [3|and deterministic BGDA is the

Algorithm 3 S-BGDA

1: Input: Starting point (§°, %) € R? x S, number of iterations T’
2: Parameters: Stepsizes vp, V7. > 0
3: fort=0,...,7T—1do

4 Draw a collection of i.i.d. data points {£/}2

5 g+l =gt — ’79% Zf;l Gy (Qt, 7Tt7 flt) // Optimizer updates parameters

6: il = argminges {—vx <V7T,C(0t, 7Tt), ) + Dy (m, 7rt)} // Optimizer updates weights
7: end for

8: Output: (07, 77)

use of stochastic oracle call in Line[3
Lemma 7. Consider the problem[2lunder Assumptions[I} 2] 3] Then, Algorithm[3|with tuning

= — <
BV R T YY)
produces such { (6%, 7")}L_,, that
1 132 2,6 .2
Dy(x" (6°F1), 7' 1) < (1 - 64) Dy (0), 7) + 26435 [ V(6 | 4+ 22287
K

where k. = L/ is the condition number of L(0, ) in .

Proof. To begin, we use equation [3|in the form
Dy(m*(0"1), 7"+ 1) =Dy (n* (0"F1), 7(8")) + Dy (n*(6), 7' )
+ (Vo (" (0Y) = Vp(r' ), 7 (01) — 77 (6")).
Further, we write the optimality condition for Line [6}
(= VoL, ") + [V (r' ) — V()] 7 (0") — 7*T1) > 0.
Applying equation 3| we obtain
e (VoL (87,7 (67) — 1) 4+ Dy (68), 1) — Dy (6),7+) — Dy (x'+1, 1) > 0.
After re-arranging the terms, we get
Dy (m*(0"), ') < Dy (n*(0"),7") — Dy ("1, 7t) — v (VR L(0", 7), 7*(0") — 7' T1) . (18)
Since 7*(0?) is the exact maximum of £(#%, ) in m, there is another optimility condition
Yo (VR L(0°, 7*(0")), 7 (6") — ) > 0.
Substituting 7 = 7*"" and summing it with equation we derive
Dy (w*(6),7+1) <Dy (" (6"), t)*lh(t+1w3

a7

t+1

9 (VAL (0", <» L0 7), 7 (0) — 7T
<Dy (" (0", ") — <ﬂ“,>

+m (VoL (0", 77(0) = VA L(0', "), 7*(8") — ')

+%<V L0, 7 (0Y) — V. L(6, t),wt—wt+1>.

27



Under review as a conference paper at ICLR 2026

Now, we are going to utilize the strong concavity of £(0, 7) in 7:
ENIDY
o (VR L0, 7% (6Y)) — VL6, '), 7 (6") — =) < ”Tpd,(w*(et), ).
Thus, we have
Do(a (@) < (1= B52) Dy(x(0),') - Do)

+9x (VR L0, 7 (0") — VL0, 7"), n — ')
Next, we apply Cauchy-Schwartz inequality to the scalar product and obtain

Dw(ﬂ_*(et)’ﬂ_t—i-l) < (1 _ '7721')‘> Dd,(ﬂ'*(et),ﬂ't) _ Dw<7rt+1’7rt)

ryﬂ'a * L 771'
+ EEIVL L0, 7 (0Y) — VL@, 7 + 2t — w2

Using L-smoothness of £ (see Assumption[I)), we obtain

Dy (m*(0"), 7' < (1 — %;)\) Dy (7*(0"), ") — Dy (x"T1, )

veoL?
2
Since 1 is 1-strongly convex (see Assumption [2), we have

+ LS (6) = 7P + o [ —

1
llm = ma||? < Dy (71, m2).
Thus,

Choose o« = ~,.. We can derive
A
Dy (7 ("), 7)) < <1 — VT —|—772TL2> Dy (m*(0Y), 7).
Since v, = /4L, we have

Dy (m*(0"), 7' 1) < <1 —

) Dy (m*(0%), 7). (19)
Let us return to equation [I7} Note that
V(e (69) — Vo(at) = 5 (VoL (@', 7 — VL' 7 (0).

Thus, there is
Dy (*(0"41), 7+ =Dy (w*(0"F1), 7% (6")) + Dy (w*(6"), 7" *)

—_

+ (VR L(0", 7)) = VR L(0', 7 (0%)), w*(0°F1) — 7 (6"))

<Dy (" (0"F1), 7% (6")) + Dy (n* (6), 7" +1)
al?

+ Dy (0,7 3 Dy (6, 7 (61).

Let us choose oo = >\3/32L4. With such a choice, we have

>

Dy (071, 7)< 334Dy (" (0°+), 7 (0)) + (1 " 321) Dy (8), 7).
K

To deal with Dy (7*(6"), 7'+1), we utilize equation[I9] As a result, we obtain
1

D" (071, 741) < 334Dy (041),5°0) + (1= gz ) Dolr (@) 0

28



Under review as a conference paper at ICLR 2026

The rest thing is to prove that the descent step does not dramatically change the distance between
the optimal values of weights. Let us write down two optimality conditions:

(VL0 7 (0), 7 —7*(6") <0
(VL0 7% (01Th), 7 — 7 (0°T1)) < 0.
Let us substitute 7 = 7*(9#**1) into the first inequality and 7 = 7*(6#*) into the second one. When
summing them up, we have
(VR L(08, 7 (0)) — VoL, 7*(04FY)), 7 (0P1) — o (6Y)) < 0. 1)
On the other hand, we can take advantage of the strong concavity of the objective (see Lemma [T)
and write

(VL0 7 (0"71) = VoL (6", 7" (6")), 7" (0"F") — 7" (6"))

< =2 (Dol (0,7 (0°)) + Dyl (1), 7 (6))].

Combining equation 2T]and equation 22] we obtain
2

A [Dur (0,7 (04) + Dyl (01,7 (0] < L2 (6) — (0|20 — o)

Re-arranging the terms and substituting Line[5] we derive
[Dy (" (6%), 7 (6°1)) + Dy (" (6°+1), 7 (6)] <4w?[j6+! — 6|

(22)

B
1
<dygn® || 5 D Go(0', '
i=1
After adding and subtracting Vo L(6", 7*), we have
2
B
Dy (7 (0°1), 7% (01)) <442k || Vo £(6" H +4yar? || Vo L(0 EZ b, )
Let us take an expectation and derive
w gty kot 2,2 )12 2 2 t ot e, Agr’a
EDy(r*(0777), 77(0%)) <E8yw~[IVR(0°)|]" + 83517 [[VoL (6", 77) = VR(F)|I” + ——
4792&202

<ESyZVO(0")]2 + 1693 K7 L2 Dy (" (61), ) + 2

Thus, equation 20| transforms into

1
EDy(7*(0"1), 7' T) <E (1 ———+ 52873/—@6L2) Dy (7*(0"), ") + 264~ k|| VO (6)]2

32k2
132 2,6 2
L 132pRSe”
B
With vy < 1/184x*L, we obtain
1 13272502
EDy (n*(#°1), %) < E (1 - 64) Diy(n (6),7") + 26493 5 V(") |2 + ——2——.
K
This completes the proof. O

Now let us proceed to the convergence proof for Algorithm 3]

Theorem 4. Consider the problem2|under Assumptions[I| 2} Bl Then, Algorithm[I|with tuning
A 43 1 K2
= <y~ B 1,5
Tm=arr 0=\ 92433792 WAL max{ 2 }

(/#LA + K2L2Dy (7 (6°), 70) + /@3/202>

requires

o

iterations
e2

to achieve an arbitrary e-solution, where £* = = E |V<I>(9t) LA =3(0°)—-®(0%). k = L/
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Proof. One can note that ® is 3xL-smooth. Indeed,
IV®(61) — VO(6a)|* =[VoL(01, 7% (1)) — VoL(b2, 7 (62))]°
<L?[||1 — 0a]|* + 2Dy (7% (01), 7% (02))] < L (1 + 45?) ||61 — 05|
<9k2L2|6; — 022
Thus, we can write
PO <B(0Y) + (VB(0Y), 0T — ') + 3kL||0 — 6|2

1 B
E Z Gg(@t,ﬂt gt)

B
=®(0") — 45| VR(O)|*> + 7o <V<I>(9t ), Vo (0') — Z b >

=3 (0") — <v<1> (6", ZGG ,T ,£t>+3vﬁﬂL

+ 693K LIIVoL(0",7)||* + 675 KL || VoL (O ——ZGe )

Consider an expectation. We have
E®(0"F!) <ED(0") — || VR(0")]|> + 7o (VR(0"), VO (0") — VoL (0", 7))
+ 672K L||VoL(0F, 7")||* + 673k Lo?
<EQ(9") — (3~ 1293kL ) [Ve(6")?

6 2 L 2
+ (L + 129301 ) |IVO(0") - ToL(®", 7|2 + 22T
Note that
4
,(E,lg Yak L) Sfﬁ.
2 92
On the other hand,

(% + 1273/$L> < Yp.

Thus, we have

43
E®(6'!) <E®(6) — —JLIIVR(6") |2 + 70l VR(6") = VoL (8", 7)]” + 6v7xLo?
4 L
<E®(0") - 3”9||v¢<et>u2+2m2m< (0).x1) + DT

Let us denote 6 = 1 — 1/64x2. Lemmatransforms into
t—1
EDy(m"(6"), ") <E§' Dy (n*(6°), %) + 26473x° Y 8717 Va(67))*

=0
= 13272502
+ 61‘ 1—j [
20—
Hence,
4370

O(OF) <@(0") — — VR0 + 270 L?6" Dy (n(6"), 7°)

t—1
+528y5kOL% D 5| Ve(07)| +
j=0

6v2kLo?
B

DWSLE e
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Let us sum up over the iterates ¢ and obtain
T—1

43
D(O7) <B(6) - ° an P +296L2 Y 88Dy (n" (6°), 7°)
t=1
T—1t—1 6 KJLO’
+52893kL% S0 Y 60w (6Y) ||2+ZL
t=1 j=0
T—1t—1
26473 k8 L2 0
DI MERE
t=1 j=0

Next, we use the property of geometric progression and write
4
B(7) <d(6°) — 37“’ Z VD6 ? + 1287542 L2 Dy (7 (6°), 7°)
T—1

+3379295 k5L Y [VR(6")[|* +
t=1

672k Lo> + 16896Tv5 k8 Lo
B B '

Since 9 < g1 We can estimate this as
4
B(07) <o (09) — ;”2” Z IVD(0Y)|2 + 128792 L2 Dy (1 (6°), 7°)
-1
To?  92vyyTo?
33792935512 S [ VB(0Y)]* + 22 :
PO L Y Vo) + e + 2
Choosing Yo < y/ g3ma0-05 =i » We derive
T-1
1 KiLAg  K2L2Dy(r*(0°),7°) o2 9202
= (02 <0 v : .
F 2 VeI < 0 (Rt ¢ SRR s
Let us choose B = T/x*? and obtain
T-1
1 kLA K2L2Dy(7*(6°),7°) kY02
- B(0")]|? < ¢ ’ .
F 3 IveI <0 ("t + a s
This finishes the proof. O

Note that the same reasoning could be done for the special case of a regularized simplex. Then we
would obtain improved rates.

THE USE OF LARGE LANGUAGE MODELS (LLMS)

Language models were used to improve text quality (mostly to correct grammatical errors). LLMs
were not used to obtain theoretical results or write code.
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