

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ENHANCING STABILITY OF PHYSICS-INFORMED NEU- RAL NETWORK TRAINING THROUGH SADDLE-POINT REFORMULATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Physics-informed neural networks (*PINNs*) have gained prominence in recent years and are now effectively used in a number of applications. However, their performance remains unstable due to the complex landscape of the loss function. To address this issue, we reformulate *PINN* training as a nonconvex-strongly concave saddle-point problem. After establishing the theoretical foundation for this approach, we conduct an extensive experimental study, evaluating its effectiveness across various tasks and architectures. Our results demonstrate that the proposed method outperforms the current state-of-the-art techniques.

1 INTRODUCTION

Mathematical physics is a cornerstone of modern science. It provides powerful tools for theoretical studies and finds applications in practical fields. One of its central challenges is solving partial differential equations (PDEs) (Bateman, 1932; Evans, 2022). They arise in the formal description of phenomena ranging from heat diffusion to quantum mechanics and typically take the form of a boundary value problem involving differential operators on some domain (Yakubov and Yakubov, 1999). Generally, there is a system of M_r equations and $M - M_r$ boundary/initial conditions:

$$\begin{aligned} \mathcal{R}_i[u](x) &= f_i(x), \quad i \in [1, M_r], \quad x \in \Omega; \\ \mathcal{B}_j[u](x) &= g_j(x), \quad j \in [M_r + 1, M], \quad x \in \partial\Omega, \end{aligned} \quad (1)$$

where $f_i, g_i : \mathbb{R}^d \rightarrow \mathbb{R}$ are the scalar functions; $\mathcal{R}_i[u], \mathcal{B}_j[u] : \mathbb{R}^d \rightarrow \mathbb{R}$ are the operators actions on the mapping $u : \mathbb{R}^d \rightarrow \mathbb{R}^m$; $\Omega \subset \mathbb{R}^d$ and $\partial\Omega \subset \mathbb{R}^{d-1}$ are the domain set and its boundary, respectively. Since exact solutions are rare outside idealized cases, the community is focused on developing numerical methods. Among the most established techniques are those based on finite differences (Courant et al., 1967), volumes (Patankar and Spalding, 1983), and elements (Courant et al., 1994). Despite high accuracy and computational efficiency of traditional approaches, they require substantial time to interpolate a new solution (Grossmann et al., 2024, Figures 4b,6b), (Liu et al., 2024b, Figure 6d-f). This limitation makes them impractical in problems where runtime is the primary performance metric. A promising direction for addressing this issue lies in machine learning, due to the low inference time of small neural networks (Guo et al., 2016; Zhu and Zabaras, 2018; Yu et al., 2018). Although the concept of approximating the solution with a parametrized function $u(\theta)$ is quite old and dates back to the works of Meade Jr and Fernandez (1994); Dis-sanayake and Phan-Thien (1994); Lagaris et al. (1998), it has only recently gained attention under the name *PINN* (*physics-informed neural network*) (Raissi et al., 2019). While initial results in this area were obtained using *MLPs*, advanced architectures such as learned activations (Jagtap et al., 2020a;b), memory (Krishnapriyan et al., 2021; Cho et al., 2023) and attention (Zhao et al., 2023; Anagnostopoulos et al., 2024) have led to significant improvements. Typical of AI-based solutions, *PINNs* are trained through empirical risk minimization (ERM) (Raissi et al., 2019):

$$\min_{\theta \in \mathbb{R}^d} \left[\mathcal{L}(\theta) = \sum_{i=1}^{M_r} \mathcal{L}_{r,i}(\theta) + \sum_{j=M_r+1}^M \mathcal{L}_{b,j}(\theta) \right], \text{ with } \mathcal{L}_{r,i}(\theta) = \frac{1}{N_r} \sum_{n=1}^{N_r} [\mathcal{R}_i[u(\theta)](x_r^n) - f(x_r^n)]^2, \\ \mathcal{L}_{b,j}(\theta) = \frac{1}{N_b} \sum_{n=1}^{N_b} [\mathcal{B}_j[u(\theta)](x_b^n) - g(x_b^n)]^2,$$

054 where $\{x_r^n\}_{n=1}^{N_r}$, $\{x_b^j\}_{j=1}^{N_b}$ are the sets of samples belonging to the interior and boundary of Ω ,
 055 respectively; N_r , N_b are the sizes of the corresponding datasets.
 056

057 Despite the successes, *PINNs* bring their own challenges. Training them via solving the problem 1
 058 is a special case of multi-task learning (Zhang and Yang, 2021). Indeed, a single model is trained to
 059 approximate all the operators simultaneously. However, they may be of a different nature. Hence,
 060 there is no guarantee that $\arg \min_{\theta \in \mathbb{R}^d} \mathcal{L}(\theta)$ minimizes all $\mathcal{L}_{r,i}(\theta)$ and $\mathcal{L}_{b,j}(\theta)$ individually. In
 061 practice, their corresponding gradients $\nabla \mathcal{L}_{r,i}(\theta)$, $\nabla \mathcal{L}_{b,j}(\theta)$ have dissimilar magnitudes (see Figure
 062 2 in (Hwang and Lim, 2024)). Consequently, some losses are ignored during optimization. As a
 063 result, the solution is well approximated only on the boundary or only inside the domain **when using**
 064 **basic optimizers** (see Figure 1 in (Hwang and Lim, 2024)). Despite significant interest in the area,
 065 there remains no universally effective approach for training *PINNs*. A scheme that performs well
 066 for one PDE may turn out to be inadequate for another (Hao et al., 2023, Table 3). Selecting an
 067 appropriate optimizer often requires case-by-case search.
 068

069 Most successful approaches for training PINNs employ weights $\pi = (\pi_1, \dots, \pi_M)^\top$ **selected from**
 070 **the set S , typically the unit simplex**, to balance competing losses for $\mathcal{R}_i[u]$, $\mathcal{B}_j[u]$ (Wang et al.,
 071 2021; Jin et al., 2021; Wang et al., 2022; Son et al., 2023; Hwang and Lim, 2024). **If some operator**
 072 **is underestimated relative to another one, its weight is increased, as does its contribution to the loss**
 073 **function.** In our work, we consider training *PINN* as a saddle-point problem (SPP) to move away
 074 from discussing the weight-selection procedure:
 075

$$\min_{\theta \in \mathbb{R}^d} \max_{\pi \in S} [\mathcal{L}(\theta, \pi)], \text{ with } \sum_{i=1}^{M_r} \pi_i \mathcal{L}_{r,i}(\theta) + \sum_{j=M_r+1}^M \pi_j \mathcal{L}_{b,j}(\theta) - \lambda D_\psi(\pi || \hat{\pi}), \quad (2)$$

076 where $D_\psi(\cdot || \hat{\pi})$ is the Bregman divergence (Nemirovskij and Yudin, 1983). **We introduce the hy-**
 077 **perparameter λ to enable control over the weights via the penalty for deviating from the reference**
 078 **distribution $\hat{\pi}$, typically the uniform one.** A similar methodology was considered in (Liu and Wang,
 079 2021). However, the authors provided no theoretical guarantees and examined the Euclidean case,
 080 which **may be unsuitable if S has a complex geometry.** For example, if S is a unit simplex, then
 081 KL-divergence is the preferable distance measure, particularly because it accounts for relative rather
 082 than absolute changes in weights. **To the best of our knowledge, there is no guaranties for the non-**
 083 **convex problem (2) and this setting remains empirically underexplored for PINNs.** In this work, we
 084 overcome both theoretical and practical challenges to investigate the feasibility of training physics-
 085 informed neural networks as SPPs.
 086

2 RELATED WORKS

2.1 LOSS RESCALING IN GENERAL CASE

089 Earlier, we mentioned that training a physics-informed neural network is a special case of multi-task
 090 learning, where various rescaling techniques had been developed by the time of the emergence of
 091 *PINNs*. Chen et al. (2018) suggested treating the weights as trainable functions $\pi_m(\hat{\theta})$. They defined
 092 a separate loss such that the norm of a single task gradient $\nabla(\pi_m(\hat{\theta})\mathcal{L}_{r,i}(\theta))$ is close to the sum of the
 093 other gradients. A similar approach was explored in (Kendall et al., 2018). However, using neural
 094 networks to evaluate the parameters leads to increased memory consumption. As a consequence,
 095 the community has developed a number of computationally less expensive techniques. Sener and
 096 Koltun (2018) proposed solving a quadratic optimization problem on a unit simplex to determine
 097 $\{\pi_m\}_{m=1}^M$. Furthermore, approaches that calculate weights via zero- and first-order statistics have
 098 gained attention due to their combination of efficiency and quality (Liu et al., 2019; Yu et al., 2020;
 099 Heydari et al., 2019; Chen et al., 2018; Wang et al., 2020).

2.2 LOSS RESCALING IN PINNs

100 The unique challenges posed by PDEs and physical constraints motivated the development of
 101 weighting techniques specifically for *PINNs*. Wang et al. (2021) were among the first in this
 102 direction. Inspired by ideas behind Adam (Kingma and Ba, 2014), they proposed a learning rate
 103 annealing procedure that automatically tunes $\{\pi_m\}_{m=1}^M$ by utilizing the back-propagated gradient
 104 statistics. To mitigate the high variance inherent in the stochastic nature of updates, the authors sug-
 105 gested computing the actual weights as a running average of their previous values. This scheme was
 106 then understood in greater depth (Jin et al., 2021; Maddu et al., 2022; Bischof and Kraus, 2025). As
 107

108 an orthogonal approach, in (Wang et al., 2022), loss rescaling was addressed from a neural tangent
 109 kernel perspective. Despite the advances, it may be computationally expensive. Indeed, the use of
 110 the Jacobian poses a challenge when solving nonlinear equations, as it is not constant in that case
 111 (Bonfanti et al., 2024). In parallel to these commonly used approaches, a number of exotic non-
 112 benchmarked techniques exist. For example, schemes based on likelihood (Xiang et al., 2022; Hou
 113 et al., 2023), augmented Lagrangian (Son et al., 2023) and conjugate cone (Hwang and Lim, 2024).
 114

115 2.3 NONCONVEX-STRONGLY CONCAVE SPPs

116 The theory of SPPs is constructed mostly for convex-concave objectives (Korpelevich, 1976; Ne-
 117 mirovski, 2004; Du and Hu, 2019; Adolphs et al., 2019; Beznosikov et al., 2023). However, the
 118 problem 2 falls outside of this class, since the complex nature of differential operators implies a
 119 poor non-convex landscape in θ . On the other hand, in terms of the weights π , $\mathcal{L}(\theta, \pi)$ is a reg-
 120 ularized linear function, and hence is guaranteed to be strongly concave regardless of the PDE
 121 being solved. Nonconvex-concave (N-C) and nonconvex-strongly concave (N-SC) SPPs remain
 122 poorly understood. Today’s research focuses on modifying two-timescale gradient descent-ascent
 123 (TT-GDA), which has demonstrated success in training GANs (Heusel et al., 2017). Using a double-
 124 loop scheme, Nouiehed et al. (2019) achieved a ε -solution in $\tilde{\mathcal{O}}(\kappa^4/\varepsilon^2)$ iterations, where κ denotes
 125 the condition number of the objective in the concave component. Assuming max-oracle to be avail-
 126 able, Jin et al. (2019) improved this result to $\tilde{\mathcal{O}}(\kappa^2/\varepsilon^2)$. In parallel, several triple-loop techniques for
 127 N-C problems were developed (Thekumparampil et al., 2019; Kong and Monteiro, 2021). However,
 128 algorithms with nested loops are challenging to implement and tune in practice. This is supported by
 129 the observation that the mentioned papers consider simple problems (e.g. classification on *MNIST*)
 130 for their experiments. At the same time, providing a theoretical analysis directly to TT-GDA posed
 131 a challenge. This was finally done in (Lin et al., 2020) with a complexity of $\mathcal{O}(\kappa^2/\varepsilon^2)$. Later, the
 132 result was generalized by Xu et al. (2023). They provided unified analysis of single-loop schemes
 133 for N-C problems.

134 A key drawback of the mentioned methods is the Euclidean setting. This may be inappropriate for
 135 describing the geometry of S in the problem 2, as it is typically defined as a bounded set to maintain
 136 balance during training (Mohri et al., 2019; Mehta et al., 2024). Consequently, there is interest in
 137 searching for alternatives. Huang et al. (2021) considered a setup that is non-Euclidean in the non-
 138 convex component and Euclidean in the strongly concave one. However, in our paper, we need the
 139 opposite. Indeed, in the problem 2, θ lies in \mathbb{R}^d and is therefore suited to the Euclidean distance,
 140 while π demands a more complicated description. Thus, this work is not suitable for our purposes,
 141 although it provides useful intuition. Boroun et al. (2023) employed Frank-Wolfe (Jaggi, 2013) to
 142 perform both ascent and descent steps. However, exploiting non-regularized linear approximation
 143 yields sparse values of $\{\pi_m\}_{m=1}^M$, which may result in unstable convergence.

144 3 OUR CONTRIBUTION

145 Surveying the literature, we observe that currently there is no optimization method capable of achiev-
 146 ing state-of-the-art results across a wide range of PDEs. Each problem has its own dominant method:
 147 LRA (Wang et al., 2021) for *Poisson*, RAR (Lu et al., 2021) for *Heat*, NTK (Wang et al., 2022) for
 148 *Wave*, and Adam (Kingma and Ba, 2014) for *Navier-Stokes*. We study the potential of minimizing
 149 the *PINN*’s objective via the saddle-point problem (2) in order to make the training porcess robust.
 150 The paper presents a comprehensive theoretical and empirical analysis of this approach.
 151

152 Approach	153 Poisson	154 Heat	155 Navier-Stokes	156 Wave	157 High dim
154 Previous best	1.02E-1	2.72E-2	4.70E-2	9.79E-2	4.58E-4
155 This paper	4.78E-2	1.01E-2	2.24E-2	1.62E-2	1.20E-4

158 Table 1: Comparison of SOTA results with the proposed method. **L2RE** is used as a quality metric.
 159

160 **• Theoretical foundation.** Studying nonconvex-strongly concave SPPs with non-Euclidean geo-
 161 metry of the strongly concave component, we propose a method based on a suitable Bregman proximal
 162 mapping. We develop a rigorous theory, providing guarantees on optimization dynamics.

162 • **Benchmarking the method.** Conducting experiments on 22 benchmark PDEs, we demonstrate
 163 that our approach improves the quality compared to existing optimizers. The proposed algorithm
 164 achieves SOTA results in 77.3% of cases, while the second best has 27.3%. See Table 1 for some of
 165 the results.

166 • **Extensive empirical study.** We demonstrate numerically, that the proposed weighting scheme re-
 167 duces the gradient magnitudes conflict compared to competing ones. We attribute this as the primary
 168 reason for dominance of our approach across the majority of PDEs. Additionally, we analyze the
 169 computational overhead and examine the robustness of our algorithm to changes in hyperparameters.
 170

171 4 SETUP

172 4.1 ASSUMPTIONS

174 Since our study is motivated by the real-world problem, we address the most general case possible.
 175 First, we require the objective to be smooth with respect to the Euclidean norm.

176 **Assumption 1.** *The function $\mathcal{L}(\theta, \pi)$ is L -smooth, i.e. for all $(\theta_1, \pi_1), (\theta_2, \pi_2) \in \mathbb{R}^d \times S$ it satisfies*

$$177 \quad \|\nabla \mathcal{L}(\theta_1, \pi_1) - \nabla \mathcal{L}(\theta_2, \pi_2)\| \leq L \|(\theta_1, \pi_1) - (\theta_2, \pi_2)\|.$$

179 Lipschitz continuity of the gradient is commonly imposed in prior work on PINNs (Li et al., 2023,
 180 Assumption 1), (Hwang and Lim, 2024, Theorem 4.5), (Wu et al., 2024, Assumption 3.2), (Liu et al.,
 181 2024a, Theorem 1). While this assumption is generally unrealistic for neural networks (Cybenko,
 182 1989), the resulting theoretical insights are consistent with empirical observations. In our paper, we
 183 also identify that the method behaves in a manner aligned with theory.

184 To enable more accurate selection of the weights π , we account for the geometry of S by utilizing
 185 the Bregman divergence (Nemirovskij and Yudin, 1983).

186 **Definition 1.** *The Bregman divergence corresponding to the distance generating function $\psi : S \rightarrow \mathbb{R}$ is defined as*

$$188 \quad D_\psi(\pi_1, \pi_2) = \psi(\pi_1) - \psi(\pi_2) - \langle \nabla \psi(\pi_2), \pi_1 - \pi_2 \rangle.$$

189 Earlier, we mentioned the example where D_ψ is the Kullback-Leibler divergence. This is particu-
 190 larly significant for the purposes of this paper, as we choose S as the unit simplex. However, the
 191 theory is established in the general case. Analysis of the problem 2 requires D_ψ to have several
 192 basic properties. In particular, Definition 2 is valid only if D_ψ is bounded from below on S . In the
 193 following, we present an assumption regarding the distance generating function.

194 **Assumption 2.** *The function ψ is **I-strongly convex**, i.e. for all $\pi_1, \pi_2 \in S$ it satisfies*

$$195 \quad \psi(\pi_1) \geq \psi(\pi_2) + \langle \nabla \psi(\pi_2), \pi_1 - \pi_2 \rangle + \frac{1}{2} \|\pi_2 - \pi_1\|^2.$$

197 Note that this assumption does not reduce the class of neural networks under consideration, as it is
 198 solely related to the choice of regularizer. Additionally, it holds for all commonly used divergences.

200 4.2 PROPERTIES OF THE OBJECTIVE

201 The problem 2 is a special case of nonconvex-strongly concave SPPs. In this section, we obtain
 202 several properties of the objective by leveraging its structure. Firstly, we formulate the following.

203 **Lemma 1.** *Consider the problem 2 under Assumption 2. Then, for every $\theta \in \mathbb{R}^d$ the function $\mathcal{L}(\theta, \pi)$
 204 is λ -strongly concave, i.e. for all $\pi_1, \pi_2 \in S$ it satisfies*

$$205 \quad \mathcal{L}(\theta, \pi_1) \leq \mathcal{L}(\theta, \pi_2) + \langle \nabla_\pi \mathcal{L}(\theta, \pi_2), \pi_1 - \pi_2 \rangle - \frac{\lambda}{2} (D_\psi(\pi_1, \pi_2) + D_\psi(\pi_2, \pi_1)).$$

207 See the proof in Appendix E. Thus, Lemma 1 in combination with Assumption 1 shows that the
 208 problem 2 is indeed a nonconvex-strongly concave SPP. Moreover, Assumption 2 entails strong
 209 concavity of $\mathcal{L}(\theta, \pi)$ in π . Consequently, it has a single maximum $\pi^*(\theta)$ on S for every fixed value
 210 of θ .

212 4.3 OPTIMALITY CONDITION

213 It is challenging to analyze N-SC SPPs using the usual definition of a stationary point. Instead, prior
 214 works equivalently reduce it to a stationary point of a minimization problem (Huang et al., 2021):
 215

$$\Phi(\theta) = \mathcal{L}(\theta, \pi^*(\theta)).$$

216 Since S is a bounded convex set, Danskin's theorem implies that Φ is differentiable with $\nabla\Phi(\theta) =$
 217 $\nabla_\theta\mathcal{L}(\theta, \pi^*(\theta))$ (Rockafellar, 2015). The common convergence metric [employed in the literature](#) is
 218 the following (Zhang et al., 2021; Wang et al., 2024; Xu et al., 2024).

219 **Definition 2. (ε -stationary point) of $\Phi(\theta)$.** A point θ is an ε -stationary point of Φ , if

$$220 \quad \|\nabla\Phi(\theta)\| \leq \varepsilon.$$

222 For N-SC SPPs, convergence in the sense of Definition 2 implies convergence to a stationary point
 223 in the standard sense used for SPPs (Lin et al., 2020, Proposition 4.12).

225 5 ALGORITHMS AND ANALYSIS

227 5.1 MAIN ALGORITHM

229 In this section, we follow the trend of investigating N-SC SPPs through modifications of
 230 TT-GDA. Adapting it to the problem 2, we present **Bregman Gradient Descent Ascent**.
 231 Due to the complex landscape of the problem to
 232 be solved, the algorithmic schemes we rely on
 233 are extremely simple. Since the parameters θ
 234 may take any value, it suffices to use the classic
 235 gradient descent step (Nemirovskij and Yudin,
 236 1983) to update them (Line 4). However, the
 237 weights are selected from a convex bounded set
 238 described by Non-Euclidean geometry. Conse-
 239 quently, we utilize the Bregman proximal map-
 240 ping (Nemirovskij and Yudin, 1983) to perform
 241 the ascent step (Line 5). The subproblem in
 242 Line 5 requires estimating statistics of the objective
 243 only once and therefore does not pose any
 244 significant computational difficulties compared
 245 to the basic descent step. Moreover, it often has a
 246 closed-form solution. For example, if D_ψ is the KL-divergence (Nemirovskij and Yudin, 1983), then

$$247 \quad \pi^{t+1} = \left(\frac{\exp\{\gamma_\pi(\nabla_\pi\mathcal{L}(\theta^t, \pi^r))_i\}}{\sum_{i=1}^M \exp\{\gamma_\pi(\nabla_\pi\mathcal{L}(\theta^t, \pi^r))_i\}} \right)_{i=1}^M.$$

247 In the analysis of Algorithm 1, it is fundamental to utilize steps of varying sizes. One possible
 248 explanation is that the landscape of the objective is much better in the strongly concave component.
 249 Consequently, more confident steps can be taken to update the weights. The primary theoretical
 250 challenge in the analysis of the method is to show the convergence of the iterative scheme based
 251 on the metric given in Definition 2. Indeed, for each value of the model parameters θ^t there is an
 252 optimal point $\pi^*(\theta^t)$. To address the technical difficulties, we must show that the method generates
 253 a sequence of points $\{(\theta^t, \pi^t)\}_{t=1}^T$ for which the distance between π^t and $\pi^*(\theta^t)$ decreases when
 254 increasing t . Moreover, we have to account for the non-Euclidean geometry of the problem.

255 **Lemma 2.** Consider the problem 2 under Assumptions 1, 2. Then, Algorithm 1 produces such
 256 $\{(\theta^t, \pi^t)\}_{t=1}^T$, that

$$257 \quad D_\psi(\pi^*(\theta^{t+1}), \pi^{t+1}) \leq \left(1 - \frac{1}{64\kappa^2}\right) D_\psi(\pi^*(\theta^t), \pi^t) + 264\gamma_\theta^2\kappa^6\|\nabla\Phi(\theta^t)\|^2,$$

259 where $\kappa = L/\lambda$ is the condition number of $\mathcal{L}(\theta, \pi)$ in π .

261 See the proof in Appendix F. Lemma 2 shows how the distance between the current weight iterate π^t
 262 and the ideal response $\pi^*(\theta^t)$ evolves over time. This is a key result needed to prove convergence.
 263 Indeed, since we consider the Euclidean setting in the nonconvex variables θ , the standard inexact
 264 gradient descent analysis implies

$$265 \quad \Phi(\theta^{t+1}) - \Phi(\theta^0) \leq -\Omega(\gamma_\theta) \left(\sum_{t=1}^{T-1} \|\nabla\Phi(\theta^t)\|^2 \right) + \mathcal{O}(\gamma_\theta L^2) \sum_{t=1}^{T-1} D_\psi(\pi^*(\theta^t), \pi^t).$$

267 Thus, for a sufficiently small step γ_θ , it is guaranteed to neglect the inaccuracy of finding the maxi-
 268 mum at the ascent step. By carefully evaluating $D_\psi(\pi^*(\theta^t), \pi^t)$ from above and selecting appropri-
 269 ate γ_θ , the convergence is obtained. We formulate this fact as a main theorem.

270 **Theorem 1.** Consider the problem 2 under Assumptions 1, 2. Then, Algorithm 1 requires
 271

$$272 \quad \mathcal{O}\left(\frac{\kappa^4 L \Delta + \kappa^2 L^2 D_\psi(\pi^*(\theta^0), \pi^0)}{\varepsilon^2}\right) \text{ iterations}$$

274 to achieve an arbitrary ε -solution, where $\varepsilon^2 = \frac{1}{T} \sum_{t=1}^{T-1} \|\nabla \Phi(\theta^t)\|^2$, $\Delta = \Phi(\theta^0) - \Phi(\theta^*)$. $\kappa = L/\lambda$
 275 is the condition number of $\mathcal{L}(\theta, \pi)$ in π .

276 See the proof in Appendix G. Note that the derived estimate of T is worse than that obtained in
 277 (Huang et al., 2021) for the Euclidean setting. However, if S is a unit simplex intersected with a eu-
 278 clidean ball, it can be significantly improved $\mathcal{O}(\kappa L/\varepsilon^2)$ (see Appendix H for the detailed discussion).
 279 The question of improvability in the general case remains open. After examining a large number of
 280 proof approaches, we believe that for GDA-like schemes, it is unimprovable.
 281

282 5.2 PRACTICAL VERSION OF BGDA

283 Since neural networks exhibit a complex loss
 284 landscape, it is common practice to run adaptive
 285 versions of algorithms, even when their
 286 theoretical guarantees do not account for such
 287 modifications. Following this trend, we de-
 288 velop an adaptive modification of Algorithm
 289 1. In Algorithm 2, the gradient $\nabla_\theta \mathcal{L}(\theta^t, \pi^t)$ is
 290 smoothed with its previous values as a running
 291 average (Line 4). In practice, this approach aids
 292 in identifying a suitable descent direction more
 293 quickly. Furthermore, we propose accumulat-
 294 ing the gradient history to vary the step sizes
 295 (Lines 5, 6). This method is effective, as the
 296 gradient magnitude indicates the loss smooth-
 297 ness locally, which leads to more confident
 298 steps and faster convergence. A practice-driven
 299 bias correction of calculated statistics is also
 300 implemented (Lines 7, 8, 9). To update model
 301 parameters and weights, Algorithm 2 performs
 302 the descent-ascent scheme, identical to Algo-
 303 rithm 1. Namely, AdaptiveBGDA utilizes Adam (Kingma and Ba, 2014) and RMSProp (Xu
 304 et al., 2021) to perform descent and ascent steps, respectively. See Table 2 for justification.
 305

306 6 NUMERICAL EXPERIMENTS

307 We now present the empirical analysis of our approach. We employ a vanilla PINN with 5 hidden
 308 layers of size 100. To assess quality, we use **L2RE** (Hao et al., 2023, Section 3.4). It is more
 309 sensitive to outliers than **L1RE**. Since the purpose of this paper is to demonstrate the stability of the
 310 proposed approach, we use exactly **L2RE**.
 311

312 Empirical analysis is conducted on a Linux server utilizing an NVIDIA TESLA A100 with 80 GB
 313 of GPU memory. To ensure accurate results, we do not allocate the GPU to any external processes
 314 and solve only a single PDE at any given time.
 315

316 6.1 EXPLORING VARIANTS OF ADAPTIVITY

317 During the empirical study, we used
 318 **Poisson 2d-C** to test various combi-
 319 nations of adaptive techniques, such
 320 as Adam (Kingma and Ba, 2014) and
 321 RMSProp (Xu et al., 2021). It was
 322 Adam+RMSProp that turned out to
 323 be the best one. We attribute this to
 324 the fact that Adam allows to account
 325 for the poor loss landscape in θ via gradient smoothing, while the landscape in π is strongly convex,
 326 and steps along the current gradient are more appropriate.
 327

Algorithm 2 Adaptive BGDA

- 1: **Input:** Starting point $(\theta^0, \pi^0) \in \mathbb{R}^d \times S$,
 number of iterations T
- 2: **Parameters:** Stepsizes $\gamma_\theta, \gamma_\pi > 0$
- 3: **for** $t = 0, \dots, T-1$ **do**
- 4: $m_\theta^{t+1} = \alpha_1 m_\theta^t + (1 - \alpha_1) \nabla_\theta \mathcal{L}(\theta^t, \pi^t)$
- 5: $v_\theta^{t+1} = \alpha_2 v_\theta^t + (1 - \alpha_2) (\nabla_\theta \mathcal{L}(\theta^t, \pi^t))^2$
- 6: $v_\pi^{t+1} = \beta v_\pi^t + (1 - \beta) (\nabla_\pi \mathcal{L}(\theta^t, \pi^t))^2$
- 7: $\hat{m}_\theta^{t+1} = \frac{m_\theta^{t+1}}{1 - \alpha_1^t}$
- 8: $\hat{v}_\theta^{t+1} = \frac{v_\theta^{t+1}}{1 - \alpha_2^t}$
- 9: $\hat{v}_\pi^{t+1} = \frac{v_\pi^{t+1}}{1 - \beta^t}$
- 10: $\theta^{t+1} = \theta^t - \gamma_\theta \frac{\hat{m}_\theta^{t+1}}{\hat{v}_\theta^{t+1}}$
- 11: $\pi^{t+1} = \arg \min_{\pi \in S} \{q(\pi)\}$, where
 $q(\pi) = -\gamma_\pi \langle \hat{m}_\pi^{t+1} / \hat{v}_\pi^{t+1}, \pi \rangle + D_\psi(\pi, \pi^t)$
- 12: **end for**

306 Kingma and Ba, 2014) and RMSProp (Xu
 307 et al., 2021) to perform descent and ascent steps, respectively. See Table 2 for justification.

Approach	Adam+RMS	Adam+Adam	RMS+RMS
L2RE	8.16E-3	4.45E-2	6.02E-1

328 Table 2: Comparison of approaches to incorporating adaptivity in Algorithm 1. **L2RE** is used as a quality metric. We
 329 highlight the **best** result.

324 6.2 VALIDATION ON *PINNacle* BENCHMARK
325

326 We provide an extensive comparison of AdaptiveBGDA (Algorithm 2) with existing approaches.
327 To evaluate the learning potential and generalization capabilities of our approach, we consider 22
328 partial differential equations sourced from *PINNacle* (Hao et al., 2023) that covers a broad spectrum
329 of real-world problems. Below, we summarize the main features encountered in the selected PDEs.

330 • **Complex geometry.** Some pieces of the region Ω are cut out. Since the domain ceases to be sim-
331 ply connected, the solution becomes more complicated, including in terms of numerical retrieval.
332 Problems of this class often arise in applications. For example, the flow of a fluid through an obsta-
333 cle.

334 • **Multiple domains.** The region Ω is divided into several chunks. When moving from one to
335 another, the parameters of the PDE change abruptly. The need to perform well for all domains
336 immediately complicates the task.

337 • **Varying coefficients.** The parameters of the PDE vary continuously with the coordinates. Tasks
338 of this type have a role in many applications from heat transfer in materials to population dynamics.

339 • **Long time.** The PDE needs to be solved over a large time interval. This feature is the most difficult
340 for modern architectures and optimizers.

341 As competitors, we consider all methods presented in *PINNacle* (Hao et al., 2023): LBFGS (Byrd
342 et al., 1995), Adam (Kingma and Ba, 2014), MultiAdam (Yao et al., 2023), and combinations of
343 Adam with RAR (Lu et al., 2021), LRA (Wang et al., 2021), NTK (Wang et al., 2022).

344 To show the robustness of Algorithm 2, we do not adjust its hyperparameters. Instead, we tune
345 them on randomly selected PDE (*Poisson 2d-C*) and then use the resulting $\gamma_\pi = 0.1$, $\gamma_\theta = 0.008$,
346 $\alpha_1 = 0.9$, $\alpha_2 = 0.999$, $\beta = 0.999$ over all benchmark. To handle the non-convex landscape of
347 $\mathcal{L}(\theta, \pi)$ in θ , we linearly reduce γ_θ from the initial value to 0.0004.

PDE		Optimizer						
		Adam	LBFGS	LRA	NTK	RAR	MultiAdam	BGDA (ours)
Burgers	1d-C	(1.44±0.04)E-2	(1.33±0.01)E-2	(2.66±0.33)E-2	(1.90±0.02)E-2	(3.10±0.32)E-2	(4.96±0.38)E-2	(1.29±0.01)E-2
	2d-C	(2.72±0.32)E-1	(4.68±0.08)E-1	(2.58±0.13)E-1	(2.83±0.31)E-1	(3.42±0.24)E-1	(3.26±0.46)E-1	(4.20±0.10)E-1
	2d-C	(3.41±0.15)E-2	NaN	(1.11±0.09)E-1	(1.14±0.11)E-2	(7.53±0.62)E-1	(2.79±0.25)E-2	(8.15±0.20)E-3
	2d-CG	(5.50±0.61)E-2	(2.93±0.04)E-1	(4.11±0.24)E-2	(1.35±0.12)E-2	(6.64±0.50)E-1	(2.76±0.19)E-1	(1.70±0.51)E-2
Poisson	3d-CG	(3.94±0.21)E-1	(7.20±0.16)E-1	(1.08±0.07)E-1	(8.73±1.32)E-1	(5.55±0.38)E-1	(3.56±0.43)E-1	(6.41±0.21)E-2
	2d-MS	(6.64±0.49)E-1	(1.46±0.01)E+0	(7.84±0.65)E-1	(7.90±0.44)E-1	(6.52±0.35)E-1	(6.23±0.33)E-1	(3.43±0.08)E-1
	2d-VC	(2.58±0.27)E-1	(2.28±0.14)E-1	(2.13±0.29)E-1	(2.07±0.21)E-1	(1.05±0.10)E+0	(4.94±0.56)E-1	(2.99±0.19)E-1
	2d-MS	(6.71±0.60)E-2	(1.74±0.10)E-2	(8.65±1.21)E-2	(4.31±0.46)E-2	(7.93±0.53)E-2	(2.05±0.18)E-1	(1.40±0.35)E-2
Heat	2d-CG	(3.83±0.47)E-2	(8.54±0.17)E-1	(1.16±0.12)E-1	(1.20±0.10)E-1	(2.58±0.17)E-2	(7.68±0.69)E-2	(2.49±0.11)E-2
	2d-LT	(9.98±0.01)E-1	(1.00±0.00)E+0	(9.97±0.02)E-1	(1.00±0.00)E+0	(9.98±0.04)E-1	(9.98±0.04)E-1	(9.96±0.01)E-1
	2d-C	(4.67±0.35)E-2	(2.11±0.05)E-1	NaN	(2.01±0.23)E-1	(4.51±0.31)E-1	(7.03±0.75)E-1	(2.35±0.59)E-2
	2d-CG	(1.18±0.12)E-1	NaN	(3.22±0.32)E-1	(2.66±0.30)E-1	(3.26±0.21)E-1	(4.51±0.33)E-1	(7.12±0.27)E-2
NS	2d-LT	(9.91±0.41)E-1	(9.70±0.07)E-1	(9.90±0.05)E-1	(9.99±0.01)E-1	(9.99±0.01)E-1	(1.00±0.00)E+0	(9.70±0.08)E-1
	1d-C	(2.83±0.18)E-1	NaN	(3.65±0.36)E-1	(9.20±0.82)E-2	(5.62±0.57)E-1	(1.21±0.10)E-1	(1.63±0.46)E-2
	2d-CG	(1.66±0.02)E+0	(1.33±0.00)E+0	(1.53±0.10)E+0	(2.09±0.15)E+0	(1.21±0.09)E+0	(1.08±0.02)E+0	(7.80±0.03)E-1
Wave	2d-MS	(1.02±0.01)E+0	(1.36±0.01)E+0	(9.97±0.36)E-1	(1.03±0.04)E+0	(1.32±0.08)E+0	(1.01±0.01)E+0	(9.35±0.08)E-1
	GS	(1.58±0.00)E-1	NaN	(9.76±0.05)E-1	(2.16±0.00)E-1	(9.10±0.74)E-2	(9.36±0.00)E-2	(9.29±0.00)E-2
	KS	(9.94±0.09)E-1	NaN	(9.58±0.03)E-1	(9.61±0.05)E-1	(1.02±0.01)E+0	(9.69±0.10)E-1	(9.51±0.02)E-1
Chaotic	PNd	(2.66±0.09)E-3	(4.69±0.13)E-4	(4.87±0.58)E-4	(4.77±0.20)E-3	(3.37±0.26)E-3	(4.08±0.11)E-3	(1.31±0.16)E-4
	HNd	(3.67±0.00)E-1	(1.13±0.10)E-4	(3.92±0.07)E-1	(3.98±0.01)E-1	(3.71±0.21)E-1	(3.00±0.04)E-1	(1.35±0.15)E-4
High dim	PInv	(1.03±0.13)E-1	NaN	(1.66±0.15)E-1	(1.77±0.23)E-1	(9.53±0.57)E-2	(1.32±0.08)E-1	(6.11±0.22)E-2
	HInv	(5.23±0.29)E-2	NaN	(5.08±0.07)E-2	(7.77±0.38)E-2	(1.59±0.11)E+0	(7.87±0.35)E-2	(4.33±0.27)E-2

368 Table 3: Comparison of AdaptiveBGDA to the existing techniques. In all experiments, the model
369 is trained to the performance limit. **L2RE** is used as a quality metric. We highlight the **best** and
370 the **second best** results for each PDE.

371 It can be seen from Table 3 that AdaptiveBGDA (Algorithm 2) is dominant in **77.3%** of cases.
372 The previous record of **27.3%** belonged to LRA. In 18.2% of cases, the quality is improved by more
373 than double. Below, we analyze the performance of our approach in the conducted experiments.

374 • Standard PDEs without special features (*Burgers 1d-C*, *Burgers 2d-C*, *NS 2d-C*, *Wave 1d-C*) have
375 a simpler loss landscape in θ . Nevertheless, AdaptiveBGDA gives a noticeable improvement when
376 solving tasks from this class.

378 • One of the strongest quality gains is observed on problems with multiple subdomains (*Poisson 3d-CG*, *Poisson 2d-MS*). Even without fine-tuning, our approach turns out to be good enough to adapt 379 to them. Indeed, the saddle-point setting is introduced in order to fairly account for the contribution 380 of operators to losses. The expected result is a better adaptation to all subdomains simultaneously. 381

382 • For problems with complex geometry (*Poisson 2d-C*, *Poisson 2d-CG*, *Poisson 3d-CG*, *Heat 2d-CG*, *NS 2d-CG*, *Wave 2d-CG*), an improvement is also observed in five out of six cases. 383

384 • Unexpectedly, AdaptiveBGDA shows quality gains in exotic settings such as *Chaotic* or *Inverse*. 385

386 6.3 EXPLORING THE CONFLICTING GRADIENTS

388 **Table 3** illustrates the stability of the proposed 389 method under changes in problem type, boundary/initial 390 conditions, and domain geometry. To 391 numerically investigate this phenomenon, we 392 measure the ratio $\chi = \|\nabla \mathcal{L}_r(\theta)\| / \|\nabla \mathcal{L}_b(\theta)\|$ while 393 solving *Poisson 2d-C*. We break the iterations into 394 groups $I_1 = [0, 10000]$, $I_2 = [10000, 20000]$, 395 $I_3 = [20000, 30000]$ and examine the distributions 396 of χ_1 , χ_2 , χ_3 , including their means 397 $\bar{\chi}_1$, $\bar{\chi}_2$, $\bar{\chi}_3$ and variances σ_1 , σ_2 , σ_3 . 398

399 In Figure 1, one can see the dynamics of NTK 400 (Wang et al., 2021). This optimizer is state- 401 of-the-art for the selected PDE. From the first 402 epochs, $\|\nabla \mathcal{L}_r(\theta)\|$ demonstrates significant su- 403 periority over $\|\nabla \mathcal{L}_b(\theta)\|$. At this stage, we observe 404 $\bar{\chi}_1 = 2487$, $\sigma_1 = 2352$. During the next group 405 of iterations, these ratios hold approximately at 406 the same level $\bar{\chi}_2 = 2342$, $\sigma_2 = 1628$; and after 407 another 10000 they decrease to $\bar{\chi}_3 = 1998$, 408 $\sigma_3 = 1360$. Thus, at the beginning of optimiza- 409 tion, the value of χ rapidly concentrates ex- 410 tremely far away from the desired case of equal 411 magnitudes and then slowly decreases. Conse- 412 quently, PINN overfits to the boundary condition. 413 The training process of our method is signifi- 414 cantly more stable. Figure 2 shows results for the 415 proposed AdaptiveBGDA. Using this scheme, 416 we obtain $\bar{\chi}_1 = 7$, $\sigma_1 = 7$; $\bar{\chi}_2 = 25$, $\sigma_2 = 27$; 417 $\bar{\chi}_3 = 45$, $\sigma_3 = 127$. The pathology is much less pronounced. The resulting improvement is sta- 418 tistically significant. Indeed, for I_1 only $\approx 9\%$ of the values obtained with NTK fall within the 419 $3\sigma_1$ -interval for AdaptiveBGDA. At the same time, for I_2 and I_3 such values do not exist at all. 420

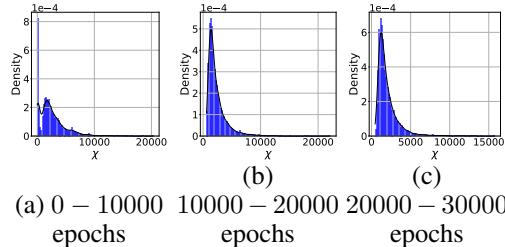


Figure 1: Dynamics of $\chi = \|\nabla \mathcal{L}_r(\theta)\| / \|\nabla \mathcal{L}_b(\theta)\|$ during optimization via NTK. The experiment is made on *Poisson 2d-C*. To observe instability, we break the training into three parts.

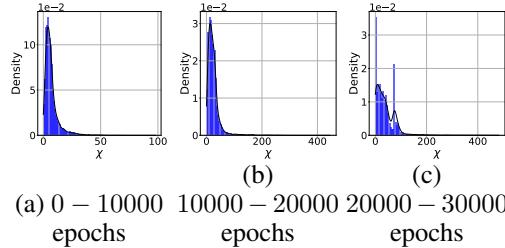


Figure 2: Dynamics of $\chi = \|\nabla \mathcal{L}_r(\theta)\| / \|\nabla \mathcal{L}_b(\theta)\|$ during optimization via AdaptiveBGDA (**our optimizer**). The experiment is made on *Poisson 2d-C*. To observe instability, we break the training into three parts.

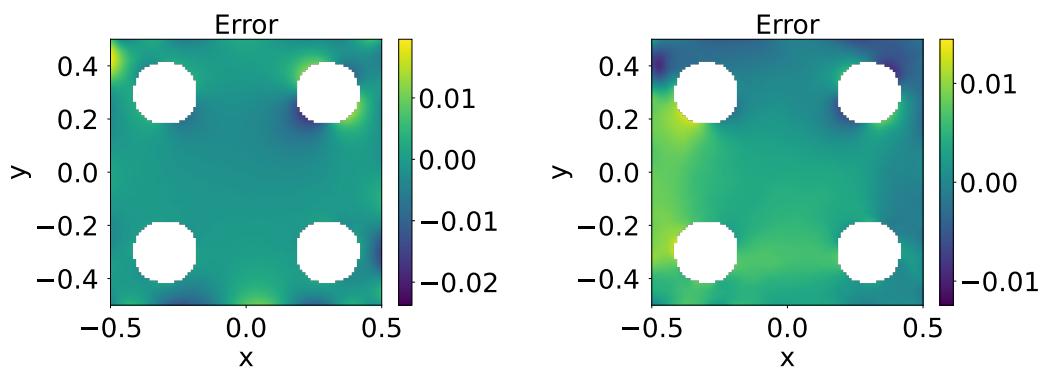


Figure 3: Heat maps of signed relative errors of PINN trained to solve *Poisson 2d-C*. AdaptiveBGDA (left) is compared with NTK (right).

The superiority of our method is particularly well demonstrated by the error heat maps. Such a comparison is presented in Figure 3. In the right part of Figure 3, we observe a significant region within the interior of the domain where the approximated solution exhibits a large error. The absence of such a region on the left side of Figure 3 illustrates that we successfully address the issue of underestimating losses in the interior of the domain.

6.4 EXPLORING THE COMPUTATIONAL OVERHEAD

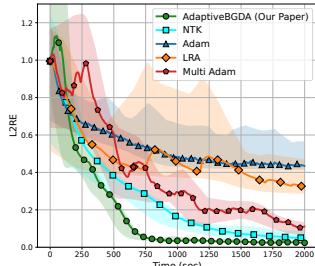


Figure 4: Comparison of AdaptiveBGDA to competitors on *Wave 1d-C*. Real time is used as a metric.

solving *Poisson 2d-C*. Table 4 demonstrates that AdaptiveBGDA does not increase com-

One of the key characteristics of an optimizer is the trade-off between performance and computational overhead. Since *AdaptiveBGDA* (Algorithm 2) includes an additional update in Line 11 compared to competing approaches, conducting such a study is particularly important.

Figure 4 shows a direct comparison of the actual runtime of *AdaptiveBGDA* (Algorithm 2) and its competitors on the *Wave 1d-C* problem. Algorithm 2 achieves convergence approximately 2.5 times faster than state-of-the-art scheme for this PDE. The intersection of deviations at the beginning of training is associated with the rapid convergence of methods. Notably, the model reaches a higher final performance when trained with *AdaptiveBGDA*.

We also provide a report on time-per-iteration and memory consumption of *AdaptiveBGDA* and competing methods when

Metric	Adam	LBFGS	LRA	NTK	RAR	MultiAdam	BGDA
Time (Sec)	7.69	520.41	20.75	18.43	7.71	13.06	7.64
Space (GB)	0.36	0.40	0.77	0.70	0.38	0.69	0.37

Table 4: Comparison of time/space complexity of *AdaptiveBGDA* and competing methods on *Poisson 2d-C*. The second row of the table shows the time for 1000 iterations in seconds. The third row shows the peak GPU utilization on storing the optimizer states.

putational bottleneck compared to existing state-of-the-art. Additionally, we provide measurements of the L2RE as well as the computational cost using several methods that are not part of PINNacle. Table 5 presents a comparison with *SSBroyden* (Kiyani et al., 2025) and *NNCG* (Rathore et al., 2024). Below we formulate the list of core observations.

- Algorithm 2 does not experience an increase in iteration time despite the inner minimization step in Line 11. Indeed, in the case of the unit simplex with KL-divergence, the ascent Bregman step has a closed-form expression in terms of the values of the objective components. Thus, updating the weights requires only a forward pass, which is already performed for updating the model parameters. Consequently, the *AdaptiveBGDA* does not incur higher computational cost than first-order methods such as Adam or LBFGS.

- GPU utilization also does not increase compared to competing methods. We attribute this to the fact that the number of model parameters (40K in our experiments) is significantly larger than the number of weights (no more than 11 in *PINNacle*). Consequently, optimizer states for the weights do not inflate memory requirements. Since the size of the model exceeds the size of the differential equation system, we conclude that our method is efficient in this regard.

In light of the above, we suggest that our approach has potential to be as efficient as Adam in terms of computational workload while achieving accuracy comparable to LRA/NTK.

486 7 DISCUSSION
487

488 In this paper, we note that even advanced weighting schemes for PINNs do not achieve a fully
489 balanced optimization process. To address this issue, we reformulate the training problem as the
490 nonconvex-strongly concave SPP of non-Euclidean nature. In addition to theoretical analysis, we
491 conduct a comprehensive empirical study. We observe a significant increase in model quality (Table
492 3) [while preserving the computational efficiency](#). We also note an increase in the stability of the
493 optimization process (Figure 2). Specifically, the losses within the domain decrease approximately
494 as rapidly as those at the boundary, which is empirically noticeable (Figure 3). For additional exper-
495 iments, see Appendices A-C.

496 REFERENCES
497

498 Leonard Adolphs, Hadi Daneshmand, Aurelien Lucchi, and Thomas Hofmann. Local saddle point
499 optimization: A curvature exploitation approach. In *The 22nd International Conference on Arti-
500 ficial Intelligence and Statistics*, pages 486–495. PMLR, 2019.

501 Sokratis J Anagnostopoulos, Juan Diego Toscano, Nikolaos Stergiopoulos, and George Em Karni-
502 adakis. Residual-based attention in physics-informed neural networks. *Computer Methods in
503 Applied Mechanics and Engineering*, 421:116805, 2024.

505 Harry Bateman. Partial differential equations of mathematical physics. *Partial Differential Equa-
506 tions of Mathematical Physics*, 1932.

507 Aleksandr Nikolaevich Beznosikov, Alexander Vladimirovich Gasnikov, Karina E Zainullina, A Yu
508 Maslovskii, and Dmitry Arkad’evich Pasechnyuk. A unified analysis of variational inequality
509 methods: variance reduction, sampling, quantization, and coordinate descent. *Computational
510 Mathematics and Mathematical Physics*, 63(2):147–174, 2023.

512 Rafael Bischof and Michael A Kraus. Multi-objective loss balancing for physics-informed deep
513 learning. *Computer Methods in Applied Mechanics and Engineering*, 439:117914, 2025.

514 Andrea Bonfanti, Giuseppe Bruno, and Cristina Cipriani. The challenges of the nonlinear regime
515 for physics-informed neural networks. *Advances in Neural Information Processing Systems*, 37:
516 41852–41881, 2024.

518 Morteza Boroun, Erfan Yazdandoost Hamedani, and Afroz Jalilzadeh. Projection-free methods for
519 solving nonconvex-concave saddle point problems. *Advances in Neural Information Processing
520 Systems*, 36:53844–53856, 2023.

521 Richard H Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. A limited memory algorithm for
522 bound constrained optimization. *SIAM Journal on scientific computing*, 16(5):1190–1208, 1995.

523 Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew Rabinovich. Gradnorm: Gradient
524 normalization for adaptive loss balancing in deep multitask networks. In *International conference
525 on machine learning*, pages 794–803. PMLR, 2018.

527 Woojin Cho, Kookjin Lee, Donsub Rim, and Noseong Park. Hypernetwork-based meta-learning for
528 low-rank physics-informed neural networks. *Advances in Neural Information Processing Systems*,
529 36:11219–11231, 2023.

530 Richard Courant, Kurt Friedrichs, and Hans Lewy. On the partial difference equations of mathemat-
531 ical physics. *IBM journal of Research and Development*, 11(2):215–234, 1967.

533 Richard Courant et al. Variational methods for the solution of problems of equilibrium and vibra-
534 tions. *Lecture notes in pure and applied mathematics*, pages 1–1, 1994.

535 George Cybenko. Approximation by superpositions of a sigmoidal function. *Mathematics of control,
536 signals and systems*, 2(4):303–314, 1989.

538 MWM Gamini Dissanayake and Nhan Phan-Thien. Neural-network-based approximations for solv-
539 ing partial differential equations. *communications in Numerical Methods in Engineering*, 10(3):
195–201, 1994.

540 Simon S Du and Wei Hu. Linear convergence of the primal-dual gradient method for convex-
 541 concave saddle point problems without strong convexity. In *The 22nd International Conference*
 542 *on Artificial Intelligence and Statistics*, pages 196–205. PMLR, 2019.

543

544 Lawrence C Evans. *Partial differential equations*, volume 19. American Mathematical Society,
 545 2022.

546

547 Tamara G Grossmann, Urszula Julia Komorowska, Jonas Latz, and Carola-Bibiane Schönlieb. Can
 548 physics-informed neural networks beat the finite element method? *IMA Journal of Applied Math-*
 549 *ematics*, 89(1):143–174, 2024.

550

551 Xiaoxiao Guo, Wei Li, and Francesco Iorio. Convolutional neural networks for steady flow ap-
 552 proximation. In *Proceedings of the 22nd ACM SIGKDD international conference on knowledge*
 553 *discovery and data mining*, pages 481–490, 2016.

554

555 Zhongkai Hao, Jiachen Yao, Chang Su, Hang Su, Ziao Wang, Fanzhi Lu, Zeyu Xia, Yichi Zhang,
 556 Songming Liu, Lu Lu, et al. Pinnacle: A comprehensive benchmark of physics-informed neural
 557 networks for solving pdes. *arXiv preprint arXiv:2306.08827*, 2023.

558

559 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
 560 Gans trained by a two time-scale update rule converge to a local nash equilibrium. *Advances in*
 561 *neural information processing systems*, 30, 2017.

562

563 A Ali Heydari, Craig A Thompson, and Asif Mehmood. Softadapt: Techniques for adaptive loss
 564 weighting of neural networks with multi-part loss functions. *arXiv preprint arXiv:1912.12355*,
 565 2019.

566

567 Jie Hou, Ying Li, and Shihui Ying. Enhancing pinns for solving pdes via adaptive collocation point
 568 movement and adaptive loss weighting. *Nonlinear Dynamics*, 111(16):15233–15261, 2023.

569

570 Feihu Huang, Xidong Wu, and Heng Huang. Efficient mirror descent ascent methods for nonsmooth
 571 minimax problems. *Advances in Neural Information Processing Systems*, 34:10431–10443, 2021.

572

573 Youngsik Hwang and Dongyoung Lim. Dual cone gradient descent for training physics-informed
 574 neural networks. *Advances in Neural Information Processing Systems*, 37:98563–98595, 2024.

575

576 Martin Jaggi. Revisiting frank-wolfe: Projection-free sparse convex optimization. In *International*
 577 *conference on machine learning*, pages 427–435. PMLR, 2013.

578

579 Ameya D Jagtap, Kenji Kawaguchi, and George Em Karniadakis. Locally adaptive activation func-
 580 tions with slope recovery for deep and physics-informed neural networks. *Proceedings of the*
 581 *Royal Society A*, 476(2239):20200334, 2020a.

582

583 Ameya D Jagtap, Kenji Kawaguchi, and George Em Karniadakis. Adaptive activation functions
 584 accelerate convergence in deep and physics-informed neural networks. *Journal of Computational*
 585 *Physics*, 404:109136, 2020b.

586

587 Chi Jin, Praneeth Netrapalli, and Michael I Jordan. Minmax optimization: Stable limit points of
 588 gradient descent ascent are locally optimal. *arXiv preprint arXiv:1902.00618*, 2019.

589

590 Xiaowei Jin, Shengze Cai, Hui Li, and George Em Karniadakis. Nsfnets (navier-stokes flow nets):
 591 Physics-informed neural networks for the incompressible navier-stokes equations. *Journal of*
 592 *Computational Physics*, 426:109951, 2021.

593

594 Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using uncertainty to weigh losses
 595 for scene geometry and semantics. In *Proceedings of the IEEE conference on computer vision*
 596 *and pattern recognition*, pages 7482–7491, 2018.

597

598 Grigory Khromov and Sidak Pal Singh. Some fundamental aspects about lipschitz continuity of
 599 neural networks. In *The Twelfth International Conference on Learning Representations*.

600

601 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint*
 602 *arXiv:1412.6980*, 2014.

594 Elham Kiyani, Khemraj Shukla, Jorge F Urbán, Jérôme Darbon, and George Em Karniadakis.
 595 Which optimizer works best for physics-informed neural networks and kolmogorov-arnold net-
 596 works? *arXiv preprint arXiv:2501.16371*, 2025.

597 Weiwei Kong and Renato DC Monteiro. An accelerated inexact proximal point method for solving
 598 nonconvex-concave min-max problems. *SIAM Journal on Optimization*, 31(4):2558–2585, 2021.

600 Galina M Korpelevich. The extragradient method for finding saddle points and other problems.
 601 *Matecon*, 12:747–756, 1976.

602 Aditi Krishnapriyan, Amir Gholami, Shandian Zhe, Robert Kirby, and Michael W Mahoney. Char-
 603 acterizing possible failure modes in physics-informed neural networks. *Advances in neural infor-*
 604 *mation processing systems*, 34:26548–26560, 2021.

605 Isaac E Lagaris, Aristidis Likas, and Dimitrios I Fotiadis. Artificial neural networks for solving
 606 ordinary and partial differential equations. *IEEE transactions on neural networks*, 9(5):987–1000,
 607 1998.

609 Ye Li, Song-Can Chen, and Sheng-Jun Huang. Implicit stochastic gradient descent for training
 610 physics-informed neural networks. In *Proceedings of the AAAI Conference on Artificial Intelli-*
 611 *gence*, volume 37, pages 8692–8700, 2023.

613 Tianyi Lin, Chi Jin, and Michael Jordan. On gradient descent ascent for nonconvex-concave min-
 614 imax problems. In *International conference on machine learning*, pages 6083–6093. PMLR,
 615 2020.

616 Dehao Liu and Yan Wang. A dual-dimer method for training physics-constrained neural networks
 617 with minimax architecture. *Neural Networks*, 136:112–125, 2021.

619 Qiang Liu, Mengyu Chu, and Nils Thuerey. Config: Towards conflict-free training of physics in-
 620 formed neural networks. *arXiv preprint arXiv:2408.11104*, 2024a.

621 Shikun Liu, Edward Johns, and Andrew J Davison. End-to-end multi-task learning with attention.
 622 In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages
 623 1871–1880, 2019.

625 Xin-Yang Liu, Min Zhu, Lu Lu, Hao Sun, and Jian-Xun Wang. Multi-resolution partial differential
 626 equations preserved learning framework for spatiotemporal dynamics. *Communications Physics*,
 627 7(1):31, 2024b.

628 Haihao Lu, Robert M Freund, and Yurii Nesterov. Relatively smooth convex optimization by first-
 629 order methods, and applications. *SIAM Journal on Optimization*, 28(1):333–354, 2018.

631 Lu Lu, Xuhui Meng, Zhiping Mao, and George Em Karniadakis. Deepxde: A deep learning library
 632 for solving differential equations. *SIAM review*, 63(1):208–228, 2021.

633 Suryanarayana Maddu, Dominik Sturm, Christian L Müller, and Ivo F Sbalzarini. Inverse dirichlet
 634 weighting enables reliable training of physics informed neural networks. *Machine Learning: Sci-
 635 ence and Technology*, 3(1):015026, 2022.

636 Andrew J Meade Jr and Alvaro A Fernandez. The numerical solution of linear ordinary differential
 637 equations by feedforward neural networks. *Mathematical and Computer Modelling*, 19(12):1–25,
 638 1994.

640 Ronak Mehta, Jelena Diakonikolas, and Zaid Harchaoui. Drago: Primal-dual coupled variance
 641 reduction for faster distributionally robust optimization. In *The Thirty-eighth Annual Conference
 642 on Neural Information Processing Systems*, 2024.

643 Mehryar Mohri, Gary Sivek, and Ananda Theertha Suresh. Agnostic federated learning. In *Inter-
 644 national conference on machine learning*, pages 4615–4625. PMLR, 2019.

645 Arkadi Nemirovski. Prox-method with rate of convergence $o(1/t)$ for variational inequalities with
 646 lipschitz continuous monotone operators and smooth convex-concave saddle point problems.
 647 *SIAM Journal on Optimization*, 15(1):229–251, 2004.

648 Arkadij Semenovič Nemirovskij and David Borisovich Yudin. Problem complexity and method
 649 efficiency in optimization. 1983.

650

651 Maher Nouiehed, Maziar Sanjabi, Tianjian Huang, Jason D Lee, and Meisam Razaviyayn. Solving
 652 a class of non-convex min-max games using iterative first order methods. *Advances in Neural
 653 Information Processing Systems*, 32, 2019.

654 Suhas V Patankar and D Brian Spalding. A calculation procedure for heat, mass and momentum
 655 transfer in three-dimensional parabolic flows. In *Numerical prediction of flow, heat transfer,
 656 turbulence and combustion*, pages 54–73. Elsevier, 1983.

657

658 Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
 659 deep learning framework for solving forward and inverse problems involving nonlinear partial
 660 differential equations. *Journal of Computational physics*, 378:686–707, 2019.

661

662 Pratik Rathore, Weimu Lei, Zachary Frangella, Lu Lu, and Madeleine Udell. Challenges in training
 663 pinns: A loss landscape perspective. In *International Conference on Machine Learning*, pages
 42159–42191. PMLR, 2024.

664

665 Ralph Tyrell Rockafellar. Convex analysis:(pms-28). 2015.

666

667 Ozan Sener and Vladlen Koltun. Multi-task learning as multi-objective optimization. *Advances in
 668 neural information processing systems*, 31, 2018.

669

670 Hwijae Son, Sung Woong Cho, and Hyung Ju Hwang. Enhanced physics-informed neural networks
 671 with augmented lagrangian relaxation method (al-pinns). *Neurocomputing*, 548:126424, 2023.

672

673 Kiran K Thekumparampil, Prateek Jain, Praneeth Netrapalli, and Sewoong Oh. Efficient algorithms
 674 for smooth minimax optimization. *Advances in neural information processing systems*, 32, 2019.

675

676 Nuozhou Wang, Junyu Zhang, and Shuzhong Zhang. Efficient first order method for saddle point
 677 problems with higher order smoothness. *SIAM Journal on Optimization*, 34(4):3342–3370, 2024.

678

679 Sifan Wang, Yujun Teng, and Paris Perdikaris. Understanding and mitigating gradient flow patholo-
 680 gies in physics-informed neural networks. *SIAM Journal on Scientific Computing*, 43(5):A3055–
 681 A3081, 2021.

682

683 Sifan Wang, Xinling Yu, and Paris Perdikaris. When and why pinns fail to train: A neural tangent
 684 kernel perspective. *Journal of Computational Physics*, 449:110768, 2022.

685

686 Zirui Wang, Yulia Tsvetkov, Orhan Firat, and Yuan Cao. Gradient vaccine: Investigating
 687 and improving multi-task optimization in massively multilingual models. *arXiv preprint
 688 arXiv:2010.05874*, 2020.

689

690 Haixu Wu, Huakun Luo, Yuezhou Ma, Jianmin Wang, and Mingsheng Long. Ropinn: Region op-
 691 timized physics-informed neural networks. *Advances in Neural Information Processing Systems*,
 692 37:110494–110532, 2024.

693

694 Zixue Xiang, Wei Peng, Xu Liu, and Wen Yao. Self-adaptive loss balanced physics-informed neural
 695 networks. *Neurocomputing*, 496:11–34, 2022.

696

697 Dongpo Xu, Shengdong Zhang, Huisheng Zhang, and Danilo P Mandic. Convergence of the rm-
 698 sprop deep learning method with penalty for nonconvex optimization. *Neural Networks*, 139:
 699 17–23, 2021.

700

701 Quishui Xu, Xuan Zhang, Necdet Serhat Aybat, and Mert Gürbüzbalaban. A stochastic gda method
 702 with backtracking for solving nonconvex (strongly) concave minimax problems. *arXiv preprint
 703 arXiv:2403.07806*, 2024.

704

705 Zi Xu, Huiling Zhang, Yang Xu, and Guanghui Lan. A unified single-loop alternating gradient
 706 projection algorithm for nonconvex-concave and convex-nonconcave minimax problems. *Math-
 707 ematical Programming*, 201(1):635–706, 2023.

708

709 Yakov Yakubov and Sasun Yakubov. *Differential-operator equations: ordinary and partial differ-
 710 ential equations*, volume 103. CRC Press, 1999.

702 Jiachen Yao, Chang Su, Zhongkai Hao, Songming Liu, Hang Su, and Jun Zhu. Multiadam:
 703 Parameter-wise scale-invariant optimizer for multiscale training of physics-informed neural net-
 704 works. In *International Conference on Machine Learning*, pages 39702–39721. PMLR, 2023.

705

706 Bing Yu et al. The deep ritz method: a deep learning-based numerical algorithm for solving varia-
 707 tional problems. *Communications in Mathematics and Statistics*, 6(1):1–12, 2018.

708

709 Jeremy Yu, Lu Lu, Xuhui Meng, and George Em Karniadakis. Gradient-enhanced physics-informed
 710 neural networks for forward and inverse pde problems. *Computer Methods in Applied Mechanics
 and Engineering*, 393:114823, 2022.

711

712 Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
 713 Gradient surgery for multi-task learning. *Advances in neural information processing systems*, 33:
 714 5824–5836, 2020.

715

716 Siqi Zhang, Junchi Yang, Cristóbal Guzmán, Negar Kiyavash, and Niao He. The complexity of
 717 nonconvex-strongly-concave minimax optimization. In *Uncertainty in Artificial Intelligence*,
 718 pages 482–492. PMLR, 2021.

719

720 Yu Zhang and Qiang Yang. A survey on multi-task learning. *IEEE transactions on knowledge and
 data engineering*, 34(12):5586–5609, 2021.

721

722 Zhiyuan Zhao, Xueying Ding, and B Aditya Prakash. Pinnsformer: A transformer-based framework
 723 for physics-informed neural networks. *arXiv preprint arXiv:2307.11833*, 2023.

724

725 Yinhao Zhu and Nicholas Zabaras. Bayesian deep convolutional encoder–decoder networks for
 726 surrogate modeling and uncertainty quantification. *Journal of Computational Physics*, 366:415–
 727 447, 2018.

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756	APPENDIX	
757		
758	CONTENTS	
759		
760	1 Introduction	1
761		
762	2 Related Works	2
763	2.1 Loss Rescaling in General Case	2
764	2.2 Loss Rescaling in <i>PINNs</i>	2
765	2.3 Nonconvex-Strongly Concave SPPs	3
766		
767	3 Our Contribution	3
768		
769	4 Setup	4
770	4.1 Assumptions	4
771	4.2 Properties of the Objective	4
772	4.3 Optimality Condition	4
773		
774		
775	5 Algorithms and Analysis	5
776	5.1 Main Algorithm	5
777	5.2 Practical Version of BGDA	6
778		
779	6 Numerical Experiments	6
780	6.1 Exploring Variants of Adaptivity	6
781	6.2 Validation on <i>PINNacle</i> Benchmark	7
782	6.3 Exploring the Conflicting Gradients	8
783	6.4 Exploring the Computational Overhead	9
784		
785		
786	7 Discussion	10
787		
788	A Additional Experiments	16
789		
790	B Another SPP Reformulations	16
791		
792	C Robustness to Variations in Hyperparameters	17
793		
794	D Comparison of Theoretical and Empirical Results	17
795		
796	E Strong Concavity of the Objective	18
797		
798	F Proof of Lemma 2	19
799		
800	G Proof of Theorem 1	21
801		
802	H Enhanced Rates on Regularized Simplex	22
803		
804	I Stochastic Setting	27
805		
806		
807		
808		
809		

810 To ensure reproducibility, we attach the code: <https://anonymous.4open.science/r/pinns-bgda-00D6>
 811
 812

813 A ADDITIONAL EXPERIMENTS

815 In this section, we provide additional information to accompany the work. In addition, we use
 816 more modern *PINN* architectures provided in *PINNacle* (Hao et al., 2023) to validate the theoretical
 817 insights. Below we summarize their key features.

- 818 • **gPINN.** It is known that the residual $(\mathcal{R}_i[u] - f_i)(x)$ must be zero inside the domain. Consequently,
 819 its derivative must also be equal to zero. This approach proposes to modify the objective by adding
 820 $\|\partial/\partial x(\mathcal{R}_i[u] - f_i)(x)\|^2$ as a regularization. In (Yu et al., 2022), it is shown that *gPINN* has improved
 821 quality of the approximation inside the domain Ω .
- 822 • **GAAF.** This architecture relies on adaptive activation functions (both layer- and neuron-wise).
 823 (Jagtap et al., 2020b) demonstrates the advantages of this approach over vanilla *PINNs*.
- 824 • **LAAF.** Considers *GAAF* with slope recovery term. For the details, see (Jagtap et al., 2020a).

825 Below we provide the comparison of the best known **L2REs** with ones provided by our approach.
 826 Table 6 demonstrates that our scheme dominates not only for vanilla *PINNs*, but also for novel
 827

828 Table 6: Training model *PINN* architectures via AdaptiveBGDA. In all experiments, the model is
 829 trained to the performance limit. **L2RE** is used as a quality metric. We highlight the **best** results
 830 for each PDE and architecture.

PDE		gPINN		LAAF		GAAF	
		Best	Ours	Best	Ours	Best	Ours
Burgers	1d-C	2.16E-1	1.36e-2	1.43E-2	1.30E-2	5.20E-2	1.30E-2
	2d-C	3.27E-1	5.11E-1	2.77E-1	4.42E-1	2.95E-1	5.09E-1
Poisson	2d-C	6.87E-1	5.85E-1	7.68E-1	1.38E-2	6.04E-1	4.37E-3
	2d-CG	7.92E-1	4.45E-1	4.80E-1	1.11E-2	8.71E-1	2.82E-2
	3d-CG	4.85E-1	5.65E-1	5.79E-1	5.43E-2	5.02E-1	9.22E-2
	2d-MS	6.16E-1	4.55E-1	5.93E-1	3.72E-1	9.31E-1	4.07E-1
Heat	2d-VC	2.12E+0	1.01E+0	6.42E-1	2.57E-1	8.49E-1	7.03E-1
	2d-MS	1.13E-1	3.95E-2	7.40E-2	1.85E-2	9.85E-1	6.67E-2
	2d-CG	9.38E-2	1.09E-1	2.39E-2	4.06E-2	4.61E-1	1.18E-2
	2d-LT	1.00E+0	9.99E-1	9.99E-1	9.98E-1	9.99E-1	9.98E-1
NS	2d-C	7.70E-2	6.22E-2	3.60E-2	8.14E-2	3.79E-2	2.55E-2
	2d-CG	1.54E-1	1.11E-1	8.42E-2	1.25E-1	1.74E-1	1.06E-1
	2d-LT	9.95E-1	9.63E-1	9.98E-1	9.99E-1	9.99E-1	9.99E-1
Wave	1d-C	5.56E-1	6.95E-2	4.54E-1	2.52E-2	6.77E-1	2.97E-2
	2d-CG	8.14E-1	7.82E-1	8.10E-1	7.86E-1	7.94E-1	7.81E-1
	2d-MS	1.02E+0	9.09E-1	1.06E+0	9.99E-1	1.06E+0	9.99E-1
Chaotic	GS	2.48E-1	9.30E-2	9.47E-2	9.49E-2	9.46E-2	9.32E-2
	KS	9.94E-1	9.68E-1	1.01E+0	9.99E-1	1.00E+0	9.99E-1
High dim	PNd	5.05E-3	1.65E-3	4.14E-3	8.00E-4	7.75E-2	1.57E-3
	HNd	3.17E-1	9.00E-4	5.22E-1	3.20E-4	5.21E-1	3.20E-4
Inverse	PInv	8.03E-2	8.45E-1	1.30E-1	9.49E-2	2.54E-1	1.31E-1
	HInv	4.84E+0	6.71E-1	5.59E-1	5.16E-2	2.12E-1	5.97E-2

828 architectures. The percentage of superiority is 81.8% for *gPINN*, 72.7% for *LAAF* and 90.1% for
 829 *GAAF*. Moreover, there is a significant drawdown only for *Burgers 2d-C*.

856 B ANOTHER SPP REFORMULATIONS

857
 858 In this section, we compare *BGDA* with approaches based on saddle-point reformulation that have
 859 been proposed in the literature. Namely, Augmented Lagrangian relaxation method for PINNs
 860 (AL-PINN) (Son et al., 2023) and dual-dimer method (Liu and Wang, 2021). AL-PINN re-
 861 formulates the training of PINNs as a constrained optimization problem, where initial and boundary
 862 conditions are enforced through constraints rather than just penalty terms, and solves a max-min
 863 problem during training. *dual-dimer* introduces weights and and additional maximization simi-
 864 lar to our methodology, but in Euclidean geometry.

In Table 7, we provide comparison of the best achieved **L2REs** for AL-PINN and **dual-dimer** with ones provided by our approach. All models are trained to the performance limit. Table 7 demonstrates that our scheme dominates AL-PINN and **dual-dimer** in 63.6% and 81.8% of cases, respectively. The consistent superiority over **dual-dimer** highlights the importance of the non-Euclidean nature of the proposed descent-ascent scheme.

Table 7: Comparison of AdaptiveBGDA to the AL-PINN. **L2RE** is used as a quality metric. We highlight the **best** result for each PDE.

PDE	Case	AL-PINN	dual-dimer	BGDA (this paper)
Burgers	1d-C	1.28E-2	1.23E-2	1.30E-2
	2d-C	4.61E-1	4.56E-1	4.21E-1
Poisson	2d-C	5.97E-1	4.19E-1	8.16E-3
	2d-CG	4.09E-1	7.26E-2	1.76E-2
	3d-CG	1.99E-1	1.57E-1	4.78E-2
	2d-MS	5.60E-1	3.67E-1	3.48E-1
Heat	2d-VC	2.79E-1	5.99E-1	2.93E-1
	2d-MS	9.33E-3	8.19E-3	1.88E-2
	2d-CG	1.13E-2	1.14E-2	1.01E-2
	2d-LT	9.97E-1	9.96E-1	9.98E-1
NS	2d-C	1.01E-2	2.31E-2	2.24E-2
	2d-CG	1.13E-1	6.46E-2	7.63E-2
	2d-LT	9.87E-1	9.86E-1	9.75E-1
Wave	1d-C	2.84E-1	2.64E-1	1.62E-2
	2d-CG	8.03E-1	8.01E-1	7.78E-1
	2d-MS	1.00E+0	1.00E+0	8.98E-1
Chaotic	GS	9.28E-2	9.30E-2	9.30E-2
	KS	9.61E-1	9.73E-1	9.53E-1
High dim	PNd	8.00E-5	4.2E-4	1.20E-4
	HNd	3.60E-4	2.60E-4	1.60E-4
Inverse	PInv	7.28E-2	7.33E-2	8.59E-2
	HInv	7.16E-1	1.08E+0	4.05E-2

C ROBUSTNESS TO VARIATIONS IN HYPERPARAMETERS

In our work, hyperparameters were selected once by tuning to best convergence on *Poisson 2d-C* from *PINNacle* (Hao et al., 2023). In this section, we study the sensitivity of AdaptiveBGDA to the choice of hyperparameters. In this experiment, we use *Burgers 1d-C*. Let us start with varying the descent γ_θ and ascent γ_π step sizes. Table 8 demonstrates robustness to variations in step sizes. This

γ_θ	0.001	0.001	0.001	0.004	0.004	0.004	0.016	0.016	0.016
γ_π	0.01	0.1	0.5	0.01	0.1	0.5	0.01	0.1	0.5
L2RE	1.26E-2	1.30E-2	1.28E-2	1.30E-2	1.31E-2	1.31E-2	1.31E-2	1.30E-2	1.35E-2

Table 8: Robustness of AdaptiveBGDA to variations in γ_θ , γ_π . **L2RE** is used as a quality metric.

allows to obtain satisfactory results on the benchmark experiments (see Table 3) without additional tuning for each specific PDE. We note that AdaptiveBGDA is also robust to poor tuning of λ .

λ	0.001	0.005	0.01	0.05
L2RE	1.30E-2	1.26E-2	1.26E-2	1.31E-2

Table 9: Robustness of AdaptiveBGDA to variations in λ . **L2RE** is used as a quality metric.

D COMPARISON OF THEORETICAL AND EMPIRICAL RESULTS

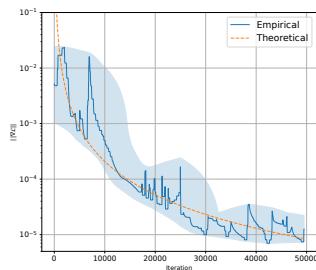


Figure 5: Comparison of theory and practice for AdaptiveBGDA

5, $C = 20811$.

On the logarithmic scale, it can be seen that the empirical curve decreases at the same rate as the theoretical reference: the slopes of the lines nearly coincide, and the discrepancy between them remains stable throughout all iterations. This confirms that the actual convergence behavior of BGDA aligns with the theoretical predictions, and that the theoretical guarantees adequately reflect its practical dynamics.

We also provide a comparison of the convergence speed of AdaptiveBGDA against the competing methods on *Burgers 1d-C*. See Figure 6 for the results.

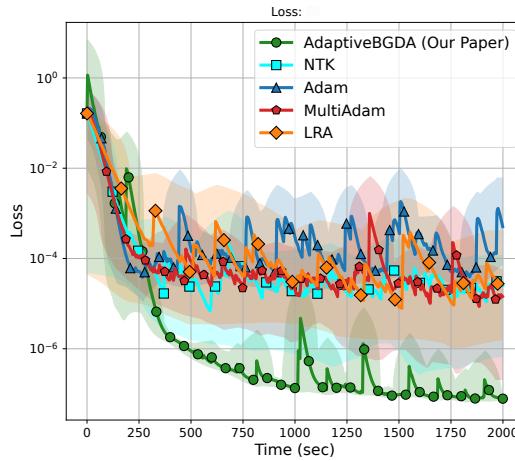


Figure 6: Comparison of AdaptiveBGDA to competitors on *Wave 1d-C*. Training MSE loss is used as a metric.

E STRONG CONCAVITY OF THE OBJECTIVE

In this section, we prove Lemma 1. It follows obviously from the form of the objective (see 2) and Assumption 2.

Lemma 3. (Lemma 1). *Consider the problem 2 under Assumption 2. Then, for every $\theta \in \mathbb{R}^d$ the function $\mathcal{L}(\theta, \pi)$ is λ -strongly concave, i.e. for all $\pi_1, \pi_2 \in S$ it satisfies*

$$\mathcal{L}(\theta, \pi_1) \leq \mathcal{L}(\theta, \pi_2) + \langle \nabla_\psi \mathcal{L}(\theta, \pi_2), \pi_1 - \pi_2 \rangle - \frac{\lambda}{2} (D_\psi(\pi_1, \pi_2) + D_\psi(\pi_2, \pi_1)).$$

Proof. Note that $\nabla_\pi^2 \mathcal{L}(\theta, \pi) = -\lambda \nabla^2 \psi(\pi)$. The function $\mathcal{L}(\theta, \pi)$ is μ -strongly concave related to D_ψ , if $\nabla_\pi^2 \mathcal{L}(\theta, \pi) \preceq -\mu \nabla^2 \psi(\pi)$ (Lu et al., 2018). Therefore, the objective is λ -strongly relatively concave. \square

972 **F PROOF OF LEMMA 2**
 973

974 We begin the presentation of the analysis with a key result guaranteeing convergence. It demon-
 975 strates that the distance between π^t and the exact maximum of $\pi^*(\theta^t)$ has a suitable dynamics with
 976 increasing t .
 977

978 **Lemma 4. (Lemma 2).** *Consider the problem 2 under Assumptions 1, 2. Then, Algorithm 1 with
 979 tuning*

$$980 \quad \gamma_\pi = \frac{\lambda}{4L^2}, \quad \gamma_\theta \leq \frac{1}{184\kappa^4 L}$$

982 produces such $\{(\theta^t, \pi^t)\}_{t=1}^T$, that

$$983 \quad D_\psi(\pi^*(\theta^{t+1}), \pi^{t+1}) \leq \left(1 - \frac{1}{64\kappa^2}\right) D_\psi(\pi^*(\theta^t), \pi^t) + 264\gamma_\theta^2\kappa^6 \|\nabla\Phi(\theta^t)\|^2,$$

985 where $\kappa = L/\lambda$ is the condition number of $\mathcal{L}(\theta, \pi)$ in π .
 986
 987
 988

989 *Proof.* Before proceeding to the proof, let us recall the three-point identity. It plays a key role in the
 990 analysis of Bregman methods.

$$991 \quad D_\psi(x, y) - D_\psi(x, z) - D_\psi(z, y) = \langle \nabla\psi(z) - \nabla\psi(y), x - z \rangle. \quad (3)$$

992 To begin, we use equation 3 in the form

$$993 \quad D_\psi(\pi^*(\theta^{t+1}), \pi^{t+1}) = D_\psi(\pi^*(\theta^{t+1}), \pi^*(\theta^t)) + D_\psi(\pi^*(\theta^t), \pi^{t+1}) \\ 994 \quad + \langle \nabla\psi(\pi^*(\theta^t)) - \nabla\psi(\pi^{t+1}), \pi^*(\theta^{t+1}) - \pi^*(\theta^t) \rangle. \quad (4)$$

996 Further, we write the optimality condition for Line 5:

$$997 \quad \langle -\gamma_\pi \nabla_\pi \mathcal{L}(\theta^t, \pi^t) + [\nabla\psi(\pi^{t+1}) - \nabla\psi(\pi^t)], \pi^*(\theta^t) - \pi^{t+1} \rangle \geq 0.$$

998 Applying equation 3, we obtain

$$999 \quad -\gamma_\pi \langle \nabla_\pi \mathcal{L}(\theta^t, \pi^t), \pi^*(\theta^t) - \pi^{t+1} \rangle + D_\psi(\pi^*(\theta^t), \pi^t) - D_\psi(\pi^*(\theta^t), \pi^{t+1}) - D_\psi(\pi^{t+1}, \pi^t) \geq 0.$$

1000 After re-arranging the terms, we get

$$1001 \quad D_\psi(\pi^*(\theta^t), \pi^{t+1}) \leq D_\psi(\pi^*(\theta^t), \pi^t) - D_\psi(\pi^{t+1}, \pi^t) - \gamma_\pi \langle \nabla_\pi \mathcal{L}(\theta^t, \pi^t), \pi^*(\theta^t) - \pi^{t+1} \rangle. \quad (5)$$

1003 Since $\pi^*(\theta^t)$ is the exact maximum of $\mathcal{L}(\theta^t, \pi)$ in π , there is another optimality condition

$$1004 \quad \gamma_\pi \langle \nabla_\pi \mathcal{L}(\theta^t, \pi^*(\theta^t)), \pi^*(\theta^t) - \pi \rangle \geq 0.$$

1006 Substituting $\pi = \pi^{t+1}$ and summing it with equation 5, we derive

$$1007 \quad D_\psi(\pi^*(\theta^t), \pi^{t+1}) \leq D_\psi(\pi^*(\theta^t), \pi^t) - D_\psi(\pi^{t+1}, \pi^t) \\ 1008 \quad + \gamma_\pi \langle \nabla_\pi \mathcal{L}(\theta^t, \pi^*(\theta^t)) - \nabla_\pi \mathcal{L}(\theta^t, \pi^t), \pi^*(\theta^t) - \pi^{t+1} \rangle \\ 1009 \quad \leq D_\psi(\pi^*(\theta^t), \pi^t) - D_\psi(\pi^{t+1}, \pi^t) \\ 1010 \quad + \gamma_\pi \langle \nabla_\pi \mathcal{L}(\theta^t, \pi^*(\theta^t)) - \nabla_\pi \mathcal{L}(\theta^t, \pi^t), \pi^*(\theta^t) - \pi^t \rangle \\ 1011 \quad + \gamma_\pi \langle \nabla_\pi \mathcal{L}(\theta^t, \pi^*(\theta^t)) - \nabla_\pi \mathcal{L}(\theta^t, \pi^t), \pi^t - \pi^{t+1} \rangle.$$

1014 Now, we are going to utilize the strong concavity of $\mathcal{L}(\theta, \pi)$ in π :

$$1015 \quad \gamma_\pi \langle \nabla_\pi \mathcal{L}(\theta^t, \pi^*(\theta^t)) - \nabla_\pi \mathcal{L}(\theta^t, \pi^t), \pi^*(\theta^t) - \pi^t \rangle \leq \frac{-\gamma_\pi \lambda}{2} D_\psi(\pi^*(\theta^t), \pi^t).$$

1017 Thus, we have

$$1018 \quad D_\psi(\pi^*(\theta^t), \pi^{t+1}) \leq \left(1 - \frac{\gamma_\pi \lambda}{2}\right) D_\psi(\pi^*(\theta^t), \pi^t) - D_\psi(\pi^{t+1}, \pi^t) \\ 1019 \quad + \gamma_\pi \langle \nabla_\pi \mathcal{L}(\theta^t, \pi^*(\theta^t)) - \nabla_\pi \mathcal{L}(\theta^t, \pi^t), \pi^t - \pi^{t+1} \rangle.$$

1021 Next, we apply Cauchy-Schwartz inequality to the scalar product and obtain

$$1023 \quad D_\psi(\pi^*(\theta^t), \pi^{t+1}) \leq \left(1 - \frac{\gamma_\pi \lambda}{2}\right) D_\psi(\pi^*(\theta^t), \pi^t) - D_\psi(\pi^{t+1}, \pi^t) \\ 1024 \quad + \frac{\gamma_\pi \alpha}{2} \|\nabla_\pi \mathcal{L}(\theta^t, \pi^*(\theta^t)) - \nabla_\pi \mathcal{L}(\theta^t, \pi^t)\|^2 + \frac{\gamma_\pi}{2\alpha} \|\pi^t - \pi^{t+1}\|^2.$$

1026 Using L -smoothness of \mathcal{L} (see Assumption 1), we obtain
 1027

$$1028 D_\psi(\pi^*(\theta^t), \pi^{t+1}) \leq \left(1 - \frac{\gamma_\pi \lambda}{2}\right) D_\psi(\pi^*(\theta^t), \pi^t) - D_\psi(\pi^{t+1}, \pi^t) \\ 1029 + \frac{\gamma_\pi \alpha L^2}{2} \|\pi^*(\theta^t) - \pi^t\|^2 + \frac{\gamma_\pi}{2\alpha} \|\pi^t - \pi^{t+1}\|^2. \\ 1030 \\ 1031$$

1032 Since ψ is 1-strongly convex (see Assumption 2), we have
 1033

$$1034 \frac{1}{2} \|\pi_1 - \pi_2\|^2 \leq D_\psi(\pi_1, \pi_2). \\ 1035$$

Thus,

$$1036 D_\psi(\pi^*(\theta^t), \pi^{t+1}) \leq \left(1 - \frac{\gamma_\pi \lambda}{2}\right) D_\psi(\pi^*(\theta^t), \pi^t) - D_\psi(\pi^{t+1}, \pi^t) \\ 1037 + \gamma_\pi \alpha L^2 D_\psi(\pi^*(\theta^t), \pi^t) + \frac{\gamma_\pi}{\alpha} D_\psi(\pi^t, \pi^{t+1}). \\ 1038 \\ 1039$$

1040 Choose $\alpha = \gamma_\pi$. We can derive
 1041

$$1042 D_\psi(\pi^*(\theta^t), \pi^{t+1}) \leq \left(1 - \frac{\gamma_\pi \lambda}{2} + \gamma_\pi^2 L^2\right) D_\psi(\pi^*(\theta^t), \pi^t). \\ 1043$$

1044 Since $\gamma_\pi = \lambda/4L^2$, we have
 1045

$$1046 D_\psi(\pi^*(\theta^t), \pi^{t+1}) \leq \left(1 - \frac{1}{16\kappa^2}\right) D_\psi(\pi^*(\theta^t), \pi^t). \quad (6) \\ 1047$$

Let us return to equation 4. Note that
 1048

$$1049 \nabla\psi(\pi^*(\theta^t)) - \nabla\psi(\pi^{t+1}) = \frac{1}{\lambda} (\nabla_\pi\mathcal{L}(\theta^t, \pi^{t+1}) - \nabla_\pi\mathcal{L}(\theta^t, \pi^*(\theta^t))). \\ 1050$$

Thus, there is
 1051

$$1052 D_\psi(\pi^*(\theta^{t+1}), \pi^{t+1}) = D_\psi(\pi^*(\theta^{t+1}), \pi^*(\theta^t)) + D_\psi(\pi^*(\theta^t), \pi^{t+1}) \\ 1053 + \frac{1}{\lambda} \langle \nabla_\pi\mathcal{L}(\theta^t, \pi^{t+1}) - \nabla_\pi\mathcal{L}(\theta^t, \pi^*(\theta^t)), \pi^*(\theta^{t+1}) - \pi^*(\theta^t) \rangle \\ 1054 \leq D_\psi(\pi^*(\theta^{t+1}), \pi^*(\theta^t)) + D_\psi(\pi^*(\theta^t), \pi^{t+1}) \\ 1055 + \frac{\alpha L^2}{\lambda} D_\psi(\pi^*(\theta^t), \pi^{t+1}) + \frac{1}{\lambda\alpha} D_\psi(\pi^*(\theta^{t+1}), \pi^*(\theta^t)). \\ 1056 \\ 1057$$

1058 Let us choose $\alpha = \lambda^3/32L^4$. With such a choice, we have
 1059

$$1060 D_\psi(\pi^*(\theta^{t+1}), \pi^{t+1}) \leq 33\kappa^4 D_\psi(\pi^*(\theta^{t+1}), \pi^*(\theta^t)) + \left(1 + \frac{1}{32\kappa^2}\right) D_\psi(\pi^*(\theta^t), \pi^{t+1}). \\ 1061$$

1062 To deal with $D_\psi(\pi^*(\theta^t), \pi^{t+1})$, we utilize equation 6. As a result, we obtain
 1063

$$1064 D_\psi(\pi^*(\theta^{t+1}), \pi^{t+1}) \leq 33\kappa^4 D_\psi(\pi^*(\theta^{t+1}), \pi^*(\theta^t)) + \left(1 - \frac{1}{32\kappa^2}\right) D_\psi(\pi^*(\theta^t), \pi^t). \quad (7) \\ 1065$$

1066 The rest thing is to prove that the descent step does not dramatically change the distance between
 1067 the optimal values of weights. Let us write down two optimality conditions:
 1068

$$\langle \nabla_\pi\mathcal{L}(\theta^t, \pi^*(\theta^t)), \pi - \pi^*(\theta^t) \rangle \leq 0, \\ 1069 \langle \nabla_\pi\mathcal{L}(\theta^{t+1}, \pi^*(\theta^{t+1})), \pi - \pi^*(\theta^{t+1}) \rangle \leq 0.$$

1070 Let us substitute $\pi = \pi^*(\theta^{t+1})$ into the first inequality and $\pi = \pi^*(\theta^t)$ into the second one. When
 1071 summing them up, we have
 1072

$$\langle \nabla_\pi\mathcal{L}(\theta^t, \pi^*(\theta^t)) - \nabla_\pi\mathcal{L}(\theta^{t+1}, \pi^*(\theta^{t+1})), \pi^*(\theta^{t+1}) - \pi^*(\theta^t) \rangle \leq 0. \quad (8)$$

1073 On the other hand, we can take advantage of the strong concavity of the objective (see Lemma 1)
 1074 and write
 1075

$$1076 \langle \nabla_\pi\mathcal{L}(\theta^t, \pi^*(\theta^{t+1})) - \nabla_\pi\mathcal{L}(\theta^t, \pi^*(\theta^t)), \pi^*(\theta^{t+1}) - \pi^*(\theta^t) \rangle \\ 1077 \leq -\frac{\lambda}{2} [D_\psi(\pi^*(\theta^t), \pi^*(\theta^{t+1})) + D_\psi(\pi^*(\theta^{t+1}), \pi^*(\theta^t))]. \quad (9) \\ 1078 \\ 1079$$

1080 Combining equation 8 and equation 9, we obtain
 1081
 1082
 1083

1084 Applying the strong convexity of distance generating function (Assumption 2) and re-arranging
 1085 terms, we obtain
 1086

$$D_\psi(\pi^*(\theta^t), \pi^*(\theta^{t+1})) + D_\psi(\pi^*(\theta^{t+1}), \pi^*(\theta^t)) \leq 4\kappa^2 \|\theta^{t+1} - \theta^t\|^2 \leq 4\gamma_\theta^2 \kappa^2 \|\nabla_\theta \mathcal{L}(\theta^t, \pi^t)\|^2.$$

1087 Next, we add and subtract $\nabla\Phi(\theta^t)$ and apply Assumption 1. We obtain
 1088

$$D_\psi(\pi^*(\theta^t), \pi^*(\theta^{t+1})) + D_\psi(\pi^*(\theta^{t+1}), \pi^*(\theta^t)) \leq 16\gamma_\theta^2 \kappa^2 L^2 D_\psi(\pi^*(\theta^t), \pi^t) + 8\gamma_\theta^2 \kappa^2 \|\nabla\Phi(\theta^t)\|^2.$$

1089 Thus, equation 7 transforms into
 1090

$$D_\psi(\pi^*(\theta^{t+1}), \pi^{t+1}) \leq \left(1 - \frac{1}{32\kappa^2} + 528\gamma_\theta^2 \kappa^6 L^2\right) D_\psi(\pi^*(\theta^t), \pi^t) + 264\gamma_\theta^2 \kappa^6 \|\nabla\Phi(\theta^t)\|^2.$$

1091 With $\gamma_\theta \leq 1/184\kappa^4 L$, we obtain
 1092

$$D_\psi(\pi^*(\theta^{t+1}), \pi^{t+1}) \leq \left(1 - \frac{1}{64\kappa^2}\right) D_\psi(\pi^*(\theta^t), \pi^t) + 264\gamma_\theta^2 \kappa^6 \|\nabla\Phi(\theta^t)\|^2.$$

1093 This completes the proof. \square
 1094

G PROOF OF THEOREM 1

1100 **Theorem 2. (Theorem 1)** Consider the problem 2 under Assumptions 1, 2. Then, Algorithm 1 with
 1101 tuning

$$\gamma_\pi = \frac{\lambda}{4L^2}, \quad \gamma_\theta \leq \sqrt{\frac{43}{92 * 33792} \frac{1}{\kappa^4 L}}$$

1102 requires
 1103

$$\mathcal{O}\left(\frac{\kappa^4 L \Delta + \kappa^2 L^2 D_\psi(\pi^*(\theta^0), \pi^0)}{\varepsilon^2}\right) \text{ iterations}$$

1104 to achieve an arbitrary ε -solution, where $\varepsilon^2 = \frac{1}{T} \sum_{t=1}^{T-1} \|\nabla\Phi(\theta^t)\|^2$, $\Delta = \Phi(\theta^0) - \Phi(\theta^*)$. $\kappa = L/\lambda$.
 1105

1106 *Proof.* One can note that Φ is $3\kappa L$ -smooth. Indeed,
 1107

$$\begin{aligned} \|\nabla\Phi(\theta_1) - \nabla\Phi(\theta_2)\|^2 &= \|\nabla_\theta \mathcal{L}(\theta_1, \pi^*(\theta_1)) - \nabla_\theta \mathcal{L}(\theta_2, \pi^*(\theta_2))\|^2 \\ &\leq L^2 [\|\theta_1 - \theta_2\|^2 + 2D_\psi(\pi^*(\theta_1), \pi^*(\theta_2))] \leq L^2 (1 + 4\kappa^2) \|\theta_1 - \theta_2\|^2 \\ &\leq 9\kappa^2 L^2 \|\theta_1 - \theta_2\|^2. \end{aligned}$$

1108 Thus, we can write
 1109

$$\begin{aligned} \Phi(\theta^{t+1}) &\leq \Phi(\theta^t) + \langle \nabla\Phi(\theta^t), \theta^{t+1} - \theta^t \rangle + 3\kappa L \|\theta^{t+1} - \theta^t\|^2 \\ &\leq \Phi(\theta^t) - \gamma_\theta \|\nabla\Phi(\theta^t)\|^2 + 3\gamma_\theta^2 \kappa L \|\nabla_\theta \mathcal{L}(\theta^t, \pi^t)\|^2 \\ &\quad + \gamma_\theta \langle \nabla\Phi(\theta^t) - \nabla_\theta \mathcal{L}(\theta^t, \pi^t), \nabla\Phi(\theta^t) \rangle \\ &\leq \Phi(\theta^t) - \frac{\gamma_\theta}{2} \|\nabla\Phi(\theta^t)\|^2 + 3\gamma_\theta^2 \kappa L \|\nabla_\theta \mathcal{L}(\theta^t, \pi^t)\|^2 + \frac{\gamma_\theta}{2} \|\nabla\Phi(\theta^t) - \nabla_\theta \mathcal{L}(\theta^t, \pi^t)\|^2 \\ &\leq \Phi(\theta^t) - \left(\frac{\gamma_\theta}{2} - 6\gamma_\theta^2 \kappa L\right) \|\nabla\Phi(\theta^t)\|^2 + \left(\frac{\gamma_\theta}{2} + 6\gamma_\theta^2 \kappa L\right) \|\nabla\Phi(\theta^t) - \nabla_\theta \mathcal{L}(\theta^t, \pi^t)\|^2. \end{aligned}$$

1110 Note that
 1111

$$-\left(\frac{\gamma_\theta}{2} - 6\gamma_\theta^2 \kappa L\right) \leq -\frac{43\gamma_\theta}{92}.$$

1112 On the other hand,
 1113

$$\left(\frac{\gamma_\theta}{2} + 6\gamma_\theta^2 \kappa L\right) \leq \gamma_\theta.$$

1114 Thus, we have
 1115

$$\begin{aligned} \Phi(\theta^{t+1}) &\leq \Phi(\theta^t) - \frac{43\gamma_\theta}{92} \|\nabla\Phi(\theta^t)\|^2 + \gamma_\theta \|\nabla\Phi(\theta^t) - \nabla_\theta \mathcal{L}(\theta^t, \pi^t)\|^2 \\ &\leq \Phi(\theta^t) - \frac{43\gamma_\theta}{92} \|\nabla\Phi(\theta^t)\|^2 + 2\gamma_\theta L^2 D_\psi(\pi^*(\theta^t), \pi^t). \end{aligned}$$

1134 Let us denote $\delta = 1 - 1/64\kappa^2$. Lemma 2 transforms into
 1135

$$1136 D_\psi(\pi^*(\theta^t), \pi^t) \leq \delta^t D_\psi(\pi^*(\theta^0), \pi^0) + 264\gamma_\theta^2\kappa^6 \sum_{j=0}^{t-1} \delta^{t-1-j} \|\nabla\Phi(\theta^j)\|^2.$$

1138 Hence,
 1139

$$1140 \Phi(\theta^{t+1}) \leq \Phi(\theta^t) - \frac{43\gamma_\theta}{92} \|\nabla\Phi(\theta^t)\|^2 + 2\gamma_\theta L^2 \delta^t D_\psi(\pi^*(\theta^0), \pi^0) \\ 1141 \\ 1142 + 528\gamma_\theta^3\kappa^6 L^2 \sum_{j=0}^{t-1} \delta^{t-1-j} \|\nabla\Phi(\theta^j)\|^2.$$

1144 Let us sum up over the iterates t and obtain
 1145

$$1146 \Phi(\theta^T) \leq \Phi(\theta^0) - \frac{43\gamma_\theta}{92} \sum_{t=1}^{T-1} \|\nabla\Phi(\theta^t)\|^2 + 2\gamma_\theta L^2 \sum_{t=1}^{T-1} \delta^t D_\psi(\pi^*(\theta^0), \pi^0) \\ 1147 \\ 1148 + 528\gamma_\theta^3\kappa^6 L^2 \sum_{t=1}^{T-1} \sum_{j=0}^{t-1} \delta^{t-1-j} \|\nabla\Phi(\theta^j)\|^2.$$

1149 Next, we use the property of geometric progression and write
 1150

$$1151 \Phi(\theta^T) \leq \Phi(\theta^0) - \frac{43\gamma_\theta}{92} \sum_{t=1}^{T-1} \|\nabla\Phi(\theta^t)\|^2 + 128\gamma_\theta\kappa^2 L^2 D_\psi(\pi^*(\theta^0), \pi^0) \\ 1152 \\ 1153 + 33792\gamma_\theta^3\kappa^8 L^2 \sum_{t=1}^{T-1} \|\nabla\Phi(\theta^t)\|^2.$$

1154 Choosing $\gamma_\theta \leq \sqrt{\frac{43}{92*33792}} \frac{1}{\kappa^4 L}$. Thus, we derive
 1155

$$1156 \frac{1}{T} \sum_{t=1}^{T-1} \|\nabla\Phi(\theta^t)\|^2 \leq \mathcal{O}\left(\frac{\kappa^4 L \Delta_\Phi}{T} + \frac{\kappa^2 L^2 D_\psi(\pi^*(\theta^0), \pi^0)}{T}\right).$$

1157 □
 1158

1159 H ENHANCED RATES ON REGULARIZED SIMPLEX

1160 The theory presented in Appendices F, G is constructed for an arbitrary Bregman divergence. This
 1161 is the main reason for the deterioration of the theoretical guarantees compared to the Euclidean
 1162 setting. In this section, we look towards the selection of the efficient approach for determining the
 1163 set of weights S . We consider a classic approach of using a unit simplex Δ_1^{M-1} :
 1164

$$1165 \Delta_1^{M-1} = \left\{ (\pi_1, \dots, \pi_M) : \pi_m \geq 0, \sum_{m=1}^M \pi_m = 1 \right\}.$$

1166 Note that $\psi(\pi) = -\sum_{m=1}^M \pi_m \log \pi_m$ goes to infinity at vertices of Δ_1^{M-1} . Thus, one cannot
 1167 guarantee smoothness of $\mathcal{L}(\theta, \pi)$ in π for every fixed θ . To avoid this, we propose to intersect the
 1168 simplex by a Euclidean ball. This approach is common in the literature (Mehta et al., 2024). Thus,
 1169 we deal with
 1170

$$1171 S = \Delta_1^{M-1} \cap B_{\|\cdot\|}(\mathcal{U}, R),$$

1172 where $\mathcal{U} = (1/M, \dots, 1/M)^\top$.
 1173

1174 **Lemma 5.** *The function $\mathcal{L}(\theta, \pi)$ is L_π -smooth in π , i.e. for all $\pi_1, \pi_2 \in S$ it satisfies*
 1175

$$1176 \|\nabla\mathcal{L}(\theta, \pi_1) - \nabla\mathcal{L}(\theta, \pi_2)\| \leq L_\pi \|\pi_1 - \pi_2\|^2.$$

1177 Moreover, under strong regularization ($R \ll 1$), it is
 1178

$$1179 L_\pi = \Theta(\lambda M^2 R).$$

1188 *Proof.* Without loss of generality, consider $\pi = (a, b, \dots, b)$, where $a = \min_m \pi_m$. Note that
 1189

$$1190 \quad \|\nabla_\pi^2 \mathcal{L}(\theta, \pi)\| = \lambda \left\| \text{diag} \left(\frac{1}{\pi_1}, \dots, \frac{1}{\pi_M} \right) \right\|.$$

1192 Thus, we need to find $\max_{a \in \Delta_1^{M-1}} \frac{1}{a}$ with $\|\pi - \mathcal{U}\|^2 \leq R^2$. Let us write
 1193

$$1194 \quad \|\pi - \mathcal{U}\|^2 = \left(a - \frac{1}{M} \right)^2 + (M-1) \left(b - \frac{1}{M} \right)^2 \leq R^2. \quad (10)$$

1196 Consider $b = \frac{1-a}{M-1}$. Then equation 10 transforms into
 1197

$$1198 \quad \left(a - \frac{1}{M} \right)^2 + \frac{(1-aM)^2}{M^2(M-1)} \leq R^2.$$

1200 Solving the one-dimensional optimization problem, we find the Lipschitz constant of $\nabla_\pi \mathcal{L}(\theta, \pi)$. If
 1201 $R \ll 1$, then

$$1202 \quad L_\pi = \frac{\lambda}{1/M - \Theta(R)} = \frac{\lambda M}{1 - M\Theta(R)} \approx \Theta(\lambda M^2 R).$$

□

1206 Note that this value is negligible. Indeed, $R \in (0, 1)$, and M in problems of mathematical physics
 1207 (see equation 1) is usually equal to 3–4. Thus, if $\kappa_\pi = L_\pi/\lambda$ appears in the estimate, it is comparable
 1208 in magnitude to other constants hidden in the big-O.

1209 Now let us move to an analysis with enhanced rate.

1211 **Lemma 6.** *Consider the problem 2 under Assumptions 1, 2. Let $S = \Delta_1^{M-1} \cap B_{\|\cdot\|}(\mathcal{U}, R)$. Then,
 1212 Algorithm 1 with tuning*

$$1213 \quad \gamma_\pi = \frac{\lambda}{4L_\pi^2}, \quad \gamma_\theta \leq \frac{1}{184\kappa_\pi^3 \kappa L}$$

1215 produces such $\{(\theta^t, \pi^t)\}_{t=1}^T$, that

$$1217 \quad D_\psi(\pi^*(\theta^{t+1}), \pi^{t+1}) \leq \left(1 - \frac{1}{64\kappa_\pi^2} \right) D_\psi(\pi^*(\theta^t), \pi^t) + 264\gamma_\theta^2 \kappa_\pi^4 \kappa^2 \|\nabla \Phi(\theta^t)\|^2,$$

1219 where $\kappa = L/\lambda$, $\kappa_\pi = L_\pi/\lambda$.

1221 *Proof.* To begin, we use equation 3 in the form

$$1223 \quad D_\psi(\pi^*(\theta^{t+1}), \pi^{t+1}) = D_\psi(\pi^*(\theta^{t+1}), \pi^*(\theta^t)) + D_\psi(\pi^*(\theta^t), \pi^{t+1}) \\ 1224 \quad + \langle \nabla \psi(\pi^*(\theta^t)) - \nabla \psi(\pi^{t+1}), \pi^*(\theta^{t+1}) - \pi^*(\theta^t) \rangle. \quad (11)$$

1225 Further, we write the optimality condition for Line 5:

$$1226 \quad \langle -\gamma_\pi \nabla_\pi \mathcal{L}(\theta^t, \pi^t) + [\nabla \psi(\pi^{t+1}) - \nabla \psi(\pi^t)], \pi^*(\theta^t) - \pi^{t+1} \rangle \geq 0.$$

1227 Applying equation 3, we obtain

$$1229 \quad -\gamma_\pi \langle \nabla_\pi \mathcal{L}(\theta^t, \pi^t), \pi^*(\theta^t) - \pi^{t+1} \rangle + D_\psi(\pi^*(\theta^t), \pi^t) - D_\psi(\pi^*(\theta^t), \pi^{t+1}) - D_\psi(\pi^{t+1}, \pi^t) \geq 0.$$

1230 After re-arranging the terms, we get

$$1231 \quad D_\psi(\pi^*(\theta^t), \pi^{t+1}) \leq D_\psi(\pi^*(\theta^t), \pi^t) - D_\psi(\pi^{t+1}, \pi^t) - \gamma_\pi \langle \nabla_\pi \mathcal{L}(\theta^t, \pi^t), \pi^*(\theta^t) - \pi^{t+1} \rangle. \quad (12)$$

1232 Since $\pi^*(\theta^t)$ is the exact maximum of $\mathcal{L}(\theta^t, \pi)$ in π , there is another optimality condition

$$1234 \quad \gamma_\pi \langle \nabla_\pi \mathcal{L}(\theta^t, \pi^*(\theta^t)), \pi^*(\theta^t) - \pi \rangle \geq 0.$$

1235 Substituting $\pi = \pi^{t+1}$ and summing it with equation 12, we derive

$$1236 \quad D_\psi(\pi^*(\theta^t), \pi^{t+1}) \leq D_\psi(\pi^*(\theta^t), \pi^t) - D_\psi(\pi^{t+1}, \pi^t) \\ 1237 \quad + \gamma_\pi \langle \nabla_\pi \mathcal{L}(\theta^t, \pi^*(\theta^t)) - \nabla_\pi \mathcal{L}(\theta^t, \pi^t), \pi^*(\theta^t) - \pi^{t+1} \rangle \\ 1238 \leq D_\psi(\pi^*(\theta^t), \pi^t) - D_\psi(\pi^{t+1}, \pi^t) \\ 1239 \quad + \gamma_\pi \langle \nabla_\pi \mathcal{L}(\theta^t, \pi^*(\theta^t)) - \nabla_\pi \mathcal{L}(\theta^t, \pi^t), \pi^*(\theta^t) - \pi^t \rangle \\ 1240 \quad + \gamma_\pi \langle \nabla_\pi \mathcal{L}(\theta^t, \pi^*(\theta^t)) - \nabla_\pi \mathcal{L}(\theta^t, \pi^t), \pi^t - \pi^{t+1} \rangle.$$

1242 Now, we are going to utilize the strong concavity of $\mathcal{L}(\theta, \pi)$ in π :
1243

$$1244 \gamma_\pi \langle \nabla_\pi \mathcal{L}(\theta^t, \pi^*(\theta^t)) - \nabla_\pi \mathcal{L}(\theta^t, \pi^t), \pi^*(\theta^t) - \pi^t \rangle \leq \frac{-\gamma_\pi \lambda}{2} D_\psi(\pi^*(\theta^t), \pi^t).$$

1245 Thus, we have
1246

$$1247 D_\psi(\pi^*(\theta^t), \pi^{t+1}) \leq \left(1 - \frac{\gamma_\pi \lambda}{2}\right) D_\psi(\pi^*(\theta^t), \pi^t) - D_\psi(\pi^{t+1}, \pi^t) \\ 1248 + \gamma_\pi \langle \nabla_\pi \mathcal{L}(\theta^t, \pi^*(\theta^t)) - \nabla_\pi \mathcal{L}(\theta^t, \pi^t), \pi^t - \pi^{t+1} \rangle.$$

1250 Next, we apply Cauchy-Schwartz inequality to the scalar product and obtain
1251

$$1252 D_\psi(\pi^*(\theta^t), \pi^{t+1}) \leq \left(1 - \frac{\gamma_\pi \lambda}{2}\right) D_\psi(\pi^*(\theta^t), \pi^t) - D_\psi(\pi^{t+1}, \pi^t) \\ 1253 + \frac{\gamma_\pi \alpha}{2} \|\nabla_\pi \mathcal{L}(\theta^t, \pi^*(\theta^t)) - \nabla_\pi \mathcal{L}(\theta^t, \pi^t)\|^2 + \frac{\gamma_\pi}{2\alpha} \|\pi^t - \pi^{t+1}\|^2.$$

1255 Using L_π -smoothness of $\mathcal{L}(\theta, \pi)$ in π (see Lemma 5), we obtain
1256

$$1257 D_\psi(\pi^*(\theta^t), \pi^{t+1}) \leq \left(1 - \frac{\gamma_\pi \lambda}{2}\right) D_\psi(\pi^*(\theta^t), \pi^t) - D_\psi(\pi^{t+1}, \pi^t) \\ 1258 + \frac{\gamma_\pi \alpha L_\pi^2}{2} \|\pi^*(\theta^t) - \pi^t\|^2 + \frac{\gamma_\pi}{2\alpha} \|\pi^t - \pi^{t+1}\|^2.$$

1261 Since ψ is 1-strongly convex (see Assumption 2), we have
1262

$$1263 \frac{1}{2} \|\pi_1 - \pi_2\|^2 \leq D_\psi(\pi_1, \pi_2).$$

1264 Thus,

$$1265 D_\psi(\pi^*(\theta^t), \pi^{t+1}) \leq \left(1 - \frac{\gamma_\pi \lambda}{2}\right) D_\psi(\pi^*(\theta^t), \pi^t) - D_\psi(\pi^{t+1}, \pi^t) \\ 1266 + \gamma_\pi \alpha L_\pi^2 D_\psi(\pi^*(\theta^t), \pi^t) + \frac{\gamma_\pi}{\alpha} D_\psi(\pi^t, \pi^{t+1}).$$

1269 Choose $\alpha = \gamma_\pi$. We can derive
1270

$$1271 D_\psi(\pi^*(\theta^t), \pi^{t+1}) \leq \left(1 - \frac{\gamma_\pi \lambda}{2} + \gamma_\pi^2 L_\pi^2\right) D_\psi(\pi^*(\theta^t), \pi^t).$$

1273 Since $\gamma_\pi = \lambda/4L_\pi^2$, we have
1274

$$1274 D_\psi(\pi^*(\theta^t), \pi^{t+1}) \leq \left(1 - \frac{1}{16\kappa_\pi^2}\right) D_\psi(\pi^*(\theta^t), \pi^t). \quad (13)$$

1276 Let us return to equation 11. Note that
1277

$$1278 \nabla\psi(\pi^*(\theta^t)) - \nabla\psi(\pi^{t+1}) = \frac{1}{\lambda} (\nabla_\pi \mathcal{L}(\theta^t, \pi^{t+1}) - \nabla_\pi \mathcal{L}(\theta^t, \pi^*(\theta^t))).$$

1279 Thus, there is
1280

$$1281 D_\psi(\pi^*(\theta^{t+1}), \pi^{t+1}) = D_\psi(\pi^*(\theta^{t+1}), \pi^*(\theta^t)) + D_\psi(\pi^*(\theta^t), \pi^{t+1}) \\ 1282 + \frac{1}{\lambda} \langle \nabla_\pi \mathcal{L}(\theta^t, \pi^{t+1}) - \nabla_\pi \mathcal{L}(\theta^t, \pi^*(\theta^t)), \pi^*(\theta^{t+1}) - \pi^*(\theta^t) \rangle \\ 1283 \leq D_\psi(\pi^*(\theta^{t+1}), \pi^*(\theta^t)) + D_\psi(\pi^*(\theta^t), \pi^{t+1}) \\ 1284 + \frac{\alpha L_\pi^2}{\lambda} D_\psi(\pi^*(\theta^t), \pi^{t+1}) + \frac{1}{\lambda \alpha} D_\psi(\pi^*(\theta^{t+1}), \pi^*(\theta^t)).$$

1287 Let us choose $\alpha = \lambda^3/32L_\pi^4$. With such a choice, we have
1288

$$1289 D_\psi(\pi^*(\theta^{t+1}), \pi^{t+1}) \leq 33\kappa_\pi^4 D_\psi(\pi^*(\theta^{t+1}), \pi^*(\theta^t)) + \left(1 + \frac{1}{32\kappa_\pi^2}\right) D_\psi(\pi^*(\theta^t), \pi^{t+1}).$$

1290 To deal with $D_\psi(\pi^*(\theta^t), \pi^{t+1})$, we utilize equation 13. As a result, we obtain
1291

$$1292 D_\psi(\pi^*(\theta^{t+1}), \pi^{t+1}) \leq 33\kappa_\pi^4 D_\psi(\pi^*(\theta^{t+1}), \pi^*(\theta^t)) + \left(1 - \frac{1}{32\kappa_\pi^2}\right) D_\psi(\pi^*(\theta^t), \pi^{t+1}). \quad (14)$$

1296 The rest thing is to prove that the descent step does not dramatically change the distance between
 1297 the optimal values of weights. Let us write down two optimality conditions:
 1298

$$\begin{aligned}\langle \nabla_{\pi} \mathcal{L}(\theta^t, \pi^*(\theta^t)), \pi - \pi^*(\theta^t) \rangle &\leq 0, \\ \langle \nabla_{\pi} \mathcal{L}(\theta^{t+1}, \pi^*(\theta^{t+1})), \pi - \pi^*(\theta^{t+1}) \rangle &\leq 0.\end{aligned}$$

1301 Let us substitute $\pi = \pi^*(\theta^{t+1})$ into the first inequality and $\pi = \pi^*(\theta^t)$ into the second one. When
 1302 summing them up, we have

$$\langle \nabla_{\pi} \mathcal{L}(\theta^t, \pi^*(\theta^t)) - \nabla_{\pi} \mathcal{L}(\theta^{t+1}, \pi^*(\theta^{t+1})), \pi^*(\theta^{t+1}) - \pi^*(\theta^t) \rangle \leq 0. \quad (15)$$

1304 On the other hand, we can take advantage of the strong concavity of the objective (see Lemma 1)
 1305 and write

$$\begin{aligned}\langle \nabla_{\pi} \mathcal{L}(\theta^t, \pi^*(\theta^{t+1})) - \nabla_{\pi} \mathcal{L}(\theta^t, \pi^*(\theta^t)), \pi^*(\theta^{t+1}) - \pi^*(\theta^t) \rangle \\ \leq -\frac{\lambda}{2} [D_{\psi}(\pi^*(\theta^t), \pi^*(\theta^{t+1})) + D_{\psi}(\pi^*(\theta^{t+1}), \pi^*(\theta^t))].\end{aligned} \quad (16)$$

1309 Combining equation 15 and equation 16, we obtain

$$\frac{\lambda^2}{4} [D_{\psi}(\pi^*(\theta^t), \pi^*(\theta^{t+1})) + D_{\psi}(\pi^*(\theta^{t+1}), \pi^*(\theta^t))]^2 \leq L^2 \|\pi^*(\theta^{t+1}) - \pi^*(\theta^t)\|^2 \cdot \|\theta^{t+1} - \theta^t\|^2.$$

1313 Here we can not apply the smoothness in π . Instead, we have to use the smoothness in (θ, π) .
 1314 Next, applying the strong convexity of distance generating function (Assumption 2) and re-arranging
 1315 terms, we obtain

$$D_{\psi}(\pi^*(\theta^t), \pi^*(\theta^{t+1})) + D_{\psi}(\pi^*(\theta^{t+1}), \pi^*(\theta^t)) \leq 4\kappa^2 \|\theta^{t+1} - \theta^t\|^2 \leq 4\gamma_{\theta}^2 \kappa^2 \|\nabla_{\theta} \mathcal{L}(\theta^t, \pi^t)\|^2.$$

1317 Next, we ass and subtract $\nabla \Phi(\theta^t)$ and apply Assumption 1. We obtain

$$D_{\psi}(\pi^*(\theta^t), \pi^*(\theta^{t+1})) + D_{\psi}(\pi^*(\theta^{t+1}), \pi^*(\theta^t)) \leq 16\gamma_{\theta}^2 \kappa^2 L^2 D_{\psi}(\pi^*(\theta^t), \pi^t) + 8\gamma_{\theta}^2 \kappa^2 \|\nabla \Phi(\theta^t)\|^2.$$

1320 Thus, equation 14 transforms into

$$D_{\psi}(\pi^*(\theta^{t+1}), \pi^{t+1}) \leq \left(1 - \frac{1}{32\kappa_{\pi}^2} + 528\gamma_{\theta}^2 \kappa_{\pi}^4 \kappa^2 L^2\right) D_{\psi}(\pi^*(\theta^t), \pi^t) + 264\gamma_{\theta}^2 \kappa_{\pi}^4 \kappa^2 \|\nabla \Phi(\theta^t)\|^2.$$

1323 With $\gamma_{\theta} \leq 1/184\kappa^3 \kappa L$, we obtain

$$D_{\psi}(\pi^*(\theta^{t+1}), \pi^{t+1}) \leq \left(1 - \frac{1}{64\kappa_{\pi}^2}\right) D_{\psi}(\pi^*(\theta^t), \pi^t) + 264\gamma_{\theta}^2 \kappa_{\pi}^4 \kappa^2 \|\nabla \Phi(\theta^t)\|^2.$$

1326 This completes the proof. \square

1330 Next, we modify the main proof to obtain enhanced convergence.

1332 **Theorem 3.** Consider the problem 2 under Assumptions 1, 2. Let $S = S = \Delta_1^{M-1} \cap B_{\|\cdot\|}(\mathcal{U}, R)$.
 1333 Then, Algorithm 1 with tuning

$$\gamma_{\pi} = \frac{\lambda}{4L_{\pi}^2}, \quad \gamma_{\theta} \leq \sqrt{\frac{43}{92 * 33792}} \frac{1}{\kappa_{\pi}^3 \kappa L}$$

1337 requires

$$\mathcal{O}\left(\frac{\kappa L \Delta + L^2 D_{\psi}(\pi^*(\theta^0), \pi^0)}{\varepsilon^2}\right) \text{iterations}$$

1340 to achieve an arbitrary ε -solution, where $\varepsilon^2 = \frac{1}{T} \sum_{t=1}^{T-1} \|\nabla \Phi(\theta^t)\|^2$, $\Delta = \Phi(\theta^0) - \Phi(\theta^*)$. $\kappa = L/\lambda$,
 1341 $\kappa_{\pi} = L_{\pi}/\lambda$.

1344 *Proof.* One can note that Φ is $3\kappa L$ -smooth. Indeed,

$$\begin{aligned}\|\nabla \Phi(\theta_1) - \nabla \Phi(\theta_2)\|^2 &= \|\nabla_{\theta} \mathcal{L}(\theta_1, \pi^*(\theta_1)) - \nabla_{\theta} \mathcal{L}(\theta_2, \pi^*(\theta_2))\|^2 \\ &\leq L^2 [\|\theta_1 - \theta_2\|^2 + 2D_{\psi}(\pi^*(\theta_1), \pi^*(\theta_2))] \leq L^2 (1 + 4\kappa^2) \|\theta_1 - \theta_2\|^2 \\ &\leq 9\kappa^2 L^2 \|\theta_1 - \theta_2\|^2.\end{aligned}$$

1350 Thus, we can write

$$\begin{aligned}
 1351 \Phi(\theta^{t+1}) &\leq \Phi(\theta^t) + \langle \nabla \Phi(\theta^t), \theta^{t+1} - \theta^t \rangle + 3\kappa L \|\theta^{t+1} - \theta^t\|^2 \\
 1352 &\leq \Phi(\theta^t) - \gamma_\theta \|\nabla \Phi(\theta^t)\|^2 + 3\gamma_\theta^2 \kappa L \|\nabla_\theta \mathcal{L}(\theta^t, \pi^t)\|^2 \\
 1353 &\quad + \gamma_\theta \langle \nabla \Phi(\theta^t) - \nabla_\theta \mathcal{L}(\theta^t, \pi^t), \nabla \Phi(\theta^t) \rangle \\
 1354 &\leq \Phi(\theta^t) - \frac{\gamma_\theta}{2} \|\nabla \Phi(\theta^t)\|^2 + 3\gamma_\theta^2 \kappa L \|\nabla_\theta \mathcal{L}(\theta^t, \pi^t)\|^2 + \frac{\gamma_\theta}{2} \|\nabla \Phi(\theta^t) - \nabla_\theta \mathcal{L}(\theta^t, \pi^t)\|^2 \\
 1355 &\leq \Phi(\theta^t) - \left(\frac{\gamma_\theta}{2} - 6\gamma_\theta^2 \kappa L\right) \|\nabla \Phi(\theta^t)\|^2 + \left(\frac{\gamma_\theta}{2} + 6\gamma_\theta^2 \kappa L\right) \|\nabla \Phi(\theta^t) - \nabla_\theta \mathcal{L}(\theta^t, \pi^t)\|^2.
 1356 \\
 1357 \\
 1358
 \end{aligned}$$

1359 Note that

$$1360 \quad - \left(\frac{\gamma_\theta}{2} - 6\gamma_\theta^2 \kappa L\right) \leq -\frac{43\gamma_\theta}{92}.$$

1362 On the other hand,

$$1363 \quad \left(\frac{\gamma_\theta}{2} + 6\gamma_\theta^2 \kappa L\right) \leq \gamma_\theta.$$

1365 Thus, we have

$$\begin{aligned}
 1366 \Phi(\theta^{t+1}) &\leq \Phi(\theta^t) - \frac{43\gamma_\theta}{92} \|\nabla \Phi(\theta^t)\|^2 + \gamma_\theta \|\nabla \Phi(\theta^t) - \nabla_\theta \mathcal{L}(\theta^t, \pi^t)\|^2 \\
 1367 &\leq \Phi(\theta^t) - \frac{43\gamma_\theta}{92} \|\nabla \Phi(\theta^t)\|^2 + 2\gamma_\theta L^2 D_\psi(\pi^*(\theta^t), \pi^t).
 1368 \\
 1369
 \end{aligned}$$

1370 Let us denote $\delta = 1 - 1/64\kappa_\pi^2$. Lemma 6 transforms into

$$1371 \quad D_\psi(\pi^*(\theta^t), \pi^t) \leq \delta^t D_\psi(\pi^*(\theta^0), \pi^0) + 264\gamma_\theta^2 \kappa_\pi^4 \kappa^2 \sum_{j=0}^{t-1} \delta^{t-1-j} \|\nabla \Phi(\theta^j)\|^2.$$

1374 Hence,

$$\begin{aligned}
 1375 \Phi(\theta^{t+1}) &\leq \Phi(\theta^t) - \frac{43\gamma_\theta}{92} \|\nabla \Phi(\theta^t)\|^2 + 2\gamma_\theta L^2 \delta^t D_\psi(\pi^*(\theta^0), \pi^0) \\
 1376 &\quad + 528\gamma_\theta^3 \kappa_\pi^4 \kappa^2 L^2 \sum_{j=0}^{t-1} \delta^{t-1-j} \|\nabla \Phi(\theta^j)\|^2.
 1377 \\
 1378 \\
 1379
 \end{aligned}$$

1380 Let us sum up over the iterates t and obtain

$$\begin{aligned}
 1381 \Phi(\theta^T) &\leq \Phi(\theta^0) - \frac{43\gamma_\theta}{92} \sum_{t=1}^{T-1} \|\nabla \Phi(\theta^t)\|^2 + 2\gamma_\theta L^2 \sum_{t=1}^{T-1} \delta^t D_\psi(\pi^*(\theta^0), \pi^0) \\
 1382 &\quad + 528\gamma_\theta^3 \kappa_\pi^4 \kappa^2 L^2 \sum_{t=1}^{T-1} \sum_{j=0}^{t-1} \delta^{t-1-j} \|\nabla \Phi(\theta^j)\|^2.
 1383 \\
 1384 \\
 1385 \\
 1386
 \end{aligned}$$

1387 Next, we use the property of geometric progression and write

$$\begin{aligned}
 1388 \Phi(\theta^T) &\leq \Phi(\theta^0) - \frac{43\gamma_\theta}{92} \sum_{t=1}^{T-1} \|\nabla \Phi(\theta^t)\|^2 + 128\gamma_\theta \kappa_\pi^2 L^2 D_\psi(\pi^*(\theta^0), \pi^0) \\
 1389 &\quad + 33792\gamma_\theta^3 \kappa_\pi^6 \kappa^2 L^2 \sum_{t=1}^{T-1} \|\nabla \Phi(\theta^t)\|^2.
 1390 \\
 1391 \\
 1392 \\
 1393
 \end{aligned}$$

1394 Choosing $\gamma_\theta \leq \sqrt{\frac{43}{92*33792}} \frac{1}{\kappa_\pi^3 \kappa^2 L}$. Thus, we derive

$$1395 \quad \frac{1}{T} \sum_{t=1}^{T-1} \|\nabla \Phi(\theta^t)\|^2 \leq \mathcal{O}\left(\frac{\kappa_\pi^3 \kappa L \Delta_\Phi}{T} + \frac{\kappa_\pi^2 L^2 D_\psi(\pi^*(\theta^0), \pi^0)}{T}\right).$$

1396 Above we discussed that κ_π is small, since not many equations appear in the PDEs systems. Thus,
1397 we can focus on κ only and proceed to

$$1401 \quad \frac{1}{T} \sum_{t=1}^{T-1} \|\nabla \Phi(\theta^t)\|^2 \leq \mathcal{O}\left(\frac{\kappa L \Delta_\Phi}{T} + \frac{L^2 D_\psi(\pi^*(\theta^0), \pi^0)}{T}\right).$$

1402 This finishes the proof. □

1404 **I STOCHASTIC SETTING**
1405

1406 In the current realities of machine learning, it is almost never possible to use all the data to compute
1407 a gradient. Motivated by this fact, we develop a stochastic theory for our scheme. Note that the
1408 computation $\nabla_\pi \mathcal{L}(\theta, \pi)$ does not need to perform backward. Therefore, we analyze the stochasticity
1409 in θ only. Consider a stochastic gradient $G_\theta(\theta^t, \pi^t, \xi)$ calculated from one randomly selected sample
1410 ξ .

1411 **Assumption 3.** *Stochastic oracle G_θ is unbiased and light-tailed, i.e.*

1412
$$\mathbb{E}_\xi [G_\theta(\theta, \pi, \xi)] = \nabla_\theta \mathcal{L}(\theta, \pi), \mathbb{E} [\|G_\theta(\theta, \pi, \xi) - \nabla_\theta \mathcal{L}(\theta, \pi)\|^2] \leq \sigma^2, \forall (\theta, \pi) \in \mathbb{R}^d \times S.$$
1413

1414 In our analysis, we rely on batching. Namely, we sample a subset of data points and use it to
1415 approximate the gradient. The main difference between Algorithm 3 and deterministic BGDA is the

1417 **Algorithm 3** S-BGDA

1418 1: **Input:** Starting point $(\theta^0, \pi^0) \in \mathbb{R}^d \times S$, number of iterations T
1419 2: **Parameters:** Stepsizes $\gamma_\theta, \gamma_\pi > 0$
1420 3: **for** $t = 0, \dots, T - 1$ **do**
1421 4: Draw a collection of i.i.d. data points $\{\xi_i^t\}_{i=1}^B$
1422 5: $\theta^{t+1} = \theta^t - \gamma_\theta \frac{1}{B} \sum_{i=1}^B G_\theta(\theta^t, \pi^t, \xi_i^t)$ // Optimizer updates parameters
1423 6: $\pi^{t+1} = \arg \min_{\pi \in S} \{-\gamma_\pi \langle \nabla_\pi \mathcal{L}(\theta^t, \pi^t), \pi \rangle + D_\psi(\pi, \pi^t)\}$ // Optimizer updates weights
1424 7: **end for**
1425 8: **Output:** (θ^T, π^T)

1427 use of stochastic oracle call in Line 5.

1428 **Lemma 7.** *Consider the problem 2 under Assumptions 1, 2, 3. Then, Algorithm 3 with tuning*

1429
$$\gamma_\pi = \frac{\lambda}{4L^2}, \quad \gamma_\theta \leq \frac{1}{184\kappa^4 L}$$

1430 produces such $\{(\theta^t, \pi^t)\}_{t=1}^T$, that

1431
$$D_\psi(\pi^*(\theta^{t+1}), \pi^{t+1}) \leq \left(1 - \frac{1}{64\kappa^2}\right) D_\psi(\pi^*(\theta^t), \pi^t) + 264\gamma_\theta^2\kappa^6 \|\nabla\Phi(\theta^t)\|^2 + \frac{132\gamma_\theta^2\kappa^6\sigma^2}{B},$$

1432 where $\kappa = L/\lambda$ is the condition number of $\mathcal{L}(\theta, \pi)$ in π .

1433 *Proof.* To begin, we use equation 3 in the form

1434
$$\begin{aligned} D_\psi(\pi^*(\theta^{t+1}), \pi^{t+1}) &= D_\psi(\pi^*(\theta^{t+1}), \pi^*(\theta^t)) + D_\psi(\pi^*(\theta^t), \pi^{t+1}) \\ &\quad + \langle \nabla\psi(\pi^*(\theta^t)) - \nabla\psi(\pi^{t+1}), \pi^*(\theta^{t+1}) - \pi^*(\theta^t) \rangle. \end{aligned} \tag{17}$$

1435 Further, we write the optimality condition for Line 6:

1436
$$\langle -\gamma_\pi \nabla_\pi \mathcal{L}(\theta^t, \pi^t) + [\nabla\psi(\pi^{t+1}) - \nabla\psi(\pi^t)], \pi^*(\theta^t) - \pi^{t+1} \rangle \geq 0.$$

1437 Applying equation 3, we obtain

1438
$$-\gamma_\pi \langle \nabla_\pi \mathcal{L}(\theta^t, \pi^t), \pi^*(\theta^t) - \pi^{t+1} \rangle + D_\psi(\pi^*(\theta^t), \pi^t) - D_\psi(\pi^*(\theta^t), \pi^{t+1}) - D_\psi(\pi^{t+1}, \pi^t) \geq 0.$$

1439 After re-arranging the terms, we get

1440
$$D_\psi(\pi^*(\theta^t), \pi^{t+1}) \leq D_\psi(\pi^*(\theta^t), \pi^t) - D_\psi(\pi^{t+1}, \pi^t) - \gamma_\pi \langle \nabla_\pi \mathcal{L}(\theta^t, \pi^t), \pi^*(\theta^t) - \pi^{t+1} \rangle. \tag{18}$$

1441 Since $\pi^*(\theta^t)$ is the exact maximum of $\mathcal{L}(\theta^t, \pi)$ in π , there is another optimality condition

1442
$$\gamma_\pi \langle \nabla_\pi \mathcal{L}(\theta^t, \pi^*(\theta^t)), \pi^*(\theta^t) - \pi \rangle \geq 0.$$

1443 Substituting $\pi = \pi^{t+1}$ and summing it with equation 18, we derive

1444
$$\begin{aligned} D_\psi(\pi^*(\theta^t), \pi^{t+1}) &\leq D_\psi(\pi^*(\theta^t), \pi^t) - D_\psi(\pi^{t+1}, \pi^t) \\ &\quad + \gamma_\pi \langle \nabla_\pi \mathcal{L}(\theta^t, \pi^*(\theta^t)) - \nabla_\pi \mathcal{L}(\theta^t, \pi^t), \pi^*(\theta^t) - \pi^{t+1} \rangle \\ &\leq D_\psi(\pi^*(\theta^t), \pi^t) - D_\psi(\pi^{t+1}, \pi^t) \\ &\quad + \gamma_\pi \langle \nabla_\pi \mathcal{L}(\theta^t, \pi^*(\theta^t)) - \nabla_\pi \mathcal{L}(\theta^t, \pi^t), \pi^*(\theta^t) - \pi^t \rangle \\ &\quad + \gamma_\pi \langle \nabla_\pi \mathcal{L}(\theta^t, \pi^*(\theta^t)) - \nabla_\pi \mathcal{L}(\theta^t, \pi^t), \pi^t - \pi^{t+1} \rangle. \end{aligned}$$

1458 Now, we are going to utilize the strong concavity of $\mathcal{L}(\theta, \pi)$ in π :

$$1459 \quad \gamma_\pi \langle \nabla_\pi \mathcal{L}(\theta^t, \pi^*(\theta^t)) - \nabla_\pi \mathcal{L}(\theta^t, \pi^t), \pi^*(\theta^t) - \pi^t \rangle \leq \frac{-\gamma_\pi \lambda}{2} D_\psi(\pi^*(\theta^t), \pi^t).$$

1460 Thus, we have

$$1461 \quad \begin{aligned} D_\psi(\pi^*(\theta^t), \pi^{t+1}) &\leq \left(1 - \frac{\gamma_\pi \lambda}{2}\right) D_\psi(\pi^*(\theta^t), \pi^t) - D_\psi(\pi^{t+1}, \pi^t) \\ 1462 &\quad + \gamma_\pi \langle \nabla_\pi \mathcal{L}(\theta^t, \pi^*(\theta^t)) - \nabla_\pi \mathcal{L}(\theta^t, \pi^t), \pi^t - \pi^{t+1} \rangle. \end{aligned}$$

1463 Next, we apply Cauchy-Schwartz inequality to the scalar product and obtain

$$1464 \quad \begin{aligned} D_\psi(\pi^*(\theta^t), \pi^{t+1}) &\leq \left(1 - \frac{\gamma_\pi \lambda}{2}\right) D_\psi(\pi^*(\theta^t), \pi^t) - D_\psi(\pi^{t+1}, \pi^t) \\ 1465 &\quad + \frac{\gamma_\pi \alpha}{2} \|\nabla_\pi \mathcal{L}(\theta^t, \pi^*(\theta^t)) - \nabla_\pi \mathcal{L}(\theta^t, \pi^t)\|^2 + \frac{\gamma_\pi}{2\alpha} \|\pi^t - \pi^{t+1}\|^2. \end{aligned}$$

1466 Using L -smoothness of \mathcal{L} (see Assumption 1), we obtain

$$1467 \quad \begin{aligned} D_\psi(\pi^*(\theta^t), \pi^{t+1}) &\leq \left(1 - \frac{\gamma_\pi \lambda}{2}\right) D_\psi(\pi^*(\theta^t), \pi^t) - D_\psi(\pi^{t+1}, \pi^t) \\ 1468 &\quad + \frac{\gamma_\pi \alpha L^2}{2} \|\pi^*(\theta^t) - \pi^t\|^2 + \frac{\gamma_\pi}{2\alpha} \|\pi^t - \pi^{t+1}\|^2. \end{aligned}$$

1469 Since ψ is 1-strongly convex (see Assumption 2), we have

$$1470 \quad \frac{1}{2} \|\pi_1 - \pi_2\|^2 \leq D_\psi(\pi_1, \pi_2).$$

1471 Thus,

$$1472 \quad \begin{aligned} D_\psi(\pi^*(\theta^t), \pi^{t+1}) &\leq \left(1 - \frac{\gamma_\pi \lambda}{2}\right) D_\psi(\pi^*(\theta^t), \pi^t) - D_\psi(\pi^{t+1}, \pi^t) \\ 1473 &\quad + \gamma_\pi \alpha L^2 D_\psi(\pi^*(\theta^t), \pi^t) + \frac{\gamma_\pi}{\alpha} D_\psi(\pi^t, \pi^{t+1}). \end{aligned}$$

1474 Choose $\alpha = \gamma_\pi$. We can derive

$$1475 \quad D_\psi(\pi^*(\theta^t), \pi^{t+1}) \leq \left(1 - \frac{\gamma_\pi \lambda}{2} + \gamma_\pi^2 L^2\right) D_\psi(\pi^*(\theta^t), \pi^t).$$

1476 Since $\gamma_\pi = \lambda/4L^2$, we have

$$1477 \quad D_\psi(\pi^*(\theta^t), \pi^{t+1}) \leq \left(1 - \frac{1}{16\kappa^2}\right) D_\psi(\pi^*(\theta^t), \pi^t). \quad (19)$$

1478 Let us return to equation 17. Note that

$$1479 \quad \nabla\psi(\pi^*(\theta^t)) - \nabla\psi(\pi^{t+1}) = \frac{1}{\lambda} (\nabla_\pi \mathcal{L}(\theta^t, \pi^{t+1}) - \nabla_\pi \mathcal{L}(\theta^t, \pi^*(\theta^t))).$$

1480 Thus, there is

$$1481 \quad \begin{aligned} D_\psi(\pi^*(\theta^{t+1}), \pi^{t+1}) &= D_\psi(\pi^*(\theta^{t+1}), \pi^*(\theta^t)) + D_\psi(\pi^*(\theta^t), \pi^{t+1}) \\ 1482 &\quad + \frac{1}{\lambda} \langle \nabla_\pi \mathcal{L}(\theta^t, \pi^{t+1}) - \nabla_\pi \mathcal{L}(\theta^t, \pi^*(\theta^t)), \pi^*(\theta^{t+1}) - \pi^*(\theta^t) \rangle \\ 1483 &\leq D_\psi(\pi^*(\theta^{t+1}), \pi^*(\theta^t)) + D_\psi(\pi^*(\theta^t), \pi^{t+1}) \\ 1484 &\quad + \frac{\alpha L^2}{\lambda} D_\psi(\pi^*(\theta^t), \pi^{t+1}) + \frac{1}{\lambda \alpha} D_\psi(\pi^*(\theta^{t+1}), \pi^*(\theta^t)). \end{aligned}$$

1485 Let us choose $\alpha = \lambda^3/32L^4$. With such a choice, we have

$$1486 \quad D_\psi(\pi^*(\theta^{t+1}), \pi^{t+1}) \leq 33\kappa^4 D_\psi(\pi^*(\theta^{t+1}), \pi^*(\theta^t)) + \left(1 + \frac{1}{32\kappa^2}\right) D_\psi(\pi^*(\theta^t), \pi^{t+1}).$$

1487 To deal with $D_\psi(\pi^*(\theta^t), \pi^{t+1})$, we utilize equation 19. As a result, we obtain

$$1488 \quad D_\psi(\pi^*(\theta^{t+1}), \pi^{t+1}) \leq 33\kappa^4 D_\psi(\pi^*(\theta^{t+1}), \pi^*(\theta^t)) + \left(1 - \frac{1}{32\kappa^2}\right) D_\psi(\pi^*(\theta^t), \pi^t). \quad (20)$$

1489

1490

1491

1492

1493

1494

1495

1512 The rest thing is to prove that the descent step does not dramatically change the distance between
 1513 the optimal values of weights. Let us write down two optimality conditions:
 1514

$$\begin{aligned} \langle \nabla_{\pi} \mathcal{L}(\theta^t, \pi^*(\theta^t)), \pi - \pi^*(\theta^t) \rangle &\leq 0, \\ \langle \nabla_{\pi} \mathcal{L}(\theta^{t+1}, \pi^*(\theta^{t+1})), \pi - \pi^*(\theta^{t+1}) \rangle &\leq 0. \end{aligned}$$

1517 Let us substitute $\pi = \pi^*(\theta^{t+1})$ into the first inequality and $\pi = \pi^*(\theta^t)$ into the second one. When
 1518 summing them up, we have

$$\langle \nabla_{\pi} \mathcal{L}(\theta^t, \pi^*(\theta^t)) - \nabla_{\pi} \mathcal{L}(\theta^{t+1}, \pi^*(\theta^{t+1})), \pi^*(\theta^{t+1}) - \pi^*(\theta^t) \rangle \leq 0. \quad (21)$$

1520 On the other hand, we can take advantage of the strong concavity of the objective (see Lemma 1)
 1521 and write

$$\begin{aligned} \langle \nabla_{\pi} \mathcal{L}(\theta^t, \pi^*(\theta^{t+1})) - \nabla_{\pi} \mathcal{L}(\theta^t, \pi^*(\theta^t)), \pi^*(\theta^{t+1}) - \pi^*(\theta^t) \rangle \\ \leq -\frac{\lambda}{2} [D_{\psi}(\pi^*(\theta^t), \pi^*(\theta^{t+1})) + D_{\psi}(\pi^*(\theta^{t+1}), \pi^*(\theta^t))]. \end{aligned} \quad (22)$$

1525 Combining equation 21 and equation 22, we obtain

$$\frac{\lambda^2}{4} [D_{\psi}(\pi^*(\theta^t), \pi^*(\theta^{t+1})) + D_{\psi}(\pi^*(\theta^{t+1}), \pi^*(\theta^t))]^2 \leq L^2 \|\pi^*(\theta^{t+1}) - \pi^*(\theta^t)\|^2 \|\theta^{t+1} - \theta^t\|^2.$$

1529 Re-arranging the terms and substituting Line 5, we derive

$$\begin{aligned} [D_{\psi}(\pi^*(\theta^t), \pi^*(\theta^{t+1})) + D_{\psi}(\pi^*(\theta^{t+1}), \pi^*(\theta^t))] &\leq 4\kappa^2 \|\theta^{t+1} - \theta^t\|^2 \\ &\leq 4\gamma_{\theta}^2 \kappa^2 \left\| \frac{1}{B} \sum_{i=1}^B G_{\theta}(\theta^t, \pi^t, \xi_i^t) \right\|^2. \end{aligned}$$

1534 After adding and subtracting $\nabla_{\theta} \mathcal{L}(\theta^t, \pi^t)$, we have

$$D_{\psi}(\pi^*(\theta^{t+1}), \pi^*(\theta^t)) \leq 4\gamma_{\theta}^2 \kappa^2 \|\nabla_{\theta} \mathcal{L}(\theta^t, \pi^t)\|^2 + 4\gamma_{\theta}^2 \kappa^2 \left\| \nabla_{\theta} \mathcal{L}(\theta^t, \pi^t) - \frac{1}{B} \sum_{i=1}^B G_{\theta}(\theta^t, \pi^t, \xi_i^t) \right\|^2.$$

1538 Let us take an expectation and derive

$$\begin{aligned} \mathbb{E} D_{\psi}(\pi^*(\theta^{t+1}), \pi^*(\theta^t)) &\leq \mathbb{E} 8\gamma_{\theta}^2 \kappa^2 \|\nabla \Phi(\theta^t)\|^2 + 8\gamma_{\theta}^2 \kappa^2 \|\nabla_{\theta} \mathcal{L}(\theta^t, \pi^t) - \nabla \Phi(\theta^t)\|^2 + \frac{4\gamma_{\theta}^2 \kappa^2 \sigma^2}{B} \\ &\leq \mathbb{E} 8\gamma_{\theta}^2 \kappa^2 \|\nabla \Phi(\theta^t)\|^2 + 16\gamma_{\theta}^2 \kappa^2 L^2 D_{\psi}(\pi^*(\theta^t), \pi^t) + \frac{4\gamma_{\theta}^2 \kappa^2 \sigma^2}{B}. \end{aligned}$$

1544 Thus, equation 20 transforms into

$$\begin{aligned} \mathbb{E} D_{\psi}(\pi^*(\theta^{t+1}), \pi^{t+1}) &\leq \mathbb{E} \left(1 - \frac{1}{32\kappa^2} + 528\gamma_{\theta}^2 \kappa^6 L^2 \right) D_{\psi}(\pi^*(\theta^t), \pi^t) + 264\gamma_{\theta}^2 \kappa^6 \|\nabla \Phi(\theta^t)\|^2 \\ &\quad + \frac{132\gamma_{\theta}^2 \kappa^6 \sigma^2}{B}. \end{aligned}$$

1549 With $\gamma_{\theta} \leq 1/184\kappa^4 L$, we obtain

$$\mathbb{E} D_{\psi}(\pi^*(\theta^{t+1}), \pi^{t+1}) \leq \mathbb{E} \left(1 - \frac{1}{64\kappa^2} \right) D_{\psi}(\pi^*(\theta^t), \pi^t) + 264\gamma_{\theta}^2 \kappa^6 \|\nabla \Phi(\theta^t)\|^2 + \frac{132\gamma_{\theta}^2 \kappa^6 \sigma^2}{B}.$$

1553 This completes the proof. \square

1554

1555

1556

1557 Now let us proceed to the convergence proof for Algorithm 3.

1558 **Theorem 4.** Consider the problem 2 under Assumptions 1, 2, 3. Then, Algorithm 1 with tuning

$$\gamma_{\pi} = \frac{\lambda}{4L^2}, \quad \gamma_{\theta} \leq \sqrt{\frac{43}{92 * 33792} \frac{1}{\kappa^4 L}}, \quad B = \max \left\{ 1, \frac{\kappa^{3/2}}{\varepsilon^2} \right\}$$

1562 requires

$$\mathcal{O} \left(\frac{\kappa^4 L \Delta + \kappa^2 L^2 D_{\psi}(\pi^*(\theta^0), \pi^0) + \kappa^{3/2} \sigma^2}{\varepsilon^2} \right) \text{ iterations}$$

1563 to achieve an arbitrary ε -solution, where $\varepsilon^2 = \frac{1}{T} \sum_{t=1}^{T-1} \|\nabla \Phi(\theta^t)\|^2$, $\Delta = \Phi(\theta^0) - \Phi(\theta^*)$. $\kappa = L/\lambda$.

1566 *Proof.* One can note that Φ is $3\kappa L$ -smooth. Indeed,

1567
$$\|\nabla\Phi(\theta_1) - \nabla\Phi(\theta_2)\|^2 = \|\nabla_\theta\mathcal{L}(\theta_1, \pi^*(\theta_1)) - \nabla_\theta\mathcal{L}(\theta_2, \pi^*(\theta_2))\|^2$$

1568
$$\leq L^2 [\|\theta_1 - \theta_2\|^2 + 2D_\psi(\pi^*(\theta_1), \pi^*(\theta_2))] \leq L^2 (1 + 4\kappa^2) \|\theta_1 - \theta_2\|^2$$

1569
$$\leq 9\kappa^2 L^2 \|\theta_1 - \theta_2\|^2.$$

1571 Thus, we can write

1572
$$\Phi(\theta^{t+1}) \leq \Phi(\theta^t) + \langle \nabla\Phi(\theta^t), \theta^{t+1} - \theta^t \rangle + 3\kappa L \|\theta^{t+1} - \theta^t\|^2$$

1573
$$= \Phi(\theta^t) - \gamma_\theta \left\langle \nabla\Phi(\theta^t), \frac{1}{B} \sum_{i=1}^B G_\theta(\theta^t, \pi^t, \xi_i^t) \right\rangle + 3\gamma_\theta^2 \kappa L \left\| \frac{1}{B} \sum_{i=1}^B G_\theta(\theta^t, \pi^t, \xi_i^t) \right\|^2$$

1574
$$= \Phi(\theta^t) - \gamma_\theta \|\nabla\Phi(\theta^t)\|^2 + \gamma_\theta \left\langle \nabla\Phi(\theta^t), \nabla\Phi(\theta^t) - \frac{1}{B} \sum_{i=1}^B G_\theta(\theta^t, \pi^t, \xi_i^t) \right\rangle$$

1575
$$+ 6\gamma_\theta^2 \kappa L \|\nabla_\theta\mathcal{L}(\theta^t, \pi^t)\|^2 + 6\gamma_\theta^2 \kappa L \left\| \nabla_\theta\mathcal{L}(\theta^t, \pi^t) - \frac{1}{B} \sum_{i=1}^B G_\theta(\theta^t, \pi^t, \xi_i^t) \right\|^2.$$

1577 Consider an expectation. We have

1578
$$\mathbb{E}\Phi(\theta^{t+1}) \leq \mathbb{E}\Phi(\theta^t) - \gamma_\theta \|\nabla\Phi(\theta^t)\|^2 + \gamma_\theta \langle \nabla\Phi(\theta^t), \nabla\Phi(\theta^t) - \nabla_\theta\mathcal{L}(\theta^t, \pi^t) \rangle$$

1579
$$+ 6\gamma_\theta^2 \kappa L \|\nabla_\theta\mathcal{L}(\theta^t, \pi^t)\|^2 + 6\gamma_\theta^2 \kappa L \sigma^2$$

1580
$$\leq \mathbb{E}\Phi(\theta^t) - \left(\frac{\gamma_\theta}{2} - 12\gamma_\theta^2 \kappa L \right) \|\nabla\Phi(\theta^t)\|^2$$

1581
$$+ \left(\frac{\gamma_\theta}{2} + 12\gamma_\theta^2 \kappa L \right) \|\nabla\Phi(\theta^t) - \nabla_\theta\mathcal{L}(\theta^t, \pi^t)\|^2 + \frac{6\gamma_\theta^2 \kappa L \sigma^2}{B}.$$

1582 Note that

$$- \left(\frac{\gamma_\theta}{2} - 12\gamma_\theta^2 \kappa L \right) \leq -\frac{43\gamma_\theta}{92}.$$

1583 On the other hand,

$$\left(\frac{\gamma_\theta}{2} + 12\gamma_\theta^2 \kappa L \right) \leq \gamma_\theta.$$

1584 Thus, we have

1585
$$\mathbb{E}\Phi(\theta^{t+1}) \leq \mathbb{E}\Phi(\theta^t) - \frac{43\gamma_\theta}{92} \|\nabla\Phi(\theta^t)\|^2 + \gamma_\theta \|\nabla\Phi(\theta^t) - \nabla_\theta\mathcal{L}(\theta^t, \pi^t)\|^2 + 6\gamma_\theta^2 \kappa L \sigma^2$$

1586
$$\leq \mathbb{E}\Phi(\theta^t) - \frac{43\gamma_\theta}{92} \|\nabla\Phi(\theta^t)\|^2 + 2\gamma_\theta L^2 D_\psi(\pi^*(\theta^t), \pi^t) + \frac{6\gamma_\theta^2 \kappa L \sigma^2}{B}.$$

1587 Let us denote $\delta = 1 - 1/64\kappa^2$. Lemma 7 transforms into

1588
$$\mathbb{E}D_\psi(\pi^*(\theta^t), \pi^t) \leq \mathbb{E}\delta^t D_\psi(\pi^*(\theta^0), \pi^0) + 264\gamma_\theta^2 \kappa^6 \sum_{j=0}^{t-1} \delta^{t-1-j} \|\nabla\Phi(\theta^j)\|^2$$

1589
$$+ \sum_{j=0}^{t-1} \delta^{t-1-j} \frac{132\gamma_\theta^2 \kappa^6 \sigma^2}{B}.$$

1590 Hence,

1591
$$\Phi(\theta^{t+1}) \leq \Phi(\theta^t) - \frac{43\gamma_\theta}{92} \|\nabla\Phi(\theta^t)\|^2 + 2\gamma_\theta L^2 \delta^t D_\psi(\pi^*(\theta^0), \pi^0)$$

1592
$$+ 528\gamma_\theta^3 \kappa^6 L^2 \sum_{j=0}^{t-1} \delta^{t-1-j} \|\nabla\Phi(\theta^j)\|^2 + \frac{6\gamma_\theta^2 \kappa L \sigma^2}{B}$$

1593
$$+ \sum_{j=0}^{t-1} \delta^{t-1-j} \frac{264\gamma_\theta^3 \kappa^6 L^2 \sigma^2}{B}.$$

1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

1620 Let us sum up over the iterates t and obtain
 1621

$$\begin{aligned} 1622 \quad \Phi(\theta^T) &\leq \Phi(\theta^0) - \frac{43\gamma_\theta}{92} \sum_{t=1}^{T-1} \|\nabla\Phi(\theta^t)\|^2 + 2\gamma_\theta L^2 \sum_{t=1}^{T-1} \delta^t D_\psi(\pi^*(\theta^0), \pi^0) \\ 1623 \quad &+ 528\gamma_\theta^3 \kappa^6 L^2 \sum_{t=1}^{T-1} \sum_{j=0}^{t-1} \delta^{t-1-j} \|\nabla\Phi(\theta^j)\|^2 + \sum_{t=1}^{T-1} \frac{6\gamma_\theta^2 \kappa L \sigma^2}{B} \\ 1624 \quad &+ \sum_{t=1}^{T-1} \sum_{j=0}^{t-1} \delta^{t-1-j} \frac{264\gamma_\theta^3 \kappa^6 L^2 \sigma^2}{B}. \end{aligned}$$

1625 Next, we use the property of geometric progression and write
 1626

$$\begin{aligned} 1627 \quad \Phi(\theta^T) &\leq \Phi(\theta^0) - \frac{43\gamma_\theta}{92} \sum_{t=1}^{T-1} \|\nabla\Phi(\theta^t)\|^2 + 128\gamma_\theta \kappa^2 L^2 D_\psi(\pi^*(\theta^0), \pi^0) \\ 1628 \quad &+ 33792\gamma_\theta^3 \kappa^8 L^2 \sum_{t=1}^{T-1} \|\nabla\Phi(\theta^t)\|^2 + \frac{6T\gamma_\theta^2 \kappa L \sigma^2}{B} + \frac{16896T\gamma_\theta^3 \kappa^8 L^2 \sigma^2}{B}. \end{aligned}$$

1629 Since $\gamma_\theta \leq \frac{1}{184\kappa^4 L}$, we can estimate this as
 1630

$$\begin{aligned} 1631 \quad \Phi(\theta^T) &\leq \Phi(\theta^0) - \frac{43\gamma_\theta}{92} \sum_{t=1}^{T-1} \|\nabla\Phi(\theta^t)\|^2 + 128\gamma_\theta \kappa^2 L^2 D_\psi(\pi^*(\theta^0), \pi^0) \\ 1632 \quad &+ 33792\gamma_\theta^3 \kappa^8 L^2 \sum_{t=1}^{T-1} \|\nabla\Phi(\theta^t)\|^2 + \frac{\gamma_\theta T \sigma^2}{B \kappa^3} + \frac{92\gamma_\theta T \sigma^2}{B}. \end{aligned}$$

1633 Choosing $\gamma_\theta \leq \sqrt{\frac{43}{92*33792}} \frac{1}{\kappa^4 L}$, we derive
 1634

$$\frac{1}{T} \sum_{t=1}^{T-1} \|\nabla\Phi(\theta^t)\|^2 \leq \mathcal{O} \left(\frac{\kappa^4 L \Delta_\Phi}{T} + \frac{\kappa^2 L^2 D_\psi(\pi^*(\theta^0), \pi^0)}{T} + \frac{\sigma^2}{B \kappa^3} + \frac{92\sigma^2}{B} \right).$$

1635 Let us choose $B = T/\kappa^{3/2}$ and obtain
 1636

$$\frac{1}{T} \sum_{t=1}^{T-1} \|\nabla\Phi(\theta^t)\|^2 \leq \mathcal{O} \left(\frac{\kappa^4 L \Delta_\Phi}{T} + \frac{\kappa^2 L^2 D_\psi(\pi^*(\theta^0), \pi^0)}{T} + \frac{\kappa^{3/2} \sigma^2}{T} \right).$$

1637 This finishes the proof. □
 1638

1639 Note that the same reasoning could be done for the special case of a regularized simplex. Then we
 1640 would obtain improved rates.
 1641

1642 THE USE OF LARGE LANGUAGE MODELS (LLMs)

1643 Language models were used to improve text quality (mostly to correct grammatical errors). LLMs
 1644 were not used to obtain theoretical results or write code.
 1645

1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673