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Abstract

Low-Rank Adaptation (LoRA) has become a widely adopted technique in text-to-image
diffusion models, enabling the personalisation of visual concepts such as characters, styles,
and objects. However, existing approaches struggle to effectively compose multiple LoRA
adapters, particularly in open-ended settings where the number and nature of required skills
are not known in advance. In this work, we present LoRAtorio, a novel train-free frame-
work for multi-LoRA composition that leverages intrinsic model behaviour. Our method is
motivated by two key observations: (1) LoRA adapters trained on narrow domains produce
unconditioned denoised outputs that diverge from the base model, and (2) when condi-
tioned out-of-distribution, LoRA outputs show behaviour closer to the base model than
when conditioned in distribution. In the single LoRA scenario, personalisation and cus-
tomisation show exceptional performance without catastrophic forgetting; the performance,
however, deteriorates quickly as multiple adapters are loaded. Our method operates in the
latent space by dividing it into spatial patches and computing cosine similarity between each
patch’s predicted noise and that of the base model. These similarities are used to construct
a spatially-aware weight matrix, which guides a weighted aggregation of LoRA outputs.
To address domain drift, we further propose a modification to classifier-free guidance that
incorporates the base model’s unconditional score into the composition. We extend this
formulation to a dynamic module selection setting, enabling inference-time selection of rel-
evant LoRA adapters from a large pool. LoRAtorio achieves state-of-the-art performance,
showing up to a 1.3% improvement in CLIPScore and a 72.43% win rate in GPT-4V pair-
wise evaluations, and generalises effectively to multiple latent diffusion models. Code will
be made available.

1 Introduction

Diffusion models operate by gradually learning to reverse a noise process, effectively capturing the underlying
data distribution through iterative denoising (Ho et al., 2020; Nichol & Dhariwal, 2021; Song et al., 2021).
In practice, this enables them to approximate the complex structure of their training data and generate new,
previously unseen samples that remain faithful to the original data’s domain. Beyond base text-to-image
generation capabilities, works such as Dreambooth (Ruiz et al., 2023) and StyleDrop (Sohn et al., 2023) have
enabled personalisation and fine-grained customisation. These approaches often rely on LoRA adapters (Hu
et al., 2022), which specialise a base model to preserve the identity of specific concepts or objects, supporting
applications like virtual try-on (Lobba et al., 2025) and avatar generation (Huang et al., 2024b). Each LoRA
adapter effectively encodes a “skill” or concept, and generation with a single adapter yields precise, high-
quality outputs. However, when multiple skills are loaded simultaneously into a single model instance, we
observe a rapid deterioration in performance (Zhong et al., 2024; Prabhakar et al., 2025). Understanding
the source of this degradation is key to enabling reliable multi-concept generation.
To better understand the challenges of composing multiple LoRA adapters, we begin with a preliminary
analysis of their behaviour. Specifically, we examine the unconditional noise representations produced by
the base model and various LoRA-augmented models. We observe that the distribution of the LoRA diverges
from that of the base model (Figure 1), particularly when LoRAs are trained on narrow or highly specialised
datasets—conditions common in personalisation settings (Li et al., 2024b; Ruiz et al., 2023). This domain
shift also manifests in conditioned outputs, as evident through visual inspection (Figure 2).

Observation 1 The unconditioned noise estimate ei(z, t) produced by the ith LoRA differs from that of the
base model e(z, t).
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Figure 2: Generated images from each Character LoRA, conditioned with text prompts originally associated
with other LoRAs in the ComposLoRA testbed. When a prompt falls outside a LoRA’s training distribution,
the predicted latent eθi

(z0, 0, c) of the ith LoRA tends to align closely with that of the base (Näıve) model,
showing minimal deviation due to changes in pθi

(x), also shown by the cosine similarity of the conditioned
latent of the Näıve model ẽθ(z0, 0, c) with that of the ith LoRA ẽθi

(z0, 0, c).

Figure 1: t-SNE visualisation of the unconditioned
latent space, for the Base Model and LoRA-adapted
models in ComposLoRA testbed.

While this divergence is notable, especially un-
der unconditional or in-domain conditions, LoRA
adapters are also known to mitigate catastrophic
forgetting, particularly compared to fully fine-tuned
models (Biderman et al., 2024). That is, LoRAs
tend to preserve the base model’s generalisation ca-
pabilities. Indeed, we observe that even though
there are stylistic changes in the generated image as
a result of the loaded LoRAs, the composition and
theme of the generated output more closely resem-
ble the base model when a text condition outside the
LoRA distribution is given. This is attributed to the
sparse and low-norm nature of LoRA weights (Fu
et al., 2023; Shah et al., 2024). To quantify this
effect, we measure cosine similarities between the
noise scores of LoRA-augmented models and the
base model, both within and outside LoRA’s train-
ing distribution. These measurements, along with
visual inspection (Figure 2), support the following:

Observation 2 When the input condition lies out-
side the LoRA’s target domain, the output of the
augmented model more closely resembles that of the
base model.

Previous works in skill composition for image generation have used both trainable (Charakorn et al., 2025;
Shenaj et al., 2024; Zhu et al., 2024) and train-free approaches (Zhong et al., 2024; Zou et al., 2025; Li
et al., 2024a; Yang et al., 2024). The former have focused on either trainable mixture-of-experts (Zhu et al.,
2024) or training a hyper-network that generates LoRA weights of the combined task (Shenaj et al., 2024).
However, trainable methods are impractical in real-life applications as they would require re-training for every
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new concept or domain added. Furthermore, in several commercial applications, training data may not be
available due to confidentiality constraints, thereby raising the need for train-free skill composition. Inference
time composition in image generation is relatively unexplored, with methods focusing on a schedule of LoRAs
based on prior knowledge (Zhong et al., 2024; Zou et al., 2025), additional conditions (Yang et al., 2024) or
merging of latent space (Zhong et al., 2024), breaking away from weight manipulations (Hugging Face, 2024;
Huang et al., 2024a; Shah et al., 2024; Li et al., 2024a), which can show diminished performance as the number
of skills incorporated increases. However, unweighted merging of scores will eventually face similar issues to
weight merging and setting a schedule requires prior knowledge of the task at hand. However, all previous
approaches assume that the set of LoRAs to be composed is known in advance and manually specified by the
user. In practice, this assumption rarely holds. Real-world applications such as personalised advertising or
interactive content generation often require adapting to user intent or contextual cues that are only available
at inference time. In such scenarios, pre-selecting or pre-scheduling LoRAs becomes impractical—both
because the relevant concepts may not be known beforehand, and because the combinatorial space of possible
LoRA mixtures grows rapidly with the number of skills.
In this work, motivated by Observation 1 and Observation 2, we propose LoRAtorio, a train-free method
for multi-LoRA skill composition in image generation. Our approach leverages the intrinsic behaviour of
LoRA-augmented models without requiring additional supervision or fine-tuning. Specifically, we introduce
a fine-grained mechanism that operates in the latent space by dividing it into spatial patches. For each
patch, we compute the cosine similarity between the output of the LoRA-augmented model and that of
the base model. These similarities are used to construct a spatially-aware weight matrix, where patches
that deviate more from the base model receive higher weights. This matrix is then used to compute a
weighted average of the predicted noise outputs across LoRAs, allowing the model to emphasise regions
where individual LoRAs are more confident. To mitigate domain drift, we propose a modification to the
classifier-free guidance mechanism by incorporating the base model’s unconditional noise estimate into the
weighted average. This adjustment ensures that the final output remains grounded in the base model’s
general knowledge. Unlike prior approaches that rely on extrinsic signals such as frequency (Zou et al.,
2025) or empirical scheduling (Zhong et al., 2024), LoRAtorio is entirely based on intrinsic model behaviour–
specifically, the consistency between LoRA and base model representations. Finally, we extend the task to
a dynamic module selection setting, in which all available LoRA adapters are loaded into the base model,
and the most relevant ones are selected ad hoc during inference. This formulation more realistically reflects
real-world skill composition scenarios, where the set of required capabilities is not known a priori.
Our main contributions can be summarised as follows:

• We introduce LoRAtorio, a train-free and intrinsically guided approach for multi-LoRA composi-
tion in diffusion models, leveraging spatially-aware similarity to the base model.

• Furthermore, we propose re-centering the unconditioned score in classifier-free guidance to address
domain drift caused by personalisation training.

• We extend the task of multi-LoRA composition to a dynamic module selection setting, where all
LoRA adapters are loaded into the base model and selected at inference time based on intrinsic
similarity.

We demonstrate that LoRAtorio achieves state-of-the-art (SoTA) performance on the ComposLoRA bench-
mark both in terms of automated metrics and human preference. This is consistent for both static and
dynamic module settings. Furthermore, we extend our evaluation to a rectified flow (Esser et al., 2024)
architecture, showing our method’s robustness.

2 LoRAtorio

Preliminaries: Latent Diffusion Models (Rombach et al., 2022) operate by performing the denoising diffu-
sion process in a learned latent space. Given an input x0, an encoder E maps it to a latent representation
z0 = E(x0); during the diffusion process, Gaussian noise is progressively added to z0, thus producing a noisy
sequence {zt}T

t=1. The diffusion model learns to approximate the reverse process via a denoising network
eθ(zt, t, c), conditioned on context c. Classifier-free guidance (CFG) (Ho & Salimans, 2021) is incorporated
by training the model with both conditional and unconditional objectives. During sampling, guidance is
applied by modifying the predicted noise as follows:

êθ(zt, t, c) = eθ(zt, t) + s · (eθ(zt, t, c) − eθ(zt, t)) , (1)
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Figure 3: Overview of LoRAtorio. Skill Composition: At each denoising timestep t, the conditional score
from the ith LoRA, eθi(zt, t, c), is partitioned into P spatial patches. Each patch is flattened and compared to
its corresponding patch in the base model’s predicted noise using cosine similarity. The resulting similarity
matrix is passed through a SoftMin function to produce a weight matrix Ω, assigning higher weights to
patches that diverge more from the base model. These weights are used to compute a spatially-aware
weighted average across LoRA outputs. Re-Centering: To mitigate domain drift of the unconditional score
by the multiple LoRAs we alter classifier-free guidance by incorporating a weighted combination of the base
model’s unconditional score and the aggregated LoRA score.

where s ≥ 1 is the guidance scale and eθ(zt, t) denotes the unconditional prediction. This approach allows
the model to maintain sample diversity while enhancing conditional fidelity without relying on external
classifiers.
Low-Rank Adaptation (LoRA) (Hu et al., 2022) is a parameter-efficient fine-tuning method that enables
adaptation of large models by injecting trainable low-rank matrices into existing weight layers. In the con-
text of diffusion models, LoRA allows modification of the model’s behaviour (e.g. , emphasising identity
features) without altering the full parameter set, thereby reducing the risk of catastrophic forgetting. Specif-
ically, for a weight matrix W ∈ Rd×k, LoRA introduces a trainable update ∆W = AB, where A ∈ Rd×r

and B ∈ Rr×k, with r ≪ min(d, k). This decomposition allows the model to adapt key features—such
as identity attributes—by updating only a small number of parameters; however, when multiple LoRA
adapters are present, a linear combination of the weights may lead to semantic conflicts and reduced image
quality (Huang et al., 2024a; Zhong et al., 2024; Zou et al., 2025). To address issues related to weight ma-
nipulation techniques, Zhong et al. (2024) proposes aggregating conditional and unconditional scores using
a weighted average, so that for N LoRAs:

ẽ(zt, t, c) = 1
N

N∑
i=0

wi · [eθi(zt, t) + s · (eθi(zt, t, c) − eθi(zt, t, c))] (2)

where the weights w are a scalar hyperparameter (set to 1).

2.1 Skill Composition using intrinsic knowledge

We propose LoRAtorio, a method that activates all LoRAs at each timestep by leveraging the similarity
between their noise latent representations and that of the base model. Motivated by Observation 2, we
compute the cosine similarity between the output of the model after incorporating the ith LoRA, denoted
by eθi

(zt, t, c), and the base model’s output eθ(zt, t, c).
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Since the conditioned latent representations e(zt, t, c) retain spatial structure, we first perform channel-wise
averaging to reduce the dimensionality from H ×W ×C to H ×W . We then partition each of these 2D maps
into P non-overlapping patches of equal size and flatten each patch into a vector. Let ϕ(·) : RH×W → RP ×d

denote this process, mapping a H × W feature map into a set of P vectors in Rd, where d2 is the number of
pixels per patch. We denote the resulting tokenised outputs as:

Φt
θ = ϕ(eθ(zt, t, c)), Φt

θi
= ϕ(eθi

(zt, t, c)) (3)

with Φt
θ, Φt

θi
∈ RP ×d. For each LoRA i, we compute the cosine similarity between corresponding patch

vectors of Φt
θ and Φt

θi
, resulting in a weight matrix Ωt =

〈
Φt

θ, Φt
θi

〉
cos ∈ RN×P where N are the number of

LoRAs. We then apply a SoftMin operation along the N dimension:

Ω̂t = softminτ (Ωt), where softminτ (x) = exp (−xi/τ)∑N
j=1 exp (−xj/τ)

(4)

and τ > 0 is the temperature parameter controlling the softness of the SoftMin. This makes the weighting
interpretable as a soft attention mechanism, where LoRAs that diverge more from the base model are given
higher influence in regions where they are more confident. We upscale Ω̂t ∈ RN×(H/d·W/d) to match the
spatial resolution of the original feature map using a Kronecker product:

Ω̂t,up = Ω̂t ⊗ 1d×d (5)

where 1d×d is a matrix of ones. This operation effectively repeats each similarity value over a d × d block.
The upscaled similarity maps are then used to modulate the expert outputs during denoising. The final
conditional estimate is computed as a weighted combination of expert predictions:

ẽ(zt, t, c) =
N∑

i=1
Ω̂t,up

i eθi(zt, t, c) (6)

We interpret cosine similarity in the noise prediction in the latent space as a proxy for LoRA confidence
or relevance: patches where LoRA strongly deviates from the base model are assumed to reflect greater
domain-specific influence. This is grounded in Observation 2 that LoRA outputs remain close to the base
model when operating out-of-distribution. A theoretical motivation for similarity-based weighting is included
in Appendix A

2.2 Re-centering guidance

To address the bias of the unconditioned noise output of the model in Observation 1, we propose incor-
porating the output of the base model. When a set of LoRA adapters θi is integrated into a diffusion
model, each adapter implicitly encodes the data distribution pLoRAi(x) used during its training. As a re-
sult, the unconditional noise output eθi

(zt, t) of the LoRA-integrated model diverges from the base model’s
unconditional distribution eθ(zt, t), which approximates the score of the base data distribution p(x), empir-
ically shown in Figure 1. Given that CFG relies on extrapolation between unconditional and conditional
noise Equation (1), this mismatch introduces a “drift” in the implied guidance trajectory. Specifically, the
guidance term eθi(zt, t, c) − eθi(zt, t) is no longer a faithful estimator of the score ∇x log p(x|c) − ∇x log p(x),
but is skewed by the semantics and biases of pLoRAi(x). When multiple LoRAs are activated simultane-
ously, the unconditional outputs can conflict due to semantic incompatibility between the LoRA-specific
data distributions, leading to lower subject fidelity under standard CFG.
To mitigate this drift, we propose “re-centering” the guidance computation by incorporating the uncondi-
tional base model output. Specifically, we use the average of the base model and LoRA-weighted uncondi-
tional outputs in CFG so that the final collective guidance ê(zt, t, c) is then calculated as follows:

ẽ(zt, t) = λ

N∑
i=0

Ω̂t,up
i eθi

(zt, t) + (1 − λ)eθ(zt, t)

ê(zt, t, c) = ẽ(zt, t) + s [ẽ(zt, t, c) − ẽ(zt, t)]
(7)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 4: Visualisation of the effect of re-centering
guidance on the unconditional noise score. Re-
centering ensures the p(x|c) is not over-emphasising
implausible or under-trained regions of the collective
data distribution after CFG. When the scores are sim-
ilar, the transformation is not significant, but when
there is a large adjustment, the difference is in the di-
rection towards more probable samples.

we set re-centering scale hyperparameter λ = 0.5,
for simplicity, in all experiments. A visual repre-
sentation of the re-centering method can be seen
in Figure 4.

2.3 Dynamic module selection

The MultiLoRA composition task is defined under
the assumption that only a known subset of LoRA
adapters—those relevant to the current generation
task—are loaded. This restricts flexibility, as it re-
quires prior knowledge of which LoRAs are needed,
and contradicts the goal of a truly inference-time,
modular composition system. We propose expand-
ing the task to a dynamic selection setting, where
all available LoRA adapters are loaded into the
model that dynamically selects which ones to ac-
tivate based on the input. To address the dynamic
setting, we propose using only the top-k most dis-
tant LoRAs at each timestep t. We first perform a
hard masking step by selecting the top-k most rel-
evant LoRA experts using a similarity-based gating
metric Ωt. Specifically, we compute:

Ik = TopK(1 − Ωt, k)

Ω̃t
i =

{
Ωt

i if i ∈ Ik

∞ otherwise
Ω̂t

i = softminτ (Ω̃t)

(8)

The Ω̂t
i is the upscaled and reshaped as described

in Section 2.1, so that it can be used in the subse-
quent weighted average and re-centering steps.

3 Experimental Results

3.1 Implementation Details

For our experiments, we follow the setup of Zhong et al. (2024), using stable-diffusion-v1.5 (Rombach et al.,
2022) as the backbone for all ComposLoRA tests. We use the “Realistic Vision V5.1” and “Counterfeit-V2.5”
checkpoints for realistic and anime-style images, respectively. For experiments with a Flux base model (Labs,
2024), we use the “black-forest-labs/FLUX.1-dev” checkpoint. For the realistic subset, we use 100 denoising
steps, a guidance scale s = 7, and image size 1024 × 768; for the anime subset, we use 200 steps, s = 10, and
512 × 512 resolution. DPM-Solver++ (Lu et al., 2022) is used as the sampler, with all LoRAs scaled by a
weight of 0.8. We empirically set an adaptive temperature τ = 1/((T − t) ∗ 10). For all experiments, we set
the size of each patch to 2 × 2. Since our method operates at inference time, all experiments are run on a
single RTX A6000 GPU. Results are averaged over three runs.

3.2 CLIPScore

We employ CLIPScore (Hessel et al., 2021) to evaluate how well the generated images match the text prompt,
shown in Table 1. Even though CLIPScore does not evaluate compositional quality, acting more as a bag of
words (Zhong et al., 2024), it is still an important indicator of text-to-image fidelity. LoRAtorio outperforms
or performs comparably to all previous methods across all N . Specifically, we see that with the exception
of N = 2, where our method achieves comparable scores to previous work, LoRAtorio outperforms previous
SoTA. In addition, our method does not deteriorate as N increases, peaking at N = 4 where it outperforms
previous SoTA by over 1%, proving robustness as more skills are added. A breakdown by subset can be seen
in Appendix B, and an ablation of our method’s components is presented in Appendix B.1.
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Table 1: CLIPScore of LoRAtorio against previous composition methods on ComposLoRA.

Model N = 2 N = 3 N = 4 N = 5 Avg.
Näıve (Rombach et al., 2022) 35.014 34.927 34.384 33.809 34.534
Merge (Hugging Face, 2024) 33.726 34.139 33.399 32.364 33.407
Switch (Zhong et al., 2024) 35.394 35.107 34.478 33.475 34.614
Composite (Zhong et al., 2024) 35.073 34.082 34.802 32.582 34.135
LoraHub (Huang et al., 2024a) 35.681 35.127 34.970 33.485 34.816
Switch-A (Zou et al., 2025) 35.451 35.383 34.877 33.366 34.769
CMLoRA (Zou et al., 2025) 35.422 35.215 35.208 34.341 35.047
MultLFG (Roy et al., 2025) 36.570 36.125 36.180 35.920 36.199
LoRAtorio 35.236 36.426 37.136 36.626 36.356
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Figure 5: GPT4V Evaluation on ComposLoRA

3.3 GPT4v Evaluation

To assess the compositional and aesthetic qualities of our method, we employ a GPT4V-based evaluation as
outlined in ComposLoRA testbed (Zhong et al., 2024), against previous SoTA where their code or images for
evaluation have been made publicly available. The evaluation involves scoring LoRAtorio against Switch,
Composite, Merge and CMLoRA across two dimensions, “Composition Quality” and “Image Quality”. Scores
and Win Rates can be seen in Figure 5a and Figure 5b, respectively. LoRAtorio outperforms previous works
both in terms of average scores and win rate, i.e. pairwise comparison, closely followed by Switch. Additional
results can be seen in Appendix B.

3.4 Human Evaluation

Further to the GPT4 evaluation, we employ human experts to assess LoRAtorio qualitatively against previous
works, as described by Zou et al. (2025) across four criteria: Element Integration, Spatial Consistency, and
Semantic Accuracy. The results shown in Table 2 corroborate the GPT4v evaluation, with LoRAtorio
outperforming all previous works closely followed by Switch. Details of the interface and definitions for the
human evaluation can be seen in Appendix G.
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Table 2: Human Evaluation of our Method against previous SoTA along four qualitative axis.

Element Integration Spatial Consistency Semantic Accuracy Aesthetic Quality
LoRAtorio 7.64 7.58 7.33 6.83
CMLora 5.63 5.58 6.08 5.25
Compose 6.46 6.71 6.71 6.46
Switch 7.57 7.50 6.88 6.71
Merge 6.83 6.71 6.58 6.08

3.5 Dynamic Module Selection

As all the LoRAs are added for the dynamic module setting, we observe that the output images of LoRA
Merge become non-sensical, which is reflected both in the CLIPScore of Table 3 and qualitative output
in Appendix B. Even with functionally sparse weights and limited activation, when the conditions are out of
distribution, the denoising process is affected by the presence of multiple LoRAs, highlighting the need for a
method that reliably selects only a relevant subset at each step. LoRAtorio maintains high CLIPScore on the
dynamic setting, with minimal influence from unrelated LoRAs as can be visually verified in Appendix B.

Table 3: CLIPScore of LoRAtorio against previous SoTA on ComposLoRA in a dynamic module selection
setting, where N is the number of LoRA experts needed.

N = 2 N = 3 N = 4 N = 5 Avg.
LoRAtorio 34.593 35.563 36.480 37.028 35.916
Näıve 35.014 34.927 34.384 33.809 34.534
Merge 27.167 27.151 27.023 27.272 27.153

3.6 Flux

As our method is model agnostic and can be implemented in any latent diffusion method, we present results
with a Rectified Flow (Liu et al., 2023) base model. As Flux 1.D is using a transformer-based architecture to
produce eθ, we omit the tokenisation and re-centering step. As seen by the CLIPScore in Table 4, LoRAtorio
significantly outperforms the baselines and shows consistent improvement as N increases, attributed to longer
text conditions. This trend is consistent in both the static and dynamic module settings, corroborating the
results of the SD1.5 experiments. Details on the prompts and LoRAs used for experiments using Flux
architecture can be seen in Appendix E.

Table 4: CLIPScore of LoRAtorio against selected composition methods, using Flux architecture.

(a) Static Modules

Model N = 2 N = 3 N = 4 N = 5 Avg.
Näıve 33.125 34.999 37.048 38.568 35.935
Merge 33.733 35.134 35.830 36.590 35.322
LoRAtorio 33.992 36.033 37.781 39.368 36.794

(b) Dynamic Module Selection

N = 2 N = 3 N = 4 N = 5 Avg.
Näıve 33.125 34.999 37.048 38.568 35.935
Merge 25.850 27.858 29.726 30.997 28.608
LoRAtorio 33.284 35.753 37.910 38.861 36.452

4 Related Work

4.1 Text-to-image Generation

Composable image generation is a central challenge in personalised content creation, where the goal is to
synthesise images that faithfully integrate multiple user-specified concepts. Early approaches focused on
layout- or scene-graph-based conditioning to improve compositionality (Johnson et al., 2018; Song et al.,
2021; Gafni et al., 2022). More recent work has shifted toward modifying the generative process of diffusion
models to better align with structured or multi-concept prompts (Feng et al., 2023; Huang et al., 2023;
Kumari et al., 2023; Lin et al., 2023; Ouyang et al., 2025). These methods often rely on prompt engineering
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or architectural changes to enforce compositional constraints and struggle with precise integration of user-
defined elements such as rare characters, styles, or objects. Some methods address this by composing multiple
independently trained modules (Du et al., 2020; Liu et al., 2021; Li et al., 2023; Simsar et al., 2025), but
they often require extensive fine-tuning and do not scale well with the number of concepts. Our work builds
on this line by proposing a train-free, instance-level composition framework that leverages LoRA adapters
to enable fine-grained, spatially-aware integration of multiple concepts.

4.2 LoRa-Based SKill Composition

Low-Rank Adaptation (LoRA) has emerged as a lightweight and effective method for fine-tuning large models,
including diffusion models, for personalisation tasks (Ruiz et al., 2023; Sohn et al., 2023). Recent research
has explored various strategies for composing LoRA adapters to support multi-concept generation.
LoRAHub (Huang et al., 2024a) and ZipLoRA (Shah et al., 2024) use few-shot demonstrations to learn a
coefficient matrix that linearly combines the weights of multiple LoRAs. This enables the creation of a new
LoRA that approximates the behaviour of the original set, while reducing memory and compute overhead.
Similarly, Zhu et al. (2024) propose a trainable mixture-of-experts framework, where each LoRA acts as an
expert and a gating network learns to combine their outputs. Hypernetwork-based approaches (Shenaj et al.,
2024; Ruiz et al., 2024) introduce a hypernetwork that generates LoRA weights conditioned on the target
composition. These methods often require additional training data or supervision, and may not generalise
well to open-vocabulary or zero-shot settings. LoRA Merge (Hugging Face, 2024) performs weight-level
arithmetic operations to combine multiple LoRAs. CLoRA (Meral et al., 2024) improves upon attention map
manipulation by comparing the attention maps to sub-sets of the text condition. Other approaches, such
as LoRA Switch and LoRA Composite (Zhong et al., 2024), avoid merging weights and instead manipulate
the inference process by alternating or aggregating LoRA outputs at each denoising step. MultLFG (Roy
et al., 2025) employs frequency-domain guidance to fuse multiple LoRAs; however, this approach necessitates
decoding at each step, making it inherently slow and computationally expensive. In addition, by decoding
the images, the approach is in practice using RGB-based frequency rather than intrinsic knowledge of the
network. Furthermore, while the end output of the diffusion process is indeed an image, the prediction
itself is noise, therefore our work takes a more intuitive approach by exploring latent space noise predictions
instead of RGB frequency. Similarly, Zou et al. (2025) expands LoRA-Composite with frequency-based
scheduling and introduces a caching mechanism. While effective, these methods often suffer from instability
and semantic conflicts as the number of LoRAs increases. Additionally, they do not explicitly account for
the interaction between LoRA outputs and the base model, do not account for domain shift from LoRA
fine-tuning and are limited to text conditions.
Our method draws inspiration from spatial composition techniques such as CutMix (Yun et al., 2019) and
token-level fusion (Wang et al., 2024), but applies these principles in the latent space for image generation in
a train-free setting. While LoRAtorio resembles mixture-of-experts (Jacobs et al., 1991) in spirit, it differs
in three key ways: (1) it uses intrinsic cosine similarity between LoRA and base model latents for gating,
rather than learned or supervised routing; (2) its patchwise weighting operates in the semantic latent space
of the diffusion model, rather than in image or feature space; and (3) it requires no fine-tuning, supervision,
or additional modules, enabling zero-shot, inference-time composition of arbitrary LoRA adapters.

5 Conclusion

In this paper, we present a novel, train-free approach to multi-LoRA composition through the introduction of
LoRAtorio, a method grounded in intrinsic model behaviour. Motivated by empirical observations of domain
drift and latent-space divergence, our method leverages spatially-aware cosine similarity to dynamically
weight LoRA contributions at the patch level. We further propose a modification to classifier-free guidance
that incorporates the base model’s unconditional signal, improving robustness in out-of-domain scenarios.
Extending beyond static composition, we formulate the task as one of dynamic module selection, enabling
inference-time adaptability in settings where irrelevant skills are loaded to the base model. Our approach
achieves state-of-the-art performance and generalises to Rectified Flow models.

9
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6 Ethics Statement

This work examines the capabilities of generative AI models, including those enhanced with community-
provided LoRAs. While generative tools offer valuable opportunities for creative and technical innovation,
they also carry significant risks, including misuse for deceptive content, reinforcement of harmful biases, and
uncertainty around authorship and licensing.
We do not condone the misuse of generative models, including for misinformation, harassment, or any activity
that infringes on the rights of others. This work is not licensed or intended for commercial or for-profit use.
We encourage future users and researchers to carefully consider the ethical and legal implications of models
or data.
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Table 5: ClipScores for ComposLoRA on anime and reality subsets.

(a) Anime – Static Modules

Model N = 2 N = 3 N = 4 N = 5 Avg.
Merge 35.136 35.421 34.164 32.636 34.339
Switch 35.285 35.482 34.532 34.148 34.861
Composite 34.343 34.378 34.161 32.936 33.955
LoraHub 35.316 35.525 34.476 33.885 34.801
Switch-A 35.705 35.912 35.661 34.479 35.439
CMLoRA 35.556 35.555 35.791 35.691 35.648
MultLFG 36.720 36.130 36.450 36.220 36.380
LoRAtorio 36.156 36.930 36.864 36.162 36.528

(b) Reality – Static Modules

Model N = 2 N = 3 N = 4 N = 5 Avg.
Merge 32.316 32.857 32.633 32.091 32.474
Switch 35.502 34.731 34.424 32.801 34.365
Composite 35.804 33.786 35.443 32.228 34.315
LoraHub 36.045 34.729 35.463 33.084 35.412
Switch-A 35.196 34.854 34.694 32.252 34.249
CMLoRA 35.559 35.842 34.501 33.588 34.873
MultLFG 36.420 36.120 35.910 35.620 36.018
LoRAtorio 34.316 35.922 37.408 37.090 36.184

(c) Anime – Dynamic Modules

N = 2 N = 3 N = 4 N = 5 Avg.
LoRAtorio 35.328 35.931 36.332 36.184 35.944
Näıve 35.014 34.927 34.384 33.809 34.534
Merge 30.953 30.767 30.352 30.488 30.640

(d) Reality – Dynamic Modules

N = 2 N = 3 N = 4 N = 5 Avg.
LoRAtorio 33.858 35.194 36.627 37.871 35.888
Näıve 35.014 34.927 34.384 33.809 34.534
Merge 23.381 23.534 23.693 24.055 23.666
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Figure 6: Win/Tie/Loss for LoRAtorio compared to previous SoTA across different number of LoRAs (N) .

A Theoretical Motivation for Similarity-Based Weighting.

LoRA introduces a low-rank update to a weight matrix W ∈ Rd×k in the form ∆W = AB, where A ∈ Rd×r,
B ∈ Rr×k, and r ≪ min(d, k) (Hu et al., 2022). This constrains the update to lie in a low-dimensional
subspace of the weight space, limiting the directions in which the model can adapt. Such low-rank adaptation
has been shown to improve parameter efficiency and mitigate catastrophic forgetting (Biderman et al., 2024).
More precisely, the LoRA update acts on inputs x ∈ Rk by first projecting via A, Ax ∈ Rr, then mapping
back to output space via B. The effective input subspace to which the adapter responds is the row space of
A, i.e. , inputs x for which Ax ̸= 0. For inputs x′ approximately orthogonal to this subspace, Ax′ ≈ 0 and
thus

∆Wx′ = (Ax′)B ≈ 0, (9)
implying

Wx′ + ∆Wx′ ≈ Wx′. (10)
Hence, the LoRA adapter has a negligible effect on inputs lying outside its learned subspace, which often
correspond to out-of-distribution (OOD) inputs, and subsequent non-linearities in deep learning models
further mitigate the effect of LoRAs. Consequently, the latent outputs of the LoRA-augmented model and
the base model are similar for OOD inputs. This motivates using the cosine similarity between their latent
outputs as a proxy for the adapter’s confidence or relevance: high similarity indicates that the adapter is
inactive or uncertain (OOD), whereas lower similarity suggests in-distribution behaviour where the adapter
actively modifies the model output. This observation underpins our use of cosine similarity in LoRAtorio.

B Experimental Results

Further to the main experimental results in Section 3, we show ClipScores for the subsets of ComposLoRA
in Table 5 for anime and reality subsets in both static and dynamic module settings. LoRAtorio maintains
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Figure 7: Composition and Image Quality scores of LoRAtorio against previous SoTA on ComposeLoRA, by
number of LoRA’s included and image style.

strong performance in both subsets, having the highest weighted average score compared to previous SoTA.
This is consistent for both static and dynamic module selection. We observe similar trends in performance
within each subset for the number of LoRAs included, with LoRAtorio clearly outperforming other works
on average. As expected, we also see weight merge collapsing in the dynamic module setting.
Further to the ClipScores, we present the GPT4v evaluation results by number of LoRAs included and by
sub-set in 7. LoRAtorio maintains robust performance in all scenarios, showing strong composition and
image quality. Finally, we include the win rate of our method by number of LoRAs included, showing SoTA
performance, particularly as N increases in Figure 6.
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B.1 Ablation Study

To show the effect of LoRAtorio’s components, we perform an ablation study as shown in Table 6, using
CLIPScore as an evaluation metric. Note that CLIPScore is unable to capture the composition of aesthetic
quality, so the final set of hyperparameters is selected as a combination of CLIPScore and empirically through
visual inspection of output. Specifically, we compute the CLIPScore of generated images using the distance
of the entire image instead of individual patches, with a constant τ = 1 and without our re-centering method.
The localised activation of LoRAs through the tokenisation of the latent space has the greatest impact in
terms of CLIPScore , which is somewhat expected as more elements can be integrated and thus aligned in
clip space. We also compare the effect of patch size on the performance of LoRAtorio and see that a more
fine-grained composition results in higher CLIPScore , although the performance is relatively robust.

Table 6: Ablation study of our method on ComposLoRA Anime subset, using CLIPScore .

(a) LoRAtorio Components

N = 2 N = 3 Avg.
LoRAtorio 36.156 36.930 36.543
w/o ϕ(·) 34.306 33.967 34.137
w/o τ 35.948 36.690 36.319
w/o Re-centering 36.477 36.586 36.532

(b) Patch Size

N = 2 N = 3 Avg.
2 × 2 36.156 36.930 36.543
4 × 4 36.025 36.475 36.250
8 × 8 35.852 36.423 36.138
16 × 16 35.744 36.003 35.874

Figure 8: Qualitative comparison of LoRAtorio’s re-centering guidance across different values of λ, evaluated
against auto-guidance (Karras et al., 2024). The figure illustrates the impact of varying λ on image coherence,
identity preservation, and visual quality.1

In addition, we conduct a qualitative comparison of LoRAtorio’s re-centering guidance with auto-
guidance (Karras et al., 2024), and evaluate performance across different values of the weighting param-
eter λ, shown on Figure 8, as CLIPScore alone does not capture identity preservation, compositionally or
other qualitative elements. More specifically, we show in Figure 8 that the CLIPScore is consistent for all

1CLIPScore for the images in each row is identical, including autoguidance samples highlighting the necessity of
visual inspection and qualitative evaluation.
Row 1:32.552, Row 2: 31.810, Row 3: 31.763, Row 4: 32.653
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selected images, thus reiterating that it should be used a metric of generic object inclusion not instance
fidelity or qualitative score. Since the base model is essentially “a bad version” of the LoRA-augmented
model, auto-guidance serves as a natural baseline for assessing our re-centering approach. Notably, we find
that combining LoRAtorio with auto-guidance fails to produce coherent images. We hypothesise this is due
to a difference in data distribution, a prerequisite for auto-guidance. Similarly, when λ = 0 – where the
unconditioned score corresponds to that of the base model – we observe strong identity preservation, but
the resulting images exhibit excessive saturation and appear unnatural. Conversely, setting λ = 1 results in
some loss of identity and a blending of concepts. To balance these effects, we empirically select λ = 0.5 for
all experiments, for simplicity.

Figure 9: Average values of Ωt over denoising process, for the entire image in the ComposLoRA testbed for
N = 2.

C Temporal Analysis of Similarity-based Weighting

Our similarity-based weighting mechanism is designed as a proxy of the relative confidence of each LoRA
adapter with respect to the base model. Empirically, we observe that the cosine similarity between LoRA-
augmented outputs and the base model varies non-uniformly across denoising steps, depending on the LoRA
employed.
This temporal asymmetry aligns with prior findings in diffusion literature (Si et al., 2024; Zhong et al., 2024;
Zou et al., 2025), which show that different semantic attributes emerge at different stages of the denoising
process. However, we observe that the variation within LoRAs of the same type (e.g. clothing or style) is too
vast for universal and concrete conclusions on the order of activations. We believe this to be due to different
LoRA training and configuration, further explored in Appendix D
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Figure 10: Ωt map for character overlayed over the final generated images across timesteps, in Character
+ Style generation. As style has more global effect, we see clearly the effect of the character LoRA on the
predicted noise through the Ωt heatmap (high effect is red, no effect is transparent).

To validate this behaviour, we analyse the evolution of the similarity matrix Ωt over time, aggregated across
the latent representation. As shown in Figure 9, the pattern is not very consistent for any of the element
groups. As such, methods relying on guiding based on the type of LoRA used ignore this intrinsic proxy for
confidence completely. However, because different elements vary in spatial extent, a näıve global aggregation
would disproportionately favour larger elements – particularly in early steps that affect the trajectory of
the denoising process (Zhong et al., 2024). This motivates our use of the spatial tokenisation function ϕ,
which enables fine-grained, patch-level weighting and ensures that larger background or clothing regions do
not overshadow smaller but semantically important regions (e.g. , smaller objects). A visualisation of the
patchwise similarity over the diffusion process can be seen in Figure 10.

D Limitations and Error Analysis

Figure 11: Examples of failure cases of LoRAtorio on ComposLoRA anime (top), Flux (mid) and Com-
posLoRA reality (bottom) test beds.

One key limitation of our method is the computational cost. While the intrinsic nature of LoRAtorio allows
for a better understanding of the generation process and shows competitive results, the computational cost
increases linearly with every additional LoRA. This limitation is identified by previous works manipulating
the latent space instead of the weights (Zhong et al., 2024). This is especially true in the open-vocabulary
setting where all available LoRA adapters are loaded. Potential future directions to address these limitations
include exploring the subspace at an earlier stage (i.e. based on early-layer similarity, which we have not
explored in the scope of this work), so that pruning or TopK can be implemented before obtaining the latent
denoised output. Furthermore, model parallelisation may increase the speed of inference by estimating
denoised outputs on different GPUs.
Our method assumes that LoRA adapters are trained on reasonably well-aligned and semantically coherent
datasets. In practice, however, LoRA quality can vary significantly – particularly when sourced from com-
munity repositories such as CivitAI – where training data, objectives, and preprocessing pipelines are often
undocumented or inconsistent. This variability can undermine the reliability of any train-free approach.
Moreover, the LoRAs used during inference are heterogeneous in terms of optimal hyperparameters (e.g. ,
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guidance scale, LoRA scale), and treating them uniformly may inadvertently bias the composition toward
certain adapters, especially those with more aggressive or dominant activations. While we expect better
performance when LoRAs are trained under similar conditions, such alignment is rarely guaranteed in user-
driven settings. One potential mitigation strategy in real-life applications is to incorporate a lightweight
pre-filtering step to assess LoRA quality before inclusion. Alternatively, metadata-based heuristics (e.g. ,
dataset size, training steps, or CFG guidance scale) could be used to cluster or filter LoRAs. Although
these approaches are not explored in this work, they represent promising directions for improving robustness
in real-world deployments. Finally, as all LoRAs in the ComposLoRA and Flux testbeds are sourced from
CivitAI without access to training details, we emphasise that all results should be interpreted in light of this
uncertainty.
Finally, we note that the quality of images is affected by the base model. Figure 11 shows examples of fail
cases of LoRAtorio for all three base models. We observe that the Stable Diffusion backbone (top and bottom
rows) exhibits more instances of additional limbs or duplicate characters compared to the Flux backbone
(middle row), where most failure cases are attributed to concept confusion. As such, expanding the test bed
to more backbones is essential in dissecting base model vs method limitations.

E Flux Testbed

For experiments on Flux, we select the LoRAs described in Table 7, following a selection process similar to
ComposLoRA. All LoRAs used in the Flux experiments are publicly available through CivitAI. We select
LoRAs for three characters, two clothing, two styles, two objects and one background.

Table 7: Details of LoRA adapters used in Flux experiments.

LoRA Category Trigger Source
Yennefer of Vengerberg Character Yennefer Link
The amazing Spiderman Character Spider-Man, Peter Parker Link
B1 Battle Droid Character 7-B1 droid Link
Star Wars imperial officer uniform Clothing Wearing an imperial officer IMPOFF uniform Link
Japanese school uniform - sailorfuku Clothing wearing a japanese school uniform sailorfuku serafuku sailor suit Link
Frank Frazetta Style Oil Painting Style in the style of Frank Frazetta fantasy oil painting Link
Engraving Style Style in engraving style Link
Infinity Goblet Object with a glove like Infinity Gauntlet Link
Crescent Wrench Object with a Crescent Wrench Link
Northern Lights Background with Northern lights style background Link

F GPT4v Evaluation Interface

For the GPT4v evaluation, we follow the method of Zhong et al. (2024). Specifically, we do pairwise
comparisons of our method against previous works. The comparison is run twice for each pair, switching the
order of images to account for any bias induced from ordering. The scores are then averaged. Pseudo-code
of the evaluation can be seen in Figure 12. The prompt used in the evaluation can be seen in Appendix F.1.

F.1 GPT4v Prompt

I need assistance in comparatively evaluating two text-to-image models based on their ability to compose
different elements into a single image. The elements and their key features are as follows:

<IMAGE_1> <IMAGE_2> <PROMPT>

Please help me rate both given images on the following evaluation dimensions and criteria:
Composition quality:

• Score on a scale of 0 to 10, in 0.5 increments, where 10 is the best and 0 is the worst.
• Deduct 3 points if any element is missing or incorrectly depicted.

18

https://civitai.com/models/120703/yennefer-witcher-3-game-fluxsdxl
https://civitai.com/models/196131/the-amazing-spider-man-xl-sd15-f1d-illu-pony
https://civitai.com/models/361684/star-wars-b1-battle-droid-fluxsdxlsd15pony
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https://civitai.com/models/1269331/better-northern-lights-photography-for-flux-or-realistic-northern-lights-auroras
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1 def evaluate ():
2 image_n = 196 # number of images to evaluate
3 gpt4v = GPT4V ()
4 # Load images
5 image_path = " images "
6 images = []
7 for i in range (0, image_n + 0):
8 cur_image = encode_image (join(image_path , f"{i}. png"))
9 images . append ( cur_image )

10
11 # Load prompts usd to generate the images
12 prompts = []
13 with open(" image_info .json") as f:
14 image_info = json.loads(f.read ())
15 for i in range(len( image_info )):
16 cur_prompt = "\n".join( image_info [i][" prompt "])
17 prompts . append ( cur_prompt )
18
19 # Comparative evaluation
20 gpt4v = GPT4V ()
21 gpt4v_scores = [{} for _ in range( image_n )]
22 # i: method 1
23 # i + 1: method 2
24 for i in tqdm(range (0, image_n , 2)):
25 method1_image = images [i]
26 method2_image = images [i + 1]
27
28 cur_prompt = get_eval_prompt ( prompts [i])
29
30 compare_images ( method1_image , method2_image , " method_1 ", " method_2 ", gpt4v

, cur_prompt )
31 compare_images ( method2_image , method1_image , " method_2 ", " method_1 ", gpt4v

, cur_prompt )

Figure 12: Pseudo-code of GPT4v Evaluation. For each pair of images, the comparison is run twice to
account for bias in presentation order.

• Deduct 1 point for each missing or incorrect feature within an element.
• Deduct 1 point for minor inconsistencies or lack of harmony between elements.
• Additional deductions can be made for compositions that lack coherence, creativity, or realism.

Image quality:

• Score on a scale of 0 to 10, in 0.5 increments, where 10 is the best and 0 is the worst.
• Deduct 3 points for each deformity in the image (e.g., extra limbs or fingers, distorted face, incorrect

proportions).
• Deduct 2 points for noticeable issues with texture, lighting, or color.
• Deduct 1 point for each minor flaw or imperfection.
• Additional deductions can be made for any issues affecting the overall aesthetic or clarity of the

image.

Please format the evaluation as follows:
For Image 1:
[Explanation of evaluation]
For Image 2:
[Explanation of evaluation]

19
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Scores:
Image 1: Composition Quality: [score]/10, Image Quality: [score]/10
Image 2: Composition Quality: [score]/10, Image Quality: [score]/10
Based on the above guidelines, help me to conduct a step-by-step comparative evaluation of the given images.
The scoring should follow two principles:

1. Please evaluate critically.
2. Try not to let the two models end in a tie on both dimensions.

G Human Evaluation Interface

For the human qualitative evaluation, we follow the framework of Zou et al. (2025) along four qualitative
axes. For each combination, we provide a set of reference images and output of the anonymised methods.
Samples of the instructions and survey, as shown to human experts, are presented below. We use three
human experts to evaluate our method against previous SoTA.
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Table 8: Comparison of Multiply-Accumulate Operations (MACs) and qualitative latency estimates under
different N values.

(a) MACs (in GigaOps) for different methods.

N = 2 N = 3 N = 4 N = 5
LoRAtorio 1090.863 1102.721 1125.570 1132.123
CMLoRAa 912.350 1223.486 1358.518 1570.335
Switch-Aa 734.053 730.914 739.322 731.811
LoraHuba 789.770 834.613 924.299 946.721
Compositea 1401.066 2169.199 2892.266 3615.333
Switcha 734.053 730.914 739.322 731.811
Mergea 789.770 834.613 924.299 946.721

(b) Qualitative latency estimates (seconds).

N = 2 N = 3 N = 4 N = 5
LoRAtorio 61 85 91 122
Mergeb 20 21 22 24
Switchb 16 18 19 20
Compositeb 60 70 76 90
MultLFGb 90 140 180 230

a As reported by Zou et al. (2025)
b As reported by Roy et al. (2025)

H Computational Cost Analysis

To evaluate the computational efficiency of LoRAtorio, we compare the number of Multiply-Accumulate
Operations (MACs) required for inference under different LoRA integration strategies and varying numbers
of active adapters (N). Table 8a summarises the MACs for each method, highlighting the scalability and
cost implications.
While LoRAtorio demonstrates competitive performance and interpretability, its computational cost in-
creases linearly with the number of active LoRA modules. This is a direct consequence of its design, which
composes multiple LoRAs simultaneously in the latent space. In contrast, methods like Switch or Merge
maintain a relatively constant cost by activating only a subset or a merged representation of LoRAs. This
limitation aligns with prior observations in latent-space manipulation approaches (Zhong et al., 2024). The
cost becomes particularly significant in dynamic settings, where all available LoRA adapters may be loaded
concurrently. However, we also note that the MACs of LoRAtorio do not differ by orders of magnitude
compared to previous works; in fact, we see that they are comparable, thus our method does not introduce
a significant cost-performance trade-off compared to previous works. In Table 8b, we also see a compar-
ison of LoRAtorio against reported inference latency in seconds. Our method has comparable latency to
LoRA-composite and is significantly faster than MultLFG.

I Qualitative Comparison

Examples comparing qualitatively our method against baselines for the SD1.5 base model can be seen
in Figure 13 and Figure 14. LoRAtorio performs competitively, exhibiting fewer concept clashes and reduced
vanishing of key attributes compared to previous SoTA. In the dynamic selection setting, we observe that
Merge collapses, often producing non-legible or incoherent images, especially in the more complex reality
subset. In contrast, LoRAtorio reliably selects the most relevant LoRA modules, resulting in sharper, more
coherent generations, with clearly recognisable concepts.
Examples comparing qualitatively our method against baselines for Flux base model can be seen in Fig-
ure 15, Figure 16 and Figure 17. LoRAtorio shows lower concept confusion compared to merge. This is
particularly obvious in the case of the Dynamic module selection setting, where the image quality severely
deteriorates with multiple LoRAs. Even though Flux is a stronger model and thus generates more legible
images compared to SD1.5 in the dynamic setting, the difference in quality compared to LoRAtorio and
Näıve is substantial.
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Figure 13: Images generated with N LoRA candidates (L1 Character, L2 Clothing, L3 Style, L4 Background
and L5 Object) across our proposed framework and baseline methods using SD1.5 base model on the anime
subset of ComposLoRA.

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Figure 14: Images generated with N LoRA candidates (L1 Character, L2 Clothing, L3 Style, L4 Background
and L5 Object) across our proposed framework and baseline methods using SD1.5 base model on the reality
subset of ComposLoRA.
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Figure 15: Images generated with N LoRA candidates (L1 Character, L2 Clothing, L3 Style, L4 Background
and L5 Object) across our proposed framework and baseline methods using Flux base model.
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Figure 16: Images generated with N LoRA candidates (L1 Character, L2 Clothing, L3 Style, L4 Background
and L5 Object) across our proposed framework and baseline methods using Flux base model.

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Figure 17: Images generated with N LoRA candidates (L1 Character, L2 Clothing, L3 Style, L4 Background
and L5 Object) across our proposed framework and baseline methods using Flux base model.
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