Published as a conference paper at ICLR 2026

DREAMON: DIFFUSION LANGUAGE MODELS FOR
CODE INFILLING BEYOND FIXED-SIZE CANVAS

Zirui Wu'**, Lin Zheng'*, Zhihui Xie', Jiacheng Ye', Jiahui Gao', Shansan Gong',
Yansong Feng?, Zhenguo Li®, Wei Bi2, Guorui Zhou?, Lingpeng Kong'

!The University of Hong Kong ~ 2Kuaishou Technology ~ *Huawei Noah Ark Lab
4Peking University

ziruiwu@pku.edu.cn, lzheng2@cs.hku.hk, 1lpk@cs.hku.hk

ABSTRACT

Diffusion Language Models (DLMs) present a compelling alternative to autore-
gressive models, offering flexible, any-order infilling without specialized prompt-
ing design. However, their practical utility is blocked by a critical limitation:
the requirement of a fixed-length masked sequence for generation. This con-
straint severely degrades code infilling performance when the predefined mask
size mismatches the ideal completion length. To address this, we propose DREA-
MON, a novel diffusion framework that enables dynamic, variable-length gen-
eration. DREAMON augments the diffusion process with two length control
states, allowing the model to autonomously expand or contract the output length
based solely on its own predictions. We integrate this mechanism into ex-
isting DLMs with minimal modifications to the training objective and no ar-
chitectural changes. Built upon Dream-Coder-7B and DiffuCoder-7B, DREA-
MON achieves infilling performance on par with state-of-the-art autoregressive
models on HumanEval-Infilling and SantaCoder-FIM and matches oracle per-
formance achieved with ground-truth length. Our work removes a fundamental
barrier to the practical deployment of DLMs, significantly advancing their flex-
ibility and applicability for variable-length generation. Our code is available at
https://github.com/DreamLM/DreamOn.

1 INTRODUCTION

In recent years, autoregressive language models have achieved remarkable progress (Comanici et al.}
2025} |OpenAl, 2025; |Guo et al.| [2025; |Qwen et al., [2025). They model language as generating text
sequentially in a fixed left-to-right manner. While dominant, this paradigm is now being comple-
mented by Diffusion Language Models (DLMs) (Hoogeboom et al.|[2021} Austin et al.,[2021;Zheng
et al.,2023; |Singh et al., 2023 |[Lou et al.,2024; Sahoo et al.,2024; |Shi et al.,[2024; Nie et al., 2025;
Ye et al.| 2025} DeepMind, 2025} [Labs et al.| [2025)), which have emerged as a promising alternative
and are gaining significant attention.

DLMs operate through a multi-step denoising process, progressively refining a masked sequence to
enable flexible, any-order generation (Austin et al., 2021} [Hoogeboom et al., 2021)). This property
makes them inherently suited for infilling tasks—generating content to fill between a given prefix
and suffix (Bavarian et al., 2022} Fried et al., 2023} |Allal et al.| [2023). In contrast, autoregressive
models must resort to cumbersome workarounds for infilling, such as permuting the target span to
the end of the sequence (Fried et al.,[2023};|Guo et al.| 2024a; Hui et al.,|2024;|Seed et al.,|2025)). Such
methods not only disrupt the natural contextual structure but also necessitate specialized prompting
during training and infenence.

Despite the theoretical advantage, the practical application of DLMs is hindered by a critical bot-
tleneck: the reliance on a pre-specified, fixed-length mask. Current DLMs (Ye et al., [2025; Nie
et al., 2025} Xie et al.l 2025; |Gong et al., 2025b) require the input and output sequences to have

“Equal contribution.
"Corresponding author.


https://github.com/DreamLM/DreamOn

Published as a conference paper at ICLR 2026

Prefix Prefix

def correct_bracketing(brackets):
""" prackets is a string of "<" and ">".
return True if every opening bracket

Check if in given list are any two numbers Eﬂﬁ a corresponding closing bracket.

closer to each other than given threshold.

def has_close_elements(numbers, threshold):

ann geptt = Ob ;
for idx, elem in enumerate(numbers): or iflg =£aﬁ<ﬁFs'
depth += 1
Infilling with 4 [MASK] Infilling with 16 [MASK]
for elem: elif b == “>” and depth > 0:# closing bracket
Ground Truth Ground Truth
for idx2, elem2 in enumerate(numbers): elif b == “>":
Suffix Suffix
if idx != idx2: depth -= 1
distance = abs(elem - elem2) if depth < o:
if distance < threshold: return False
return True return depth == 0

return False

Figure 1: Example of DreamCoder-7B failing at code infilling due to the length mismatch between
masked input and ground truth. Incorrect and correct code is marked in red and green. With too
few masked tokens, diffusion models lack sufficient room for meaningful code infilling. Too many
masks cause over-generation of unnecessary code snippet (e.g., depth > 0 that is incorrect).

identical lengths, which prevents them from dynamically determining the length of the output. This
limitation is especially damaging for code infilling, where solution lengths can vary significantly
across examples. As shown in Figure[I} Dream-Coder-7B (Xie et al.l[2025) produces incomplete or
over-generated code when the mask length does not align with the ground truth. More critically, we
observe an average performance drop of 38% on HumanEval-Infilling (Bavarian et al., 2022) when
the predefined mask length does not align with the ground truth length (Table [2)), highlighting the
extreme sensitivity of current DLMs to this hyperparameter.

To address this bottleneck, we propose DREAMON, a discrete diffusion language modeling frame-
work equipped with adaptive length adjustment (§3.1). DREAMON introduces dynamic length adap-
tation through two dedicated special tokens, [expand] and [delete], requiring no architectural
modifications. We augment the standard diffusion training process with auxiliary length-control
states, allowing DREAMON to be trained with minimal deviation from conventional DLM objec-
tives (§3.2). During inference, the model adaptively expands and contract the masked sequence
solely on its predictions without external guidance (§3.3). Based on Dream-Coder-7B (Xie et al.|
2025) and DiffuCoder-7B (Gong et al.l [2025b), DREAMON achieves competitive infilling perfor-
mance with state-of-the-art autoregressive models on HumanEval-Infilling (Bavarian et al.| [2022)
and SantaCoder-FIM (Allal et al., [2023) (§EI), and approaches oracle-level performance achieved
with ground truth length (§5.1).

* We alleviate the fixed-length bottleneck of diffusion language models (DLMs) by introducing
DREAMON, which allows the model to dynamically expand or contract sequences during gener-
ation without any architectural changes.

* Our method achieves variable-length generation with two special states [expand] and
[delete], and supports scalable end-to-end learning of length adaptation through simple aug-
mentation techniques with minimal deviation from standard diffusion objectives.

* On multiple infilling benchmarks, DREAMON delivers an average absolute performance boost of
26.4% over diffusion baselines, matches the performance achieved with oracle length, and brings
diffusion models close to or on par with state-of-the-art autoregressive models.

2 PRELIMINARY

Let xg = [xJ, . ..,x{’] be a sequence of N discrete tokens sampled from the data distribution g(x).
Each token takes values from a vocabulary of size V' + 1, consisting of V' regular symbols plus
an additional absorbing state [mask]. We represent each token xg ,,, as well as the absorbing



Published as a conference paper at ICLR 2026

! Forward Augmentation and Noising

iXQ [Diffusion] [ LMs } [ For } [ Code } { Infilling } [ Beyond } [Fixed-size] [ Canvas }

Infilling [<|cxpandl>] [ Canvas } [ <|delete|> } [ <|delete|> } :

(o] (G () (o)

<|mask]|> [ </mask|> } [ <|mask[> } [ <|mask|> } [ <|mask|> ]1

Infilling [ <|mask|> } [ Canvas } [ <|mask|> } [ <|mask|> ]3
Infilling [ <|mask|> } [ Canvas } [ <|mask|> } [ <|delete|> ]1

II

\
/

izt—l [ Diffusion } [ <|mask|> } [ <|mask|> } { Infilling } [ <|mask|> } [ Canvas } [ <|mask|> } 1%)

Figure 2: Overview of the augmented diffusion process. Top: the forward augmentation-and-
noising procedure maps the input sequence Xy to an augmented latent zy containing [expand]
and [delete] states, and then applies a standard masked diffusion process over zg to obtain z;
and eventually zr. Bottom: a single denoising step where [mask] positions in z; can be predicted
as either regular tokens or special states; [expand] deterministically expands into two [mask]
tokens, while [delete] will remove the corresponding position, yielding a new sequence z;_;
with a different length from z,.

state [mask], as one-hot vectors in {0,1}V 1. Typical discrete-time masked diffusion models
are defined as a class of latent variable models over such sequences with a forward and backward
transition process. In the forward process ¢, each token is preserved with a certain probability or
replaced by [mask] otherwise, giving ¢(x;: | Xo) = ayxo + (1 — a;) [mask] with a prede-
fined schedule o;. As t increases, the schedule is designed such that the sequence converges to full
mask tokens. The generative model reverses this process, starting from x7 and applying parame-
terized transitions pg(x;—1 | ;) that approximate the true posterior ¢(x;—1 | X¢,Xo). This yields

po(x0r) = p(xr) [T1—, Po(xe-1 | ).

This class of generative models can be generalized to continuous-time parameterization by consid-
ering t € [0, 1], which avoids the bias introduced by predefined discretization over time steps. We
adopt the frameworks in [Kingma et al.|(2021)); |Campbell et al.|(2022); Sahoo et al.| (2024)); |Shi et al.
(2024);|Ou et al.|(2025) and train py with a weighted cross-entropy loss objective,

N
‘6(9) =-E x0~q(x) ’LU(t) Z 1[xf:[mask]] logpe(xg | Xt) ’ (1)
t~U(0,1) n=1
xt~q(X¢]%o0)

where the indicator 1[xn — a5k ;] implies the loss is only evaluated on masked positions, and w(t) €
(0,1] is a time-dependent weighting term derived from the noise schedule o, (Shi et al., [2024;
Gong et al.l 2025a). This objective provides a tractable variational upper bound on the negative
log-likelihood and serves as an effective training target for large-scale diffusion language models.

3 METHOD

In this section, we present our formulation for extending masked diffusion models beyond fixed-
length generation. We begin with an overview of our framework in §3.1] followed by training and
inference procedures in sections [3.2]and [3.3] and practical implementation details in §3.4]



Published as a conference paper at ICLR 2026

Algorithm 1 DREAMON Training

Require: Model parameters py, merge rate scheduler S;
1: repeat
2:  Sample original data xo ~ ¢(x) and a time step ¢ ~ 2(0, 1);
Construct augmented sequence zg from xy with [expand] and [delete] with S;
Sample masked sequence z; ~ q(z¢|zo);
Compute weighted loss £(6) via eq. (2));
Update parameters 6 via Vg L;
until convergence

A

3.1 MASKED DIFFUSION WITH AUGMENTED STATES FOR LENGTH CONTROL

The key ingredient of DREAMON is to introduce two new special states [expand] and [delete]
during the diffusion process. When a token transitions to the state [expand], we will expand it
into two [mask] tokens at the same position of the sequence; and whenever a [delete] state is
yielded, the token is removed from the sequence. With proper predictions of these special states, the
model acquires native length control.

Simulating Special Transitions via Data Augmentation. To train the model to predict
[expand] and [delete], we introduce an auxiliary augmented sequence zg constructed from
the original input x¢. The augmentation merges random token spans into [expand] and inserts
[delete] into the sequence. For merging, we first sample a time step ¢ ~ Uniform(0, 1) and
compute a set of mask indices M, according to the schedule a;. Rather than masking tokens, we
use M, to gate merging such that only spans of consecutive mask indices in M, will be replaced
with [expand], under a merging probability controlled by rate schedulers (§3.4). This pseudo-
masking process provides finer control over the ratio of special to regular tokens, producing zy with
variable length and a balanced mix of regular and special states.

Masked Diffusion over Augmented z,. We impose the masked diffusion process pg on zg. For
these special states [expand] and [delete], the forward diffusion process always maps them
to [mask], ensuring that all such tokens are masked and contribute to the learning signal. By
construction, the prediction targets in the masked diffusion loss naturally include [expand] and
[delete]. Consequently, the model is now trained to denoise not only regular tokens but also
special sentinels, thereby learning length control behavior and enabling variable-length generation
without any architecture changes.

3.2 TRAINING

Similarly to the masking state [mask ] and any regular tokens, we treat [expand] and [delete]
as sentinel tokens in the vocabulary, and the model is trained to predict them using the objective in
Eq. (I). During training, however, we observe an imbalance: many [mask] positions correspond
to [delete] targets, while far fewer correspond to [expand], since each [delete] is trans-
formed into a single [mask], whereas multiple [mask] tokens are merged into one [expand].
As aresult, [delete] tokens contribute disproportionately to the loss. To calibrate this, we in-
troduce a loss weighting scheme that downscales the contribution of [delete] predictions so that
their total weight is equivalent to that of a single [mask] prediction. The weighted training loss is
then given by

N

L(e) =-E x0~q(x) w(t> Z 1[z',f:[mask]] *Wnp - 1ng9(Z6L ‘ Zt) 5 (2)
t~U(0,1) n=1
zo~q(zo|%o)
z~q(z¢|Zo)

with the per-token weight w,, defined as

1 n
Noask y 1, if z{) [delete],
Nmn,sk - Ndelete +1

3)

Wy =

1
, ifz} = [delete],
Ndelete 0



Published as a conference paper at ICLR 2026

where NV a5k and Nyejere denote the number of [mask] and [delete] tokens in the sequence,
respectively. The normalization factor ensures that the expected loss magnitude remains consistent
across sequences with varying numbers of deletions.

3.3 INFERENCE

Our inference procedure, outlined in Algorithm[2] builds upon the standard masked diffusion denois-
ing framework with key modifications to support variable-length generation. At each diffusion step,
we simultaneously predict all masked positions and then selectively re-mask tokens based on predic-
tion entropy, following Ye et al.| (2025)). However, the prior work employs fixed masking schedulers
to determine how many tokens to unmask per step, which are ill-suited for dynamic-length modeling
since they assume a pre-specified output length. Instead, we directly control the denoising trajectory
by specifying n, the number of mask tokens to denoise at each step, enabling adaptive sequence
length modeling. During denoising, predicted [expand] tokens are immediately expanded into
two [mask] tokens, while generated [delete] tokens are removed from the sequence. To en-
sure stability and prevent unbounded growth, we enforce a maximum output sequence length L.
The generation process terminates once all [mask] positions have been resolved.

Algorithm 2 Variable-Length Generation with DREAMON

Require: Trained model parameters 0, initial sequence length L, maximum length Lp,,x, unmask-
ing budget n per iteration, and sampling temperature 7;

1: forl=1,2,...,Ldo
2:  Initialize z' + [mask];
3: end for
4: while [mask] inz do
5:  Compute token probabilities p < pg(- | z);
6:  if |z| > Lax then
7: Set the probability of [expand] to 0 and renormalize;
8: endif
9:  Select up to n masked positions with highest confidence;
10:  for each selected position ¢ do
11: Draw z' ~ Categorical(p’/7);
12: if z = [expand] then
13: Replace z[i] with [[mask], [mask]];
14: elseif z' = [delete] then
15: Remove z][i] from the sequence;
16: else _
17: Set z[i] + z';
18: end if
19: Update position indices if length has changed;
20:  end for
21: end while
22: Return z.

3.4 PRACTICAL IMPLEMENTATIONS

Span Merging Schedulers. We design two empirical mask merging schedulers. (1) Static sched-
uler: merges adjacent [mask] tokens with a fixed probability p,,erge and (2) Dynamic inverse
scheduler: sets the merging probability inversely proportional to the number of [mask] tokens in
the sequence. This scheduler merges less with more [mask] tokens to avoid merging too many
tokens that might potentially influence the original performance of the base model. We find that a
mixture of two schedulers during training yield the best performance as detailed in §5.2]

Broadcasting Deletion as Length Predictor. In practice, we observe that performance degrades
slightly when there is a large discrepancy between the initial masked span and the true target length.
This introduces inefficiency during inference, as the model must expend numerous forward passes



Published as a conference paper at ICLR 2026

to adjust the sequence length via incremental expansions or contractions. To mitigate this, we in-
troduce a training-free inference-time adaptation method that accelerates convergence. Specifically,
whenever the model predicts a [delete], we eliminate all subsequent tokens to its right if they are
all [mask] tokens. This mechanism significantly reduces unnecessary computation and improves
inference efficiency without sacrificing generation quality.

4 EXPERIMENTS

4.1 SETUP

We fine-tune Dream-7B (Ye et al., [2025)), DiffuCoder-7B (Gong et al., |2025b), and DreamCoder-
7B (Xie et al., 2025) on the education-instruction subset of OpenCoder SFT data (Huang et al.,
2024), which contains about 110K Python instruction-solution pairs synthesized from high-quality
educational data. Our experiments focus on code infilling, where the goal is to generate missing
spans conditioned on surrounding prefix and suffix contexts. During training, we randomly split
each solution into three segments: prefix, middle, and suffix. The instruction, prefix, and suffix are
fixed as context, while diffusion is applied only to the middle segment.

For sequence contraction, we find it sufficient to append a random number of [delete] tokens
(from O to 64) to the end of the middle segment during training. For sequence expansion, [expand]
tokens are constructed with merging probability pyerge as 0.5, using a 1:1 mix of static and dynamic
inverse schedulers. Models are trained for 10 epochs with batch size 128, maximum context length
1024, and learning rate le—>5 under a cosine decay schedule with 10% warmup steps. It takes ap-
proximately 5 hours to train with 8 HS00 GPUs. The compute of DreamOn is only 0.15% compared
with the compute for pretraining a base model (Ye et al., [2025). During inference we set tempera-
ture as 0.2 and top_p as 0.9. To prevent excessive growth, we cap mask expansion in DREAMON at
Lonaz = 128. We also disable mask expansion in inference after expanding L., 4, times.

4.2 EVALUATION

Baselines. We compare against state-of-the-art autoregressive models pretrained with infilling
objectives, specifically Deepseek-Coder-6.7B (Guo et al.l [2024b)), Qwen2.5-Coder-7B (Hui et al.,
2024)) and Seed-Coder-8B (Seed et al., 2025). For open-source diffusion language model baselines
of similar scale, we evaluate LLaDA-8B (Nie et al., 2025), Dream-7B (Ye et al.,|[2025), DiffuCoder-
7B (Gong et al.| [2025b)), and DreamCoder-7B (Xie et al., 2025)).

Benchmarks. We evaluate models on HumanEval-Infilling (Bavarian et al.| [2022)) benchmarks,
including single-line and multi-line subsets, and the Python subset of Santacoder-FIM (Allal et al.,
2023)). We use the official evaluation scripts to report pass@1 for HumanEval-Infilling and exact
match for Santacoder-FIM. We evaluate autoregressive language models using their respective in-
filling templates used during pretraining. For all diffusion models, we set the mask length to 64 by
default. DREAMON variants dynamically adjust this length as detailed in §3.4]

4.3 RESULTS

Table [T] shows that baseline diffusion models struggle with code infilling due to their fixed-length
generation, lagging significantly behind autoregressive models. DREAMON effectively resolves
this limitation, yielding an average absolute improvement of 26.4% over diffusion baselines and
highlighting its effectiveness as a model-agnostic enhancement.

Notably, with DREAMON, DiffuCoder-7B and DreamCoder-7B not only match the performance of
leading autoregressive models like Qwen2.5-Coder-7B, but also surpasses them in the more chal-
lenging multi-line infilling benchmark. This demonstrates that equipping diffusion models with our
length-adaptive mechanism makes them highly competitive for infilling tasks.



Published as a conference paper at ICLR 2026

Table 1: Pass@1 on HumanEval-Infilling and exact match on Santacoder-FIM, comparing open-
source auto-regressive and diffusion model baselines.The best results across diffusion models are
shown in bold, and the second best are underlined.

HumanEval-Infilling (Pass@1)

Models SantaCoder (EM)
Single-line Multi-line

Open-Weights AR Models
Deepseek-Coder-6.7B 73.0 45.7 76.3
Seed-Coder-8B 89.7 59.3 77.2
Qwen2.5-Coder-7B 92.6 58.7 79.8
Open-Weights Diffusion Models
LLaDA-8B 48.3 21.1 35.1
Dream-7B 48.2 21.9 60.3

+ DREAMON 88.6.1404 5334314 73.84135
DiffuCoder-7B 53.7 45.0 58.0

+ DREAMON 92.2.35 5 63.14158.1 7.4 1194
DreamCoder-7B 55.5 432 59.3

+ DREAMON 92.1 1366 63.8 2056 790197

Table 2: Infilling performance across different designs for diffusion language models. Oracle: per-
formance with the oracle target length for reference. {: We use an AST parser to compute exact
match to normalize huge syntactic differences between the model output and the ground truth.

Models

Initial Mask Length Ave. ‘ Oracle
4 8 16 32 64 ‘
Single-Line (Pass@1)

Dream-Coder-7B 249 612 726 624 555 553 | 933
+ DREAMON  88.7 90.6 91.0 916 921 908 | 91.6
w/o Delete 87.8 779 712 623 378 674 | 933

w/o Expand 25.1 71.6 88.0 909 915 734 | 925

Multi-line (Pass@1)

Dream-Coder-7B 5.5 147 27.1 394 432 260 | 69.0
+ DREAMON  50.2 538 569 609 638 57.1 | 66.6
w/o Delete 446 453 46.1 467 447 455 67.9
w/o Expand 55 165 30.7 482 613 324 | 632

SantaCoder-FIM (EM)

Dream-Coder-7B 20.0 26.6 43.5 508 59.3 40.0 76.31
+ DREAMON 75.0 768 784 78.0 79.0 774 82.0
w/o Delete 742 443 40.2 500 56.2 53.0 84.2

w/o Expand 225 550 747 77.8 78.0 616 78.61

5 ANALYSIS

In this section, we conduct ablation studies to evaluate the effectiveness of DREAMON. All vari-
ants are fine-tuned from DreamCoder-7B and evaluated with initial mask lengths ranging from 4
to 64. We additionally evaluate the infilling results under an oracle setting, where the initial mask
length matches the ground-truth solution length, providing an approximate upper bound for infilling
performance of diffusion language models.



Published as a conference paper at ICLR 2026

5.1 PERFORMANCE WITH DIFFERENT MASK LENGTHS

Performance Breakdown. As shown in Table [2] DreamCoder-7B without finetuning suffers sig-
nificant performance degradation when using fixed mask lengths compared to the oracle-length per-
formance, highlighting the strong dependence of infilling quality on accurate mask length. By con-
trast, DREAMON achieves near oracle-level performance across a wide range of initial mask lengths.
Importantly, the performance gains stem from the combined use of both mask expansion and con-
traction mechanisms. DREAMON maintains stable performance on both single-line infilling and
SantaCoder-FIM tasks regardless of the initial mask length. We provide two denoising trajectory
examples in Appendix [D}

Ablation on Length Control. To isolate the contributions of expansion and deletion mechanisms,
we evaluate ablated variants of DREAMON: (1) w/o Expand, disabling mask expansion; and (2)
w/o Delete, disabling mask deletion. Removing deletion leads to a sharp performance drop on
longer mask lengths, as the model tends to over-generate and fill all given [mask] tokens. On the
other hand, removing expansion severely harms performance on short lengths, as the model cannot
dynamically extend mask sequences to accommodate more complex or longer completions. We also
observe a slight performance decline on long masks without expansion, suggesting that even for
longer masked inputs, expansion remains beneficial by allowing fine-grained length adjustments.

5.2 EXPANSION MECHANISM DESIGN

Mask merging strongly affects the number of

[expand] tokens and the gap between initial and

target sequence lengths. We study this in-depth Single-Line Infilling

and evaluate two merge rate schedulers: a static [ —

scheduler with fixed merge probability and a dy-
namic inverse scheduler with merge probability in- _
versely proportional to the number of [mask] to-

kens. Using only the static scheduler enables ef-
fective expansion, achieving an 88.9% pass rate for
length-4 masks. However, its performance is lim-

O
N

o
o

o]
o]

o]
o

Performance

ited on longer masks. —— DreamOn

.. 84 Dynamic Inverse Scheduler
The dynamic inverse scheduler merges less when —— Static Scheduler
more masks are present. It achieves hlgher per- e 16 5 o
formance on longer masks but struggles with large Mask Length

expansions, dropping to 82.5% on length-4 masks. Figpre 3: Ablation on merging rate scheduler
We find a 1:1 mixture achieves the best overall re- ~ design choices.

sults, offering a favorable balance across various

mask lengths (Appendix [C).

5.3 DELETION MECHANISM DESIGN

We ablate our design choices for handling [delete] tokens with the following experiments: (1)
w/o Loss Balancing: train the model without down-weighing the loss on [delete] tokens, treat-
ing them equally with other tokens in the loss computation; (2) w/o In-place Deletion: Instead of
removing [delete] tokens, keep them in the sequence, similar to generating padding placeholder
tokens in standard diffusion language (Nie et al., {2025} |Ye et al.,[2025)). To implement this, we ran-
domly mask or preserve [delete] during training; and (3) w/o Deletion Broadcasting: disable
the inference-time mechanism described in §3.4]

As shown in Table [2} removing loss balancing leads to a substantial performance drop to 84.6%
average pass@1 rate, confirming that down-weighing [delete] loss is essential to prevent the
model from overfitting to deletion signals. Keeping persistent [delete] tokens also performs
poorly (average 85.3%), indicating that placeholder-like deletion tokens in the sequence disrupt
positional coherence and degrade training. Disabling deletion broadcasting reduces performance by
0.6% on average, especially when the given mask length is much longer than the expected solution.
The deletion broadcasting mechanism also accelerates generation by 2.1x.



Published as a conference paper at ICLR 2026

Table 3: Ablation study for mask deletion mechanism implementations.

Models Initial Mask Length Ave. \ Oracle
4 8 16 32 64 \
HumanEval-Infilling Single-Line (Pass@1)
DREAMON 88.7 90.6 910 916 921 90.8 | 91.6
w/o Loss Balancing 75.8 825 87.0 872 904 84.6 88.6
w/o In-Place Deletion 859 857 885 848 78.0 84.6 | 93.1

w/o Deletion Broadcasting 88.7 90.5 90.0 90.2 914 902 | 91.6

5.4 EFFICIENCY ANALYSIS OF DELETION BROADCASTING

Number of Mask Expansion Number of Mask Deletion Total Diffusion Steps
34 601 —e— w/ broadcasting 1204 —*— w/ broadcasting
32 w/o broadcasting w/o broadcasting
50 110
30
40 100

28
90

26 30
80
24 20

70

22
10 60

—e— w/ broadcasting

20 w/o broadcastin: ﬁ\
I 9 o] e—e 50
10 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 60
Mask Length Mask Length Mask Length

Figure 4: Average generation steps of DreamCoder + DREAMON on multi-line infilling subset.

The introduction of broadcasting dramatically enhances inference efficiency, primarily by transform-
ing the deletion process from a token-by-token operation into a length prediction action. Without
broadcasting, deletion steps scale almost linearly with the initial mask length because the model
must iteratively predict and remove each excess mask token individually. In contrast, DREAMON
with deletion broadcasting mechanism keep the number of mask deletion nearly constant around
with roughly only 1 step on average. This optimization eliminates the computational bottleneck
caused by large discrepancies between the initial masked span and the true target length, reduc-
ing total inference steps from as high as 122.8 (w/o broadcasting) to just 52.4 (w/ broadcasting)
at mask length 64. Consequently, broadcasting not only slashes unnecessary forward passes but
also stabilizes overall inference cost, making the generation process both faster and more robust to
initialization variance without any impact on output quality.

6 RELATED WORK

Code Infilling with Autoregressive Models. Code infilling requires generating missing code seg-
ments conditioned on bidirectional context, a task inherently challenging for standard left-to-right
autoregressive models. To address this, several approaches adapt architectures to better capture bidi-
rectional dependencies [Yang et al.| (2019); |Stern et al.[(2019)); |Gu et al.| (2019a)); Chan et al.|(2019);
Welleck et al.|(2019);|Shen et al.|(2020); |Alon et al.[(2020); Nguyen et al.|(2023));\Shen et al.| (2023)).

A widely adopted alternative preserves the standard left-to-right autoregressive architecture by re-
locating the target infill segment to the end of the input sequence, enabling the model to generate
the missing code autoregressively (Raffel et al., 2020; Tay et al.,[2023};2022; |Anil et al.} 2023; |Sun
et al.,[2024). This approach is compatible with decoder-only architectures (Bavarian et al.,[2022) and
has become the standard in modern code language models, including Codex (OpenAl et al.,|[2022),
INCODER (Fried et al., 2023)), SANTACODER (Allal et al., [2023)), StarCoder (L1 et al., 2023) and
StarCoder 2 (Lozhkov et al.} 2024)), CODEGEN 2/2.5 (Nijkamp et al.,|2023), Code-Llama (Roziere
et al.} 2023)), DeepSeek-Coder (Guo et al., 2024a), CodeGemma (CodeGemma Team),2024), Qwen-
Coder (Bai et al., 2023} [Hui et al., [2024), and Seed-Coder (Seed et al., 2025)).



Published as a conference paper at ICLR 2026

Discrete Diffusion Language Models. Discrete diffusion models have recently emerged as a com-
pelling alternative to autoregressive models. Foundational work by|Austin et al.|(2021});|Hoogeboom
et al.| (2021) introduced discrete diffusion processes for text data, enabling probabilistic modeling of
token sequences through iterative and bidirectional denoising. Subsequent research has refined these
approaches with continuous-time relaxations (Campbell et al., [2022), improved training objectives
(Zheng et al.| 2023 |Lou et al., 2024)), and generalized masked diffusion frameworks (Sahoo et al.,
2024; |Shi et al., [2024; Ou et al.| 2025). Scaling efforts have produced powerful models such as
Plaid (Gulrajani & Hashimotol |2023)) and LLaDA (Nie et al.,[2025). Adaptation techniques leverag-
ing pretrained models, such as DiffuLLaMA (Gong et al.,2025a) and Dream (Ye et al., [2025)), have
narrowed the performance gap with state-of-the-art autoregressive language models.

Non-autoregressive Models with Length Control. Generating variable-length sequences re-
mains a significant challenge for non-autoregressive models. Prior work has explored diverse strate-
gies to address this, including learning separate length predictors (Gu et al., 2018 [Lee et al.| 2018;
Ghazvininejad et al., 2019} |[Zheng et al., [2023)), marginalizing over latent alignments to contract
sequence length (Chan et al.| [2020), incorporating edit operations (Gu et al.l [2019ajb; [Stern et al.,
2019; Johnson et al.,[2021; [Reid et al.| 2023} |(Campbell et al., 2023} Patel et al., 2025} |Havasi et al.,
2025)), and performing diffusion over sequence positions (Zhang et al., 2025 Kim et al., [2025]).

Recent concurrent works also address this challenge. Edit flows (Havasi et al.l |2025) present a
discrete flow matching with edit operations over extended spaces for tractable and effective train-
ing; DDOT (Zhang et al., 2025) proposes to jointly denoise token states and positions for dy-
namic segment-length adjustment; FlexMDM (Kim et al., |2025) learns insertion and unmasking
rates through a joint interpolant framework over both token states and positions, thereby enabling
variable-length generation; and DAEDAL (L1 et al.| 2025) provides a training-free approach using
inference-time prediction confidence scores to dynamically determine the response length.

In contrast, our method implements native length control in masked diffusion models with minimal
additional training and no architectural modifications, directly adapting pretrained diffusion lan-
guage models. This design preserves the simplicity of the original model, avoids complicated multi-
stage inference pipelines, and yields substantial gains in flexibility and performance for variable-
length generation.

7 CONCLUSIONS

In this work, we introduce DREAMON, a simple yet effective framework that enables dynamic
length control through two special tokens ([delete] and [expand]) without architectural
changes. By augmenting the diffusion process with auxiliary length-control states, DREAMON
learns to expand or contract sequences based solely on model confidence. Our results show
that DREAMON approaches oracle-length performance and achieves competitive results with
state-of-the-art autoregressive models. We hope our work can pave the way for more practical and
flexible DLMs beyond fixed-size canvas.

Limitations. Currently, we limit our evaluation to focus on code infilling tasks that require strong
variable-length generation capabilities. Future work will extend the scope to broader applications
to assess the generalizability of DREAMON. In addition, the training and inference procedures in
DREAMON rely on heuristics to enable variable-length generation in a simple yet effective manner;
developing a more principled formulation for flexible inference in masked diffusion models is an
important direction for future research. Finally, our current design uses a single expansion state
[expand] that deterministically expands into two [mask] tokens. This choice keeps the output
space small and training stable, but requires multiple expansion steps when the target completion is
much longer than the initial mask span. A promising direction for future work is to introduce a richer
vocabulary with multiple expansion factors or to couple expansion with an explicit length-prediction
head. They could reduce the number of denoising iterations, but would also enlarge the decision
space and require careful rebalancing of the training objective to maintain well-behaved length ad-
justment dynamics. We leave the exploration of these richer expansion schemes to future work.

10



Published as a conference paper at ICLR 2026

ACKNOWLEDGEMENTS

We acknowledge the open-source community for providing high-quality datasets and evaluation
frameworks. This research was supported in part by the joint research scheme of the National
Natural Science Foundation of China (NSFC) and the Research Grants Council (RGC) under grant
number N_HKU714/21.

ETHICS STATEMENT

Our research focuses on developing a diffusion-based language modeling method capable of
variable-length text generation. We did not collect any data involving human subjects, private infor-
mation. And our study does not include any human evaluation. All datasets used in our experiments
are publicly available benchmarks, and we strictly adhere to their respective usage licenses. Further-
more, our method does not present any foreseeable risks of misuse or societal harm.

REPRODUCIBILITY STATEMENT

We have taken deliberate steps to ensure the reproducibility of our work. Detailed descriptions of
the experimental setups and hyperparameter configurations are provided in §4}

REFERENCES

Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Carlos Munoz
Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, et al. SantaCoder: Don’t
reach for the stars! arXiv preprint arXiv:2301.03988, 2023.

Uri Alon, Roy Sadaka, Omer Levy, and Eran Yahav. Structural language models of code. In Inter-
national conference on machine learning, pp. 245-256. PMLR, 2020.

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos,
Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, et al. PaLLM 2 Technical Report.
arXiv preprint arXiv:2305.10403, 2023.

Jacob Austin, Daniel D. Johnson, Jonathan Ho, Daniel Tarlow, and Rianne van den Berg. Struc-
tured denoising diffusion models in discrete state-spaces. In Advances in Neural Information
Processing Systems, 2021. URL https://openreview.net/forum?id=h7-XixPCALl

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

Mohammad Bavarian, Heewoo Jun, Nikolas Tezak, John Schulman, Christine McLeavey, Jerry
Tworek, and Mark Chen. Efficient training of language models to fill in the middle. arXiv
preprint arXiv:2207.14255, 2022.

Andrew Campbell, Joe Benton, Valentin De Bortoli, Thomas Rainforth, George Deligiannidis, and
Arnaud Doucet. A continuous time framework for discrete denoising models. Advances in Neural
Information Processing Systems, 35:28266-28279, 2022.

Andrew Campbell, William Harvey, Christian Dietrich Weilbach, Valentin De Bortoli, Tom Rain-
forth, and Arnaud Doucet. Trans-dimensional generative modeling via jump diffusion mod-
els. In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL
https://openreview.net/forum?id=t 6nA7x3GAC.

William Chan, Nikita Kitaev, Kelvin Guu, Mitchell Stern, and Jakob Uszkoreit. Kermit: Generative
insertion-based modeling for sequences. arXiv preprint arXiv:1906.01604, 2019.

William Chan, Chitwan Saharia, Geoffrey Hinton, Mohammad Norouzi, and Navdeep Jaitly. Im-
puter: Sequence modelling via imputation and dynamic programming. In International Confer-
ence on Machine Learning, 2020.

11


https://openreview.net/forum?id=h7-XixPCAL
https://openreview.net/forum?id=t6nA7x3GAC

Published as a conference paper at ICLR 2026

Google LLC CodeGemma Team. Codegemma: Open code models based on gemma,
2024. URL https://storage.googleapis.com/deepmind-media/gemma/
codegemma_report.pdfl

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
bilities. arXiv preprint arXiv:2507.06261, 2025.

DeepMind.  Gemini diffusion. 2025. URL https://deepmind.google/models/
gemini-diffusion/.

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi, Ruiqi Zhong,
Scott Yih, Luke Zettlemoyer, and Mike Lewis. InCoder: A generative model for code infilling
and synthesis. In The Eleventh International Conference on Learning Representations, 2023.
URLhttps://openreview.net/forum?id=hQwb-1bM6EL.

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and Luke Zettlemoyer. Mask-predict: Parallel
decoding of conditional masked language models. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),2019. URL https://aclanthology.
org/D19-1633/l

Shansan Gong, Shivam Agarwal, Yizhe Zhang, Jiacheng Ye, Lin Zheng, Mukai Li, Chenxin An,
Peilin Zhao, Wei Bi, Jiawei Han, Hao Peng, and Lingpeng Kong. Scaling diffusion language
models via adaptation from autoregressive models. International Conference on Learning Repre-
sentations, 2025a.

Shansan Gong, Ruixiang Zhang, Huangjie Zheng, Jiatao Gu, Navdeep Jaitly, Lingpeng Kong, and
Yizhe Zhang. Diffucoder: Understanding and improving masked diffusion models for code gen-
eration. arXiv preprint arXiv:2506.20639, 2025b.

Jiatao Gu, James Bradbury, Caiming Xiong, Victor O.K. Li, and Richard Socher. Non-autoregressive
neural machine translation. In International Conference on Learning Representations, 2018. URL
https://openreview.net/forum?id=B118Bt1Cbl.

Jiatao Gu, Qi Liu, and Kyunghyun Cho. Insertion-based decoding with automatically inferred
generation order. Transactions of the Association for Computational Linguistics, 2019a. URL
https://aclanthology.org/Q19-1042/.

Jiatao Gu, Changhan Wang, and Junbo Zhao. Levenshtein transformer. Advances in Neural Infor-
mation Processing Systems, 2019b.

Ishaan Gulrajani and Tatsunori B Hashimoto. Likelihood-based diffusion language models. Ad-
vances in Neural Information Processing Systems, 36:16693—16715, 2023.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Y Wu, YK Li, et al. Deepseek-coder: When the large language model meets programming—the
rise of code intelligence. arXiv preprint arXiv:2401.14196, 2024a.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Yu Wu, YK Li, et al. Deepseek-coder: When the large language model meets programming—
the rise of code intelligence. arXiv preprint arXiv:2401.14196, 2024b.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-rl: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Marton Havasi, Brian Karrer, Itai Gat, and Ricky TQ Chen. Edit flows: Flow matching with edit
operations. arXiv preprint arXiv:2506.09018, 2025.

12


https://storage.googleapis.com/deepmind-media/gemma/codegemma_report.pdf
https://storage.googleapis.com/deepmind-media/gemma/codegemma_report.pdf
https://deepmind.google/models/gemini-diffusion/
https://deepmind.google/models/gemini-diffusion/
https://openreview.net/forum?id=hQwb-lbM6EL
https://aclanthology.org/D19-1633/
https://aclanthology.org/D19-1633/
https://openreview.net/forum?id=B1l8BtlCb
https://aclanthology.org/Q19-1042/

Published as a conference paper at ICLR 2026

Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forré, and Max Welling. Argmax
flows and multinomial diffusion: Learning categorical distributions. In Advances in Neural
Information Processing Systems, 2021. URL https://openreview.net/forum?id=
6nbpPqUCIi7.

Siming Huang, Tianhao Cheng, Jason Klein Liu, Jiaran Hao, Liuyihan Song, Yang Xu, J Yang,
Jiaheng Liu, Chenchen Zhang, Linzheng Chai, et al. Opencoder: The open cookbook for top-tier
code large language models. arXiv preprint arXiv:2411.04905, 2024.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, et al. Qwen?2. 5-coder technical report. arXiv preprint arXiv:2409.12186,
2024.

Daniel D. Johnson, Jacob Austin, Rianne van den Berg, and Daniel Tarlow. Beyond in-place
corruption: Insertion and deletion in denoising probabilistic models. In ICML Workshop on
Invertible Neural Networks, Normalizing Flows, and Explicit Likelihood Models, 2021. URL
https://openreview.net/forum?id=cAsVBUelRn7.

Jaeyeon Kim, Lee Cheuk-Kit, Carles Domingo-Enrich, Yilun Du, Sham Kakade, Timothy Ngo-
tiaoco, Sitan Chen, and Michael Albergo. Any-order flexible length masked diffusion. arXiv
preprint arXiv:2509.01025, 2025.

Diederik Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models. Ad-
vances in neural information processing systems, 34:21696-21707, 2021.

Inception Labs, Samar Khanna, Siddhant Kharbanda, Shufan Li, Harshit Varma, Eric Wang, Sawyer
Birnbaum, Ziyang Luo, Yanis Miraoui, Akash Palrecha, et al. Mercury: Ultra-fast language
models based on diffusion. arXiv preprint arXiv:2506.17298, 2025.

Jason Lee, Elman Mansimov, and Kyunghyun Cho. Deterministic non-autoregressive neural se-
quence modeling by iterative refinement. In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, 2018. URL https://aclanthology.org/
D18-1149/.

Jinsong Li, Xiaoyi Dong, Yuhang Zang, Yuhang Cao, Jiaqi Wang, and Dahua Lin. Beyond fixed:
Training-free variable-length denoising for diffusion large language models. arXiv preprint
arXiv:2508.00819, 2025.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou,
Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. Starcoder: may the source be with
you! arXiv preprint arXiv:2305.06161, 2023.

Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion modeling by estimating the ratios
of the data distribution. In Forty-first International Conference on Machine Learning, 2024. URL
https://openreview.net/forum?id=CNicRIVIPA.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane
Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, et al. Starcoder 2 and the stack v2: The
next generation. arXiv preprint arXiv:2402.19173, 2024.

Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong He, Devi Parikh, Dhruv Batra, Lucy Vander-
wende, Pushmeet Kohli, and James Allen. A corpus and cloze evaluation for deeper understanding
of commonsense stories. In Proceedings of the 2016 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, pp. 839-849,
2016.

Anh Nguyen, Nikos Karampatziakis, and Weizhu Chen. Meet in the middle: A new pre-training
paradigm. arXiv preprint arXiv:2303.07295, 2023.

Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai

Lin, Ji-Rong Wen, and Chongxuan Li. Large language diffusion models. arXiv preprint
arXiv:2502.09992, 2025.

13


https://openreview.net/forum?id=6nbpPqUCIi7
https://openreview.net/forum?id=6nbpPqUCIi7
https://openreview.net/forum?id=cAsVBUe1Rnj
https://aclanthology.org/D18-1149/
https://aclanthology.org/D18-1149/
https://openreview.net/forum?id=CNicRIVIPA

Published as a conference paper at ICLR 2026

Erik Nijkamp, Hiroaki Hayashi, Caiming Xiong, Silvio Savarese, and Yingbo Zhou. Code-
Gen2: Lessons for training LLMs on programming and natural languages. arXiv preprint
arXiv:2305.02309, 2023.

OpenAl Openai 03 and o4-mini system card, 2025. URL https://
cdn.openai.com/pdf/2221c875-02dc-4789-800b—e7758£3722c1/
03-and-o4-mini-system-card.pdf. System Card.

OpenAl, Mohammad Bavarian, Angela Jiang, Heewoo Jun, and Henrique Pondé. New GPT-3
Capabilities: Edit and Insert. OpenAl blog, 2022. URL https://openai.com/blog/
gpt—-3-edit-insert/.

Jingyang Ou, Shen Nie, Kaiwen Xue, Fengqi Zhu, Jiacheng Sun, Zhenguo Li, and Chongxuan
Li. Your absorbing discrete diffusion secretly models the conditional distributions of clean data.
International Conference on Learning Representations, 2025.

Dhruvesh Patel, Aishwarya Sahoo, Avinash Amballa, Tahira Naseem, Tim GJ Rudner, and Andrew
McCallum. Insertion language models: Sequence generation with arbitrary-position insertions.
arXiv preprint arXiv:2505.05755, 2025.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025.
URL https://arxiv.org/abs/2412.15115.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research, 21:140:1-140:67, 2020.

Machel Reid, Vincent Josua Hellendoorn, and Graham Neubig. DiffusER: Diffusion via edit-based
reconstruction. In The Eleventh International Conference on Learning Representations, 2023.
URLhttps://openreview.net/forum?id=nGO9RF9z1yy3.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. Code llama: Open foundation models for code.
arXiv preprint arXiv:2308.12950, 2023.

Subham Sekhar Sahoo, Marianne Arriola, Aaron Gokaslan, Edgar Mariano Marroquin, Alexan-
der M Rush, Yair Schiff, Justin T Chiu, and Volodymyr Kuleshov. Simple and effective masked
diffusion language models. In The Thirty-eighth Annual Conference on Neural Information Pro-
cessing Systems, 2024. URL https://openreview.net/forum?id=L4uaAR4ArM.

ByteDance Seed, Yuyu Zhang, Jing Su, Yifan Sun, Chenguang Xi, Xia Xiao, Shen Zheng, Anxiang
Zhang, Kaibo Liu, Daoguang Zan, et al. Seed-coder: Let the code model curate data for itself.
arXiv preprint arXiv:2506.03524, 2025.

Tianxiao Shen, Victor Quach, Regina Barzilay, and Tommi Jaakkola. Blank language models. arXiv
preprint arXiv:2002.03079, 2020.

Tianxiao Shen, Hao Peng, Ruogi Shen, Yao Fu, Zaid Harchaoui, and Yejin Choi. Film: Fill-in
language models for any-order generation. arXiv preprint arXiv:2310.09930, 2023.

Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis Titsias. Simplified and gen-
eralized masked diffusion for discrete data. In The Thirty-eighth Annual Conference on Neu-
ral Information Processing Systems, 2024. URL https://openreview.net/forum?id=
xcqgSOfHt4g.

Mukul Singh, José Cambronero, Sumit Gulwani, Vu Le, Carina Negreanu, and Gust Verbruggen.
CodeFusion: A pre-trained diffusion model for code generation. In Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing, 2023. URL https://
aclanthology.org/2023.emnlp-main.716/.

14


https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://openai.com/blog/gpt-3-edit-insert/
https://openai.com/blog/gpt-3-edit-insert/
https://arxiv.org/abs/2412.15115
https://openreview.net/forum?id=nG9RF9z1yy3
https://openreview.net/forum?id=L4uaAR4ArM
https://openreview.net/forum?id=xcqSOfHt4g
https://openreview.net/forum?id=xcqSOfHt4g
https://aclanthology.org/2023.emnlp-main.716/
https://aclanthology.org/2023.emnlp-main.716/

Published as a conference paper at ICLR 2026

Mitchell Stern, William Chan, Jamie Kiros, and Jakob Uszkoreit. Insertion transformer: Flexible
sequence generation via insertion operations. In International Conference on Machine Learning,
pp- 5976-5985. PMLR, 2019.

Qiushi Sun, Zhirui Chen, Fangzhi Xu, Kanzhi Cheng, Chang Ma, Zhangyue Yin, Jianing Wang,
Chengcheng Han, Renyu Zhu, Shuai Yuan, et al. A survey of neural code intelligence: Paradigms,
advances and beyond. arXiv preprint arXiv:2403.14734, 2024.

Yi Tay, Jason Wei, Hyung Won Chung, Vinh Q Tran, David R So, Siamak Shakeri, Xavier Garcia,
Huaixiu Steven Zheng, Jinfeng Rao, Aakanksha Chowdhery, et al. Transcending scaling laws
with 0.1% extra compute. arXiv preprint arXiv:2210.11399, 2022.

Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Jason Wei, Xuezhi Wang, Hyung Won
Chung, Dara Bahri, Tal Schuster, Steven Zheng, Denny Zhou, Neil Houlsby, and Donald Met-
zler. UL2: Unifying language learning paradigms. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https://openreview.net/forum?id=
6ruVLB727MC.

Sean Welleck, Kianté Brantley, Hal Daumé Iii, and Kyunghyun Cho. Non-monotonic sequential text
generation. In International Conference on Machine Learning, pp. 6716-6726. PMLR, 2019.

Zhihui Xie, Jiacheng Ye, Lin Zheng, Jiahui Gao, Jingwei Dong, Zirui Wu, Xueliang Zhao, Shansan
Gong, Xin Jiang, Zhenguo Li, et al. Dream-coder 7b: An open diffusion language model for
code. arXiv preprint arXiv:2509.01142, 2025.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V Le.
Xlnet: Generalized autoregressive pretraining for language understanding. In Advances in Neural
Information Processing Systems, volume 32, 2019.

Jiacheng Ye, Zhihui Xie, Lin Zheng, Jiahui Gao, Zirui Wu, Xin Jiang, Zhenguo Li, and Lingpeng
Kong. Dream 7b: Diffusion large language models. arXiv preprint arXiv:2508.15487, 2025.

Andrew Zhang, Anushka Sivakumar, Chiawei Tang, and Chris Thomas. Flexible-length text infilling
for discrete diffusion models. arXiv preprint arXiv:2506.13579, 2025.

Lin Zheng, Jianbo Yuan, Lei Yu, and Lingpeng Kong. A reparameterized discrete diffusion model
for text generation. arXiv preprint arXiv:2302.05737, 2023.

A THE USE OF LARGE LANGUAGE MODELS

We employ large language models primarily for polishing written text—for example, to correct
grammar and improve clarity. However, LLMs do not play a significant role in the core research ac-
tivities, including idea generation, experimental design, or the substantive writing of the manuscript.

B GENERALIZABILITY BEYOND CODE INFILLING

To demonstrate that DREAMON is not limited to code infilling, we further evaluate the model’s
capability of commonsense narrative understanding on the ROCStories corpus [Mostafazadeh et al.
(2016). We fine-tune Dream-7B (Ye et al., 2025)) on the ROCStories training split in two variants:
with DREAMON, and an SFT baseline trained following the recipe in|Ye et al.|(2025). We consider
two setups: (1) Narrative Infilling, where the model generates a missing sentence within the middle
of a story, requiring bidirectional context understanding; and (2) Prefix-guided Generation, where
the model is provided with the preceding story context and generates the final concluding sentence,
serving as a proxy for general completion tasks.

Table [] presents Rouge-L scores across varying initial mask lengths. In both infilling and prefix-
guided settings, the baseline performance degrades significantly when there is a mismatch between
the initialized mask length and the natural length of the missing content (e.g., at lengths 4 and 32). In
contrast, DREAMON utilizes its length-adaptive logic—mediated by [expand] and [delete]-to
achieve superior performance.

15


https://openreview.net/forum?id=6ruVLB727MC
https://openreview.net/forum?id=6ruVLB727MC

Published as a conference paper at ICLR 2026

Crucially, our method exhibits high stability: the generation quality remains consistent regardless of
the initial mask length. This confirms that the proposed length-adaptation mechanism successfully
decouples generation quality from the initial mask length, demonstrating robust generalizability to
creative, variable-length natural language tasks.

Table 4: Rouge-L scores on the ROCStories corpus across variable initial mask lengths.

Initial Mask Length
4 8 16 32
Narrative Infilling

Dream + SFT 19.2 298 265 189
DREAMON 31.6 314 313 30.6

Story Ending Generation

Dream + SFT 163 25.1 224 16.7
DREAMON 245 246 244 24.1

Method

C ABLATION FOR HYPERPARAMETERS

In this section,we provide the results on DreamCoder-7B with different training hyperparameters.
As shown in Figure [5a] the Pass@1 score for single-line infilling reaches its peak—approximately
90.9%—when employing a balanced 1:1 mixture of static and dynamic inverse schedulers. This
result highlights the substantial performance gain achieved through this synergistic combination.
Similarly, the right panel reveals that the model attains its highest Pass@1 score of roughly 90.5% at
a merge probability of 0.5. Guided by these findings, we adopt a 1:1 static/dynamic scheduler mix
ratio and a merge probability of 0.5 in DREAMON configuration to maximize performance.

92 Single-Line Infilling Single-Line Infilling

90.0
91 87.5
85.0
—
®82.5
&
s 80.0
77.5
88 75.0
72.5

87 70.0
0.0 0.2 0.4 0.5 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8

Static/Dynamic Inverse Scheduler Ratio Merge Probability

(a) Result with different scheduler merging ratio. (b) Result with different merging probability

Pmerge

Figure 5: Performance on single-line subset of HumanEvallnfilling-FIM with different hyperparam-
eters during training. The performance is computed as the average pass@1 with mask length 4, 8,
16, 32 and 64.

D INFILLING EXAMPLES

A key advantage of DREAMON lies in its adaptive handling of sequence length variations during
inference. This is achieved through two complementary states [expand] and [delete]. First,
as depicted in Figure [f] DREAMON possesses the capability to expand mask sequences. This dy-
namic expansion allows the model to generate outputs longer than its initial input mask, effectively
preventing truncation and enabling the generation of comprehensive sequences. Second, Figure
showcases the efficacy of the deletion broadcasting mechanism. This mechanism plays a crucial role

16



Published as a conference paper at ICLR 2026

for
for
for
for
for
for
for
for

return False

def hé%;éioée_eleménts(numbéfé,.Eﬁrééﬁol 3:

Check if in given list are any two numbers
closer to each other than given threshold.

for idx, elem in enumerate(numbers):

<|mask|><|mask|><|mask|><|mask]|>
<|expand|><|mask|><|mask|><|mask|>
<|mask|><|mask|><|mask|><|mask]|><|mask]|>
<|mask|><|expand|><|mask|><|mask]|><|mask]|>
<|mask|><|mask|><|mask|><|mask|><|mask|><|mask|>
<|mask|>g|expand|><|mask|><|mask]|><|mask|><|mask|>
<|mask|><|mask|><|mask|><|mask|><|mask|><|mask|><|mask|>
<|mask|><|mask|><|expand|><|mask|><|mask|><|mask|><|mask|>
<|mask|><|mask|><|mask|><|mask|><|mask|><|mask|><|mask|><|mask|>
<|mask|><|mask|><|mask|><|mask|><|mask|><|mask|><|mask]|>
<|mask|><|mask|>g]|expand|><|mask|><|mask|><|mask|><|mask|>
<|mask|><|mask|><|mask|><|mask|><|mask|><|mask|><|mask|><|mask|>
for<|mask|><|mask|><|mask|><|mask|><|mask]|><|mask]|><|mask]|>
for<|mask|>2<|mask|><|mask|><|mask|><|mask|><|mask|>

idx2<|mask|><|mask|><|mask|><|mask|><|mask|>
idx2<|mask|><|mask|><|mask|><|mask]|>
elem<|mask|><|mask|><|mask]|>
elem<|mask|><|expand|><|mask]|>
elem<|mask|><|mask|><|mask|><|mask]|>
elem2<|mask|><|mask|><|mask]|>

idx2
idx2
idx2
idx2
idx2
idx2
idx2
idx2
idx2

distance
if distance < threshold:
return True

elem2
elem2
elem2
elem2
elem2

in<|mask|><|mask|>
in<|mask|><|expand|>
in<|mask|><|mask|><|mask|>
in enumerate<|mask|><|mask|>
in enumerate(numbers<|mask|>
in enumerate(numbers):

=.abs(elem - elem2)

Figure 6: DREAMON adds mask tokens as needed.

Prefix

Suffix

in promoting rapid convergence to the optimal predicted sequence length by selectively removing
redundant mask tokens, thereby streamlining the generation process and improving efficiency.

17



Published as a conference paper at ICLR 2026

def correct_bracketing(brackets: str):
""" brackets is a string of "<" and ">".
return True if every opening bracket has a corresponding closing bracket.

depth = 0
for b in brackets:
if b == "<": .
depth += 1 Prefix

<|mask|><|mask|><|mask|><|mask|><|mask|><|mask|><|mask|><|mask]|>
<|mask|><|mask|><|mask|><|mask|><|mask|><|mask|><|mask|><|mask|>

<|mask|><|mask|><|mask|><|mask|><|mask|> “><|mask]|><|mask]|><|mask]|>
<|mask|><|mask|><|mask|><|mask|><|mask|><|mask|><|mask|>

<|mask|><|mask|><|mask|><|mask|> “><|mask]|><|mask]|><|mask]|><|mask]|>
<|mask|><|mask|><|mask|><|mask]|><|mask|><|mask>

<|mask|>elif<|mask|><|mask|> “><|mask|><|mask|><|mask|><|mask]|>
<|mask|><|mask|><|mask|><|mask|><|mask|><|mask|>

<|mask|>elif<|mask|><|mask|> “><|mask |>E|deIete|S<|mask]|>
<|mask|><|mask|><|mask|><|mask|><|mask|><|mask|><|mask]|>

elif<|mask|><|mask|> "><|mask|>

elif<|mask|> == "><|mask|>
elif<|mask|> == ">": . .
elif b == ">": Infilling
if idx != idx2:
distance = abs(elem - elem2)
if distance < threshold:
return True
return False Suffix

Figure 7: DREAMON deletes excess mask tokens with the deletion broadcasting mechanism.

18



	Introduction
	Preliminary
	Method
	Masked Diffusion with Augmented States for Length Control
	Training
	Inference
	Practical Implementations

	Experiments
	Setup
	Evaluation
	Results

	Analysis
	Performance with Different Mask Lengths
	Expansion Mechanism Design
	Deletion Mechanism Design
	Efficiency Analysis of Deletion Broadcasting

	Related Work
	Conclusions
	The Use of Large Language Models
	Generalizability Beyond Code Infilling
	Ablation for Hyperparameters
	Infilling Examples

