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Abstract
Neuro-symbolic learning (NSL) models complex
symbolic rule patterns into latent variable distri-
butions by neural networks, which reduces rule
search space and generates unseen rules to im-
prove downstream task performance. Central-
ized NSL learning involves directly acquiring data
from downstream tasks, which is not feasible for
federated learning (FL). To address this limitation,
we shift the focus from such a one-to-one inter-
active neuro-symbolic paradigm to one-to-many
Federated Neuro-Symbolic Learning framework
(FedNSL) with latent variables as the FL com-
munication medium. Built on the basis of our
novel reformulation of the NSL theory, FedNSL
is capable of identifying and addressing rule distri-
bution heterogeneity through a simple and effec-
tive Kullback-Leibler (KL) divergence constraint
on rule distribution applicable under the FL set-
ting. It further theoretically adjusts variational
expectation maximization (V-EM) to reduce the
rule search space across domains. This is the first
incorporation of distribution-coupled bilevel op-
timization into FL. Extensive experiments based
on both synthetic and real-world data demonstrate
significant advantages of FedNSL compared to
five state-of-the-art methods. It outperforms the
best baseline by 17% and 29% in terms of un-
balanced average training accuracy and unseen
average testing accuracy, respectively.

1. Introduction
Neuro-symbolic learning (NSL) (Garcez et al., 2008) stands
at the frontier of artificial intelligence, amalgamating sym-
bolic reasoning with the prowess of neural networks. Neuro-
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symbolic work is generally divided into two categories: one
focuses on concept extraction, mapping the neural network’s
inter-node structure into hierarchical relationships, for in-
stance, by using label hierarchies from label classification
(Ciravegna et al., 2023). This method covertly transforms
the network relationships into specific concepts through
methods such as binarization or truth table comparisons
(Ciravegna et al., 2020). The other category predominantly
involves knowledge graph (KG) (Rebele et al., 2016; Liu
et al., 2024b), concentrating on learning semantic logic rules
from natural language among KG. These approaches often
employ sequence models like Transformers to extract these
logic relationships (Qu et al., 2020; Xu et al., 2022) for KG-
related downstream tasks, such as KG completion (Bordes
et al., 2013; Wang et al., 2014), relation extraction (Weston
et al., 2013; Riedel et al., 2013) and entity classification
(Nickel et al., 2011; 2012). These two methods transform
the representations learned by neural networks into first-
order logic (FOL) systems. Through this transformation,
they can use a unified symbolic form to interpret, further
infer, and optimize the representations learned by the neural
networks.

Personalized requirements for NSL can also be reflected
through the FOL symbolic form. Considering a scenario of
personalized movie recommendations based on user pref-
erences. If there are two groups of people, the aged group
of men and the teenage group of men, there should be a
generality and a specificity in the degree of preference for
the type of movie. The more general logic rule that the
neuro-symbolic system can learn is ∀X∀Y ((is(X,Men)∧
attribute(Y,Action Movie)) → like(X,Y )). The more
personalized logic rule will be ∀X∀Y ((is(X,Teenager)∧
attribute(Y,Modern Action)) → like(X,Y )) for the
teenager group of men and ∀X∀Y ((is(X,Aged) ∧
attribute(Y,Classical Action)) → like(X,Y )) for the
aged group of men, as shown in Figure 1 (a). Due to the het-
erogeneity of the rule from data heterogeneity, it is crucial to
seek a trade-off between personalization and generalization
across multiple domains. Moreover, privacy has emerged
as a critical concern with the rise of federated learning (FL)
(Tan et al., 2022; Goebel et al., 2023). In the above scenario,
the system utilizes first-order logic to capture individual
user preferences for movies. These preferences may contain
sensitive information about users’ tastes, interests, or poten-
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PFL
Representative
Work Server Objective Local Constraint

Communication
Medium

Problem
Dimension

Regularization Based pFedMe Weight Generalization
Difference on
Weights Weight Same

Meta-learning Based Per-FedAvg Gradient of Gradient
Adjustments on
New Data Weight Same

Bayesian Based pFedBayes Prior of Weight
KL-Divergence on
Weights Weight Same

Rule-Alignment Based LR-XFL Rule Alignment Quality of Rule Rule, Weight Same

Neuro-Symbolic Based (this work) FedNSL Rule Distribution
KL-Divergence on
Rule

Distribution
Variance Different

Table 1. Our framework stands apart from other approaches in that its problem dimensions vary, making it suitable for a broader range of
federated scenarios. Unlike conventional methods, the decision variables in the optimization objectives for the server and the client are
not the same. This allows for the utilization of entirely different task types to aid the local models, as opposed to merely focusing on
aggregating weights of identical dimensions.

tially even personal characteristics inferred from their movie
choices. Therefore, the personalized data is not shareable
or available during the learning process on the server. This
motivates us to study the following question.

Can we realize neuro-symbolic learning over the heteroge-
neous federated setting?

In this paper, we propose a new distributed framework,
named FedNSL, for federated NSL based on interplay-
ing prior rule distribution learning on the FL server with
many downstream-task-related posterior rule distribution
learnings on the FL client. Leveraging distribution-coupled
bilevel optimization (BO) (Lu, 2023) (rather than the tra-
ditional weight-coupled BO (Dickens et al., 2024)), we
re-formalize neuro-symbolic learning within an FL context,
enabling the identification of heterogeneity as originating
from latent variable distributions of rules between FL server
and clients. We further solve this distribution-coupled prob-
lem using the V-EM that has been tailored for the federated
NSL setting.

The major contributions of this work are as follows:

• To the best of our knowledge, this is the first framework
that addresses the heterogeneity issue of rule induction
under FL settings, and the first time that a distribution-
coupled BO problem has been addressed under FL
settings.

• We theoretically propose a factorizable federated V-
EM algorithm to solve coupled distribution and signifi-
cantly enhance the search efficiency of the huge rule
space in cross-domain scenarios.

• Under stringent cross-visible rule distribution experi-
ment settings, FedNSL outperforms the best baseline
by 17% and 29% in terms of unbalanced average train-
ing accuracy and unseen average test accuracy, respec-
tively.

2. Related Works
2.1. Neuro-Symbolic Learning

NSL represents a cutting-edge fusion in artificial intelli-
gence, blending the learning capabilities of neural networks
(NNs) with the structured reasoning of symbolic logic.
Integration appears in diverse forms, such as extracting
logic concepts by binarizing and pruning neural networks
(Ciravegna et al., 2023), embedding logical structure within
neural network frameworks (Yang et al., 2017), and lever-
aging logical rules as constraints for regularizing neural
networks (Ciravegna et al., 2020; Lu et al., 2021). Addition-
ally, logic inference with differentiable networks (Minervini
et al., 2020) or probabilistic models (Qu et al., 2020) al-
lows for inductive rule learning to produce many generative
logical relationships for complex, real-world relationships.

A particularly active and significant branch within NSL is
the use of KGs for semantic logic reasoning (Zhang et al.,
2021). This approach stands out due to its scalability in
handling large datasets and its ability to infer new logic
knowledge. KG-based NSL falls under the umbrella of
inductive logic learning, leveraging the power of KGs to
learn semantic logical relationships as latent variables with
sequence models like Transformer (Nafar et al., 2023; Ru
et al., 2021; Qu et al., 2020). This method enables the gen-
eration of unseen logical relations, significantly reducing
the search space within large-scale knowledge graphs. How-
ever, dealing with the rule heterogeneity of latent variables
brought about by data heterogeneity remains a challenge.

2.2. Personalized Federated Learning

Personalized federated learning (PFL) (Tan et al., 2021) em-
phasizes aggregating models with privacy protection and
focuses on solving the issue of data heterogeneity in vari-
ous scenarios of federated learning using various methods.
Regularization-based PFL seeks this balance through a for-
mulation that minimizes a difference function combining
local loss and a regularization term, linking local models
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Figure 1. A neuro-symbolic PFL example (a) and a corresponding KG-based rule learning scenario (b). The example (a) illustrates how
a global rule generator and multiple personalized rule scorers cooperate to tackle rule personalization without exposing local data by
transmitting rule distribution probabilities. Meanwhile, the KG-based workflow (b) demonstrates the V-EM mechanism, employing
maximization of ELMO and minimization of KL-divergence constraint-1 (KL-DC1) for inductive rule reference (blue part in (b)).
Additionally, it incorporates a KL-divergence constraint-2 (KL-DC2) to diminish rule heterogeneity (orange part in (b)).

to a global standard, as seen in methods like FedU (Dinh
et al., 2021), pFedMe (T Dinh et al., 2020), and FedAMP
(Huang et al., 2021). Meta-learning based PFL, represented
by pioneering works like Per-FedAvg (Fallah et al., 2020b),
involves a two-step process where the meta model is real-
ized by weight aggregation, followed by each client fine-
tuning on new batch data with the gradient of gradient (i.e.,
second-order information of the loss function). Bayesian-
based PFL, illustrated by pFedGP (Achituve et al., 2021)
and pFedBayes (Zhang et al., 2022), adopts a probabilistic
approach by considering the global weight as a prior distri-
bution of all local weights and using a KL-divergence on
weight distribution as a constraint.

For federated NSL, the objective is to address the rule hetero-
geneity. Although rule heterogeneity originates from data
heterogeneity, the approach in NSL needs to consider the
varying degrees of rule uncertainty across different clients
and avoid extensive rule transmission due to the vast rule
search space. Although LR-XFL (Zhang & Yu, 2023) at-
tempts to mitigate the rule heterogeneity by solving the rule
conflict in rule alignment and assigning different proportions
for global weight aggregation for different clients based on
the quality of rules. However, it cannot avoid exhaustive
rule searching in the process of transferring and aligning
rules, leading to inefficient communication. Furthermore,
any change in local data might necessitate the re-extraction
and realignment of rules, thus failing to effectively handle
the uncertainty of rules.

3. The Proposed FedNSL Approach
In our study, we investigate a distribution-coupled bilevel
optimization framework, specially developed for federated

NSL. This framework is crafted to address multiple chal-
lenges: it reduces rule heterogeneity, boosts communication
efficiency, and decreases rule uncertainty. The enhancement
in communication efficiency is achieved by narrowing the
rule search space, while the reduction in rule uncertainty is
accomplished by learning a rule distribution on the server.
This distribution serves as a means of personalization in FL
for local tasks. Further, leveraging the power of generative
probabilistic models, the proposed framework is able to
help with providing a diverse set of samples following rule
distributions, intending to avoid overfitting issues during the
training process. (Table 1 is a summary of the differences
between ours and other PFL ways.)

3.1. Overview of FedNSL

Figure 1 (b) illustrates our workflow, which utilizes a V-EM
algorithm that integrates prior rule distribution learning on
the FL server with n downstream-task-related posterior rule
distributions formed on the FL clients. On the server level,
a global transformer-based sequence model is employed for
the M-step to learn a rule generator informed by the prior
rule distribution. This rule generator produces multiple
candidate rule bodies r1 ∧ ... ∧ rl corresponding to rule
head rhead for each rule category in rule latent variable z
space. In a KG context, a rule category might be “Person-
Place”, where any rule bodies with the head r1’s NER as
“Person” and the tail rl’s NER as “Place” are classified
under this category. Each client, during the E-step, receives
these candidate rule bodies from the server and utilizes a
rule scorer wi to evaluate and select the most suitable rule
body from all candidates received. The goal is to enhance
the referential representation of rhead, thereby improving
the prediction accuracy of the relation ai (equivalent to
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rhead) for qi in the specific head-relation-tail triplet ⟨h, ? , t⟩
within knowledge graph Gi. The overarching objective is
to refine the rule generator to subsequently enhance the
relation predictor for the downstream task.

It is noteworthy that in the details of algorithm 1, local
data are not exposed by transmitting distributional probabil-
ities in a framework where the prior rule distribution of the
server and posterior rule distribution of local are coupled
to each other. From a privacy-preservation perspective, this
is equivalent to transmitting probabilistic model weights or
parameters, aligning with other baselines in Table 1. To
be specific, the generation of candidate rule bodies can be
achieved by directly sampling with the prior rule distribution
probabilities distributed from the server without avoiding
rule transmitting. Similarly, the posterior distribution proba-
bilities can also be transmitted to the server, where the server
samples new data from these probabilities to incorporate
into the transformer training samples.

3.2. Distribution-Coupled Bilevel Optimization
Objective for FedNSL

To meet the requirement for coping with coupled distribu-
tion, we consider a new FL paradigm. In this setting, we
can communicate the rule distribution. The new federated
neuro-symbolic objective can be formulated in the following
bilevel programming form:

min
θ

E
z̄∼pθ(∪n

i=1w
⋆
i (θ))

T (θ, {∪n
i=1wi

⋆(θ)}; z̄) (1a)

s.t. w⋆
i (θ) ∈ argmin

wi

E
zi∼pwi

(θ)
L(wi, θ; zi, z̄)∀i, (1b)

where

L(wi, θ; zi, z̄) =ℓ(wi, θ; zi)+λDKL(pwi
(zi)||pθ(z̄)). (2)

The T (·) and L(·) respectively denote the upper-level (UL)
and lower-level (LL) loss functions, and i represents the in-
dex of each client. Additionally, pθ refers to the global
prior rule distribution parametrized by weight θ, while
pwi

denotes the posterior rule distribution on the client i
parametrized by the weight wi.

In the new context of FL, the tasks of the FL server and
the local clients correspond to the UL and LL problems in
bilevel optimization, respectively. In this coupled decision-
dependent FL scenario, the distribution learned by the rule
generator with Eq. (1a) on the FL server is dependent on the
decision variable wi on each client in with Eq. (1b) (denoted
by z̄ ∼ pθ(∪n

i=1w
⋆
i (θ))). This dependency arises because

the downstream tasks need to update wi using label ai and
Gi of local data to form a posterior probability, which, once
uploaded to the server, impacts the server’s prior distribution
pθ and global latent rule z̄. Simultaneously, inference and
prediction data for downstream tasks are dependent on the
distributed rules from the server’s rule generator with the
decision variable θ (denoted by zi ∼ pwi

(θ)).

3.3. Rule Distribution Heterogeneity

It is worth noting that the optimization of the
server’s objective function is based on the expectation
Ez̄∼pθ(∪n

i=1w
⋆
i (θ))

T (·) w.r.t. the global z̄ distribution in
Eq. (1a), while the optimization of the client’s objective
function is based on the expectation Ezi∼pwi

(θ) L(·) w.r.t. zi
of each client i in Eq. (1b). This discrepancy between them
is the rule heterogeneity we research in this paper. Only
when all zi∀i are independent and identically distributed
(i.i.d.), z̄ ∼ pθ(∪n

i=1w
⋆
i (θ)) will be i.i.d. with zi ∼ pwi

(θ)
for downstream tasks. To address this, a KL-divergence-
based penalty term DKL(pwi

(zi)||pθ(z̄)) must be added to
the objective function of each client, which constrains the
divergence between the posterior distribution pwi of person-
alized zi and the prior distribution pθ of the globally shared
z̄.

3.4. Solving Objective with Variational Expectation
Maximization to Reduce Search Space

In this section, we will provide specific expressions for the
objective function of the server and each client in Eq. (1a),
Eq. (1b) and DKL(pwi

(zi)||pθ(z̄)) in Eq (2) in a concrete
KG-based neuro-symbolic scenario considering reduce rule
search space. In this scenario, the search space for latent
variable logic rules is extensive, indicating that a vast num-
ber of KG paths could correspond to rhead in the form of
r1 ∧ ... ∧ rl, provided that the NER of r1 and the NER of
rl belong to a specific pair combination. Directly utiliz-
ing a traditional EM algorithm becomes infeasible in this
scenario. While in a traditional EM approach, the poste-
rior can be directly computed at the E-step, it’s not feasible
when dealing with an extensive logic rule space. In this
paper, we theoretically adapt the V-EM approach by em-
ploying an approximate variational prior rule distribution
p̃(z̄) and an approximate variational posterior rule distribu-
tion p̃(zi). These approximations, which involve a reduced
search space, are used in place of the true prior and posterior
rule distributions. We use pθ,w1:n

(z̄) and pwi,θ(zi|qi, ai,Gi)
to denote the true prior and posterior rule distribution in KG
scenario for server and client i respectively. Let first discuss
the case that zi,∀i are i.i.d. with z̄, and the non-i.i.d. case
(heterogeneous case) will be discussed in Section 3.4.3.

Lemma 3.1. Given that zi,∀i are i.i.d. with z̄, the overall
log-likelihood function log (pw1:n,θ(a1:n|q1:n,G1:n)) can be
rewritten as

log (pw1:n,θ(a1:n|q1:n,G1:n))

= LELBO(p̃(z̄), pθ,w1:n(z̄))

+

n∑
i=1

DKL(p̃(zi)||pwi,θ(zi|qi, ai,Gi)), (3)

where LELBO(p̃(z̄), pθ,w1:n(z̄)) is the evidence lower
bound (ELBO) of the log-likelihood function, and
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DKL(p̃(zi)||pwi,θ(zi|qi, ai,Gi)) is the KL-divergence be-
tween approximate posterior distribution and true poste-
rior distribution on each client i. In addition, maximizing
the overall log-likelihood function is achieved by maximiz-
ing the shared LELBO(p̃(z̄), pθ,w1:n

(z̄)) on the FL server
and minimizing DKL(p̃(zi)||pwi,θ(zi|qi, ai,Gi)) on each
FL client i.

Due to the page limit, the detailed proofs of all the lemmas
in the main text are delegated in the appendix.

3.4.1. M-STEP OF V-EM ON SERVER

At the upper server level, given Lemma 3.1, we can max-
imize the lower bound LELBO(p̃(z̄), pθ,w1:n

(z̄)) with the
M-step of the V-EM algorithm.

Lemma 3.2. Given that zi,∀i are i.i.d. with z̄, maximizing
LELBO(p̃(z̄), pθ,w1:n(z̄)) can be converted into maximizing
Ep̃(z̄) log pθ(z̄) on the FL server, namely,

max
θ

Ep̃(z̄) log pθ(z̄). (4)

Given Lemma 3.2, the Eq. (1a) in the distribution-coupled
bilevel FL paradigm on the server can be converted into
maximizing Ep̃(z̄) log pθ(z̄). Furthermore, we observe an
expectation operation concerning p̃(z̄). In the KG context,
by minimizing the loss function LTθ

, sequence models like
a transformer Tθ(r1 ∧ ... ∧ rl|rhead) can generate multiple
candidate rule bodies r1 ∧ ... ∧ rl for each rule head rhead
under a specific distribution. This distribution is specified by
the head-NER and tail-NER combination category and rule
head rhead. Different rule bodies r1∧ ...∧rl can be sampled
from this distribution. As shown in Figure 2 (b), there are
three NER categories, each distinguished by different color
combinations of nodes. Each category specifies a kind of
distribution to which multiple path samples belong. There-
fore, we assume the formation of a multinomial distribution
w.r.t. z̄ can denote a specific NER category distribution,
denoted as follows:

p̃θ(z̄) ∼ Muθ(z̄|N,Tθ(r1 ∧ ... ∧ rl|rhead)), (5)

where Muθ denotes the multinomial distribution, p̃θ(z̄)
stands for the parameterization of prior approximate rule dis-
tribution for p̃(z̄) in LELBO(p̃(z̄), pθ,w1:n(z̄)), and N is the
size of the z̄. Therefore, the above rule generation process
is equivalent to a rule generator performing N samplings
to form J unique rule body samples under a multinomial
distribution related to the rule head. Consequently, Eq.(4)
can further be written as

max
θ

log p̃θ(z̄). (6)

3.4.2. E-STEP OF V-EM ON CLIENT

At the lower client level, given Lemma 3.1, we can minimize
DKL(p̃(zi)||pwi,θ(zi|qi, ai,Gi)) for each client i.

Lemma 3.3. Given that zi,∀i are i.i.d. with z̄, minimizing
the DKL(p̃(z̃)||pwi,θ(z̃|qi, ai,Gi)) can be converted into
maximizing Ep̃(zi) [log pwi(ai|zi, qi,Gi)] in each client i,
i.e.,

max
wi

Ep̃(zi) [log pwi
(ai|zi, qi,Gi)] . (7)

The key here is how to solve the expectation on the vari-
ational distribution of p̃(zi) (i.e, the logic rule space for
pwi

(ai|zi, qi,Gi) in Eq. (7)). In the KG scenario, qi in
knowledge graph Gi is the ⟨h, ? , t⟩, and the ai is denoted
by rhead. In the logic space, the rule generator on the server
generates J unique rule bodies r1 ∧ ... ∧ rl corresponding
to rhead for each query ⟨h, ? , t⟩. At the lower level, our
goal is to select the best rule body for a given rhead. Then,
we shall go through each r from 1 to l along the path of
this rule body r1 ∧ ... ∧ rl. Subsequently, we can use their
corresponding fuzzy values to obtain a fuzzy value for rhead
to improve relation prediction. Therefore, the likelihood
of distribution of answer ai (rhead) is related to all candi-
date rule bodies. Inspired by (Ru et al., 2021), we define
the likelihood of distribution of ai in the logic space with
the fuzzy values of all candidate rule bodies. According to
Lemma 3.3, minimizing loss function ℓ in Eq. (2) can be
converted to maximizing this likelihood as follows:

Ep̃(zi) log pwi(ai|zi, qi,Gi)

= log σ

(
y(rhead) ·

J∑
j=1

wij∈wi
zij∈zi

wij ·max
Gi

l∏
k=1

r1∧...∧rl∈zij

x(rkj)

)
,

≈ 1

2
y(rhead) ·

J∑
j=1

wij∈wi
zij∈zi

wij ·max
Gi

l∏
k=1

r1∧...∧rl∈zij

x(rkj), (8)

where σ denotes the sigmoid function, and y(rhead) denotes
the relation label of the rule head. We use j to denote the in-
dex of all J unique rule bodies in client i, and thenwij ∈ wi

is the learnable weight for the j-th candidate rule body in
client i. Similarly, zij ∈ zi is the rule distribution variable to
denote the j-th candidate rule in client i. Therefore, x(rkj)
is the fuzzy value of relation rkj along the path of the rule
body r1 ∧ ... ∧ rl from candidate rule zij . The fuzzy value
of relation can be represented by the pre-trained embedding
value within the range of [0, 1],

∏
k∈l x(rkj) denotes the

combination of these fuzzy values by multiplying elements
along the given path, and maxGi

denotes the shortest path
across {Gi}. In the Eq. (8), the second-order Taylor expan-
sion also is applied on log pwi

(ai|zi, qi,Gi) to approximate
log σ(·) ≈ 1

2 (·) with dropping the constant term − log(2).

After we have parameterization of
Ep̃(zi) log pwi(ai|zi, qi,Gi), we define a score func-
tion Hwi(r1 ∧ ... ∧ rl|rhead) for J unique candidate rule
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bodies as follows:

Hwi
(r1 ∧ ... ∧ rl|rhead)

=
1

J
· 1
2
y(rhead) ·

J∑
j=1

wij∈wi
zij∈zi

wij ·max
Gi

l∏
k=1

r1∧...∧rl∈zij

x(rkj)

+ log(Tθ(r1 ∧ ... ∧ rl|rhead)), (9)

where Tθ(r1 ∧ ... ∧ rl|rhead) is the prior distribution proba-
bility from the server which is a constant and 1

J is a normal-
ization term.

Lemma 3.4. Suppose that zi,∀i are i.i.d. with z̄ and the
score function is defined in Eq. (9), the approximated poste-
rior p̃wi

(zi) for each client i is given as follows:

p̃wi
(zi) ∝

Muwi

zi|N, exp J∏
j=1

(Hwi
(r1 ∧ ... ∧ rl|rhead))

 , (10)

where p̃wi(zi) stands for the parameterization of
posterior approximate rule distribution for p̃(zi) in
DKL(p̃(zi)||pwi,θ(zi|qi, ai,Gi))

With Lemma 3.4, we can obtain the new posterior zi ∼ p̃wi

in Eq. (1b) which is sent back to the FL server. After that,
the FL server draws new posterior samples for the next
round of V-EM.

3.4.3. CROSS DOMAIN V-EM WITH CONSTRAINT FOR
RULE DISTRIBUTION HETEROGENEITY

When the data distributions are non-i.i.d., the variational
rule distribution p̃(z̃)’s expectation in Eq. (12) in Lemma 3.1
will differentiate into Ep̃(z̄) on the FL server and Ep̃(zi) on
client i for FL personalization purposes. (z̃ is unified symbol
for both z̄ and zi with i.i.d case.) To ensure the validity of
Lemma 3.1 influenced by the rule distribution heterogeneity,
in Eq. (2), we add an additional KL-divergence constraint
of rule latent variable DKL(p̃wi(zi)||p̃θ(z̄)) to penalize the
discrepancy between p̃θ(z̄) and p̃wi(zi) to reduce the rule
distribution heterogeneity. This constraint is added as a
regularization term to the Eq. (2), where λ is the coefficient
that balances the distribution distance between the latent
variance zi of client i and the global latent variance z̄ of the
FL server, and p̃θ(z̄) has been calculated by the server and
distributed to the clients.

Substituting p̃wi(zi) of Eq. (10) and p̃θ(z̄)) of Eq. (5)
into the definition of KL, DKL(p̃wi(zi)||p̃θ(z̄)) can be re-
expressed as:

DKL(p̃wi
(zi)||p̃θ(z̄)) = p̃θ(z̄) log

(
p̃wi(zi)

p̃θ(z̄)

)
= Muθ log

(
Muwi

Muθ

)
. (11)

3.5. Algorithm Design for FedNSL
In the previous sections, we have provided parameterization
for the objective function of the server and each client in
Eq. (1a), Eq. (1b) and DKL(p̃wi(zi)||p̃θ(z̄)) in Eq (2) with
the KG-based neuro-symbolic scenario.

In this section, a corresponding FL neuro-symbolic algo-
rithm instance FedNSL is presented in Algorithm 1. In
Lines 12–15 of the algorithm, the server receives the poste-
rior probability distributions from the clients, creates new
posterior rule samples, and incorporates them into the exist-
ing pool of rule training samples. Then in server maximizing
Eq. (6) can be converted to minimizing the LTθ

under the
assumption of Eq.(5) by utilizing these samples (comprising
rbody-rhead pairs) to address the subtask of Eq.(1a). On the
client side with Lines 4–9 of the algorithm, prior distribution
probabilities for the candidate rules provided by the server
are generated. These candidates are scored using Eq. (9). To
address the subtask of Eq.(1b), the client uses rule scores to
build Eq. (8) and incorporate the KL-divergence constraint
(Eq. (11)) as a regularization term to update the weight w.
Subsequently, the client uses the updated w to establish a
new posterior distribution by Eq. (10). The probabilities of
this posterior distribution are then uploaded to the server,
marking the commencement of the next round. In Line 5,
Line 9, Line 12, and Line 15, the algorithm only transmits
the rule prior and posterior probability values between each
FL client and the FL server to ensure privacy.

Algorithm 1 FedNSL
1: Initialize
2: for round k = 0, 1, 2...,K do
3: //On each FL client:
4: for node i = 0, 1, 2..., n do
5: Receive shared prior probabilities Tθ(rhead) from

the FL server to build a rule distribution and form
J unique rule bodies r1 ∧ ... ∧ rl with it.

6: Score these candidate rule bodies with Eq. (9).
7: Update wi to solve Eq. (1b) by minimizing Eq. (2)

with maximizing Eq. (8) using Eq. (11) as regular-
ization term.

8: Update the new rule’s posterior by Eq. (10) with
w⋆

i .
9: Send the new rule’s posterior to the FL server.

10: end for
11: //At the FL server:
12: Receive rule posterior probability from clients.
13: Generate samples based on posterior probability.
14: Use the generated samples to update θ by maximizing

Eq. (6) to solve Eq. (1a).
15: Distribute new shared prior probabilities Tθ(rhead)

to each client.
16: end for
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Figure 2. Group (a) presents the numerical experiment results. The first row features (a1), (a2) and (a3), which respectively show the
training accuracy of the classifiers for client 1, client 2 and the average results. The second row features (a4), (a5) and (a6), which
respectively show the unseen testing accuracy for the classifiers of client 1, client 2 and the average results. The third row shows
performance comparison results under different ratios of training-testing data heterogeneity: “0% (homo)” means training and testing data
have the same distribution, while “33% (hetero)” and “50% (hetero)” indicate that 33% and 50% of the unseen testing data, respectively,
follow a different distribution from the training data. Group (b) shows the real-data experiment results, including F1-scores in (b1), logic
accuracy in (b2) on both the unseen and seen testing data with and without KL-divergence rule distribution constraints (denoted by “W/O.
KL” and “W. KL”), and (b3) illustrates how different coefficients of KL-divergence constraint affect the personalization performance.
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4. Experimental Evaluation
4.1. Numerical and Real-Data Experiment Setup

We conducted two types of experiments: numerical experi-
ments on synthetic data and real-data experiments using the
document-level DWIE (Document-Level Web Information
Extraction) dataset (Zaporojets et al., 2021). For detailed
information about the dataset, please refer to Appendix A.5.

4.1.1. NUMERICAL EXPERIMENT SETUP

In this NSL-based numerical experiment, a federated learn-
ing server operating as a three-component Gaussian Mix-
ture Model (3-GMM) is set against two federated learning
clients, each equipped with a three-class classifier. The
server’s 3-GMM is designed to mimic the learning of an
overarching distribution of three different rule categories,
as depicted in the server part of Figure 1 (b). Simultane-
ously, the client-side classifiers are intended to model local
rule distributions, each handling two types of rules from the
server’s set. This setup aims to explore the server-client dy-
namic in a neuro-symbolic context, where the server learns a
global prior rule distribution and the clients focus on partial
posterior distributions derived from their classification tasks.
The experiment’s core goal is to assess whether clients can
infer information about an unseen rule distribution through
this federated learning process, without direct access to the
complete rule set.

In our approach, designated as FedNSL, we utilize the
server’s GMM distribution to indirectly facilitate the clients’
access to information about the unseen class. This indirect
access is made possible through the server’s comprehensive
modeling of the overall data distribution, which includes the
unseen class. For comparative analysis with other method-
ologies, all baseline methods are detailed in Table 1. These
methods are anticipated to enable access to information
about the unseen class through different server objectives,
as outlined in Table 1. This comparison aims to highlight
the relative strengths and weaknesses of each approach in a
federated learning context, particularly when dealing with
limited visibility of the complete data set among the clients.

4.1.2. REAL-DATA EXPERIMENT SETUP

Similarly, for the real-data experiment, we design a cross-
visible distribution multi-domain testing setup where each
client is equipped with three distinct sub-datasets: a seen
training set, a seen testing set, and an unseen set. Notably,
the distribution of the unseen set differs from that of the
seen sets and is excluded from model training. Meanwhile,
each client’s unseen testing data has the same distribution
as the seen training data on the neighboring clients. For this,
we partition the 10 NER categories into two groups, each
containing 5 categories. These categories are subsequently

cross-combined to yield 4 unique category combinations,
aligned with the 4 head-tail combinations for the 4 clients,
respectively. A key aspect of our approach involves ensur-
ing that each client’s seen set is misaligned with the unseen
set by one category. This means that each client’s unseen
testing data is the seen training data on the neighboring
clients. This strategy results in the creation of 4 non-i.i.d.
datasets, each characterized by different head-tail NER cat-
egory combinations. A client’s seen rule representation can
help build other clients’ unseen rule representations. It is
worth noting that our evaluation setting is consistent with
baselines in Table 1. They all similarly set distribution shifts
on class labels, and their reasons are the same as ours in
setting distribution shifts on the NER category.

4.2. Results and Discussion

In our numerical experiments, we conducted a detailed com-
parison of the performance of various PFL baseline mod-
els, aiming to exclude the interference of unrelated factors,
which often mix in real data samples, as shown in Group (a)
of Figure 2. Additionally, we performed ablation studies on
a real-world, KG-based dataset. This approach was taken
to further assess the impact of upstream rule learning on
downstream knowledge graph relationship predictions, as
well as its performance on semantic rules, as depicted in
Group (b) of Figure 2.

4.2.1. NUMERICAL EXPERIMENT RESULTS

Group (a) of Figure 2 shows the performance comparison
of various baselines listed in Table 1 on the training set
and the unseen test set for the numeric experiment. In the
unseen test set with three classes, one class label remains
unseen throughout the training, showcasing the information
transmission capabilities of different federated server objec-
tives. Specifically, (a1), (a2), and (a3) present the results of
individual clients and the average on the training set, while
(a4), (a5), and (a6) correspond to the results on the unseen
test set. It can be observed that due to unbalanced classes,
mishandling heterogeneity can result in high accuracy for
some classes and low for others, creating a competing accu-
racy scenario among clients. This explains why the baseline
methods excel in (a2), but perform poorly in (a1). FedNSL
can balance this complementary heterogeneity-induced com-
peting accuracy problem, achieving superior overall average
results in both average training accuracy in (a3) and unseen
testing accuracy in (a6). We further tested the performance
of FedNSL in comparison with other baselines under differ-
ent levels of data heterogeneity in the third row of Figure 2.
The results show that the higher the degree of heterogeneity,
the more advantageous FedNSL is. Therefore, compared
with other methods, FedNSL addresses the issue of comple-
mentary training-testing data heterogeneity across clients
more effectively.
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4.2.2. REAL-DATA EXPERIMENT RESULTS

We compare the outcomes of two sets of experiments using
F1-scores on both the unseen and seen testing data. “W/O.
KL” and “W. KL” denote experiments conducted without
and with KL-divergence rule distribution constraints, re-
spectively. The results in Figure 2 (b1) show that intro-
ducing a KL-divergence constraint to both the seen and
unseen testing data groups leads to convergence at higher
F1-scores. Conversely, the unseen testing data group with-
out KL-divergence adjustment achieves convergence but
at lower F1-scores. The seen testing data group without
KL-divergence constraint exhibits oscillations and does not
achieve convergence under the same conditions. Addition-
ally, we analyze the impact of varying KL coefficients on
F1 score results for the unseen dataset. The results in Fig-
ure 2 (b3) demonstrate that different coefficients indeed
influence the personalization performance.

To further assess the logical reasoning capabilities of
FedNSL, we adopt the 39 golden first-order logic predi-
cates from the DWIE dataset (Zaporojets et al., 2021) for
consistency checks after updates by the rule selector model
in the lower level, following (Ru et al., 2021). These predi-
cates include atomic formulas such asmember of(X,Y )∧
sport player(X) → player of(X,Y ). Logic accuracy is
evaluated by plugging predicted relationships from the test
set into the rule head and body, respectively. The logic accu-
racy curves in Figure 2 (b2) correspond to the four groups
of experiments mentioned earlier. Consistency with the F1
score results shown in Figure 2 (b1) is evident, with the
group exhibiting oscillations achieving the lowest logic ac-
curacy. The groups with KL-divergence constraints achieve
higher logic accuracy compared to the groups without such
constraints.

5. Conclusions
In summary, this work introduces a pioneering framework
for federated learning, marking the first instance of address-
ing rule induction heterogeneity and the novel application
of distribution-coupled Bilevel Optimization. Our proposed
factorizable federated V-EM algorithm effectively manages
vast rule search spaces in cross-domain scenarios, signifi-
cantly boosting computational efficiency. Additionally, our
method has demonstrated superior performance in experi-
mental setups making substantial theoretical and practical
contributions to the field.
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A. Supplemental Material
In this material, we provide more detailed discussions on the theory and realization of our FedNSL.

A.1. Proof of Lemma 3.1

Proof. Firstly, in the case of i.i.d. rule distribution between the FL server and clients, we represent the rule latent variable of
zi and z̄ using the unified symbol z̃. Hence, it has z̃ = z̃1:n. We define p̃(z̃) as the variational distribution on the latent rule
variable z̃. Consequently, we can obtain

log (pw1:n,θ(a1:n|q1:n,G1:n))

=

∫
p̃(z̃) log (pw1:n,θ(a1:n|q1:n,G1:n)) dz̃

=

∫
p̃(z̃) log

(
pw1:n,θ(a1:n|q1:n,G1:n)pw1:n,θ(z̃|a1:n, q1:n,G1:n)

pw1:n,θ(z̃|a1:n, q1:n,G1:n)

)
dz̃

=

∫
p̃(z̃) log

(
pw1:n,θ(a1:n, z̃|q1:n,G1:n)

pw1:n,θ(z̃|a1:n, q1:n,G1:n)

)
dz̃

=

∫
p̃(z̃) log

(
pw1:n,θ(a1:n, z̃|q1:n,G1:n)p̃(z̃)

pw1:n,θ(z̃|a1:n, q1:n,G1:n)p̃(z̃)

)
dz̃

=

∫
p̃(z̃) log

(
pw1:n,θ(a1:n, z̃|q1:n,G1:n)

p̃(z̃)

)
dz̃ −

∫
p̃(z̃) log

(
pw1:n,θ(z̃|a1:n, q1:n,G1:n)

p̃(z̃)

)
dz̃

= Ep̃(z̃) log

(
pw1:n,θ(a1:n, z̃|q1:n,G1:n)

p̃(z̃)

)
− Ep̃(z̃) log

(
pw1:n,θ(z̃|a1:n, q1:n,G1:n)

p̃(z̃)

)
= Ep̃(z̃) log

(
pw1:n,θ(a1:n, z̃|q1:n,G1:n)

p̃(z̃)

)
−

n∑
i=1

Ep̃(z̃) log

(
pwi,θ(z̃|ai, qi,Gi)

p̃(z̃)

)
. (12)

Following this, the term Ep̃(z̃) log
(

pw1:n,θ(a1:n,z̃|q1:n,G1:n)

p̃(z̃)

)
in Eq (12) is defined as LELBO(p̃(z̃), pw1:n,θ(z̃)), which is the

evidence lower bound (ELBO) of the log-likelihood function. Additionally, the term −Ep̃(z̃) log
(

pwi,θ
(z̃|ai,qi,Gi)

p̃(z̃)

)
aligns

with the definition of KL-divergence, denoted by DKL(p̃(z̃)||pwi,θ(z̃|qi, ai,Gi)). Thus, we can rewrite Eq (12) as:

log (pw1:n,θ(a1:n|q1:n,G1:n))

= LELBO(p̃(z̃), pw1:n,θ(z̃)) +

n∑
i=1

DKL(p̃(z̃)||pwi,θ(z̃|qi, ai,Gi)). (13)

Since ∀i, KL-divergence DKL(p̃(z̃)||pwi,θ(z̃|qi, ai,Gi)) is non-negative, so the
∑n

i=1DKL(p̃(z̃)||pwi,θ(z̃|qi, ai,Gi)) is non-
negative. the ELBO LELBO(p̃(z̃), pw1:n,θ(z̃)) is maximized when

∑n
i=1DKL(p̃(z̃)||pwi,θ(z̃|qi, ai,Gi)) = 0. Additionally,

the
∑n

i=1DKL(p̃(z̃)||pwi,θ(z̃|qi, ai,Gi)) can be factored into each client i. Therefore, considering the i.i.d. case where
z̄ = zi = z̃, for FL setting, maximizing the overall log-likelihood function is achieved by maximizing the shared
LELBO(p̃(z̄), pθ,w1:n

(z̄)) on FL server and minimizing DKL(p̃(zi)||pwi,θ(zi|qi, ai,Gi)) on each client i, and the Eq (13)
can be rewritten as Eq (3).

A.2. Proof of Lemma 3.2

Proof. Following the Lemma 3.1, we can maximize LELBO(p̃(z̃), pw1:n,θ(z̃)) on the FL server using the M-step of the
V-EM algorithm by updating the decision weight θ. The term LELBO is further rewritten as:

LELBO(p̃(z̃), pw1:n,θ(z̃))

= Ep̃(z̃) log

(
pw1:n,θ(a1:n, z̃|q1:n,G1:n)

p̃(z̃)

)
= Ep̃(z̃) log pw1:n

(a1:n|z̃, q1:n,G1:n) + Ep̃(z̃) log pθ(z̃))− Ep̃(z̃) log p̃(z̃). (14)
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There is only one term, Ep̃(z̃) log pθ(z̃), that is relevant to pθ. Therefore, maxw1:n,θ LELBO(p̃(z̃), pw1:n,θ(z̃)) can be
converted into maxθ Ep̃(z̃) log pθ(z̃).

A.3. Proof of Lemma 3.3

Proof. Following the Lemma 3.1, the E-step on each client i is designed to minimize DKL(p̃(z̃)||pwi,θ(z̃|qi, ai,Gi)). The
objective of the E-step on each client i is to update p̃wi,θ(z̃), which can be formalized as:

min
p̃wi,θ

(z̃)
DKL(p̃wi,θ(z̃)||pwi,θ(z̃|qi, ai,Gi)). (15)

Then, we re-write Eq. (15) as a variational distribution expectation form (Ep̃(z̃)) to transform the objective of finding a
probability density function (PDF) for minp̃wi,θ

(z̃) into finding a solution weight for maxwi,θ as follows,

max
wi,θ

Ep̃(z̃) log(pwi,θ(z̃|qi, ai,Gi))

= max
wi,θ

Ep̃(z̃) log(pwi
(ai|z̃, qi,Gi)pθ(z̃))

= max
wi,θ

Ep̃(z̃)(log pwi
(ai|z̃, qi,Gi)) + Ep̃(z̃)(log pθ(z̃)). (16)

From Eq. (16), it can be observed that the term Ep̃(z̃)(log pθ(z̃) has been fixed in the M-step and has no relationship with
wi. Ep̃(z̃)(log pwi(ai|z̃, qi,Gi)) is key for solving Eq. (15) and it is a function in terms of wi. Therefore, the lower-level
optimization problem on the client i can be formalized as

max
wi

Ep̃(z̃) [log pwi
(ai|z̃, qi,Gi)] . (17)

A.4. Proof of Lemma 3.4

Proof. Following the Lemma 3.3, after we get lower level solution weight w⋆ to meet Eq. (15), we can also use w⋆ to
calculate the approximated posterior for uploading to server for next round of V-EM. For that, we re-write p̃wi,θ(z̃) in the
following log-form, i.e.,

p̃wi,θ(z̃) ∝ exp(log(Ep̃(z̃)pwi,θ(z̃|qi, ai,Gi)))

∝ exp(log(Ep̃(z̃)pwi(ai|z̃, qi,Gi)pθ(z̃)))

∝ exp((log(Ep̃(z̃)pwi(ai|z̃, qi,Gi)) + (log(Ep̃(z̃)pθ(z̃)))). (18)

Since we can get Ep̃(z̃) log(pwi(ai|z̃, qi,Gi)) with Eq. (8) and get Ep̃(z̃) log(pθ(z̃)) from Eq. (5), we can get the approximated
posterior as follows:
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p̃wi,θ(z̃)

∝ exp

1

2
y(rhead) ·

J∑
j=1

wij∈wi

zij∈z̃

wij ·max
Gi

l∏
k=1

r1∧...∧rl∈zij

x(rkj) + log(Muθ(z̃|N,Tθ(r1 ∧ ... ∧ rl|rhead)))



∝ exp

1

2
y(rhead) ·

J∑
j=1

wij∈wi

zij∈z̃

wij ·max
Gi

l∏
k=1

r1∧...∧rl∈zij

x(rkj) + log

 N !∏J
j=1 nj !

J∏
j=1

Tθ(r1 ∧ ... ∧ rl|rhead)



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y(rhead) ·
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zij∈z̃

wij ·max
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l∏
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r1∧...∧rl∈zij
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N !∏J

j=1 nj !

)
+ log

 J∏
j=1

Tθ(r1 ∧ ... ∧ rl|rhead)




∝ exp

1
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y(rhead) ·

J∑
j=1

wij∈wi

zij∈z̃

wij ·max
Gi

l∏
k=1

r1∧...∧rl∈zij

x(rkj) + log

(
N !∏J

j=1 nj !

)
+

J∑
j=1

log(Tθ(r1 ∧ ... ∧ rl|rhead))
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J
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y(rhead) ·
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wij∈wi

zij∈z̃

wij ·max
Gi

l∏
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r1∧...∧rl∈zij

x(rkj) + log(Tθ(r1 ∧ ... ∧ rl|rhead))

+ log

(
N !∏J

j=1 nj !

) ,

(19)

where nj is the number of times a rule appears in the set z̃.

According to the definition of Hwi
(·) in Eq (9), we can rewrite Eq. (19) as follows:

∝ exp

 J∑
j=1

Hwi
(r1 ∧ ... ∧ rl|rhead) + log

(
N !∏J

j=1 nj !

)
∝ exp

(
log

(
N !∏J

j=1 nj !

))
exp

 J∑
j=1

Hwi
(r1 ∧ ... ∧ rl|rhead)


∝ N !∏J

j=1 nj !

J∏
j=1

exp (Hwi
(r1 ∧ ... ∧ rl|rhead))

∝ Muwi

z̃|N, J∏
j=1

exp (Hwi
(r1 ∧ ... ∧ rl|rhead))

 . (20)

A.5. Dataset

In our numerical experiment, we synthesized a dataset by generating 600 two-dimensional data points across three classes,
each defined by a distinct Gaussian distribution with specific means and covariances: Class 0 around [20, 20] with covariance
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0.5 0.1
0.1 0.5

]
, Class 1 at [10, 10] with

[
0.5 0.2
0.2 0.5

]
, and Class 2 positioned at [2, 2] with

[
0.5 −0.3
−0.3 0.5

]
. Labels [0, 1, 2] were

assigned to these distributions. For data division, the first client’s training set included points from Classes 0 and 1, and 150
points from Class 2 were randomly relabeled with [0, 1, 2], using the rest as the test set. The second client’s training set
consisted of Classes 1 and 2 points, with additional points from Class 0 randomly labeled for training and some reserved for
testing.

For the real-data experiment, we utilize a document-level DWIE (Document-Level Web Information Extraction) dataset
(Zaporojets et al., 2021) that has been pre-processed following the methods outlined in (Ru et al., 2021). Table 2 encompasses
all the first-order logic rule predicates involved in the dataset. This dataset contains detailed word type statistics, particularly
named entity recognition (NER) categories, for all selected entity words within news articles. It encompasses 10 different
NER categories. The dataset also features annotated relationships between entities, spanning a total of 65 relationship
categories. We leverage these relation annotations among entities to formulate a relation prediction task. The dataset
comprises 799 documents in total, categorized into 10 NER types. These documents are distributed across 4 FL clients,
with each client containing 200 documents, except for the last client, which holds 199 documents. Within each client, the
documents are further divided into training and testing subsets, maintaining a 3 : 1 ratio.

A.6. Model Setup

For numeric experiment, we use an integrated model setup combining deep learning classifiers with a GMM tailored for
a federated learning context. The setup features two neural network classifiers, each with an input dimension of 2 to
accommodate the two-dimensional features of our synthetic dataset, a hidden layer comprising 64 units to capture complex
data patterns without overfitting, and an output layer with 3 units equipped with a softmax function for 3-class classification.
Parallelly, the GMM is configured with 3 components to correspond with the dataset’s 3 classes, where the means are
initialized based on preliminary data analysis or classifier outputs, and covariance matrices are set to reflect initial data
variance, facilitating adaptive learning through the EM processing.

For the real-data experiment, a transformer model at the server encodes NER categories and relations through unique
numerical identifiers. The embedding layer size for relations is (256, 2R+ 1), with R representing the number of relations
(65 in this case). Similarly, the NER category embedding layer has dimensions (256, 10), reflecting the 10 distinct NER
categories. The model contains two encoding and decoding layers, and an output layer of size (256, 2R + 1). The input
for the transformer is obtained by concatenating a rule head and a rule body, both of size 4. Any shortfall is supplemented
with padding symbols and masked using a 4 × 4 position mask. Each rule head generates a set of 50 rule bodies on
average, and these candidates are then transmitted to the lower-level model, with duplicates removed. On the client side,
the rule selector model dynamically initializes the weights for each communication round. These weights are tailored to
the candidate rule bodies originating from the upper level, with their variability stemming from the stochastic nature of
the upper-level optimization process and the probabilistic characteristics of the generated rules. The weight group size
is denoted as (K,J × 1), where K is the number of rule head categories. Each weight group member corresponds to a
candidate rule body, with its dimensions as J × 1.

A.7. Related Works

A.7.1. COMPARISON OF EXISTING PERSONALIZATION FEDERATED LEARNING

We additionally analyze current personalized federated learning (PFL) paradigms to demonstrate the necessity for a new
PFL approach, one that more effectively addresses the requirements of federated learning for neuro-symbolic learning. Each
of these paradigms offers a different strategy for integrating personalization into Federated Learning, aiming to balance the
benefits of a global model with the specific needs of individual clients:

• Regularization-Based PFL

The formulation min{wk}
∑K

k=1

(
Fk(wk) + λ∥wk − wg∥2

)
in regularization-based PFL is designed to find a balance

between local model accuracy and global model consistency. In this setting, each client k works on optimizing its own
model parameters wk, guided by its local loss function Fk(wk). The regularization term λ∥wk −wg∥2 acts as a bridge,
tying the local models to the global model parameters wg. The regularization coefficient λ is crucial here; it controls
how closely each local model adheres to the global model, ensuring that while each model is personalized for local
data, it doesn’t diverge significantly from the shared global insights. This formulation can cover a range of methods,
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¬spouse of → spouse of ¬vs→ vs
won vs→ vs ¬won vs→ vs
¬child of → parent of ¬parent of → child of
ministry of → agency of agency of -x ∧ gpe0 → agency of
agency of ∧ ¬gpe0 → agency of -x agent of -x ∧ gpe0 → agent of
agent of ∧ ¬gpe0 → agent of -x minister of → agent of
head of gov → agent of head of state→ agent of
citizen of -x ∧ gpe0 → citizen of citizen of ∧ ¬gpe0 → citizen of -x
minister of -x ∧ gpe0 → minister of minister of ∧ ¬gpe0 → minister of -x
head of state-x ∧ gpe0 → head of state head of state ∧ ¬gpe0 → head of state-x
head of gov-x ∧ gpe0 → head of gov head of gov ∧ ¬gpe0 → head of gov-x
in0-x ∧ gpe0 → in0 in0 ∧ ¬gpe0 → in0-x
in2 ∧ in0 → in0 in1 ∧ in0 → in0
based in2 ∧ in0 → based in0 based in1 ∧ in0 → based in0
event in2 ∧ in0 → event in0 event in1 ∧ in0 → event in0
head of → member of coach of → member of
spokesperson of → member of mayor of → head of gov
directed by → created by ¬played by ∧ character in→ plays in
institution of → part of based in0-x ∧ gpe0 → based in0
based in0 ∧ ¬gpe0 → based in0-x

Table 2. First-order logic predicate using in evaluation

including FedU (Dinh et al., 2021), pFedMe (T Dinh et al., 2020), FedAMP (Huang et al., 2021).

• Meta-Learning Based PFL

Meta-learning (Fallah et al., 2020a) in the federated setting, represented by the two-step process of w′ = w −
β∇w

∑K
k=1 Fk(w) followed by wk = w′ − α∇w′Fk(w

′) for each client k, is about learning a model that can quickly
adapt to new environments or data distributions. The initial step adjusts the global model parameters w using a learning
rate β and the aggregated loss from all clients. This forms an updated global modelw′. Then, in a crucial personalization
step, each client fine-tunes this model to their local dataset. The local adaptation uses another learning rate α, allowing
each client to adjust the model w′ to better fit their specific data characteristics, resulting in a personalized model wk.
The Per-FedAvg (Fallah et al., 2020b) represents pioneering research work among meta-learning based PFL works.

• Multi-Task Based PFL

In multi-task based PFL e.g., (Smith et al., 2017; Wu et al., 2020; Li & Wang, 2019), encapsulated by problem
minwg,{wk}

∑K
k=1 Fk(wg, wk), the learning process is akin to handling multiple related tasks simultaneously. Here,

wg denotes the shared global parameters that capture commonalities across all clients, while {wk} represents a collection
of client-specific parameters, allowing each client to address its unique aspects. The loss function Fk(wg, wk) for
each client is influenced by both of these sets of parameters. This hybrid parameter system enables the model to learn
general patterns through the global parameters while also catering to specific client requirements through the local
parameters.

• EM-Based PFL

The EM-based approach in PFL (e.g., FedSparse (Louizos et al., 2021) and FedEM (Dieuleveut et al., 2021)) is
characterized by a cyclic process of local and global updates. The local updates (E-step) involve each client working
with their data and the current global model to estimate local parameters or latent variables. The global update (M-step)
then synthesizes these local estimates to refine the global model. This iterative process, while not represented by a
single formula, effectively combines the benefits of personalized models with the strength of a globally consistent
framework. The EM cycle ensures that each client’s model is individually tailored, while the global model continuously
integrates these individual learnings, maintaining a coherent overall structure.

• Bayesian-Based PFL
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Bayesian methods in PFL, described by P (wk|Dk, wg) ∝ P (Dk|wk)P (wk|wg), offer a probabilistic approach to
model personalization. In this framework, P (wk|Dk, wg) represents the posterior distribution of the parameters for
each client k, given their local data Dk and the global parameters wg. This approach combines the likelihood of
observing the local data under the given parameters (P (Dk|wk)) with a prior distribution that ties the local parameters
to the global model (P (wk|wg)). This probabilistic blending allows each client’s model to be personalized based on
their data while being informed and constrained by the broader insights of the global model. In related works, their
algorithmic instances are slightly different. pFedGP (Achituve et al., 2021) employs a Gaussian process tree, while
pFedBayes (Zhang et al., 2022) utilizes a Bayesian Neural Network (BNN). FLOA (Liu et al., 2024a) uses Laplace
approximation in Bayesian theory to interpret FL heterogeneity, realizing the discussed paradigm.

However, the mentioned above PFL frameworks fail to deal with distribution-coupled federated NSL between server and
local levels. The reasons are twofold: first, except for EM-based PFL methods like FedEM, others can’t handle PFL
involving hidden variables. Second, even in existing EM-based PFLs, such as FedEM, the weights learned are only relevant
to local tasks and do not involve additional weights for hidden variables, meaning they can’t generate inductive samples.
Hence, a new framework capable of handling nested learning of local weights and weights for hidden variables is needed.

A.8. Further Optimizing Client-Side Computational Complexity

We have optimized server-side computational complexity by learning a generative rule distribution to sample the unseen rule
to reduce the computational complexity. In this part, we further strive to enhance our algorithm by refining the client-side
optimization process of the score function to reduce client-side computational complexity.

Recall that in Algorithm 1, at the lower level, the candidate rule fuzzy value is calculated in local objective function Eq.(8)
and score function Eq.(9). These functions calculate the fuzzy value for candidate rules by maximizing across the entirety of
Gi. Given the time-intensive nature of this step, optimizing the fuzzy value calculation becomes necessary.

The core concept of an improved version of algorithm 2 revolves around utilizing original fuzzy value calculation method
solely for computing the posterior during the initial I communication rounds, aiming to establish a fundamental rule
generator. In subsequent stages, an innovatively designed path-based score function is adopted, replacing the graph-based
score function for saving computational time.

Te be specifically, we use maxl k=1
r1∧...∧rl∈zij

x(rkj) as a replacement for maxGi

∏l
k=1

r1∧...∧rl∈zij
x(rkj) in Eq.(8) and Eq.(9).

In the latter expression, which is a graph-based score function,
∏

k∈l x(rkj) represents the multiplication of score values
along a given path, and maxGi indicates finding the shortest path across {Gi}. This operation of finding the shortest path is
time-consuming. In the former expression, the process is simplified by directly adopting the maximum value among the
corresponding score values along the trajectory of the rule body. This serves as a comprehensive score for the rule body in
the novel path-based score function.

After this replacement, the new local objective function can be written as follows:

Ep̃(zi) log pwi(ai|zi, qi,Gi)

≈ 1

2
y(rhead) ·

J∑
j=1

wij∈wi
zij∈zi

wij ·
l

max
k=1

r1∧...∧rl∈zij

x(rkj). (21)

And the new score function H̃wi
can be written as follows:

H̃wi
(r1 ∧ ... ∧ rl|rhead)

=
1

J
· 1
2
y(rhead) ·

J∑
j=1

wij∈wi
zij∈zi

wij ·
l

max
k=1

r1∧...∧rl∈zij

x(rkj) + log(Tθ(r1 ∧ ... ∧ rl|rhead)). (22)

The new approximated posterior M̃uwi can be written as follows:
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Algorithm 2 Fast-FedNSL
1: Initialize
2: for round k = 0, 1, 2...,K do
3: //On each FL Client:
4: for node i = 0, 1, 2..., n do
5: Receive shared prior probabilities Tθ(rhead) from the FL server to build a rule distribution and sample J unique

rule bodies r1 ∧ ... ∧ rl with it.
6: if k < I then
7: Score these candidate rule bodies with Eq. (9).
8: Update wi to solve Eq. (1b) by minimizing Eq. (2) by maximizing Eq. (8) and using Eq. (11) as a regularization

term.
9: Update the new rule’s posterior by Eq. (10) with w⋆

i .
10: else
11: Score these candidate rule bodies with Eq. (22).
12: Update wi to solve Eq. (1b) by minimizing Eq. (2) by maximizing Eq. (21) and using Eq. (24) as a regularization

term.
13: Update the new rule’s posterior by Eq. (23) with w⋆

i .
14: end if
15: Send the new rule’s posterior to the FL server.
16: end for
17: //At the FL server:
18: Receive rule posterior probability from clients.
19: Generate samples based on posterior probability.
20: Use the generated samples to update θ by maximizing Eq. (6) to solve Eq. (1a).
21: Distribute new shared prior probabilities Tθ(rhead) to each client.
22: end for

M̃uwi

z|N, exp J∏
j=1

(Hwi
(r1 ∧ ... ∧ rl|rhead))

 . (23)

The new DKL(p̃wi(zi)||p̃θ(z̄)) also need be re-expressed as:

Muθ log

(
M̃uwi

Muθ

)
. (24)

For that, our new algorithm is described at Algorithm 2 as follows:

In lines 7-9 of Algorithm 2, when the current round falls within the initial I steps, we utilize the original graph-based
approach maxGi

∏l
k=1

r1∧...∧rl∈zij
x(rkj) to calculate the fuzzy value across the entire graph Gi. This uses rule scores to

construct Eq. (8) and incorporates the KL-divergence constraint (Eq. (11)) as a regularization term to update the weight w.
The updated w is then used to establish a new posterior distribution by Eq. (10). This approach rectifies the rule bodies
using local graph path information, aligning the equivalent paths distributed by the server with the true equivalent paths
within Gi, thereby mitigating the need for time-consuming path searches to rectify deviations in specific equivalent paths.

In lines 11-13 of Algorithm 2, it is noted that once a foundational and relatively stable rule generator is established, performing
a graph search in each round is no longer necessary. Instead, the path distributed by the server is directly utilized, selecting
the maximum fuzzy value along the path to effectively represent the score of the current path (maxl k=1

r1∧...∧rl∈zij

x(rkj)).

This process assists in building a new corresponding Eq. (21) and incorporates the corresponding KL-divergence constraint
(Eq. (24)) as a regularization term to update the weight w. The updated w is then used to establish a corresponding posterior
distribution by Eq. (23).
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Algorithm 2 introduces two notable advantages:

• Reduce fluctuations between upper-lower levels: The algorithm effectively avoids excessive specializations when
the lower level updates the fuzzy values along the trajectory of the rule body of server-distributed rules. Graph-based
fuzzy value updating method will result in calculating the fuzzy score totally depending on local specific information
which can lead to volatile overall performance fluctuations. As illustrated in Figure 3, plot (b) showcases the F1 scores
using Algorithm 2, achieving nearly identical performance and reducing fluctuations between upper-lower levels in
both seen and unseen data scenarios.

• Reduce time complexity: This algorithm significantly reduces time complexity by only calculating fuzzy values
along the trajectory of the rule body but not updating fuzzy values across the graph. More details are in the section on
Computational Complexity Analysis for Cross-Domain Learning.

Figure 3. Path-based score function has a better effect on reducing the fluctuations than the graph-based score function.

A.9. Computational Complexity Analysis

In this section, we present an example to compare different computational complexity with different ways to achieve
KG-graph information communication. As depicted in Figure 1 (b), consider the relation a in the triplet < 5, a, 6 > as an
instance. Our objective is to enhance the prediction accuracy of relation a by identifying more new rule bodies (equivalent
paths from node 5 to node 6) to infer and update the fuzzy value of rule head a. In domain 1, there are two equivalent paths
from node 5 to node 6, (b, c) and (e, a, c), while in domain 2, paths (b, c) and (f, h) include a distinct path (f, h) that offers
new information from another domain. Increasing sample diversity is known to reduce error rates and improve relationship
prediction accuracy.

To update all relation edge prediction values across these two domains by discovering new equivalent edges, we consider
four approaches:

• Deterministic Graph Communication: In this baseline approach, the client-side time complexity does not require
path searching. On the server side, adjacency matrices and fuzzy values from both domains are transmitted to the server.
The server then merges these matrices to create a larger dimensional adjacency matrix with corresponding relations.
The most time-consuming phase is searching for paths within the merged graph space, seeking correspondences
between entities from different graphs, represented by ϕ = {(e1i, e2j) | e1i ∈ E1, e2j ∈ E2}, resulting in a search
space size SKG = |E1|×|E2|, which is enormous due to the vast size of entities.

• Deterministic Rule Communication: In this approach from (Zhang & Yu, 2023), the client-side time complexity
involves an intra-domain maximum weight path search for each domain using a uniform NER-pair query pair as
endpoints to find all rules. On the server side, the resulting paths are merged based on the uniform NER-pair query
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pair, aligning path rules between systems (ψ = {(r1i, r2j) | r1i ∈ L1, r2j ∈ L2}), leading to a search space size
SLR = |L1|×|L2|. While rule alignment provides a better search space scenario compared to entity alignment, it is
deterministic, and any graph change necessitates re-alignment.

• Stochastic Rule Distribution Communication (Algorithm 1): In Algorithm 1, the client-side requires an intra-domain
path search for scoring candidate rules, confined to paths distributed by the server. The server learns a rule distribution
for alignment, a stochastic method (θ = {(d1i, d2j) | d1i ∈ D1, d2j ∈ D2}), where |D1| and |D2| denote the number
of distributed rules. The search space size SRD = |D1|×|D2| is significantly smaller than SLR and SKG, involving
only communication with distribution probability.

• Stochastic Rule Distribution Communication (Algorithm 2): For Algorithm 2, the client side only requires a limited
intra-domain path search during the initial I rounds. The server’s time complexity is the same as in Algorithm 1 and
much less than the two deterministic methods.

A.10. Sensitivity of Adding Ratio of Posterior Sample for Upper-Level Training

To examine whether the incorporation of posterior samples obtained from the lower-level (E-step) can effectively impact the
upper-level rule updates in the M-step, we conducted a total of 9 experiments ranging from a sample inclusion ratio of 10%
to 90% as shown in the Figure 4. This comparison aimed to assess the varying effects of different ratios on the training loss
of the upper-level rule trainer during its first round of training.

The results indicate that a mere increase in the inclusion ratio of posterior samples from 10% to 20% has a substantial effect
in reducing the training loss of the upper-level model. Subsequently, as this ratio is uniformly raised, the loss continues to
decrease, albeit at a progressively slower rate. The improvement in the upper-level model becomes less pronounced after
incorporating around 70% of the posterior samples. This phenomenon provides evidence for the effectiveness of posterior
samples in enhancing the upper-level model. The limited impact observed with higher ratios is consistent with the principle
that a certain proportion of samples can effectively reflect the contained posterior information; an excessive number of
samples could lead to information redundancy.

Figure 4. Different upper-level first-round training loss when adding different rates of posterior sample.

A.11. Sensitivity of Upper-Level Learning Rate

In this experiment, we conducted tests using three sets of different learning rates for the upper-level rule learner under two
conditions: with KL-divergence constraint and without KL-divergence constraint. These tests were performed on both seen
and unseen test data to evaluate the impact of the rule generator on the overall game system. As depicted in Figure 5, we
observe three phenomena:

• The first phenomenon is that KL dominance occurs only when the upper level achieves dominance in the upper-lower
level game, i.e., a larger upper-lower learning rate. This observation aligns with our formula’s implication that when
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Figure 5. F1 and Logic Acc curves under different rule generator’ learning rates.

the lower level’s specialization abilities are in agreement, the group with stronger generalization ability can learn more
global prior knowledge at the given learning rate. Consequently, this leads to enhanced overall performance. In cases
of insufficient learning rate, the upper-level learning fails to acquire adequate information about the global prior to
using the global generalization ability.

• The second phenomenon is that while the overall F1 scores and the overall logic value increase as the upper learning
rate increases, the curves of logic accuracy and F1 score only exhibit greater consistency when the learning rate is
sufficiently high. This finding indicates that the upper level is indeed learning effective rules to improve the overall F1
score performance. When the rule learner fails to learn sufficiently, the rules newly distributed from the upper level
may not necessarily be effective for the lower level.

• The third phenomenon is that the gap between the curves corresponding to the two groups, unseen and seen, is
smaller when the upper layer model employs a lower learning rate. This effect is evident when the upper layer is
disadvantaged in the game between the upper and lower layers. This behavior can be observed in both subplots of
the F1 scores corresponding to (a1) and the logic accuracy values corresponding to (b1), with the latter curve in (b1)
almost overlapping. This phenomenon implies that the upper model can differentially generate rules for the unseen and
seen data, and as this role weakens, the difference between the curves of seen and unseen data becomes smaller.
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