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Abstract
Morphologically rich languages are notoriously001
challenging to process for downstream NLP002
applications. This paper presents a new pre-003
trained language model, ByT5-Sanskrit, de-004
signed for NLP applications involving the mor-005
phologically rich language Sanskrit. We evalu-006
ate ByT5-Sanskrit on established Sanskrit word007
segmentation tasks, where it outperforms previ-008
ous data-driven approaches by a considerable009
margin and matches the performance of the cur-010
rent best lexicon-based model. It is easier to de-011
ploy and more robust to data not covered by ex-012
ternal linguistic resources. It also achieves new013
state-of-the-art results in Vedic Sanskrit depen-014
dency parsing and OCR post-correction tasks.015
Additionally, based on the Digital Corpus of016
Sanskrit, we introduce a novel multitask dataset017
for the joint training of Sanskrit word segmen-018
tation, lemmatization, and morphosyntactic tag-019
ging tasks. We fine-tune ByT5-Sanskrit on this020
dataset, creating a versatile multitask model021
for various downstream Sanskrit applications.022
We have used this model in Sanskrit linguis-023
tic annotation projects, in information retrieval024
setups, and as a preprocessing step in a San-025
skrit machine translation pipeline. We also026
show that our approach yields new best scores027
for lemmatization and dependency parsing of028
other morphologically rich languages. We thus029
demonstrate that byte-level pretrained language030
models can achieve excellent performance for031
morphologically rich languages, outperforming032
tokenizer-based models and presenting an im-033
portant vector of exploration when constructing034
NLP pipelines for such languages.035

1 Introduction036

It is generally acknowledged that morphologically037

rich languages (MRL) are challenging for NLP038

(Tsarfaty et al., 2020). While language modeling039

has addressed this challenge, e.g. by integrating040

subword information (see e.g. Bojanowski et al.,041

2017), there is surprisingly little systematic re-042

search on how efficient models for low-level tasks043

such as tokenization, lemmatization, morphosyn- 044

tactic analysis, and dependency parsing can be de- 045

signed for MRLs. Access to this low-level infor- 046

mation is relevant for downstream tasks such as 047

information retrieval and question answering, as 048

well as for linguistic and literary studies. 049

In this paper, we introduce a unified model that 050

jointly performs these tasks for Sanskrit, an ancient 051

South-Asian MRL, which has been continuously 052

attested since 1,300 BCE. Vedic, its archaic level, 053

primarily focusses on the description of the Soma 054

and the fire sacrifice. Starting around 300 BCE, 055

the majority of Sanskrit literature was composed 056

in classical Sanskrit, encompassing a vast array 057

of domains from religious hymns to scientific and 058

narrative texts (see Table 2). Linguistic processing 059

of Sanskrit poses challenges due to its rich mor- 060

phology and vocabulary, free word order, heavy 061

compounding, and particularly due to the phonetic 062

merging of individual words into longer strings 063

(Sandhi; see e.g. Gupta et al. 2020), as can be 064

observed in this example: 065

yuvoh. hi mātā aditih.
your indeed mother Aditi
Aditi is indeed your mother.
With Sandhi: yuvorhi mātāditih.

066

Here, the words yuvoh. and hi as well as mātā 067

and aditih. are merged into longer strings, thereby 068

changing their contact phonemes (h. +h → rh, ā+a 069

→ ā). While the synthesis of Sandhi is determin- 070

istic, its analysis is not, as the new phoneme -ā- 071

in mātāditih. could also arise from a+a, a+ā or 072

ā+ā. As a consequence, Sanskrit word segmen- 073

tation (SWS) needs to be performed in order to 074

enable tasks such as lemmatization, morphosyntac- 075

tic tagging, and dependency parsing. 076

We propose a framework in which we pretrain 077

a character-level Sanskrit language model based 078

on ByT5 on a large body of Sanskrit data before 079

jointly fine-tuning it on a number of downstream 080

NLP tasks, which we reformulate as sequence- 081
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generation tasks. This paradigm brings large per-082

formance gains, leading to new SOTA results on083

established Sanskrit NLP benchmarks. We empha-084

size creating a system that is as simple as possible085

to train and deploy, without depending on complex086

pre- or postprocessing steps and retaining high per-087

formance on data that shows challenges such as088

OCR mistakes or the use of non-standard language089

not sufficiently covered by available linguistic re-090

sources.091

In concrete terms, we achieve a gain of 8.8092

points on perfect sentence matching score (PM)093

for the Hackathon SWS benchmark compared094

to the current state-of-the-art, while we come close095

by 0.13 in performance on the SIGHUM dataset to096

the currently best performing lexicon-driven model.097

We achieve 4.88 points improvement on the SWS098

DCS 2018 benchmark. On Vedic dependency099

parsing, we achieve 2.18 points improvement on100

UAS and 2.60 points on LAS compared to the101

current state-of-the-art. On OCR post-correction,102

we outperform the currently best approach by 0.29103

lower CER and 3.16 lower WER. We also show104

that our approach yields the best performance on105

lemmatization and dependency parsing for three106

other MLR languages.107

We also present a novel dataset for the train-108

ing and evaluation of three central Sanskrit NLP109

tasks based on the Digital Corpus of Sanskrit110

(DCS): Word segmentation, lemmatization, and111

morphosyntactic tagging. We show that our pre-112

trained model outperforms other baselines on these113

new tasks. We also demonstrate that jointly train-114

ing on the tasks of SWS, lemmatization, and mor-115

phosyntactic tagging on top of the pretrained lan-116

guage model leads to the best performance. This117

enables the deployment of one single model with-118

out dependence on external linguistic resources to119

handle all relevant NLP tasks for annotated San-120

skrit corpus building with the best performance.121

We show that training and evaluating this model on122

pseudo-paragraph-level, where multiple sentences123

are predicted at once, gives a distinct performance124

advantage due to the available contextual informa-125

tion.126

In Section 2, we give an overview of the relevant127

research literature. In Section 3, we discuss the pre-128

training and fine-tuning datasets used in this paper.129

Section 4 introduces the layout of our proposed130

multitask framework. In Section 5, we first evalu-131

ate the model on established Sanskrit word segmen-132

tation, Vedic Sanskrit dependency parsing, OCR 133

post-correction tasks, as well as on other MLR lan- 134

guages, and then present the performance of the 135

unified model trained on the new dataset. We also 136

perform a detailed manual analysis of the error pat- 137

terns of the multitask model. We make the code, all 138

relevant datasets, the pretrained base model as well 139

as the fine-tuned multitask model available under 140

the Apache license 2.0 at xxx after acceptance. 141

2 Related Research 142

The pretrain-fine-tune paradigm, where a pre- 143

trained language model (PLM) trained on a large 144

corpus of unlabeled data is subsequently fine-tuned 145

on a smaller dataset of task-specific labeled data, is 146

the de-facto standard approach for NLP tasks such 147

as part-of-speech and morphosyntactic tagging, 148

sentence classification, and many more since the 149

publication of the encoder-only approaches BERT 150

(Devlin et al., 2019) and ELMo (Peters et al., 2018) 151

in 2018. When it comes to morphologically rich 152

languages, the good performance of this paradigm 153

is demonstrated for Turkish in Özçift et al. (2021), 154

while Bamman and Burns (2020) and Nehrdich and 155

Hellwig (2022) show the superior performance of 156

BERT on linguistic annotation tasks for the mor- 157

phologically rich classical language Latin. 158

T5 (Raffel et al., 2019) introduced a new pre- 159

training paradigm where both encoder and decoder 160

are trained. This encoder-decoder architecture en- 161

ables the fine-tuning of the same base model on 162

diverse tasks such as translation, question answer- 163

ing, and text classification with the same hyper- 164

parameters and loss function. Sanh et al. (2022) 165

further show how the T5 paradigm can be used 166

efficiently in a multitask setup with large variation 167

between the different tasks. For morphologically 168

rich languages, language models that make use 169

of character-level information show superior per- 170

formance to those operating on word-level alone 171

(Gerz et al., 2018). While a number of openly avail- 172

able pretrained language models exist, only Xue 173

et al. (2021) followed a tokenizer-free byte-level 174

approach, resulting in strong performance on lin- 175

guistic tasks and achieving the best performance 176

on the morphological inflection task. 177

Most approaches to Sanskrit NLP tasks such as 178

Sanskrit word segmentation (SWS) can be broadly 179

separated into two groups: lexicon-based and data- 180

driven. For a recent, comprehensive overview of 181

the relevant literature, see Sandhan et al. (2022). 182
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Lexicon-driven approaches rely on external linguis-183

tic resources, while data-driven approaches learn184

from data alone and are therefore less complex to185

train and deploy. The main drawback of data-driven186

approaches is that they cannot access latent knowl-187

edge contained in lexical resources. Sandhan et al.188

(2022) combine lexicon-based and data-driven as-189

pects, formulating SWS as a character-level se-190

quence labeling task that uses lexical information191

whenever available. Krishna et al. (2020) presents192

a lexicon-based multitask model that handles SWS,193

morphological parsing, dependency parsing, syn-194

tactic linearization, and prosodic linearization. To195

our knowledge, this is the only other published196

multitask approach to central Sanskrit NLP tasks.197

Pretrained language models supporting Sanskrit198

are available, but they are not yet widely used199

for Sanskrit linguistic tasks. Conneau and Lam-200

ple (2019) included Sanskrit data in its pretraining201

setup. Hellwig et al. (2023) trained and evaluated202

encoder-only PLMs for the task of Vedic Sanskrit203

dependency parsing, coming to the conclusion that204

they do not offer clear advantages in performance205

yet due to the comparatively small amount of train-206

ing data used.207

3 Data208

For pretraining, we use the Sanskrit data of the San-209

graha dataset (Khan et al., 2024) as a basis, which210

mostly consists of data gained by a comprehen-211

sive OCR effort of the Sanskrit-related literature212

available at the Internet Archive1. We only use213

the language-verified split of this dataset and none214

of the synthetic data. We decided to use this noisy215

OCR-based dataset following the observation made216

in Bamman and Burns (2020), where a PLM for217

Latin trained on a noisy corpus consisting of largely218

OCR’d data achieved new state of the art results219

on Latin POS tagging tasks. We augment this data220

with high-quality human input Sanskrit data from221

the GRETIL collection 2 and the Digital Sanskrit222

Buddhist Canon.3 The statistics of the dataset are223

shown in Table 1.224

We use IAST transliteration for pretraining as225

well as all of the fine-tuning tasks, as this yields226

clear efficiency advantages compared to Devana-227

gari when training on the individual byte level, with228

half the bytes needed. While other transliteration229

1archive.org
2https://gretil.sub.uni-goettingen.de/

gretil.html
3https://www.dsbcproject.org/

Source Number of Characters

IndicLLMSuite 5,173,251,798
GRETIL 253,712,457
DSBC 2,473,226

Table 1: Composition of the pretraining dataset. Num-
ber of characters is measured in character count in IAST
roman transliteration.

Category Number of Characters

Epics 9,814,868
Vedic 7,211,586
Science 6,299,576
Purān. a 4,682,010
Poetry 2,028,535
Buddhist 1,762,012
other 2,728,511

Table 2: Distribution of the fine-tuning data according to
different categories. Number of characters is measured
in character count in IAST roman transliteration.

schemes such as SLP1 offer further small gains in 230

efficiency, we decided against using them as the 231

human readability advantages of IAST lead to less 232

overhead during training and evaluation, as well as 233

less complex deployment pipelines. 234

3.1 Fine-tuning Dataset 235

The fine-tuning data utilized in this study for the 236

SWS, lemmatization, morphological tagging, and 237

dependency parsing tasks comes from the Digital 238

Corpus of Sanskrit (DCS; Hellwig 2010–2024), a 239

collection of classical and Vedic texts with manu- 240

ally validated lexical and morphosyntactic annota- 241

tions. For some Vedic texts, the DCS also provides 242

manually validated syntactic annotations (Hellwig 243

et al., 2023). The complete annotation is available 244

as text files in CoNLL-U format,4 serving as input 245

for the multitask and dependency parsing models 246

described in this paper. We use a snapshot of the 247

DCS dataset from April 2024. Table 2 gives an 248

overview of the DCS fine-tuning data, showing its 249

bias towards narrative (epics, Purān. as), Vedic, and 250

scientific texts. 251

4https://github.com/OliverHellwig/
sanskrit/tree/master/dcs/data/conllu

3
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4 Proposed Method252

We propose the combination of the following253

paradigms in order to generate an efficient, high-254

performing end-to-end framework for various San-255

skrit NLP tasks: We first pretrain a byte-level San-256

skrit PLM based on the ByT5 architecture, which257

is distributed under the Apache license 2.0, over-258

coming the limitation of lack of access to latent259

information for data-driven approaches. Then, we260

reformulate the central Sanskrit NLP tasks of word261

segmentation, lemmatization, and morphosyntac-262

tic tagging as sequence generation tasks, using a263

novel serialization strategy. In order to distinguish264

between the different tasks, we use prefix letters at265

the beginning of the input sequence to indicate the266

task. “S” for segmentation, “L” for lemmatization,267

and “M” for morphosyntactic tagging. Inspired by268

T0 (Sanh et al., 2022), we combine these tasks into269

a unified multitask setup, enabling the fine-tuning270

of a single model to handle all of them simultane-271

ously. The schema of this approach is demonstrated272

in Figure 2.273

The full morphosyntactic tags of the DCS con-274

sume on average 46 characters, making their pre-275

diction with a byte-level LM challenging. We there-276

fore propose a serialization strategy by manually277

mapping the morphosyntactic tags to unused letter278

combinations of the IAST alphabet, reducing the279

number of needed tokens per tag significantly. The280

full tags can be restored based on this mapping281

without information loss. Figure 1 demonstrates282

this process. On average, the compression ratio of283

this method is 0.14.284

5 Experiments285

Models were trained on GPU nodes of 8 NVIDIA286

A6000 48GB GPUs. The time needed for pre-287

training was one week, while the fine-tuning runs288

varied between 2 and 8 hours. The joint mul-289

titask model took 32 hours to finetune. We290

leveraged the DeepSpeed library https://www.291

deepspeed.ai/ for training in half precision292

bf16, and for making efficient use of the multi-293

GPU setup.294

For the foundation model, we further pretrain a295

ByT5 model (Xue et al., 2021) in the “base” config-296

uration with 582M parameters on the entire dataset297

for 100,000 steps with a batch size of 512 and298

a sequence length of 512. The resulting model299

is called ByT5-Sanskrit in this paper. According300

to the scaling laws presented in Hoffmann et al.301

(2022), the optimal number of parameters for our 302

training dataset size of 6.5B tokens is about 325M 303

parameters. This matches the ByT5 “small” config- 304

uration with 300M parameters. We decided to train 305

a model one category larger than that to ensure we 306

get optimal performance. 307

5.1 Evaluation on Previous Sanskrit Word 308

Segmentation Tasks 309

In order to examine how ByT5-Sanskrit performs 310

in comparison to other baselines, we fine-tune it 311

on a selection of different previously established 312

Sanskrit word segmentation tasks, each of which 313

used its own dataset. 314

The SIGHUM and Hackathon datasets are 315

adapted from Sandhan et al. (2022). DCS 2018 316

is the dataset presented in Hellwig and Nehrdich 317

(2018). rcNN-SS denotes a character-based seg- 318

mentation algorithm that performs joint compound 319

and Sandhi splitting using a combination of re- 320

current and convolutional operations (Hellwig and 321

Nehrdich, 2018). TransLIST is the model described 322

in Sandhan et al. (2022), which uses a combination 323

of character-level and lexicon-based word input 324

with a transformer model. 325

The results of our comparison are shown in Ta- 326

ble 3. Since TransLIST, due to its elaborate prepro- 327

cessing pipeline, is not compatible with the DCS 328

2018 dataset, we cannot evaluate it in that setting. 329

On DSC 2018 and Hackathon, ByT5-Sanskrit out- 330

performs the existing best baselines with a very 331

considerable margin, while it comes close to the 332

best-performing lexicon-based model, TransLIST, 333

on the SIGHUM dataset. The results show that 334

ByT5-Sanskrit successfully learns latent features 335

of the Sanskrit language and achieves very strong 336

performance without relying on lexical resources. 337

The performance gain on the Hackathon task is es- 338

pecially noteworthy, as this task has the smallest 339

train split of the three with 89k samples, indicat- 340

ing that fine-tuning ByT5-Sanskrit is very sample 341

efficient. 342

Compared to ByT5-Sanskrit, TransLIST shows 343

more variation in performance between SIGHUM 344

and Hackathon, indicating that the quality of data 345

preprocessing determines the quality of the out- 346

come for TransLIST to a significant degree. ByT5- 347

Sanskrit on the other hand shows consistent per- 348

formance improvements on all three tasks, mak- 349

ing elaborate lexical pre-processing unnecessary to 350

reach competitive performance. 351
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Figure 1: Serialization for the morphosyntactic tagging task. The abbreviated tags are highlighted in red. We use
spaces as separation token between words.

Figure 2: Sanskrit Multitask Formulation: All tasks are converted into sequence-generation tasks. For each task, we
prepend prompt tokens (S, L, LM, here marked in red) in order to enable the model to distinguish between tasks.
For efficient training and inference, we use a novel serialization strategy to compress the morphosyntactic tags into
as few characters as possible, here marked in blue.

DCS 2018 SIGHUM Hackathon
Model (509k samples) (99k samples) (89k samples)
rcNN-SS 85.2 87.08 77.62
TransLIST - 93.97 85.47
ByT5-Sanskrit 90.11 93.83 94.29

Table 3: Sentence level perfect matches on previous
Sanskrit word segmentation tasks. Results for rcNN-
SS and TransLIST are reported based on the respective
publications. Due to data incompatibility, we cannot
evaluate TransLIST on the DCS 2018 task. Size of
training dataset in parentheses.

5.2 Vedic Dependency Parsing352

We also evaluate the performance of ByT5-Sanskrit353

on the Vedic Sanskrit dependency parsing task. We354

follow the serialization strategy of Lin et al. (2022)355

and reformulate dependency parsing as a sequence356

generation task. We compare our results against the357

biaffine architecture (Dozat and Manning, 2016) in358

its best performing configuration as presented in359

Hellwig et al. (2023). Using the latest version of360

the dependency annotated data of the DCS for our361

experiments,we extract a total number of 24,807362

sentences with gold dependency, part of speech,363

and morphosyntactic annotation. We use 90% for364

training, and 5% for each evaluation and testing.365

Following the setup in Hellwig et al. (2023), we366

exclude R. gvedic data from the test and evaluation367

Biaffine ByT5-Sanskrit
Setting UAS LAS UAS LAS
None 77.68 70.67 86.54 81.54
ALL 86.86 81.98 89.04 84.58

Table 4: UAS and LAS for the Vedic dependency pars-
ing. “None”: only surface forms used; “ALL”: all lin-
guistic gold information used

split and apply the augmentation strategy of ran- 368

domly concatenating up to four sentences from the 369

training set. Moreover, we replace the POS and 370

morphosyntactic information of old Vedic citations 371

(mantras) with a special tag. The biaffine model 372

and ByT5-Sanskrit are trained and evaluated on the 373

same data. We use 50 epochs for training. We eval- 374

uate both models in two settings: One without any 375

additional linguistic information, using only the 376

surface form of a word (None), and one where all 377

available linguistic features (POS tags, morphosyn- 378

tax, punctuation) are used (All). 379

The results in Table 4 show significant perfor- 380

mance improvements of 2.18 in UAS and 2.60 in 381

LAS over the biaffine baseline. Especially note- 382

worthy is the observation that the ByT5-Sanskrit- 383

based parser without any additional linguistic in- 384

formation comes close to the performance of the 385

biaffine parser with support of gold data. These 386
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results are in line with the observations made in387

Nehrdich and Hellwig (2022), where the addition388

of a strong Latin PLM boosted dependency parsing389

performance very significantly on three different390

Latin treebanks, with configurations based on the391

Latin PLM alone matching those that make use of392

gold annotation without the PLM.393

5.3 Sanskrit OCR Post-correction394

We also evaluate our model on the task of Sanskrit395

OCR post-correction as defined in Maheshwari396

et al. (2022). Our results are presented in Table397

6. We fine-tune ByT5-Sanskrit with a sequence398

length of 512. The results show that ByT5-Sanskrit399

also achieves the best performance on this task.400

5.4 Lemmatization and Dependency Parsing401

on other MLR Languages402

In order to test whether our proposed framework403

generalizes to other MLR languages, we conduct404

experiments on lemmatization and dependency405

parsing for three MLR languages: Bulgarian, Ro-406

manian, and Turkish. The data is taken from the407

Universal Dependency (Nivre et al., 2016) 2.2 re-408

lease. As the base model for finetuning, we use409

ByT5 in the ”base” configuration without further410

pretraining. We show the results in Table 5. Since411

our serialization strategy requires language exper-412

tise, we cannot evaluate our framework on mor-413

phosyntactic tagging for these languages. We com-414

pare our approach against the current best base-415

line UDPipe (Kondratyuk and Straka, 2019) for416

lemmatization, for dependency parsing we also417

compare against DPSG (Lin et al., 2022), since418

their approach reaches the currently best results on419

these languages and is structurally very similar to420

our, with the main difference being that we use a421

byte-level PLM, while they use the tokenizer-based422

PLM mT5. The results show that our approach423

outperforms the previous best baselines on lemma-424

tization for two languages, while outperforming425

the previous baselines on dependency parsing for426

all languages. This shows that the performance427

advantages of byte-level PLMs generalize to other428

morphologically rich languages.429

5.5 Joint Sanskrit Word Segmentation,430

Lemmatization and Morpho-syntax431

Tagging Task432

We use a snapshot of the DCS from April 2024 as433

the basis for our experiments with a total number of434

601,403 sentences. We hold back 8,190 sentences435

Lemma Dep. Parsing
Language Acc LAS
Turkish IMST (UDPipe) 96.01 67.56
Turkish IMST (Ours, ByT5) 97.94 77.00
Romanian RRT (UDPipe) 98.41 86.74
Romanian RRT (DPSG, mT5) - 88.76
Romanian RRT (Ours, ByT5) 98.15 91.16
Bulgarian BTB (UDPipe) 97.94 90.35
Bulgarian BTB (DPSG, mT5) - 93.92
Bulgarian BTB (Ours, ByT5) 98.51 94.11

Table 5: Lemmatization and dependency parsing results
on three other MLR languages based on ByT5 base. The
UDPipe results are reported based on Kondratyuk and
Straka (2019), DPSG based on Lin et al. (2022).

Model CER WER
ByT5-Small 2.98 23.19
ByT5-Sanskrit 2.69 20.03

Table 6: CER and WER results for the Sanskrit OCR
post-correction task. ByT5-Small are the results as pre-
sented in Maheshwari et al. (2022).

for evaluation and 8,398 sentences for testing. We 436

keep the original order of the sentences, ensuring 437

that this data can also be used to train models on 438

longer sections of text. The DCS presents a chal- 439

lenge for our word segmentation model because 440

the forms without Sandhi were not consistently 441

recorded during the initial annotation of the DCS. 442

This incomplete annotation affects 65.8% of all 443

words in the DCS, primarily from classical San- 444

skrit, whereas unsandhied forms are recorded for 445

most Vedic and some Buddhist texts. When gener- 446

ating conllu files from the DCS, a heuristic that sup- 447

plements missing unsandhied forms is employed 448

to address this inconsistency. While this heuris- 449

tic can occasionally produce morphologically cor- 450

rect but unattested nominal forms (e.g., generating 451

hr. dayatah. instead of the attested hr. dayāt for the 452

ablative singular of hr. daya- ‘heart’), a cursory ex- 453

amination suggests such cases are infrequent (1-3% 454

of all words). Since we believe that the heuristi- 455

cally generated forms can nonetheless be useful for 456

the training, we include them in the training set and 457

prepend a special flag “R” at the beginning of each 458

line containing such forms. The test and validation 459

splits do not contain any reconstructed forms and 460

are therefore strongly biased towards Vedic texts. 461

This makes the annotation tasks more challenging 462

because Vedic texts are underrepresented in the 463

DCS (see Table 2). 464

Since the tasks can be combined arbitrarily, we 465
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mT5 ByT5 ByT5-Sanskrit
Task Sen Sen Par Sen Par
S 76.09 83.71 87.21 84.61 88.21
L 68.27 77.99 82.05 79.88 83.96
S+M 49.94 60.93 71.50 63.86 74.38
L+M 49.23 59.28 69.40 62.00 72.33
S+L+M 49.10 58.75 71.92 61.27 74.31

Table 7: Sentence level perfect match results for the
multitask experiment. ”S” denotes the task of Sanskrit
word segmentation, ”L” the task of lemmatization, and
”M” the task of morphosyntax tagging.

Figure 3: Results of the detailed error analysis

decided to limit the experiments to a number of466

settings with real-world relevance. We provide467

the data on sentence- and pseudo-paragraph level.468

Pseudo-paragraphs are constructed by concatenat-469

ing adjunct sentences with a length of up to 512470

characters, giving the model the possibility to uti-471

lize contextual information.472

We show the results in Table 7. As the lexical re-473

sources used for Sandhan et al. (2022) and Krishna474

et al. (2020) are not compatible with our dataset,475

we cannot evaluate their performance in this setting.476

Due to resource constraints, we could not evaluate477

mT5 on paragraph level. ByT-Sanskrit outperforms478

all other models on these tasks. The visible gains479

compared to ByT5 indicate that even in a multi-480

task setup with a large fine-tuning dataset, the prior481

knowledge from the pretraining stage brings dis-482

tinct performance advantages. The weaker perfor-483

mance of mT5 shows that tokenizer-based models484

don’t perform as well in this setting. All models485

perform better on pseudo-paragraph level, show-486

ing that contextual information beyond sentence487

boundaries is crucial for Sanskrit linguistic tasks488

and should be used wherever possible. The visi-489

ble performance drop that occurs when including490

morphosyntactic tagging can be explained by the491

fact that these tags are often ambiguous, as will be492

discussed in the error analysis below.493

5.6 Error analysis 494

For a detailed error analysis, one author of this 495

paper inspected 150 randomly drawn sentences in 496

which the model result differs from ground truth. 497

The differences were categorized into three classes: 498

(1) errors in the ground truth data which were cor- 499

rected by the model; (2) ambiguous cases where 500

both ground truth and model result are acceptable; 501

and (3) model errors. These three classes were fur- 502

ther subsetted with fine-grained error labels. Most 503

basically, the segmentation of a string may have 504

failed or parts of the analysis is missing or added. 505

Figure 3 shows that these cases constitute only a 506

small part of all errors. Notably, missegmentations 507

as well as missing words are also present in the 508

ground truth, e.g. when a meaningful linguistic 509

analysis of a string was impossible. 510

Most differences are observed at the lexical and 511

morphological levels. The pattern of model errors 512

aligns with the summary in Gupta et al. (2020), 513

primarily relating to nominal endings that denote 514

more than one case. For instance, an error is seen 515

in the phrase uttamāyā diśah. ‘from the highest re- 516

gion’, where both the correctly reconstructed end- 517

ing -āyāh. in uttamāyāh. and -ah. in diśah. can signify 518

a genitive or ablative singular. However, the senten- 519

tial context of this phrase unambiguously indicates 520

an ablative interpretation. Errors in the analysis of 521

verbal morphology are less common and typically 522

occur with unusual and rare forms. An example 523

is āvarvratatah. , the genitive singular of a partici- 524

ple derived from the intensive of the verb ā vart- 525

‘revolve’ (‘of someone who rotates intensively’). 526

The model misinterpreted this complex form as 527

the nominative singular of a newly coined noun 528

āvarvrata-. 529

Both gold and silver exhibit a significant number 530

of ambiguities. Consider the following phrase: 531

aparen. a śālāyāh.
western-ADJ.INS.SG hall-GEN/ABL.SG

to the west of-PREP

‘to the west of the hall’

532

Here, aparen. a is an example of a lexical ambi- 533

guity. While, at the level of morphosyntax, the 534

word is the instrumental singular of the adjective 535

apara- ‘western’, it can be argued that this word 536

became grammaticalized in Vedic, as was shown 537

for Vedic madhye ‘in the middle’ > Hindi mem. ‘in’ 538

(Reinöhl, 2016). Although the grammaticalized 539

reading is preferred in the DCS, analyzing aparen. a 540

as an inflected adjective is perfectly valid, given our 541

7



limited knowledge about the temporal dynamics of542

grammaticalization processes. Similarly, while the543

genitive reading of śālāyāh. is the preferred analysis544

in the DCS, the ablative cannot be ruled out here,545

leading to a morphological ambiguity.546

Beyond this, lexical ambiguities in the DCS pri-547

marily arise from compound splitting. The DCS548

follows major Sanskrit dictionaries in not split-549

ting compounds deemed to have non-compositional550

meanings. Given the lexical transparency of most551

Sanskrit compounds, splitting them into their con-552

stituent parts is often a justifiable approach. For553

instance, the DCS keeps the compound ādikarah.554

“creator” intact, but our model reasonably splits it555

into ādi-karah. “beginning-maker”.556

In about one third of all cases, our model corrects557

a wrong analysis in the DCS. One case is dvādaśa-558

kapālam ‘(consisting of) twelve cups’ where the559

first word is the compound form of the numeral560

dvādaśan- ‘twelve’, but not, as recorded in the561

DCS, of the adjective dvādaśa- ‘twelfth’. Appar-562

ently our model achieves a quality high enough to563

be usable for error detection in the ground truth564

data. While retraining ByT5-Sanskrit with cor-565

rected data is not likely to improve its quality, such566

error correction may nevertheless be useful for lin-567

guistic studies.568

Overall, more than half of the 150 sentences in-569

spected (80 or 53.3%) revealed errors in the source570

data or alternative valid readings. Together with571

the bias in the test data (see Section 5.5), this result572

indicates that the predictive quality of our model is573

higher than indicated by the numbers in Table 7.574

5.7 Ablation Study575

To assess the impact of joint training on multiple576

tasks, we conducted an ablation study where we577

fine-tuned ByT5-Sanskrit on selected tasks individ-578

ually. The results, presented in the upper half of579

Table 8, clearly demonstrate that individual task580

training diminishes performance for both segmen-581

tation and lemmatization tasks. This confirms that582

transfer learning across different tasks contributes583

to enhanced overall performance.584

A second experiment evaluated the effect of re-585

moving samples containing reconstructed surface586

forms (refer to Section 5.5). This condition re-587

duced the training sample size to merely 26.22% of588

the original data, effectively serving as an ablation589

experiment probing the dataset size. Despite a no-590

ticeable negative impact on performance (as seen591

Task Sentence PM
Segmentation only 83.52 (-1.09)
Lemmatization only 77.52 (-2.35)
Segmentation only w/o rec. 81.58 (-3.03)
Lemmatization only w/o rec. 76.85 (-3.03)

Table 8: Ablation Study where we fine-tune ByT-
Sanskrit on individual tasks seperately to show the per-
formance difference to the multitask setup. W/o rec.
indicates the setting where reconstructed forms (see
Section 5.5) are not used in the training dataset. Results
are given in sentence level perfect matches.

in the lower half of Table 8), the effect was less 592

pronounced than we anticipated. We hypothesize 593

that this behavior can primarily be attributed to the 594

strong priors of the ByT5-Sanskrit model. Con- 595

currently, removing sentences with reconstructed 596

forms from training rendered the distributions of 597

training and test data, which exclusively contain 598

such sentences, more similar. This suggests that 599

our approach is viable even for languages with a 600

limited amount of labeled training data. 601

6 Conclusion and Future Work 602

We have demonstrated that by pretraining a byte- 603

level language model on a large collection of 604

mostly noisy data, new state-of-the-art results for 605

Sanskrit word segmentation, Vedic dependency 606

parsing, and OCR post-correction are achieved, 607

closing the performance gap between lexicon- 608

based and data-driven Sanskrit NLP approaches. 609

We further demonstrated that this pretrained lan- 610

guage model can be used as a basis for a multitask 611

model that handles word segmentation, lemmati- 612

zation, and morphosyntactic tagging jointly with 613

high accuracy. We further demonstrated that this 614

multitask model benefits greatly from training and 615

inference on pseudo-paragraph-level. For the joint 616

fine-tuning on these tasks, we presented a novel 617

dataset. The resulting unified model, being inde- 618

pendent of external linguistic resources, is simple 619

to deploy and is already used for Sanskrit corpus 620

annotation projects as well as in information re- 621

trieval and machine translation setups. We also 622

showed that our approach generalizes to other mor- 623

phologically rich languages, where the application 624

of a byte-level PLM yields best results for two lan- 625

guages on lemmatization and for three languages 626

on dependency parsing. We thus establish that byte- 627

level PLMs are a crucial vector of exploration when 628

builiding NLP pipelines for MLR languages. 629
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7 Limitations630

Our model currently does not adequately address631

the homonymy of words. In the DCS, 7.5% of632

all lemmata, or tokenized words, have at least one633

homonym. These homonyms account for a signifi-634

cant 57.5% of all tokenized words. However, this635

percentage is somewhat misleading. The primary636

contributors to this high rate of homonymy are in-637

declinable words such as ca ‘and’ and iti ‘thus’.638

These words are used as nouns in grammatical liter-639

ature, most notably in Pān. ini’s As.t.ādhyāyı̄, where640

their case endings indicate grammatical uses (e.g.,641

at As.t.ādhyāyı̄ 1.1.16: . . . itau anārs. e ‘in front642

of (the particle) iti in non-Vedic texts’). In non-643

grammatical texts, these words almost always have644

their non-technical meaning. Similar considera-645

tions apply to the use of nominalized verbal roots646

in grammatical texts.647

There are more problematic, but less frequent648

cases. For instance, the word veda has four differ-649

ent lemmata recorded in the DCS: (1) the famous650

text collection of the same name, (2) ‘finding, ob-651

taining’, (3) a small broom, and (4) the name of652

a man. At least homonyms (1) and (3) are regu-653

larly attested in Vedic and classical Sanskrit. Merg-654

ing them into one lemma is lexicographically in-655

adequate: while (1) and (2) may be etymologi-656

cally related, (3) and probably also (4) are not (see657

Mayrhofer, 1992, 579-581). However, the context658

of their occurrence typically indicates very clearly659

which of the lemmata is meant.660

To address this issue, we plan to mark lemmata661

with homonyms by numeric affixes in future ver-662

sions of our model.663
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