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Abstract

Large language models (LLMs) can carry out001
human-like dialogue, but unlike humans, they002
are stateless due to the superposition property.003
However, during multi-turn, multi-agent in-004
teractions, LLMs begin to exhibit consistent,005
character-like behaviors—hinting at a form of006
emergent lifelong learning. Despite this, ex-007
isting benchmarks often fail to capture these008
dynamics, primarily focusing on static, open-009
ended evaluations. To address this gap, we010
introduce LIFESTATE-BENCH, a benchmark011
designed to assess lifelong learning in LLMs.012
It features two episodic datasets—Hamlet and013
a synthetic script collection—rich in narra-014
tive structure and character interactions. Our015
fact-checking evaluation probes models’ self-016
awareness, episodic memory retrieval, and017
relationship tracking, across both parametric018
and non-parametric approaches. Experiments019
on models like Llama3.1-8B, GPT-4-turbo,020
and DeepSeek R1, we demonstrate that non-021
parametric methods significantly outperform022
parametric ones in managing stateful learning.023
However, all models exhibit challenges with024
catastrophic forgetting as interactions extend,025
highlighting the need for further advancements026
in lifelong learning.027

1 Introduction028

Large language model (LLM)-based dialog agents029

exhibit human-like traits (e.g., intent understanding030

and language expression), making users prone to031

anthropomorphism (Shanahan et al., 2023). How-032

ever, LLMs differ from humans in their superposi-033

tion property (Janus, 2022): initially existing as a034

stateless superposition of simulacra across multiple035

possible characters (Lu et al., 2024). This property036

emerges from its next-token prediction training on037

a massive corpus, whereas humans develop through038

accumulated experiences and memories.039

Through sustained interaction, we observe that040

an initially stateless LLM can transition toward041
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Figure 1: Dataset Statistics. Triangles represent role
ability benchmarks, while circles denote dialogue agent
benchmarks.

more stateful characteristics as dialogue context 042

accumulates. At first, an LLM holds multiple char- 043

acters but gradually settles into a clear character as 044

the dialogue continues. Taking a nuanced view, this 045

character convergence process mirrors how humans 046

update their state through accumulated experience. 047

This state transition raises a measurable ques- 048

tion: How can we quantify an LLM’s state evolu- 049

tion (also called Lifelong learning ability) from 050

superposition to a more consistent state during 051

multi-turn, multi-agent interactions? In this pa- 052

per, “state” refers to the evolving configuration of 053

an LLM’s internal processes during multi-agent in- 054

teractions (Adams et al., 2012; Sumers et al., 2024), 055

building on AI cognitive architecture (Sun, 2004; 056

Newell, 1980). 057

While this research question predates LLM area, 058

current exploration remains preliminary with vary- 059

ing methodologies. Early Persona-Chat series (Gao 060

et al., 2023; Zhang et al., 2018; Dinan et al., 061

2019) focusing on consistent character responses 062

using seq2seq models, or design social intelligence 063

questionnaire-based benchmarks (Sap et al., 2019; 064

Le et al., 2019). Both limited by static, non- 065
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interactive setups. Ground truths were either open-066

ended or fixed over time.067

Generative agents (Park et al., 2023) bring LLM-068

based dialogue agents into interactive human be-069

havior simulation. This opens new possibilities070

for modeling state transitions. Later works follow071

two directions. First, role ability benchmarks (Tu072

et al., 2024; Wang et al., 2024a; Shao et al., 2023)073

focus on role-playing and plot prediction. They074

improve dialogue realism, but place less emphasis075

on tracking factual states during interactions. Sec-076

ond, the Sotopia series (Zhou et al., 2024; Wang077

et al., 2024b) and SocialBench (Chen et al., 2024)078

accessing social intelligence in open-ended tasks.079

Their design often centers around user-defined so-080

cial goals, which may not align with factual state081

tracking or verification.082

To address these challenges, we propose083

LIFESTATE-BENCH to explore and measure LLMs’084

lifelong learning capabilities. As shown in Fig-085

ure 1, our benchmark surpasses others (e.g., di-086

alogue agents, role-playing) with longer average087

sample lengths and more dialogue turns per inter-088

action. Key features include:089

Cumulative Experience. Inspired by the idea090

that “human personality emerges from experi-091

ences” (Shao et al., 2023), we created an episodic092

dataset with clear timelines. Each episode contains093

scene details, character actions, and dialogues to094

enable continuous agent interaction.095

Fact Checking. Each episode includes fact-096

based questions related to self-awareness, memory097

retrieval, and relationship changes, accompanied098

by reference answers to ensure objective evalua-099

tion.100

Memory Testing. For lifelong learning evalua-101

tion, models should retain long-term memory of102

past scenes while accessing only recent dialogue.103

This is tested via (i) non-training methods: episode104

or summary concatenation, and (ii) training meth-105

ods: knowledge editing (Wang et al., 2025; Meng106

et al., 2023) and LoRA fine-tuning (Hu et al., 2022)107

using historical context.108

In LIFESTATE-BENCH, we selected theatrical109

scripts, including both existing (e.g.,, Hamlet) and110

synthetic narratives. For existing works, such as111

Hamlet—a classic play likely present in pretrain-112

ing corpora—we use them to assess the model’s113

memory retention capabilities. To reduce direct114

string matching, all character names have been115

anonymized. In contrast, the synthetic scripts, gen- 116

erated by Claude and unseen during pretraining, 117

are used to evaluate the model’s ability to adapt 118

to entirely new content. This contrast allows us 119

to explore lifelong learning in a realistic set- 120

ting, where models must navigate both familiar and 121

novel domains. Compared to current benchmarks, 122

our dataset features more interactive characters, 123

closed dialogue turns, and richer content (Table 1). 124

Evaluation combines LLM-as-judge with human 125

assistance, using predetermined factual answers as 126

criteria. 127

We tested several popular models, including 128

the open-source Llama3.1-8B (AI, 2024), the 129

closed-source GPT-4-turbo (OpenAI, 2023), and 130

the large language reasoning model DeepSeek 131

R1 (DeepSeek-AI et al., 2025). Benchmark-backed 132

experiments show that current models still have 133

much room for improvement in lifelong learning. 134

In summary, our work contributes in three key 135

areas: 136

● Two Datasets: We introduce the Hamlet and 137

synthetic datasets, featuring multi-agent episodic 138

timelines and scene details to simulate cumulative 139

experiences. 140

● A Benchmark: LIFESTATE-BENCH evaluates 141

LLMs’ lifelong learning abilities via fact-checking 142

mechanism, using both non-parametric and para- 143

metric memory-testing methods. 144

● Findings and Implications: Non-parametric 145

methods outperform parametric ones in lifelong 146

learning, but all models still face challenges with 147

catastrophic forgetting as episodes progress, sug- 148

gesting that our benchmark could provide valuable 149

insights for further improvements. 150

2 Related Work 151

Anthropomorphic Cognition in LLMs. Early 152

cognitive science (Sumers et al., 2024; Laird et al., 153

1987; Sun, 2004) laid the foundation for anthropo- 154

morphizing AI, simulating human-like emotional 155

and social behaviors. Role-playing language agents 156

have become increasingly common in simulating 157

collective social behaviors in multi-agent systems. 158

These agents (Park et al., 2023) not only enhance 159

social interactions but also contribute to personal- 160

ized and complex task execution in AI. 161

Role Ability/Dialog Agents Benchmarks. Role 162

ability (Shao et al., 2023; Wang et al., 2024a) and 163

dialogue agent benchmarks (Zhang et al., 2018; 164

Dinan et al., 2019; Gao et al., 2023; Zheng et al., 165
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Benchmarks Dataset Characteristics Interaction Design Evaluation Focus
# Samples Avg Length Data Source # Turns # Agents Query Type Answer Type State Memory Metrics

Dialog Agent Benchmarks

PERSONA-CHAT (Zhang et al., 2018) 162.0K 15 Crowd 7 2 Chit-chat Open ✓ ✓ PPL, F1, Hit@1
ConvAI (Dinan et al., 2019) 131.0K 15 Crowd 5 2 Chit-chat Open ✓ ✓ PPL, F1, Hit@1
Live-Chat (Gao et al., 2023) 9.4M 10 Crawled 2 2 Chit-chat Open ✗ ✗ BLEU, ROUGE
MT-Bench (Zheng et al., 2023) 3.3K 373 Synthetic 2.9 2 Multi-task Factual ✗ ✗ Model Judge

Role Ability Benchmarks

Character-LLM (Shao et al., 2023) 21.1K 36 Synthetic 13.2 2 Persona Open ✓ ✗ Model Judge
RoleLLM (Wang et al., 2024a) 168.1K 28.1 Crawled 2 2 Persona Mixed ✗ ✗ ROUGE, Model Judge
CharacterEval (Tu et al., 2024) 11.4K 39.8 Crawled 9.3 2 Persona Open ✗ ✗ Model Judge
SocialBench (Chen et al., 2024) 30.8K 67.4 Synthetic 19.2 3.8 Social Mixed ✗ ✓ Model Judge

Long-context Understanding Benchmarks

Long Range Arena (Tay et al., 2021) - 10.0K Synthetic 1 1 Multi-modal Factual ✗ ✗ Acc, Speed
LongBench (Bai et al., 2024) 4.6K 10.0K Synthetic 1 1 Multi-task Factual ✗ ✗ Acc, F1, ROUGE
L-Eval (An et al., 2024) 411 4K-60K Synthetic 1 1 Multi-task Mixed ✗ ✗ ROUGE, Model Judge
∞-bench (Zhang et al., 2024) 130 200.0K Synthetic 1 1 Multi-task Factual ✗ ✗ Model Judge

LIFESTATE-BENCH-Hamlet 1.3K 125.5 Crawled 66.1 6.6 Social+Memory Factual ✓ ✓ Model Judge
LIFESTATE-BENCH-Synth 202 91.9 Synthetic 28.9 7 Social+Memory Factual ✓ ✓ Model Judge

Table 1: Comparison of Different Benchmarks. ✗: not supported; ✓: fully supported. Data Source indicates the
origin of the data. # Turns shows the average conversation turns. # Agents indicates the number of participants in
each interaction. Query Type shows the question/task type. Answer Type indicates whether the expected answers are
open-ended, factual, or mixed. State shows whether the benchmark maintains interaction state. Memory indicates
whether the benchmark evaluates memory capability.

2023) are divided into static and dynamic types.166

Static models (Chen et al., 2023; Tu et al., 2024)167

focus on predefined roles and fixed interaction pat-168

terns, typically applied in basic dialogue tasks. In169

contrast, dynamic models (Chen et al., 2024; Zhou170

et al., 2024; Wang et al., 2024b) allow agents to171

accumulate experiences and evolve during interac-172

tions, enabling consistency and adaptability over173

time. These benchmarks are essential for evaluat-174

ing agent flexibility, memory handling, and long-175

term interaction capabilities.176

Long-context Understanding Benchmarks.177

Long-context understanding involves models178

processing large amounts of information over179

extended interactions. These benchmark (Tay180

et al., 2021; Bai et al., 2024; An et al., 2024;181

Zhang et al., 2024) tests an agent’s ability to182

synthesize and recall information from multiple183

episodes, maintaining coherence across long184

spans of dialogue. It is crucial for tasks requiring185

reasoning and the integration of past events to186

understand complex or narrative-driven content.187

3 Problem Formulation188

We formalize lifelong learning for LLMs as a state189

evolution process in partially observable multi-190

agent environments to assess their ability to retain191

and adapt knowledge over time.192

3.1 State Space193

The Lifelong Learning ability is evaluated by state194

transition. In this paper, the state can be broken195

down into three dimension: 196

Self-awareness. Can the model maintain a clear 197

understanding of its identity, role, and goals over 198

time? This dimension evaluates the model’s ability 199

to retain and update its self-awareness as it interacts 200

with the environment. 201

Factual Episode Memory Retrieve. Can the 202

model retain knowledge and experiences persis- 203

tently, avoiding catastrophic forgetting or the in- 204

ability to reuse previously acquired knowledge? 205

This dimension assesses the model’s capacity for 206

long-term memory and knowledge retention. 207

Relationship Shift. Can the model reason effec- 208

tively based on long-term memory, particularly in 209

understanding and adapting to changes in relation- 210

ships between characters or agents? This dimen- 211

sion evaluates the model’s ability to track and rea- 212

son about evolving relationships. 213

3.2 Multi Agent Episodes 214

Multi agent environment. LetM be a language 215

model acting as role r ∈ R with internal state 216

s
(t)
r ∈ Rd, interacting with other agents {r′}r′≠r 217

over discrete timesteps t ∈ {1, ..., T}. 218

Task format. We formalize the above problems 219

as a time-axis and role-based question-answering 220

task. Assume that for agent r at episode t, each 221

question Q(r, t) is a triple: 222

Input: Q(r, t) = ⟨H(t), c(t), q(r, t)⟩, (1) 223
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Cumulative Experience Fact Checking Memory Testing

Q (Hamlet, E𝟏)
Self-awareness
Q: Who are you?
A: I am the Prince of Denmark.
Factual Episode Memory Retrieve
Q: Did Claudius and Gertrude agree to 
your wish to leave?
A: No. 
Relation Shift
Q: What is your relationship with Claudius? 
A: Claudius is my uncle and stepfather.

Q (Hamlet, E𝟐)
Self-awareness
Q: Who are you?
A: I am the Prince of Denmark.
Factual Episode Memory Retrieve
Q: Who did the ghost say killed your father? 
A: Claudius. 
Relation Shift
Q: What is your relationship with Claudius? 
A: Once my uncle and stepfather, now my 
father's murderer.

Non-parametric

Parametric

Multi agent environment 𝑅

(i) Direct Episode Concatenation

A#$%& = 𝑀$	(𝐸' ∥ ⋯ ∥ 𝐸( ∥ 𝑄(𝑟, 𝐸())

(ii) Episode Summary Concatenation

A#$%& 	= 𝑀$(𝑆' ∥ ⋯ ∥ 𝑆( ∥ 𝑄(𝑟, 𝐸())

(iii) KE)! = Edit	(𝑀$,𝐸':(+')

A#$%& 	= KE)!(𝐸( ∥ 𝑄(𝑟, 𝐸())

(ⅳ)) 𝐿o𝑅𝐴)! = LoRA (𝑀$,𝐸':(+') 

A#$%& 	= 𝐿o𝑅𝐴)!(𝐸( ∥ 𝑄(𝑟, 𝐸())

𝑀!: LLM with system prompt for role agent r

A!"#$
A%"&'($

Judge Model

Point-wise 
Grading

Each episode E𝒕, role r: Question Q(r, 𝑬𝒕) & Ground Truth A

Episode  𝐸 = 𝐸', ⋯ , 𝐸-

Figure 2: Method Overview. Our benchmark captures three key features: cumulative experience, fact-checking, and
memory testing. Finally, the LLM judge scoring system is located in the bottom-right corner.

Output: A
′

(r, t) =M(Q(r, t)), (2)224

where H(t) denotes the complete history of225

interactions for role r, c(t) denotes the context226

window for role r, which may include the entire227

episode t or a fixed-size subset of recent interac-228

tions. q(r, t) is further decomposed into qself(r, t),229

qfact(r, t), qrel(r, t) corresponding to the three di-230

mensions of the state space from Section 3.1. The231

output A
′

(r, t) represents the agent response to the232

input Q(r, t), which can be evaluated with ground233

truth answer A
′

(r, t).234

This structured approach allows us to analyze235

the model’s dynamic characteristics and assess its236

lifelong learning capabilities in a principled man-237

ner.238

4 LIFESTATE-BENCH: From Stateless to239

Stateful240

To establish a systematic evaluation framework for241

lifelong learning, LIFESTATE-BENCH integrates242

three synergistic components: (1) cumulative ex-243

perience modeling through episodic timelines, (2)244

multi-dimensional fact-checking mechanisms, and245

(3) hierarchical memory testing architectures, refer246

to overview architecture in Figure 2. This tripar-247

tite structure enables comprehensive assessment248

of LLMs’ capacity to maintain persistent states249

through history interactions.250

4.1 Cumulative Experience Modeling 251

Human learning relies on accumulating structured 252

experiences over time (Shao et al., 2023). Early di- 253

alog agents (Zhang et al., 2018; Dinan et al., 2019), 254

however, constructed persona representations from 255

isolated conversations, ignoring temporal depen- 256

dencies. Lifelong learning requires a coherent time- 257

line and factual consistency across experiences. 258

These early dialog datasets (Zhang et al., 2018; 259

Dinan et al., 2019; Gao et al., 2023), while large, 260

often suffer from short dialogues (e.g., fewer than 261

10 turns) and brief exchanges (e.g., fewer than 20 262

words per sentence). 263

Recent role play agent (Shao et al., 2023; Wang 264

et al., 2024a; Tu et al., 2024) leverage richer 265

sources, such as novels and role-playing platforms, 266

to better capture experience accumulation. Inspired 267

by this, we propose timeline cumulative experience 268

modeling lifelong learning ability. 269

Experience Design. We structure experiences as 270

an ordered sequence: 271

E = {E1, ...,EN}, Ei = (Li, Ti,Ni,Di) (3) 272

where Li represents the location of the event, Ti 273

denotes the time it occurs, Ni provides scripted nar- 274

ration for context, and Di contains the dialogues 275

between characters. This structured representation 276

ensures experiences are temporally ordered, contex- 277

tually rich, and narratively coherent. This ensures 278
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experiences are grounded in concrete events rather279

than isolated conversations.280

Timeline Fact Order. Unlike conventional chit-281

chat dialogue, our framework enforces event-driven282

interactions, ensuring characters accumulate truc-283

tured, meaningful experiences grounded in con-284

crete events.285

Multi-Scale Interaction. Each episode includes:286

Dialogue length averaging 91 − 125 words, with287

28.9− 66 dialogue turns, enabling rich interactions.288

At leastM ≥ 4 characters, capturing complex so-289

cial dynamics.290

By structuring experiences with explicit time-291

lines, factual consistency, and multi-character inter-292

actions, we enable dialog agents to learn in a way293

that mirrors human experiential accumulation.294

4.2 Fact-Checking Mechanisms295

Our core innovation is the introduction of fact-296

checking within multi-agent timeline-based dia-297

logues. At the end of each episode, agents are298

tested with fact-based questions to ensure factual299

consistency throughout the narrative.300

Challenges. Existing evaluation datasets mainly301

assess role-playing agents based on knowledge, lin-302

guistic style, or persona, such as using psycholog-303

ical theories (e.g., Big Five, MBTI) (Wang et al.,304

2023; Tu et al., 2024) or focusing on social intelli-305

gence like goals and preferences (Chen et al., 2024;306

Zhou et al., 2024). However, these approaches lack307

fact-checking and typically evaluate role consis-308

tency or open-ended questions. Our method, in309

contrast, centers on questions with factual answers,310

supported by human-annotated ground truth, gen-311

erated from the current episode. Specific examples312

are shown in Figure 2.313

Question Example. Our fact-checking frame-314

work includes three key question types: Self-315

awareness, Factual Episode Memory Retrieval, and316

Relationship Shift. Each episode Et generates317

these three question types for each role in the318

episode to systematically evaluate the agent’s fac-319

tual accuracy and temporal awareness, ensuring320

consistency across the timeline. Examples can be321

found in the fact-checking section of Figure 2.322

4.3 Memory Testing323

To evaluate our framework’s memory capabilities,324

we conduct controlled testing using non-parametric325

and parametric approaches to assess the model’s 326

ability to utilize and internalize memory. 327

Non-parametric Methods. Non-parametric 328

methods test the model’s ability to process raw 329

historical data, represented as E = [E1; . . . ;EN ]. 330

Key implementations include: 331

• Direct Episode Concatenation: Concatenate 332

all previous episodes as a text prefix to test 333

memory with uncompressed information. 334

• Summarization and Concatenation: Gen- 335

erate a summary St = Summary(E1∶t) us- 336

ing GPT and concatenate it with the current 337

episode to test memory with compressed in- 338

formation. 339

However, the limited context window size in non- 340

parametric methods may cause information loss 341

when handling long texts. 342

Parametric Methods. Parametric methods en- 343

code memory directly into the model’s parameters. 344

We focus on two techniques: 345

• Knowledge Editing: This technique (Wang 346

et al., 2025; Meng et al., 2023) updates spe- 347

cific model parameters to integrate episodic 348

knowledge without full retraining, ensuring 349

efficient internalization of key information. 350

• LoRA (Low-Rank Adaptation): LoRA (Hu 351

et al., 2022) injects small, trainable updates 352

into specific layers, fine-tuning the model with 353

episode memory Et to retain past information 354

while preserving generalization. 355

These methods bypass context window limita- 356

tions and enable efficient memory recall. However, 357

practical issues like precision limitations in knowl- 358

edge editing and information loss in LoRA fine- 359

tuning may affect their performance, as discussed 360

in the evaluation section. 361

4.4 Dataset Construction and Analysis 362

Data Collection. This study utilizes two comple- 363

mentary datasets to support a comprehensive evalu- 364

ation of lifelong learning in language models. The 365

first dataset is adapted from Shakespeare’s Hamlet, 366

with anonymized character names to reduce memo- 367

rization. While Hamlet may appear in pretraining 368

data, we retain it as a deliberate challenge. Its rich 369

narrative and evolving character dynamics test the 370

model’s ability to track long-term dependencies 371
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Table 2: Comparison of Evaluated Models

Model Size Open Source Model Type Ctx. Length

Llama3.1 8B ✓ Base 128K
GPT4-turbo - ✗ Chat 128K
DeepSeek R1 671B ✓ Reasoning 128K

beyond rote recall. In contrast, the second dataset372

is a fully synthetic narrative generated by Claude373

3.5 Sonnet (Anthropic, 2024), featuring a novel374

plot and emotional arcs. This enables a cleaner375

evaluation of generalization in unseen scenarios.376

By Hamlet and Midnight Diner, our benchmark377

captures both ends of the spectrum: memorization378

vs. adaptation, offering a realistic and nuanced379

evaluation of lifelong learning in large language380

models. Details of data collection and illustrative381

examples can be found in Appendix A and Ap-382

pendix C, respectively.383

Question-Answer Annotation. To ensure qual-384

ity, the annotation of questions was primarily385

conducted by the authors of this study, all of386

whom hold master’s degrees. In terms of ques-387

tion design, open-ended questions tend to result388

in lengthy model-generated answers (e.g., averag-389

ing 243 tokens), while structured factual questions390

(e.g., “who/where/when”) help improve accuracy391

and effectively reduce response length. During the392

experiments, data leakage issues were particularly393

notable. Specifically, in the Hamlet dataset, when394

character names were restored, the model could395

still generate correct answers without context, indi-396

cating that the model might be reasoning by mem-397

orizing classic plot patterns, thereby affecting the398

evaluation results.399

LIFESTATE-BENCH Statistics. As shown in Ta-400

ble 1, we present the dataset statistics, interaction401

design, and evaluation focus of our benchmark.402

Although our total number of samples is rel-403

atively small, each sample is longer on average404

compared to dialog agent or role ability bench-405

marks. Unlike long-context understanding datasets,406

our benchmark includes more dialogue turns and407

a larger number of interacting agents. Addition-408

ally, it emphasizes factual consistency and includes409

explicit memory probes.410

5 Evaluation411

5.1 Experimental Setup412

Evaluation Methods. When answering ques-413

tions about the current episode Et, all prior414

episodes E1 to Et−1, including dialogues, loca- 415

tions, and times, serve as context. We catego- 416

rize evaluation methods into two types: (i) Para- 417

metric methods improve memory by updating the 418

model’s internal parameters. Examples include 419

Knowledge Editing-Grace (Hartvigsen et al., 2023), 420

which modifies weights to incorporate new knowl- 421

edge, and LoRA Fine-Tuning (Hu et al., 2022), a 422

lightweight low-rank adaptation that reduces forget- 423

ting. (ii) Non-parametric methods manage context 424

externally. Direct Concatenation appends full his- 425

tory but is limited by context length. Summary 426

Concatenation uses GPT to extract and compress 427

key information, balancing compression with re- 428

tention for longer contexts. 429

Model Selection. We selected the most recent 430

and widely adopted models as our backbone 431

architectures, encompassing open-source model 432

(Llama3.1-8B (AI, 2024)), closed-source models 433

(GPT-4-turbo (OpenAI, 2023)), and state-of-the-art 434

reasoning model (DeepSeek R1 (OpenAI, 2023)). 435

The distinguishing characteristics of these models 436

are presented in Table 2. 437

5.2 Experimental Results 438

Evaluation Protocol. We follow the LLM-as- 439

Judge paradigm (Zheng et al., 2023), using the 440

DeepSeek evaluator (DeepSeek-AI et al., 2024) for 441

automatic scoring. Each question is paired with 442

a ground truth answer containing factual details 443

and structured reasoning. We use pairwise grading 444

between the model output and ground truth, scor- 445

ing from 1 to 100. By grounding the evaluation in 446

factual reference answers, this setup ensures more 447

reliable results than open-ended assessments that 448

depend on the model’s internal knowledge. Details 449

of the evaluation prompt and scoring workflow are 450

included in Appendix B. 451

Overall Performance. The results show clear 452

performance differences across models and 453

datasets. Large reasoning models like DeepSeek- 454

R1 and the proprietary GPT-4-turbo outperform the 455

open-source Llama3.1-8B in all tasks. DeepSeek- 456

R1 achieved the highest overall accuracy (67.3%) 457

on the Hamlet dataset using the direct concatena- 458

tion method, especially in self-awareness (86.4%) 459

and relation shift (58.7%). On the synthetic dataset, 460

GPT-4-turbo also using direct connection achieved 461

the best overall accuracy (75.6%) and factual mem- 462

ory score (75.5%). 463
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Table 3: Performance Comparison on Synthetic and Hamlet Datasets. The best and second-best performance in
each section are highlighted. The Avg column represents the average accuracy, and the Std column represents the
standard deviation, showing the variability of the results.

Method Param. Tuning Self-awareness Factual Memory Relation Shift ACC
Avg Std Avg Std Avg Std

Hamlet Dataset (Total 196 Questions)

Open-source model: Llama3.1-8B
Knowledge Editing ✓ 67.3 0.78 43.7 1.26 19.2 1.26 21.9
LoRA-Tune ✓ 69.1 0.86 53.6 1.08 22.7 1.31 25.6
Summary Concatenation ✗ 73.5 0.93 54.2 0.96 42.1 0.97 47.0
Direct Concatenation ✗ 74.2 0.77 58.8 1.11 43.7 1.15 58.0
Closed-source model
GPT-4-turbo (Summary Conc.) ✗ 84.6 1.08 62.7 0.79 54.5 0.88 66.1
GPT-4-turbo (Direct Conc.) ✗ 84.3 1.42 62.3 0.82 54.2 0.64 65.9
Large reasoning model
DeepSeek-R1 (Summary Conc.) ✗ 85.6 0.93 64.3 0.69 56.5 1.05 65.8
DeepSeek-R1 (Direct Conc.) ✗ 86.4 0.79 63.3 0.77 58.7 0.83 67.3

Synthetic Dataset (Total 115 Questions)

Open-source model: Llama3.1-8B
Knowledge Editing ✓ 76.2 0.67 47.3 0.83 27.4 1.23 34.0
LoRA-Tune ✓ 77.7 0.89 51.2 0.93 31.2 1.07 40.7
Summary Concatenation ✗ 83.3 0.79 52.7 1.07 46.6 0.97 50.2
Direct Concatenation ✗ 83.6 0.83 61.4 1.25 45.2 1.24 6.70
Closed-source model
GPT-4-turbo (Summary Conc.) ✗ 84.2 0.91 74.5 0.72 61.1 0.95 73.3
GPT-4-turbo (Direct Conc.) ✗ 85.4 0.76 75.5 0.69 62.9 0.89 75.6
Large reasoning model
DeepSeek-R1 (Summary Conc.) ✗ 85.7 0.92 70.1 0.87 62.7 0.93 73.5
DeepSeek-R1 (Direct Conc.) ✗ 87.6 0.93 74.7 0.94 67.4 0.88 74.2

Non-tuning methods (direct and summary con-464

nection) perform better than tuning-based methods465

(knowledge editing and LoRA-Tune), suggesting466

that leveraging the model’s original context is more467

effective, and this is intuitive. All methods per-468

form better on the synthetic dataset than on Hamlet,469

likely due to its more complex characters, plots,470

and longer dialog samples (As shown in Table 1).471

All methods show relatively low standard devi-472

ations (most between 0.7-1.2), indicating stable473

and reliable results. GPT-4-turbo has a higher474

standard deviation in self-awareness (1.42 on the475

Hamlet dataset), suggesting some fluctuation. In476

contrast, DeepSeek-R1 demonstrates more consis-477

tent performance, especially in factual memory,478

with a standard deviation between 0.69-0.94. Over-479

all, DeepSeek-R1 offers the most balanced perfor-480

mance, excelling in complex relation shift tasks,481

while GPT-4-turbo excels in factual memory.482

Episode-wise Performance. Using Llama3.1-8B483

as an example, we analyzed how each method484

performs across episodes. As shown in the fig-485

ure 3, on the Hamlet dataset, model performance486

generally drops as the story progresses, regardless 487

of parameter tuning. The decline is most severe 488

for the Knowledge Editing method, showing clear 489

signs of catastrophic forgetting. A similar trend 490

appears in the synthetic dataset, suggesting that our 491

LIFESTATE-BENCH presents challenges for life- 492

long learning evaluation. As the story unfolds, 493

model performance decreases on both datasets. 494

However, the decline is slower and more stable 495

on the Hamlet dataset, suggesting the model ef- 496

fectively leverages prior knowledge and long-term 497

dependencies. In contrast, the synthetic dataset 498

generated by Claude 3.5 shows a faster and sharper 499

drop in performance, indicating greater difficulty in 500

adapting to novel, unseen content. This comparison 501

highlights how the two datasets challenge differ- 502

ent model capabilities—memory retention versus 503

generalization. 504

State Dimension Breakdown. When broken 505

down by question type, all methods show perfor- 506

mance drops over episodes. The most challenging 507

are questions about shifting relationships, where 508

models struggle to track evolving dynamics. 509

7



Knowledge Editing LoRA Direct Concat Summary Concat

Knowledge Editing LoRA Direct Concat Summary Concat

(b). Synthetic Dataset Result

(a). Hamlet Dataset Result

Figure 3: Episode-wise Performance of Hamlet and Synthetic Datasets. This includes the overall performance of
various methods, as well as performance from different state perspectives.

The direct concatenation method performs con-510

sistently across question types and datasets. It511

is especially accurate in early episodes (E1–E2)512

when handling self-awareness and relationship513

shift. The summary-concatenation works well for514

self-awareness and fact recall but performs poorly515

on relationship shift questions. This suggests516

it fails to capture complex relationship changes.517

Knowledge Editing (GRACE) and LoRA-Tune518

perform weakly on self-awareness and memory-519

related tasks. Their scores drop quickly over520

episodes, further showing that parameter-based521

methods are vulnerable to forgetting in multi-step522

and long-term reasoning.523

Data Leakage Analysis. In our observations,524

despite anonymizing character names in Hamlet,525

some model outputs still suggest data leakage—for526

example, predicting future plot details. However,527

this is not a flaw of our benchmark but a deliber-528

ately designed challenge. It is important to clarify529

that LLMs are pre-trained on vast amounts of in-530

ternet data. In real-world scenarios, LLMs must531

balance leveraging existing knowledge with adapt-532

ing to new information. Our benchmark tests this533

ability explicitly.534

Including Hamlet allows us to probe whether535

models truly understand and reason about long-536

term dependencies, rather than merely recalling537

memorized content. In contrast, the synthetic538

dataset generated by Claude 3.5 Sonnet provides 539

a clean environment to evaluate the model’s gen- 540

eralization and adaptation to novel contexts. By 541

combining these two types of data, our benchmark 542

reflects a realistic spectrum of challenges—from 543

memory retention to adaptation—rather than sim- 544

ply avoiding data leakage. 545

6 Conclusion 546

We introduce LIFESTATE-BENCH, a novel bench- 547

mark designed to evaluate the lifelong learning 548

ability of LLMs through multi-agent, multi-turn 549

interactions. Unlike prior static assessments, 550

LIFESTATE-BENCH simulates cumulative experi- 551

ences by organizing interactions as episodic scripts 552

enriched with scene and character dynamics. It 553

enables objective measurement of state evolution 554

via fact-based questions, exploring self-awareness, 555

factual memory retrieve, and relationship shifts. 556

Our experiments on both open-/closed-source and 557

state-of-the-art reasoning models reveal that LLMs 558

still struggle with consistent state retention across 559

episodes. LIFESTATE-BENCH proves effective in 560

highlighting these challenges and shows that non- 561

parametric methods better preserve long-term con- 562

text. These results confirm its value as a diagnostic 563

tool for developing more stateful, memory-capable 564

LLMs. 565
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7 Limitations566

Although individual samples in the dataset are suf-567

ficiently long, the overall number of samples is lim-568

ited, which may somewhat restrict the diversity of569

training and evaluation scenarios. Additionally, this570

work primarily focuses on dialogue-based models,571

with potential future extensions to code generation572

or vision and other multimodal tasks. Finally, the573

benchmark currently emphasizes factual questions574

and does not yet cover more subjective and com-575

plex cognitive abilities such as emotion modeling576

or planning. In the future, we plan to synthesize577

more diverse datasets to further enhance the bench-578

mark’s robustness and applicability.579
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A Dataset Construction Details850

Dataset Construction. LIFESTATE-BENCH851

evaluates large language models’ (LLMs) ability to852

retain and reason over long-term state information853

in narrative environments. It includes two types of854

scripts:855

• Hamlet (English): An existing classical play.856

All character names are anonymized to reduce857

data leakage. It primarily tests memory reten-858

tion when prior exposure may exist.859

• Midnight Diner (Chinese & English): A syn-860

thetic script generated via Claude 3.5 Sonnet.861

It is not part of any public pretraining corpus862

and focuses on evaluating adaptation to novel863

content.864

Each episode includes: Scene information: time,865

location, participants. Full dialogues: grounded in866

realistic narrative progression. Role cards: char-867

acter background, personality traits, and relation-868

ships. QA pairs: fact-based questions with refer-869

ence answers for evaluation, centered on (1) self-870

awareness, (2) memory retrieval, and (3) relation-871

ship changes. Data was stored in JSON format,872

structured in the following hierarchy: EspiodeID873

→ Question-Answer ID → (Question, Reference874

answer).875

Prompt for Synthetic Data Generation (Claude).876

To construct the Midnight Diner dataset, we used877

Claude 3.5 Sonnet to generate original episodes,878

role cards, and dialogue timelines. The prompt is879

shown in Table 4.880

B Evaluation Protocol881

We follow the LLM-as-Judge paradigm (Zheng882

et al., 2023), using the DeepSeek evalua-883

tor (DeepSeek-AI et al., 2024) for automatic scor-884

ing. Each model-generated answer is compared885

against the reference answer and scored from 1886

to 10 based on alignment and correctness (Zheng887

et al., 2023).888

Evaluation Prompt. Each triplet (question,889

model answer, reference answer) is scored using890

the following prompt summarized in Table 5891

Scoring Workflow. Algorithm 1 illustrates the892

overall scoring workflow. For each question-893

answer pair in the dataset, the question, model894

answer, and reference answer are first extracted.895

Prompt: Please help me generate an original
multi-episode drama script, including detailed
character profiles, a full dialogue-based script,
and a timeline of events. The requirements are:

• The setting is a “Midnight Diner” with
fixed staff and rotating customers.

• Each episode should explore a central
theme, such as character growth, emotional
conflict, or relationship change.

• Each character should have a clear back-
ground, personality, and relationship dy-
namics.

• The dialogue should be natural and realistic,
reflecting everyday emotional depth.

The output should include:

1. Full script in dialogue form;

2. Structured character cards;

3. Scene-level metadata such as time, place,
and involved characters.

Table 4: Instruction prompt used to generate drama-
style episodes.

Prompt:
The known question is: [QUESTION].

The original answer is: [MODEL_ANSWER].

The target answer is: [REFERENCE_ANSWER].

Please provide a score for the original answer
based on the following criteria:

1–2: irrelevant or seriously incorrect;

3–4: minor errors, low quality;

5–6: medium quality;

7–8: close to reference, good quality;

9–10: same as reference answer.

Please return only a number from 0 to 10.

Table 5: Prompt for scoring the original answer based
on a reference.

Then, a prompt is constructed and sent to the large 896

language model API to obtain a score. Finally, all 897

scores are accumulated and the average score is 898
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Algorithm 1 Evaluation via LLM Scoring
1: Initialize total_score ← 0, count ← 0
2: for each QA pair (q, amodel, aref) in dataset do
3: Construct prompt with q, amodel, aref
4: response ← LLM_API(prompt)
5: score ← parse_score(response)
6: total_score += score, count += 1
7: end for
8: average_score ← total_score / count
9: return average_score

computed as the overall performance metric.899

Reproducibility. We provide a Python script900

eval.py implementing the full pipeline using the901

OpenAI-compatible API.902

C Data Example903

To illustrate the structure of our dataset, we present904

a stylized excerpt adapted from Hamlet, Act I,905

Scene I. Each scene is annotated with a title, a906

list of participating characters, dialogue entries,907

and character-centric question-answer (QA) anno-908

tations across multiple perspectives.909

Scene Sample910

Scene Title: SCENE I. Elsinore. A plat-911

form before the castle.912

Characters: Person7, Person10, Per-913

son26914

Dialogues:915

• Action: Person10 at his post. Enter916

to him Person26.917

• Person26: Who’s there?918

• Person10: Nay, answer me: stand,919

and unfold yourself.920

• Person26: Long live the king!921

• Person10: Person26?922

• Person26: He.923

• Person10: You come most care-924

fully upon your hour.925

• Person26: ’Tis now struck twelve;926

get thee to bed, Person10.927

• ...928

Character QA Annotations929

Each character is annotated with multi-perspective930

QA entries covering (1) Self-Perception, (2) Mem-931

ory and Decision-Making, and (3) Plot Interaction.932

All answers are phrased in first-person, grounded 933

in dialogue context. 934

Person10 935

• Self-awareness: 936

Q: What is your position in the royal palace? 937

A: I am a soldier, responsible for guarding the 938

court. 939

• Factual Episode Memory Retrieve: 940

Q: Who is taking over your shift tonight? 941

A: Person26. 942

Q: Who did Person26 ask you to call over 943

quickly? 944

A: His watch partners, Person31 and Person5. 945

Person26 946

• Self-awareness: 947

Q: What is your position in the royal palace? 948

A: I am a soldier, responsible for guarding the 949

court. 950

• Factual Episode Memory Retrieve: 951

Q: Whose shift did you take over tonight? 952

A: Person10’s. 953

Q: Who was with you the first time you saw 954

Person21? 955

A: I was with Person5 when we first saw Per- 956

son21. 957

Q: Where did you see Person21? 958

A: At the watchtower of the castle. 959

Q: When did you see Person21? 960

A: Last night, just as the clock struck. 961

• Factual Episode Memory Retrieve: 962

Q: Who does Person21 resemble? 963

A: Person21 bears a striking resemblance to 964

the late king. 965

Q: Did Person21 appear again tonight? What 966

did it do? 967

A: Yes, Person21 appeared again tonight. It 968

did not speak; it just silently departed. 969

Note 970

Identifiers like “Person5” and “Person21” are 971

anonymized character IDs used during preprocess- 972

ing. Each QA entry reflects context-specific knowl- 973

edge, enabling multi-perspective reasoning and 974

temporal memory modeling. This structure facili- 975

tates evaluation of consistent character behaviors 976

across scenes. 977
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