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Abstract

Large language models (LLMs) can carry out
human-like dialogue, but unlike humans, they
are stateless due to the superposition property.
However, during multi-turn, multi-agent in-
teractions, LL.Ms begin to exhibit consistent,
character-like behaviors—hinting at a form of
emergent lifelong learning. Despite this, ex-
isting benchmarks often fail to capture these
dynamics, primarily focusing on static, open-
ended evaluations. To address this gap, we
introduce LIFESTATE-BENCH, a benchmark
designed to assess lifelong learning in LLMs.
It features two episodic datasets—Hamlet and
a synthetic script collection—rich in narra-
tive structure and character interactions. Our
fact-checking evaluation probes models’ self-
awareness, episodic memory retrieval, and
relationship tracking, across both parametric
and non-parametric approaches. Experiments
on models like Llama3.1-8B, GPT-4-turbo,
and DeepSeek R1, we demonstrate that non-
parametric methods significantly outperform
parametric ones in managing stateful learning.
However, all models exhibit challenges with
catastrophic forgetting as interactions extend,
highlighting the need for further advancements
in lifelong learning.

1 Introduction

Large language model (LLM)-based dialog agents
exhibit human-like traits (e.g., intent understanding
and language expression), making users prone to
anthropomorphism (Shanahan et al., 2023). How-
ever, LLMs differ from humans in their superposi-
tion property (Janus, 2022): initially existing as a
stateless superposition of simulacra across multiple
possible characters (Lu et al., 2024). This property
emerges from its next-token prediction training on
a massive corpus, whereas humans develop through
accumulated experiences and memories.

Through sustained interaction, we observe that
an initially stateless LLM can transition toward
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Figure 1: Dataset Statistics. Triangles represent role
ability benchmarks, while circles denote dialogue agent
benchmarks.

more stateful characteristics as dialogue context
accumulates. At first, an LLM holds multiple char-
acters but gradually settles into a clear character as
the dialogue continues. Taking a nuanced view, this
character convergence process mirrors how humans
update their state through accumulated experience.

This state transition raises a measurable ques-
tion: How can we quantify an LLM’s state evolu-
tion (also called Lifelong learning ability) from
superposition to a more consistent state during
multi-turn, multi-agent interactions? In this pa-
per, “state” refers to the evolving configuration of
an LLM’s internal processes during multi-agent in-
teractions (Adams et al., 2012; Sumers et al., 2024),
building on Al cognitive architecture (Sun, 2004;
Newell, 1980).

While this research question predates LLM area,
current exploration remains preliminary with vary-
ing methodologies. Early Persona-Chat series (Gao
et al.,, 2023; Zhang et al., 2018; Dinan et al.,
2019) focusing on consistent character responses
using seq2seq models, or design social intelligence
questionnaire-based benchmarks (Sap et al., 2019;
Le et al.,, 2019). Both limited by static, non-



interactive setups. Ground truths were either open-
ended or fixed over time.

Generative agents (Park et al., 2023) bring LLM-
based dialogue agents into interactive human be-
havior simulation. This opens new possibilities
for modeling state transitions. Later works follow
two directions. First, role ability benchmarks (Tu
et al., 2024; Wang et al., 2024a; Shao et al., 2023)
focus on role-playing and plot prediction. They
improve dialogue realism, but place less emphasis
on tracking factual states during interactions. Sec-
ond, the Sotopia series (Zhou et al., 2024; Wang
et al., 2024b) and SocialBench (Chen et al., 2024)
accessing social intelligence in open-ended tasks.
Their design often centers around user-defined so-
cial goals, which may not align with factual state
tracking or verification.

To address these challenges, we propose
LIFESTATE-BENCH to explore and measure LLMs’
lifelong learning capabilities. As shown in Fig-
ure 1, our benchmark surpasses others (e.g., di-
alogue agents, role-playing) with longer average
sample lengths and more dialogue turns per inter-
action. Key features include:

Cumulative Experience. Inspired by the idea
that “human personality emerges from experi-
ences” (Shao et al., 2023), we created an episodic
dataset with clear timelines. Each episode contains
scene details, character actions, and dialogues to
enable continuous agent interaction.

Fact Checking. Each episode includes fact-
based questions related to self-awareness, memory
retrieval, and relationship changes, accompanied
by reference answers to ensure objective evalua-
tion.

Memory Testing. For lifelong learning evalua-
tion, models should retain long-term memory of
past scenes while accessing only recent dialogue.
This is tested via (i) non-training methods: episode
or summary concatenation, and (ii) training meth-
ods: knowledge editing (Wang et al., 2025; Meng
etal., 2023) and LoRA fine-tuning (Hu et al., 2022)
using historical context.

In LIFESTATE-BENCH, we selected theatrical
scripts, including both existing (e.g.,, Hamlet) and
synthetic narratives. For existing works, such as
Hamlet—a classic play likely present in pretrain-
ing corpora—we use them to assess the model’s
memory retention capabilities. To reduce direct
string matching, all character names have been

anonymized. In contrast, the synthetic scripts, gen-
erated by Claude and unseen during pretraining,
are used to evaluate the model’s ability to adapt
to entirely new content. This contrast allows us
to explore lifelong learning in a realistic set-
ting, where models must navigate both familiar and
novel domains. Compared to current benchmarks,
our dataset features more interactive characters,
closed dialogue turns, and richer content (Table 1).
Evaluation combines LLM-as-judge with human
assistance, using predetermined factual answers as
criteria.

We tested several popular models, including
the open-source Llama3.1-8B (Al, 2024), the
closed-source GPT-4-turbo (OpenAl, 2023), and
the large language reasoning model DeepSeek
R1 (DeepSeek-Al et al., 2025). Benchmark-backed
experiments show that current models still have
much room for improvement in lifelong learning.

In summary, our work contributes in three key
areas:

e Two Datasets: We introduce the Hamlet and
synthetic datasets, featuring multi-agent episodic
timelines and scene details to simulate cumulative
experiences.

e A Benchmark: LIFESTATE-BENCH evaluates
LLMs’ lifelong learning abilities via fact-checking
mechanism, using both non-parametric and para-
metric memory-testing methods.

¢ Findings and Implications: Non-parametric
methods outperform parametric ones in lifelong
learning, but all models still face challenges with
catastrophic forgetting as episodes progress, sug-
gesting that our benchmark could provide valuable
insights for further improvements.

2 Related Work

Anthropomorphic Cognition in LLMs. Early
cognitive science (Sumers et al., 2024; Laird et al.,
1987; Sun, 2004) laid the foundation for anthropo-
morphizing Al, simulating human-like emotional
and social behaviors. Role-playing language agents
have become increasingly common in simulating
collective social behaviors in multi-agent systems.
These agents (Park et al., 2023) not only enhance
social interactions but also contribute to personal-
ized and complex task execution in Al

Role Ability/Dialog Agents Benchmarks. Role
ability (Shao et al., 2023; Wang et al., 2024a) and
dialogue agent benchmarks (Zhang et al., 2018;
Dinan et al., 2019; Gao et al., 2023; Zheng et al.,



Benchmarks Dataset Characteristics

Interaction Design Evaluation Focus

# Samples Avg Length Data Source # Turns # Agents Query Type Answer Type State | Memory Metrics

Dialog Agent Benchmarks
PERSONA-CHAT (Zhang et al., 2018) 162.0K 15 Crowd 7 2 Chit-chat Open v v PPL, F1, Hit@1
ConvAl (Dinan et al., 2019) 131.0K 15 Crowd 5 2 Chit-chat Open v v PPL, F1, Hit@1
Live-Chat (Gao et al., 2023) 9.4M 10 Crawled 2 2 Chit-chat Open X X BLEU, ROUGE
MT-Bench (Zheng et al., 2023) 3.3K 373 Synthetic 29 2 Multi-task Factual X X Model Judge

Role Ability Benchmarks
Character-LLM (Shao et al., 2023) 21.1K 36 Synthetic 13.2 2 Persona Open v X Model Judge
RoleLLM (Wang et al., 2024a) 168.1K 28.1 Crawled 2 2 Persona Mixed X X ROUGE, Model Judge
CharacterEval (Tu et al., 2024) 11.4K 39.8 Crawled 9.3 2 Persona Open X X Model Judge
SocialBench (Chen et al., 2024) 30.8K 67.4 Synthetic 19.2 38 Social Mixed X 4 Model Judge

Long-context Understanding Benchmarks

Long Range Arena (Tay et al., 2021) - 10.0K Synthetic 1 1 Multi-modal Factual X X Acc, Speed
LongBench (Bai et al., 2024) 4.6K 10.0K Synthetic 1 1 Multi-task Factual X X Acc, F1, ROUGE
L-Eval (An et al., 2024) 411 4K-60K Synthetic 1 1 Multi-task Mixed X X ROUGE, Model Judge
oo-bench (Zhang et al., 2024) 130 200.0K Synthetic 1 1 Multi-task Factual X X Model Judge
LIFESTATE-BENCH-Hamlet 1.3K 125.5 Crawled 66.1 6.6 Social+Memory Factual v v Model Judge
LIFESTATE-BENCH-Synth 202 91.9 Synthetic 28.9 7 Social+Memory Factual v v Model Judge

Table 1: Comparison of Different Benchmarks. X: not supported; v: fully supported. Data Source indicates the
origin of the data. # Turns shows the average conversation turns. # Agents indicates the number of participants in
each interaction. Query Type shows the question/task type. Answer Type indicates whether the expected answers are
open-ended, factual, or mixed. State shows whether the benchmark maintains interaction state. Memory indicates

whether the benchmark evaluates memory capability.

2023) are divided into static and dynamic types.
Static models (Chen et al., 2023; Tu et al., 2024)
focus on predefined roles and fixed interaction pat-
terns, typically applied in basic dialogue tasks. In
contrast, dynamic models (Chen et al., 2024; Zhou
et al., 2024; Wang et al., 2024b) allow agents to
accumulate experiences and evolve during interac-
tions, enabling consistency and adaptability over
time. These benchmarks are essential for evaluat-
ing agent flexibility, memory handling, and long-
term interaction capabilities.

Long-context Understanding Benchmarks.
Long-context understanding involves models
processing large amounts of information over
extended interactions. These benchmark (Tay
et al., 2021; Bai et al., 2024; An et al., 2024,
Zhang et al., 2024) tests an agent’s ability to
synthesize and recall information from multiple
episodes, maintaining coherence across long
spans of dialogue. It is crucial for tasks requiring
reasoning and the integration of past events to
understand complex or narrative-driven content.

3 Problem Formulation

We formalize lifelong learning for LLMs as a state
evolution process in partially observable multi-
agent environments to assess their ability to retain
and adapt knowledge over time.

3.1 State Space

The Lifelong Learning ability is evaluated by state
transition. In this paper, the state can be broken

down into three dimension:

Self-awareness. Can the model maintain a clear
understanding of its identity, role, and goals over
time? This dimension evaluates the model’s ability
to retain and update its self-awareness as it interacts
with the environment.

Factual Episode Memory Retrieve. Can the
model retain knowledge and experiences persis-
tently, avoiding catastrophic forgetting or the in-
ability to reuse previously acquired knowledge?
This dimension assesses the model’s capacity for
long-term memory and knowledge retention.

Relationship Shift. Can the model reason effec-
tively based on long-term memory, particularly in
understanding and adapting to changes in relation-
ships between characters or agents? This dimen-
sion evaluates the model’s ability to track and rea-
son about evolving relationships.

3.2 Multi Agent Episodes

Multi agent environment. Let M be a language
model acting as role » € R with internal state
sq(mt) e R?, interacting with other agents {r'},/.,
over discrete timesteps ¢ € {1,...,T'}.

Task format. We formalize the above problems
as a time-axis and role-based question-answering
task. Assume that for agent r at episode ¢, each
question Q(r,t) is a triple:

Input: Q(r,t) = (H(t),c(t),q(r,t)), €))
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Q (Hamlet, E;)
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Q: Who are you?

A: I am the Prince of Denmark.
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Figure 2: Method Overview. Our benchmark captures three key features: cumulative experience, fact-checking, and
memory testing. Finally, the LLM judge scoring system is located in the bottom-right corner.

Output: A (r,t) = M(Q(r,t)), ()

where H (t) denotes the complete history of
interactions for role r, c(t) denotes the context
window for role 7, which may include the entire
episode t or a fixed-size subset of recent interac-
tions. ¢(r,t) is further decomposed into qse; (7, 1),
Qfact(r,t), qrer(r,t) corresponding to the three di-
mensions of the state space from Section 3.1. The
output A’ (r,t) represents the agent response to the
input Q(r,t), which can be evaluated with ground
truth answer A (r,t).

This structured approach allows us to analyze
the model’s dynamic characteristics and assess its
lifelong learning capabilities in a principled man-
ner.

4 LIFESTATE-BENCH: From Stateless to
Stateful

To establish a systematic evaluation framework for
lifelong learning, LIFESTATE-BENCH integrates
three synergistic components: (1) cumulative ex-
perience modeling through episodic timelines, (2)
multi-dimensional fact-checking mechanisms, and
(3) hierarchical memory testing architectures, refer
to overview architecture in Figure 2. This tripar-
tite structure enables comprehensive assessment
of LLMs’ capacity to maintain persistent states
through history interactions.

4.1 Cumulative Experience Modeling

Human learning relies on accumulating structured
experiences over time (Shao et al., 2023). Early di-
alog agents (Zhang et al., 2018; Dinan et al., 2019),
however, constructed persona representations from
isolated conversations, ignoring temporal depen-
dencies. Lifelong learning requires a coherent time-
line and factual consistency across experiences.
These early dialog datasets (Zhang et al., 2018;
Dinan et al., 2019; Gao et al., 2023), while large,
often suffer from short dialogues (e.g., fewer than
10 turns) and brief exchanges (e.g., fewer than 20
words per sentence).

Recent role play agent (Shao et al., 2023; Wang
et al., 2024a; Tu et al., 2024) leverage richer
sources, such as novels and role-playing platforms,
to better capture experience accumulation. Inspired
by this, we propose timeline cumulative experience
modeling lifelong learning ability.

Experience Design.
an ordered sequence:

We structure experiences as

E={E177EN}7 Ezz(L’Laj—‘laNlaDl) (3)

where L; represents the location of the event, 7;
denotes the time it occurs, N; provides scripted nar-
ration for context, and D); contains the dialogues
between characters. This structured representation
ensures experiences are temporally ordered, contex-
tually rich, and narratively coherent. This ensures



experiences are grounded in concrete events rather
than isolated conversations.

Timeline Fact Order. Unlike conventional chit-
chat dialogue, our framework enforces event-driven
interactions, ensuring characters accumulate truc-
tured, meaningful experiences grounded in con-
crete events.

Multi-Scale Interaction. Each episode includes:
Dialogue length averaging 91 — 125 words, with
28.9 — 66 dialogue turns, enabling rich interactions.
At least M > 4 characters, capturing complex so-
cial dynamics.

By structuring experiences with explicit time-
lines, factual consistency, and multi-character inter-
actions, we enable dialog agents to learn in a way
that mirrors human experiential accumulation.

4.2 Fact-Checking Mechanisms

Our core innovation is the introduction of fact-
checking within multi-agent timeline-based dia-
logues. At the end of each episode, agents are
tested with fact-based questions to ensure factual
consistency throughout the narrative.

Challenges. Existing evaluation datasets mainly
assess role-playing agents based on knowledge, lin-
guistic style, or persona, such as using psycholog-
ical theories (e.g., Big Five, MBTI) (Wang et al.,
2023; Tu et al., 2024) or focusing on social intelli-
gence like goals and preferences (Chen et al., 2024;
Zhou et al., 2024). However, these approaches lack
fact-checking and typically evaluate role consis-
tency or open-ended questions. Our method, in
contrast, centers on questions with factual answers,
supported by human-annotated ground truth, gen-
erated from the current episode. Specific examples
are shown in Figure 2.

Question Example. Our fact-checking frame-
work includes three key question types: Self-
awareness, Factual Episode Memory Retrieval, and
Relationship Shift. Each episode FE; generates
these three question types for each role in the
episode to systematically evaluate the agent’s fac-
tual accuracy and temporal awareness, ensuring
consistency across the timeline. Examples can be
found in the fact-checking section of Figure 2.

4.3 Memory Testing

To evaluate our framework’s memory capabilities,
we conduct controlled testing using non-parametric

and parametric approaches to assess the model’s
ability to utilize and internalize memory.

Non-parametric Methods. Non-parametric
methods test the model’s ability to process raw
historical data, represented as E = [Ey;...; Ex].
Key implementations include:

* Direct Episode Concatenation: Concatenate
all previous episodes as a text prefix to test
memory with uncompressed information.

* Summarization and Concatenation: Gen-
erate a summary S; = Summary(F1;) us-
ing GPT and concatenate it with the current
episode to test memory with compressed in-
formation.

However, the limited context window size in non-
parametric methods may cause information loss
when handling long texts.

Parametric Methods. Parametric methods en-
code memory directly into the model’s parameters.
We focus on two techniques:

* Knowledge Editing: This technique (Wang
et al., 2025; Meng et al., 2023) updates spe-
cific model parameters to integrate episodic
knowledge without full retraining, ensuring
efficient internalization of key information.

* LoRA (Low-Rank Adaptation): LoRA (Hu
et al., 2022) injects small, trainable updates
into specific layers, fine-tuning the model with
episode memory FE to retain past information
while preserving generalization.

These methods bypass context window limita-
tions and enable efficient memory recall. However,
practical issues like precision limitations in knowl-
edge editing and information loss in LoRA fine-
tuning may affect their performance, as discussed
in the evaluation section.

4.4 Dataset Construction and Analysis

Data Collection. This study utilizes two comple-
mentary datasets to support a comprehensive evalu-
ation of lifelong learning in language models. The
first dataset is adapted from Shakespeare’s Hamlet,
with anonymized character names to reduce memo-
rization. While Hamlet may appear in pretraining
data, we retain it as a deliberate challenge. Its rich
narrative and evolving character dynamics test the
model’s ability to track long-term dependencies



Table 2: Comparison of Evaluated Models

Model ‘ Size  Open Source Model Type Ctx. Length
Llama3.1 8B v Base 128K
GPT4-turbo - X Chat 128K
DeepSeek R1 | 671B v Reasoning 128K

beyond rote recall. In contrast, the second dataset
is a fully synthetic narrative generated by Claude
3.5 Sonnet (Anthropic, 2024), featuring a novel
plot and emotional arcs. This enables a cleaner
evaluation of generalization in unseen scenarios.

By Hamlet and Midnight Diner, our benchmark
captures both ends of the spectrum: memorization
vs. adaptation, offering a realistic and nuanced
evaluation of lifelong learning in large language
models. Details of data collection and illustrative
examples can be found in Appendix A and Ap-
pendix C, respectively.

Question-Answer Annotation. To ensure qual-
ity, the annotation of questions was primarily
conducted by the authors of this study, all of
whom hold master’s degrees. In terms of ques-
tion design, open-ended questions tend to result
in lengthy model-generated answers (e.g., averag-
ing 243 tokens), while structured factual questions
(e.g., “who/where/when”) help improve accuracy
and effectively reduce response length. During the
experiments, data leakage issues were particularly
notable. Specifically, in the Hamlet dataset, when
character names were restored, the model could
still generate correct answers without context, indi-
cating that the model might be reasoning by mem-
orizing classic plot patterns, thereby affecting the
evaluation results.

LIFESTATE-BENCH Statistics. As shown in Ta-
ble 1, we present the dataset statistics, interaction
design, and evaluation focus of our benchmark.

Although our total number of samples is rel-
atively small, each sample is longer on average
compared to dialog agent or role ability bench-
marks. Unlike long-context understanding datasets,
our benchmark includes more dialogue turns and
a larger number of interacting agents. Addition-
ally, it emphasizes factual consistency and includes
explicit memory probes.

5 Evaluation

5.1 Experimental Setup

Evaluation Methods. When answering ques-
tions about the current episode E, all prior

episodes E; to E;_;, including dialogues, loca-
tions, and times, serve as context. We catego-
rize evaluation methods into two types: (i) Para-
metric methods improve memory by updating the
model’s internal parameters. Examples include
Knowledge Editing-Grace (Hartvigsen et al., 2023),
which modifies weights to incorporate new knowl-
edge, and LoRA Fine-Tuning (Hu et al., 2022), a
lightweight low-rank adaptation that reduces forget-
ting. (ii) Non-parametric methods manage context
externally. Direct Concatenation appends full his-
tory but is limited by context length. Summary
Concatenation uses GPT to extract and compress
key information, balancing compression with re-
tention for longer contexts.

Model Selection. We selected the most recent
and widely adopted models as our backbone
architectures, encompassing open-source model
(Llama3.1-8B (Al, 2024)), closed-source models
(GPT-4-turbo (OpenAl, 2023)), and state-of-the-art
reasoning model (DeepSeek R1 (OpenAl, 2023)).
The distinguishing characteristics of these models
are presented in Table 2.

5.2 [Experimental Results

Evaluation Protocol. We follow the LLM-as-
Judge paradigm (Zheng et al., 2023), using the
DeepSeek evaluator (DeepSeek-Al et al., 2024) for
automatic scoring. Each question is paired with
a ground truth answer containing factual details
and structured reasoning. We use pairwise grading
between the model output and ground truth, scor-
ing from 1 to 100. By grounding the evaluation in
factual reference answers, this setup ensures more
reliable results than open-ended assessments that
depend on the model’s internal knowledge. Details
of the evaluation prompt and scoring workflow are
included in Appendix B.

Overall Performance. The results show clear
performance differences across models and
datasets. Large reasoning models like DeepSeek-
R1 and the proprietary GPT-4-turbo outperform the
open-source LLlama3.1-8B in all tasks. DeepSeek-
R1 achieved the highest overall accuracy (67.3%)
on the Hamlet dataset using the direct concatena-
tion method, especially in self-awareness (86.4%)
and relation shift (58.7%). On the synthetic dataset,
GPT-4-turbo also using direct connection achieved
the best overall accuracy (75.6%) and factual mem-
ory score (75.5%).



Table 3: Performance Comparison on Synthetic and Hamlet Datasets. The best and second-best performance in
each section are highlighted. The Avg column represents the average accuracy, and the Std column represents the

standard deviation, showing the variability of the results.

Self-awareness

Factual Memory Relation Shift

Method Param. Tuning Ave Std Ave Std Ave Std ACC
Hamlet Dataset (Total 196 Questions)

Open-source model: Llama3.1-8B

Knowledge Editing v 67.3 0.78 437 1.26 19.2 1.26 21.9

LoRA-Tune v 69.1 0.86 53.6 1.08 22.7 1.31 25.6

Summary Concatenation X 73.5 0.93 54.2 0.96 42.1 0.97 47.0

Direct Concatenation X 74.2 0.77 58.8 1.11 43.7 1.15 58.0

Closed-source model

GPT-4-turbo (Summary Conc.) X 84.6 1.08 62.7 0.79 54.5 0.88 66.1

GPT-4-turbo (Direct Conc.) X 84.3 1.42 62.3 0.82 542  0.64 65.9

Large reasoning model

DeepSeek-R1 (Summary Conc.) X 85.6 0.93 64.3 0.69 56.5 1.05 65.8

DeepSeek-R1 (Direct Conc.) X 86.4 0.79 63.3 0.77 58.7 0.83 67.3
Synthetic Dataset (Total 115 Questions)

Open-source model: Llama3.1-8B

Knowledge Editing v 76.2 0.67 473 0.83 27.4 1.23 34.0

LoRA-Tune v 77.7 0.89 51.2 0.93 31.2 1.07 40.7

Summary Concatenation X 83.3 0.79 52.7 1.07 46.6 097 50.2

Direct Concatenation X 83.6 0.83 61.4 1.25 45.2 1.24 6.70

Closed-source model

GPT-4-turbo (Summary Conc.) X 84.2 0.91 74.5 0.72 61.1 0.95 73.3

GPT-4-turbo (Direct Conc.) X 85.4 0.76 75.5 0.69 62.9 0.89 75.6

Large reasoning model

DeepSeek-R1 (Summary Conc.) X 85.7 0.92 70.1 0.87 62.7  0.93 73.5

DeepSeek-R1 (Direct Conc.) X 87.6 0.93 74.7 0.94 67.4 0.88 74.2

Non-tuning methods (direct and summary con-
nection) perform better than tuning-based methods
(knowledge editing and LoRA-Tune), suggesting
that leveraging the model’s original context is more
effective, and this is intuitive. All methods per-
form better on the synthetic dataset than on Hamlet,
likely due to its more complex characters, plots,
and longer dialog samples (As shown in Table 1).

All methods show relatively low standard devi-
ations (most between 0.7-1.2), indicating stable
and reliable results. GPT-4-turbo has a higher
standard deviation in self-awareness (1.42 on the
Hamlet dataset), suggesting some fluctuation. In
contrast, DeepSeek-R1 demonstrates more consis-
tent performance, especially in factual memory,
with a standard deviation between 0.69-0.94. Over-
all, DeepSeek-R1 offers the most balanced perfor-
mance, excelling in complex relation shift tasks,
while GPT-4-turbo excels in factual memory.

Episode-wise Performance. Using Llama3.1-8B
as an example, we analyzed how each method
performs across episodes. As shown in the fig-
ure 3, on the Hamlet dataset, model performance

generally drops as the story progresses, regardless
of parameter tuning. The decline is most severe
for the Knowledge Editing method, showing clear
signs of catastrophic forgetting. A similar trend
appears in the synthetic dataset, suggesting that our
LIFESTATE-BENCH presents challenges for life-
long learning evaluation. As the story unfolds,
model performance decreases on both datasets.
However, the decline is slower and more stable
on the Hamlet dataset, suggesting the model ef-
fectively leverages prior knowledge and long-term
dependencies. In contrast, the synthetic dataset
generated by Claude 3.5 shows a faster and sharper
drop in performance, indicating greater difficulty in
adapting to novel, unseen content. This comparison
highlights how the two datasets challenge differ-
ent model capabilities—memory retention versus
generalization.

State Dimension Breakdown. When broken
down by question type, all methods show perfor-
mance drops over episodes. The most challenging
are questions about shifting relationships, where
models struggle to track evolving dynamics.
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Figure 3: Episode-wise Performance of Hamlet and Synthetic Datasets. This includes the overall performance of
various methods, as well as performance from different state perspectives.

The direct concatenation method performs con-
sistently across question types and datasets. It
is especially accurate in early episodes (E1-E2)
when handling self-awareness and relationship
shift. The summary-concatenation works well for
self-awareness and fact recall but performs poorly
on relationship shift questions. This suggests
it fails to capture complex relationship changes.
Knowledge Editing (GRACE) and LoRA-Tune
perform weakly on self-awareness and memory-
related tasks. Their scores drop quickly over
episodes, further showing that parameter-based
methods are vulnerable to forgetting in multi-step
and long-term reasoning.

Data Leakage Analysis. In our observations,
despite anonymizing character names in Hamlet,
some model outputs still suggest data leakage—for
example, predicting future plot details. However,
this is not a flaw of our benchmark but a deliber-
ately designed challenge. It is important to clarify
that LLMs are pre-trained on vast amounts of in-
ternet data. In real-world scenarios, LL.Ms must
balance leveraging existing knowledge with adapt-
ing to new information. Our benchmark tests this
ability explicitly.

Including Hamlet allows us to probe whether
models truly understand and reason about long-
term dependencies, rather than merely recalling
memorized content. In contrast, the synthetic

dataset generated by Claude 3.5 Sonnet provides
a clean environment to evaluate the model’s gen-
eralization and adaptation to novel contexts. By
combining these two types of data, our benchmark
reflects a realistic spectrum of challenges—from
memory retention to adaptation—rather than sim-
ply avoiding data leakage.

6 Conclusion

We introduce LIFESTATE-BENCH, a novel bench-
mark designed to evaluate the lifelong learning
ability of LLMs through multi-agent, multi-turn
interactions.  Unlike prior static assessments,
LIFESTATE-BENCH simulates cumulative experi-
ences by organizing interactions as episodic scripts
enriched with scene and character dynamics. It
enables objective measurement of state evolution
via fact-based questions, exploring self-awareness,
factual memory retrieve, and relationship shifts.
Our experiments on both open-/closed-source and
state-of-the-art reasoning models reveal that LLMs
still struggle with consistent state retention across
episodes. LIFESTATE-BENCH proves effective in
highlighting these challenges and shows that non-
parametric methods better preserve long-term con-
text. These results confirm its value as a diagnostic
tool for developing more stateful, memory-capable
LLM:s.



7 Limitations

Although individual samples in the dataset are suf-
ficiently long, the overall number of samples is lim-
ited, which may somewhat restrict the diversity of
training and evaluation scenarios. Additionally, this
work primarily focuses on dialogue-based models,
with potential future extensions to code generation
or vision and other multimodal tasks. Finally, the
benchmark currently emphasizes factual questions
and does not yet cover more subjective and com-
plex cognitive abilities such as emotion modeling
or planning. In the future, we plan to synthesize
more diverse datasets to further enhance the bench-
mark’s robustness and applicability.
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A Dataset Construction Details

Dataset Construction. LIFESTATE-BENCH
evaluates large language models’ (LLMs) ability to
retain and reason over long-term state information
in narrative environments. It includes two types of
scripts:

* Hamlet (English): An existing classical play.
All character names are anonymized to reduce
data leakage. It primarily tests memory reten-
tion when prior exposure may exist.

* Midnight Diner (Chinese & English): A syn-
thetic script generated via Claude 3.5 Sonnet.
It is not part of any public pretraining corpus
and focuses on evaluating adaptation to novel
content.

Each episode includes: Scene information: time,
location, participants. Full dialogues: grounded in
realistic narrative progression. Role cards: char-
acter background, personality traits, and relation-
ships. QA pairs: fact-based questions with refer-
ence answers for evaluation, centered on (1) self-
awareness, (2) memory retrieval, and (3) relation-
ship changes. Data was stored in JSON format,
structured in the following hierarchy: EspiodelD
— Question-Answer ID — (Question, Reference
answer).

Prompt for Synthetic Data Generation (Claude).
To construct the Midnight Diner dataset, we used
Claude 3.5 Sonnet to generate original episodes,
role cards, and dialogue timelines. The prompt is
shown in Table 4.

B Evaluation Protocol

We follow the LLLM-as-Judge paradigm (Zheng
et al.,, 2023), using the DeepSeek evalua-
tor (DeepSeek-Al et al., 2024) for automatic scor-
ing. Each model-generated answer is compared
against the reference answer and scored from 1
to 10 based on alignment and correctness (Zheng
et al., 2023).

Evaluation Prompt. Each triplet (question,
model answer, reference answer) is scored using
the following prompt summarized in Table 5

Scoring Workflow. Algorithm 1 illustrates the
overall scoring workflow. For each question-
answer pair in the dataset, the question, model
answer, and reference answer are first extracted.

12

Prompt: Please help me generate an original
multi-episode drama script, including detailed
character profiles, a full dialogue-based script,
and a timeline of events. The requirements are:

* The setting is a “Midnight Diner” with
fixed staff and rotating customers.

» Each episode should explore a central
theme, such as character growth, emotional
conflict, or relationship change.

¢ Each character should have a clear back-
ground, personality, and relationship dy-
namics.

* The dialogue should be natural and realistic,
reflecting everyday emotional depth.

The output should include:
1. Full script in dialogue form;
2. Structured character cards;

3. Scene-level metadata such as time, place,
and involved characters.

Table 4: Instruction prompt used to generate drama-
style episodes.

Prompt:

The known question is: [QUESTION].

The original answer is: [MODEL_ANSWER].

The target answer is: [REFERENCE_ANSWER].

Please provide a score for the original answer

based on the following criteria:
1-2:
3-4:
5-6:
7-8:

9—-10: same as reference answer.

irrelevant or seriously incorrect;
minor errors, low quality;
medium quality;

close to reference, good quality;

Please return only a number from 0 to 10.

Table 5: Prompt for scoring the original answer based
on a reference.

Then, a prompt is constructed and sent to the large
language model API to obtain a score. Finally, all
scores are accumulated and the average score is



Algorithm 1 Evaluation via LLM Scoring

1: Initialize total_score < 0, count < 0

2: for each QA pair (¢, Amodel, arer) in dataset do
3 Construct prompt with ¢, Gmodel, Gref

4 response < LLM_API(prompt)

5:  score <« parse_score(response)

6 total_score += score, count +=1

7: end for

8: average_score < total_score / count

9: return average_score

computed as the overall performance metric.

Reproducibility. We provide a Python script
eval.py implementing the full pipeline using the
OpenAl-compatible API.

C Data Example

To illustrate the structure of our dataset, we present
a stylized excerpt adapted from Hamlet, Act 1,
Scene 1. Each scene is annotated with a title, a
list of participating characters, dialogue entries,
and character-centric question-answer (QA) anno-
tations across multiple perspectives.

Scene Sample
Scene Title: SCENE 1. Elsinore. A plat-
form before the castle.
Characters: Person7, Personl0, Per-
son26

Dialogues:

e Action: PersonlQ at his post. Enter
to him Person26.

¢ Person26: Who's there?

* Person10: Nay, answer me: stand,
and unfold yourself.

* Person26: Long live the king!

¢ Personl0: Person26?

¢ Person26: He.

¢ Personl0: You come most care-
fully upon your hour.

¢ Person26: 'Tis now struck twelve;
get thee to bed, Person10.

Character QA Annotations

Each character is annotated with multi-perspective
QA entries covering (1) Self-Perception, (2) Mem-
ory and Decision-Making, and (3) Plot Interaction.

All answers are phrased in first-person, grounded
in dialogue context.

Person10

* Self-awareness:
Q: What is your position in the royal palace?
A: I am a soldier, responsible for guarding the
court.

* Factual Episode Memory Retrieve:
Q: Who is taking over your shift tonight?
A: Person26.
Q: Who did Person26 ask you to call over
quickly?
A: His watch partners, Person31 and PersonS.

Person26

* Self-awareness:
Q: What is your position in the royal palace?
A: I am a soldier, responsible for guarding the
court.

Factual Episode Memory Retrieve:

Q: Whose shift did you take over tonight?

A: Personl0’s.

Q: Who was with you the first time you saw
Person21?

A: I was with Person5 when we first saw Per-
son21.

Q: Where did you see Person21?

A: At the watchtower of the castle.

Q: When did you see Person21?

A: Last night, just as the clock struck.

Factual Episode Memory Retrieve:

Q: Who does Person2l1 resemble?

A: Person21 bears a striking resemblance to
the late king.

Q: Did Person21 appear again tonight? What
did it do?

A: Yes, Person21 appeared again tonight. It
did not speak; it just silently departed.

Note

Identifiers like “Person5” and ‘“Person21” are
anonymized character IDs used during preprocess-
ing. Each QA entry reflects context-specific knowl-
edge, enabling multi-perspective reasoning and
temporal memory modeling. This structure facili-
tates evaluation of consistent character behaviors
across scenes.
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