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ABSTRACT

Effective decision-making in partially observable environments demands robust
memory management. Despite their success in supervised learning, current deep-
learning memory models struggle in reinforcement learning environments that are
partially observable and long-term. They fail to efficiently capture relevant past
information, adapt flexibly to changing observations, and maintain stable updates
over long episodes. We theoretically analyze the limitations of existing memory
models within a unified framework and introduce the Stable Hadamard Memory,
a novel memory model for reinforcement learning agents. Our model dynamically
adjusts memory by erasing no longer needed experiences and reinforcing crucial
ones computationally efficiently. To this end, we leverage the Hadamard product
for calibrating and updating memory, specifically designed to enhance memory
capacity while mitigating numerical and learning challenges. Our approach sig-
nificantly outperforms state-of-the-art memory-based methods on challenging par-
tially observable benchmarks, such as meta-reinforcement learning, long-horizon
credit assignment, and POPGym, demonstrating superior performance in handling
long-term and evolving contexts.

1 INTRODUCTION

Reinforcement learning agents necessitate memory. This is especially true in Partially Observable
Markov Decision Processes (POMDPs (Kaelbling et al., 1998)), where past information is crucial for
making informed decisions. However, designing a robust memory remains an enduring challenge,
as agents must not only store long-term memories but also dynamically update them in response to
evolving environments. Memory-augmented neural networks (MANNs)–particularly those devel-
oped for supervised learning (Graves et al., 2016; Vaswani et al., 2017), while offering promising
solutions, have consistently struggled in these dynamic settings. Recent empirical studies (Morad
et al., 2023; Ni et al., 2024) have shown that MANNs exhibit instability and underperform simpler
vector-based memory models such as GRU (Chung et al., 2014) or LSTM (Hochreiter, 1997). The
issue is exacerbated in complex and sparse reward scenarios where agents must selectively retain
and erase memories based on relevance. Unfortunately, existing methods fail to provide a memory
writing mechanism that is simultaneously efficient, stable, and flexible to meet these demands.

In this paper, we focus on designing a better writing mechanism to encode new information into
the memory. To this end, we introduce the Hadamard Memory Framework (HMF), a unified model
that encompasses many existing writing methods as specific cases. This framework highlights the
critical role of memory calibration, which involves linearly adjusting memory elements by multi-
plying the memory matrix with a calibration matrix and then adding an update matrix. By leverag-
ing Hadamard products that operate element-wise on memory matrices, we allow memory writing
without mixing the memory cells in a computationally efficient manner. More importantly, the cali-
bration and update matrices are dynamically computed based on the input at each step. This enables
the model to learn adaptive memory rules, which are crucial for generalization. For instance, in
meta-reinforcement learning with varying maze layouts, a fixed memory update rule may work for
one layout but fail in another. By allowing the calibration matrix to adjust according to the current
maze observation, the agent can learn to adapt to any layout configuration. A dynamic calibration
matrix also enables the agent to flexibly forget and later recall information as needed. For example,
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an agent navigating a room may need to remember the key’s location, retain it during a detour, and
later recall it when reaching a door, while discarding irrelevant detour events.

Although most current memory models can be reformulated within the HMF, they tend to be either
overly simplistic with limited calibration capabilities (Katharopoulos et al., 2020; Radford et al.,
2019) or unable to manage memory writing reliably, suffering from gradient vanishing or exploding
issues (Ba et al., 2016; Morad et al., 2024). To address these limitations, we propose a specific in-
stance of HMF, called Stable Hadamard Memory, which introduces a novel calibration mechanism
based on two key principles: (i) dynamically adjusting memory values in response to the current
context input to selectively weaken outdated or enhance relevant information, and (ii) ensuring the
expected value of the calibration matrix product remains bounded, thereby preventing gradient van-
ishing or exploding. Through extensive experimentation on POMDP benchmarks, including meta
reinforcement learning, long-horizon credit assignment, and hard memorization games, we demon-
strate that our method consistently outperforms state-of-the-art memory-based models in terms of
performance while also delivering competitive speed. We also provide comprehensive ablation stud-
ies that offer insights into the components and internal workings of our memory models.

In summary, our contributions are: (i) Unified Memory Framework: We propose a unified memory
framework, supported by theoretical analysis, to elucidate its properties as episode length increases.
(ii) Novel Calibration Matrix: We design a calibration matrix with random parameter selection,
mitigating timestep dependencies and theoretically enhancing stability by regulating the expected
gradient norm. (iii) Extensive Empirical Evaluation: Experiments on challenging benchmarks
demonstrate the scalability and superior performance of our approach across various tasks.

2 BACKGROUND

2.1 REINFORCEMENT LEARNING PRELIMINARIES

A Partially Observable Markov Decision Process (POMDP) is formally defined as a tuple
⟨S,A,O,R, P, γ⟩, where S is the set of states, A is the set of actions, O is the observation space,
R : S×A → R is the reward function, P : S×A → ∆(S) defines the state transition probabilities,
and γ ∈ [0, 1) is the discount factor. Here, the agent does not directly observe the true environment
state st. Instead, it receives an observation ot ∼ O(st), which provides partial information about
the state, often not enough for optimal decision making. Therefore, the agent must make decisions
based on its current observation ot and a history of previous observations, actions, and rewards
(a0, r0, o1, . . . , at−1, rt−1, ot). The history may exclude past rewards or actions.

Let us denote the input context at timestep t as xt = (ot, at−1, rt−1) and assume that we can encode
the sequence of contexts into a memory Mt = f

(
{xi}ti=1

)
. The goal is to learn a policy π(at|Mt)

that maximizes the expected cumulative discounted reward:

J(π) = Eπ

[ ∞∑
t=1

γtR(st, at)|at ∼ π(at|Mt), st+1 ∼ P (st+1|st, at), ot ∼ O(st)

]
(1)

Thus, a memory system capable of capturing past experiences is essential for agents to handle the
partial observability of the environment while maximizing long-term rewards.

2.2 MEMORY-AUGMENTED NEURAL NETWORKS

We focus on matrix memory M , and to simplify notation, we assume it is a square matrix. Given a
memory M ∈ RH×H , we usually read from the memory as:

ht = Mtq (xt) (2)
where q is a query network q : RD 7→ RH to map an input context xt ∈ RD to a query vector.
The read value ht later will be used as the input for policy/value functions. Even more important
than the reading process is the memory writing: How can information be written into the memory
to ensure efficient and accurate memory reading? A general formulation for memory writing is
Mt = f (Mt−1, xt) with f as the update function that characterizes the memory models.
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The simplest form of memory writing traces back to Hebbian learning rules: Mt = Mt−1 +xt ⊗xt

where ⊗ is outer product (Kohonen and Ruohonen, 1973; Hebb, 2005). Later, researchers have
proposed “fast weight” memory (Marr and Thach, 1991; Schmidhuber, 1992; Ba et al., 2016):

Mt = Mt−1λ+ ηg (Mt−1, xt)⊗ g (Mt−1, xt) (3)

where g is a non-linear function that take the previous memory and the current input data as the input;
λ and η are constant hyperparameters. On the other hand, computer-inspired memory architectures
such as Neural Turing Machine (NTM, (Graves et al., 2014)) and Differentiable Neural Computer
(DNC, (Graves et al., 2016)) introduce more sophisticated memory writing:

Mt = Mt−1 ⊙ (1− w (Mt−1, xt)⊗ e (Mt−1, xt)) + w (Mt−1, xt)⊗ v (Mt−1, xt) (4)

where w, e and v are non-linear functions that take the previous memory and the current input data
as the input to produce the writing weight, erase and value vectors, respectively. ⊙ is the Hadamard
(element-wise) product. The problem with non-linear f w.r.t M is that the computation must be done
in recursive way, and thus being slow. Therefore, recent memory-based such as Linear Transformer
models adopt simplified linear update (Katharopoulos et al., 2020):

Mt = Mt−1 + v (xt)⊗
ϕ (k (xt))∑
t ϕ (k (xt))

(5)

where ϕ is an activation function; k and v are functions that transform the input to key and value. In
another perspective inspired by neuroscience, Fast Forgetful Memory (FFM, (Morad et al., 2024))
employs a parallelable memory writing, which processes a single step update as follows:

Mt = Mt−1 ⊙ γ +
(
v (xt)⊗ 1⊤)⊙ γt−n (6)

where γ is a trainable matrix, v is an input transformation function, and n is the last timestep (see
more memory models in Appendix D).

3 METHODS

In this section, we begin by introducing a unified memory writing framework that incorporates
several of the memory writing approaches discussed earlier. Next, we examine the limitations of
current memory writing approaches through an analysis of this framework. Following this analysis,
we propose specialized techniques to address these limitations. For clarity and consistency, all
matrix and vector indices will be referenced starting from 1, rather than 0. Constant matrices are
denoted by bold numbers.

3.1 HADAMARD MEMORY FRAMEWORK (HMF)

We propose a general memory framework that uses the Hadamard product as its core operation. The
memory writing at time step t is defined as:

Mt = Mt−1 ⊙ Cθ (xt)︸ ︷︷ ︸
Ct

+Uφ (xt)︸ ︷︷ ︸
Ut

(7)
where Cθ : RD 7→ RH×Hand Uφ : RD 7→ RH×H are parameterized functions that map the current
input xt to two matrices Ct (calibration matrix) and Ut (update matrix). Here, θ and φ are referred
to as calibration and update parameters. Intuitively, the calibration matrix Ct determines which
parts of the previous memory Mt−1 should be weakened and which should be strengthened while
the update matrix Ut specifies the content to be encoded into the memory. We specifically choose
the Hadamard product (⊙) as the matrix operator because it operates on each memory element
individually. We avoid using the matrix product to prevent mixing the content of different memory
cells during calibration and update. Additionally, the matrix product is computationally slower.

There are many ways to design Ct and Ut. Given proper choices of Ct and Ut, Eqs. 3-6 can be
reformulated into Eq. 7. Inspired by prior “fast weight” works, we propose a simple update matrix:
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Uφ (xt) = ηφ (xt) [v (xt)⊗ k (xt)]

(8)

where k and v are trainable neural networks that transform the input xt to key and value represen-
tations. ηφ : RD 7→ R is a parameterized function that maps the current input xt to an update gate
that controls the amount of update at step t. For example, if ηφ (xt) = 0, the memory will not
be updated with any new content, whereas ηφ (xt) = 1 the memory will be fully updated with the
content from the t-th input like Linear Transformer. We implement ηφ (xt) as a neural network with
sigmoid activation function.

We now direct our focus towards the design of Ct, which is the core contribution of our work.
The calibration matrix selectively updates the memory by erasing no longer important memories
and reinforcing ongoing critical ones. In a degenerate case, if Ct = 1 for all t, the memory will
not forget or strengthen any past information, and will only memorize new information over time,
similar to the Hebbian Rule and Linear Transformer. To analyze the role of the calibration matrix, it
is useful to unroll the recurrence, leading to the closed-form equation (see proof in Appendix A.1):

Mt = M0

t∏
i=1

Ci +

t∑
i=1

Ui ⊙
t∏

j=i+1

Cj (9)

where
∏

represents element-wise products. Then, ht = Mtq (xt) = M0

∏t
i=1 Ciq (xt) +∑t

i=1 Ui ⊙
∏t

j=i+1 Cjq (xt). Calibrating the memory is important because without calibration
(Ct = 1 ∀t), the read value becomes: ht = M0q (xt) +

∑t
i=1 Uiq (xt) . In this case, mak-

ing ht to reflect a past context at any step j requires that q (xt) ̸= 0 and
∑

i ̸=j Uiq (xt) =∑
i ̸=j ηφ (xi) v (xi) [k (xi) · q (xt)] ≈ 0, which can be achieved if we can find q (xt) such that

k (xi) · q (xt) ≈ 0 ∀i ̸= j. Yet, this becomes hard when T ≫ H and ηφ (xi) ̸= 0 as it leads to an
overdetermined system with more equations than variables. We note that avoiding memorizing any
i-th step with ηφ (xi) = 0 is suboptimal since xi may be required for another reading step t′ ̸= t.

Therefore, at a certain timestep t, it is critical to eliminate no longer relevant timesteps from Mt by
calibration, i.e., Ui ⊙

∏t
j=i+1 Cj ≈ 0 for unimportant i (forgetting). For example, an agent may

first encounter an important event, like seeing a color code, before doing less important tasks, such
as picking apples. When reaching the goal requiring to identify a door matching the color code, it
would be beneficial for the agent to erase memories related to the apple-picking task, ensuring a
clean retrieval of relevant information–the color code. Conversely, if timestep i becomes relevant
again at a later timestep t′, we need to recover its information, ensuring Ui ⊙

∏t′

j=i+1 Cj ̸= 0
(strengthening), just like the agent, after identifying the door, may return to collecting apple task.
Remark 1. In the Hadamard Memory Framework, calibration should be enabled (Ct ̸= 1) and
conditioned on the input context.

Regarding computing efficiency, if Ct and Ut are not functions of M<t, we can compute the memory

using Eq. 9 in parallel, ensuring fast execution. In particular, the set of products
{∏t

j=i+1 Cj

}t

i=1
can be calculated in parallel in O (log t) time. The summation can also be done in parallel in
O (log t) time. Additionally, since all operations are element-wise, they can be executed in par-
allel with respect to the memory dimensions. Consequently, the total time complexity is O (log t).
Appendix Algo. 1 illustrates an implementation supporting parallelization.
Remark 2. In the Hadamard Memory Framework, with optimal parallel implementation, the time
complexity for processing a sequence of t steps is O (log t). By contrast, without parallelization, the
time complexity is O

(
tH2

)
.

3.2 CHALLENGES ON MEMORY CALIBRATION

The calibration matrix enables agents to either forget or enhance past memories. However, it com-
plicates learning due to the well-known issues of gradient vanishing or exploding. This can be
observed when examining the policy gradient over T steps, which reads:
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∇ΘJ (πΘ) = Es,a∼πΘ

T∑
t=0

∇Θ log πΘ (at|Mt)︸ ︷︷ ︸
Gt(Θ)

Adv (st, at, γ) (10)

where Θ is the set of parameters, containing {θ, φ}, Adv represents the advantage function, which
integrates reward information R (st, at), and Gt (Θ) = ∂ log πΘ(at|Mt)

∂Mt

∂Mt

∂Θ captures information
related to the memory. Considering main gradient at step t, required to learn θ and φ:

∂Mt

∂θ
= M0

∂
∏t

i=1 Cθ(xi)

∂θ
+

t∑
i=1

Uφ (xi)⊙
∂
∏t

j=i+1 Cθ(xj)

∂θ︸ ︷︷ ︸
G1(i,t,θ)

; (11)

∂Mt

∂φ
=

t∑
i=1

∂Uφ (xi)

∂φ
⊙

t∏
j=i+1

Cθ(xj)︸ ︷︷ ︸
G2(i,t,θ)

(12)

We collectively refer G1 (i, t, θ) and G2 (i, t, θ) as G1,2 (i, t, θ) ∈ RH×H . These terms are critical as
they capture the influence of state information at timestep i on the learning parameters θ and φ. The
training challenges arise from these two terms as the number of timesteps t increases: (i) Numerical
Instability (Gradient Exploding): if ∃m, k ∈ [1, H] s.t. G1,2 (i, t, θ) [m, k] → ∞, this leads to
overflow, causing the gradient to become “nan”; (ii) Learning Difficulty (Gradient Vanishing): if
t ≫ i0, ∥G1,2 (i, t, θ)∥ ≈ 0 ∀i < i0, meaning no signal from timesteps i < i0 contributes to
learning the parameters. This is suboptimal, especially when important observations occur early in
the episode, and rewards are sparse and given at the episode end, .i.e., R (st, at) = 0 ∀ t ̸= T .

How to design the calibration matrix Cθ (x) to overcome the training challenges? A common
approach is to either fix it as hyperparameters or make it learnable parameters independent on the
input xt (e.g., Eqs. 3 and 6). Unfortunately, we can demonstrate that this leads to either numerical
instability or learning difficulties as formalized in Proposition 3. In the next section, we will provide
a better design for the calibration matrix.
Proposition 3. If calibration is enabled such that Cθ(xt) ̸= 1, and the calibration matrix remains
fixed and independent of the input xt (i.e., ∀t : Cθ(xt) = θ ∈ RH×H ), this will lead to either
numerical instability or learning difficulties.

Proof. See Appendix A.2

3.3 STABLE HADAMARD MEMORY (SHM)

To avoid numerical and learning problems, it is important to ensure each element of Ct is not al-
ways greater than 1 or smaller than 1, which ends up in their product will be bounded such that
E
[∏T

t=1 Ct

]
̸= {0,∞} as T → ∞. At the same time, we want Ct to be a function of xt to enable

calibration conditioned on the current context. To this end, we propose the calibration matrix:

Cθ (xt) = 1 + tanh (θt ⊗ vc (xt))
(13)

where vc : RD 7→ RH is a mapping function, and θt ∈ RH represents the main calibration parame-
ters. Here, we implement vc as a linear transformation to map the input to memory space. Notably,
the choice of θt determines the stability of the calibration. We propose to design θt as trainable
parameters that is randomly selected from a set of parameters θ. In particular, given θ = {θl}Ll=1,
where θl ∈ RH and L is the set size, we sample uniformly a random parameter from θ: θt ∼ U (θ).
We name the design as Stable Hadamard Memory (SHM). Given the formulation, the range of an
element zm,k

t = Cθ (xt) [m, k] is [0, 2] where m, k ∈ [1, H]. We can show one important property
of this choice is that E

[∏T
t=1 Ct

]
≈ 1 under certain conditions.
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Proposition 4. Assume: (i) xt ∼ N (0,Σt), (ii) vf is a linear transformation, i.e.,vc (xt) = Wxt,
(iii) {zt = θt ⊗ vc (xt)}Tt=1 are independent across t. Given Cθ (xt) defined in Eq. 13 then ∀T ≥
0, 1 ≤ m, k ≤ H:

E

[
T∏

t=1

zm,k
t

]
= E

[
T∏

t=1

Cθ (xt) [m, k]

]
= 1

Proof. see Appendix A.3

Assumption (i) is reasonable as xt can be treated as being drawn from a Gaussian distribution, and
LayerNorm can be applied to normalize xt to have a mean of zero. Assumption (ii) can be realized
as we implement vc as a linear transformation. Assumption (iii) is more restrictive because {xt}Tt=1

are often dependent in RL setting, which means {zt = θt ⊗ vc (xt)}Tt=1 are not independent and

thus, E
[∏T

t=1 z
m,k
t

]
̸= 1. However, by reducing the linear dependence between zt through random

selection of θt, we can make E
[∏T

t=1 z
m,k
t

]
closer to 1, and thus being bounded. Specifically,

we will prove that by using θt ∼ U (θ), the Pearson Correlation Coefficient between timesteps is
minimized, as stated in the following proposition:

Proposition 5. Let zm,k
t = um

t vkt where zm,k
t = (θt ⊗ vc (xt)) [m, k], um

t = θt [m] and vkt =
vc (xt) [k]. Given the Pearson correlation coefficient of two random variables X and Y is defined
as ρ (X,Y ) = Cov(X,Y )√

Var(X)
√

Var(Y )
, then ∀vkt , vkt′ :∣∣ρ (um

t vkt , u
m
t′ v

k
t′
)∣∣ ≤ ∣∣ρ (vkt , vkt′)∣∣

The equality holds when um
t = βum

t′ .

Proof. See Appendix A.4

As a result, our choice of θt outperforms other straightforward designs for minimizing dependencies
between timesteps. For instance, a fixed θt (θt = θ ∈ RH ) results in higher dependencies because
ρ(θ [m] vkt , θ [m] vkt′) = ρ(vkt , v

k
t′) ≥ ρ

(
um
t vkt , u

m
t′ v

k
t′

)
. In practice, even when E

[∏T
t=1 z

m,k
t

]
is bounded, the cumulative product can occasionally become very large for certain episodes and
timesteps, leading to overflow and disrupting the learning process. This can be avoided by clipping
the gradients. In experiments, we implement SHM using nonparallel recursive form (Eq. 7). The
memory is then integrated into policy-gradient RL algorithms to optimize Eq. 1, with the read value
ht (Eq. 2) used as input for value/policy networks.

The proposed update rule improves memory management and stability through several key benefits.
The dynamic calibration matrix Ct adjusts memory elements based on the input context, allowing
the model to prioritize relevant data while forgetting outdated information. This ensures that tran-
sient details, like detour events, are discarded while critical information, like landmarks, is retained.
Moreover, the random parameter selection in the calibration matrix breaks timestep dependencies
and controls the expected gradient norm, preventing numerical instabilities like gradient explosion
or vanishing. This stable update mechanism ensures consistent learning and robust performance
over long episodes.

4 EXPERIMENTAL RESULTS

We evaluate our method alongside notable memory-augmented agents in POMDP environments.
Unless stated otherwise, the context consists of the observation and previous action. All training
uses the same hardware (single NVDIA H100 GPU), RL architecture, algorithm, training protocol,
and hyperparameters. The baselines differ only in their memory components: GRU (Chung et al.,
2014), FWP (Schlag et al., 2021), GPT-2 (Radford et al., 2019), S6 (Gu and Dao, 2023), mLSTM
(Beck et al., 2024b), FFM (Morad et al., 2024) and SHM (Ours). For tasks with a clear goal, we
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Figure 1: Meta-RL: Wind and Point Robot learning curves. Mean ± std. over 5 runs.

Figure 2: Credit Assignment: Visual Match, Key-to-Door learning curves. Mean ± std. over 3 runs.

measure performance using the Success Rate, defined as the ratio of episodes that reach the goal
to the total number of evaluation episodes. For tasks in POP-Gym, we use Episode Return as the
evaluation metric. We fix SHM’s number of possible θt, L = 128, across experiments.

4.1 SAMPLE-EFFICIENT META REINFORCEMENT LEARNING

Meta-RL targets POMDPs where rewards and environmental dynamics differ across episodes, rep-
resenting various tasks (Schmidhuber, 1987; Thrun and Pratt, 1998). To excel in all tasks, memory
agents must learn general memory update rules that can adapt to any environments. We enhanced
the Wind and Point Robot environments from Ni et al. (2022) to increase difficulty. In these environ-
ments, the observation consists of the agent’s 2D position pt, while the goal state pg is hidden. The
agent takes continuous actions at by moving with 2D velocity vector. The sparse reward is defined
as R(pt+1, pg) = 1(∥pt+1 − pg∥2 ≤ r) where r = 0.01 is the radius. In Wind, the goal is fix
pg = [0, 1], yet there are noises in the dynamics: pt+1 = pt + at + w, with the “wind” w sampled
from U [−0.1, 0.1] at the start and fixed thereafter. In Point Robot, the goal varies across episodes,
sampled from U [−10, 10]. To simulate real-world conditions where the training tasks are limited,
we create 2 modes using different number of training and testing tasks: [50, 150] and [10, 190],
respectively. Following the modifications, these simple environments become significantly more
challenging to navigate toward the goal, so we set the episode length to 100.

We incorporate the memory methods to the Soft Actor Critic (SAC, (Haarnoja et al., 2018)), using
the same code base introduced in Ni et al. (2022). We keep the SHM model sizes and memory
capacities small, at around 2MB for the checkpoint and 512 memory elements, which is roughly
equivalent to a GRU (see Appendix C.1). We train all models for 500,000 environment steps, and
report the learning curves in Fig. 1. In the easy mode (50-150), our SHM method consistently
achieves the best performance, with a near-optimal success rate, while other methods underperform
by 20-50% on average in Wind and Point Robot, respectively. In the hard mode (10-190), SHM
continues to outperform other methods by approximately 20%, showing earlier signs of learning.

4.2 LONG-TERM CREDIT ASSIGNMENT

In this task, we select the Visual Match and Key-to-Door environments, the most challenge tasks
mentioned in Ni et al. (2024). Both have observation as the local view of the agent, discrete actions
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Model GRU FFM SHM (Ours)
Average Return -28.4±1.3 -24.2±1.2 -5.1±6.3

Table 1: PopGym Hardest Tasks: Mean return ± std. (×100) at the end of training over 3 runs. The
range of return (×100) is [−100, 100].

and sparse rewards dependent on the full trajectory, requiring long-term memorization. In particular,
the pixel-based Visual Match task features an intricate reward system: in Phase 1, observing color
codes yields no rewards, while in Phase 2, picking an apple provides immediate reward of one,
relying on short-term memory. The final reward–a bonus for reaching the door with the matching
color code is set to 10. Key-to-Door also involves multiple phases: finding the key, picking apples,
and reaching the door. The terminal reward is given if the key was acquired in the first phase and used
to open the door. Both tasks can be seen as decomposed episodic problems with noisy immediate
rewards, requiring that in the final phase, the agent remembers the event in the first phase. We create
2 configurations using different episode steps in the second phases: 250 and 500, respectively.

Still following Ni et al. (2022), we use SAC-Discrete (Christodoulou, 2019) as the RL algorithm.
We use the same set of baselines as in Sec. 4.1 and train them for 2 million environment steps. The
results in Fig. 2 clearly show that, our method, SHM, significantly outperforms all other methods in
terms of success rate. Notably, SHM is the only method that can perfectly solve both 250 and 500-
step Visual Match while the second-best performer, FFM, achieves only a 77% and 25% success rate,
respectively. In Key-To-Door, our method continues showing superior results with high success rate.
By contrast, no meaningful learning is observed from the other methods, which perform similarly to
GPT-2, as also noted by Ni et al. (2024).

4.3 POPGYM HARDEST GAMES

We evaluate SHM on the POPGym benchmark (Morad et al., 2023), the largest POMDP benchmark
to date. Following previous studies (Morad et al., 2023; Samsami et al., 2024), we focus on the most
memory-intensive tasks: Autoencode, Battleship, Concentration and RepeatPrevious. These tasks
require ultra long-term memorization, with complexity increasing across Easy, Medium, and Hard
levels. All tasks use categorical action and observation spaces, allowing up to 1024 steps.

For comparison, we evaluate SHM against state-of-the-art model-free methods, including GRU and
FFM. Other memory models, such as DNC, Transformers, FWP, and SSMs, have been reported to
perform worse. The examined memory models are integrated into PPO (Schulman et al., 2017),
trained for 15 million steps using the same codebase as Morad et al. (2023) to ensure fairness. The
models differ only in their memory, controlled by the memory dimension hyperparameter H . We
tune it for each baseline, adjusting it to optimize performance, as larger H values typically improve
results. The best-performing configurations are reported in Table 1 and Appendix Table 6, where
SHM demonstrates a relative improvement of ≈10-12% over FFM and GRU on average. Notably,
the learning curves in Appendix Fig. 4 show that only SHM demonstrates signs of learning in
several tasks, including RepeatPrevious-Medium/Hard, and Autoencode-Easy/Medium. Detailed
hyperparameter setting and additional results are provided in Appendix C.2.

In terms of running time, the average batch inference time in milliseconds for GRU, FFM, and SHM
is 1.6, 1.8, and 1.9, respectively, leading to a total of 7, 8, and 9 hours of training per task. While
SHM is slightly slower than GRU and FFM, the difference is a reasonable trade-off for improved
memory management in partially observable environments. Last but not least, our model’s runtime
was measured using a non-parallel implementation, while GRU benefits from hardware optimization
in the PyTorch library. SHM’s running time could be further improved with proper parallelization.

4.4 MODEL ANALYSIS AND ABLATION STUDY

Choice of Calibration Prop. 5 suggests that selecting random θt ∈ RH in Eq. 13 will reduce the
dependencies between Ct, bringing

∏T
t=1 Ct closer to 1 to avoid gradient issues. In this section, we

empirically verify that by comparing our proposed Random θt with the following designs: C = 1,
no calibration is used; Random C, where a random calibration matrix is sampled from normal
distribution at each timestep, having E

[∏T
t=1 z

m,k
t

]
= 1 under mild assumptions, but preventing
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Figure 3: (a) Left: Return of calibration designs over 3 runs; Right: Calibration matrix cumulative
product over 100 episodes. (b) Return of memory sizes H on Autoencode-Easy (left) and Battleship-
Easy (right). (c) Memory (M , top) and calibration (C, bottom) matrices over timesteps in Visual
Match: SHM erases memory that are no longer required and strengthens the important ones.

learning meaningful calibration rules; Fixed C, a simpler method for learning calibration, but prone
to gradient problems (Prop. 3); Fixed θt, where we learn fixed parameter θt, which is proven to be
less effective than Random θt in reducing linear dependencies between timesteps (Prop. 5); Neural
θt, where θt = FFW (xt), generated by a feedforward neural network like mLSTM, but with no
guarantee of reducing timestep dependencies. We trained RL agents using the above designs of the
calibration matrix with H = 72 on the Autoencode-Easy task and present the learning curves in
Fig. 3 (a, left). The results show that our proposed Random θt outperforms the other baselines by a
substantial margin, with at least a 30% improvement in performance. This confirms the effectiveness
of our calibration design in enhancing the final results.

Vanishing Behavior In practice, exploding gradients can be mitigated by clipping. Thus, we focus
on the vanishing gradient, which depends on the cumulative product Cj =

∏j
t=1 Ct. Our theory

suggests that Random θt should be less susceptible to the vanishing phenomenon compared to other
methods such as Fixed C, Fixed θt and Neural θt. To verify that, for each episode, we compute the
average value of elements in the matrix Cj that are smaller than 1 (Cj [< 1]), as those larger than
1 are prone to exploding and are not appropriate for averaging with the vanishing values. We plot
Cj [< 1] for j = 1, 2, ...100 over 100 episodes in Fig 3 (a, right).

The results are consistent with theoretical predictions: Fixed C leads to rapid vanishing of the
cumulative product in just 10 steps. Neural θt also perform badly, likely due to more complex
dependencies between timesteps because zm,k

t now becomes non-linear function of xt, causing∏T
t=1 z

m,k
t to deviate further from 1. While Fixed θt is better than Neural θt, it still exhibits quicker

vanishing compared to our approach Random θt. As expected, Random C shows little vanishing,
but like setting C = 1, it fails to leverage memory calibration, resulting in underperformance (Fig.
3 (a, left)). Random θt, although its Cj also deviates from 1, shows the smallest deviation among the
calibration learning approaches. Additionally, the vanishing remain manageable after 100 timesteps,
allowing gradients to still propagate effectively and enabling the calibration parameters to be learned.

Memory Size The primary hyperparameter of our method is H , determining the memory capacity.
We test SHM with H ∈ {24, 72, 128, 156} on the Autoencode-Easy and Battleship-Easy tasks.
Fig. 3 (b) shows that larger memory generally results in better performance. In terms of speed,
the average batch inference times (in milliseconds) for different H values are 1.7, 1.8, 1.9, and 2.1,
respectively. We choose H = 128 for other POPGym tasks to balance performance and speed.

Forgetting and Remembering Here, we investigate the learned calibration strategy of SHM on
Visual Match with 15,100, and 10 steps in Phase 1, 2 and, 3, respectively. We sample several repre-
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sentative Mt and Ct from 3 phases and visualize them in Fig. 3 (c). In Phase 1, the agent identifies
the color code and stores it in memory, possibly in two columns of M , marked as “important mem-
ory”. In Phase 2, unimportant memory elements are erased where Ct ≈ 0 (e.g., those within the
blue rectangle). However, important experiences related to the Phase 1’s code are preserved across
timesteps until Phase 3 (e.g., those within the red rectangle where Ct ≳1), which is desirable.

5 RELATED WORKS

Numerous efforts have been made to equip RL agents with memory mechanisms for handling
POMDPs. Memory models can be broadly categorized into vector-based and matrix-based ap-
proaches. Vector-based memory, like RNNs (Elman, 1990), processes inputs sequentially and stores
past inputs in their hidden states. While RNNs are slower to train, they are efficient during inference.
Advanced variants, such as GRU and LSTM, have shown strong performance in POMDPs, often
outperforming more complex RL methods (Ni et al., 2022; Morad et al., 2023). Others focus on the
use of permutation-invariant sequence models in meta-reinforcement learning, demonstrating their
advantage even without task inference objectives (Beck et al., 2024a). Recently, faster alternatives
like convolutional and structured state space models (SSM) have gained attention (Bai et al., 2018;
Gu et al., 2020), though their effectiveness in RL is still under exploration. Initial attempts with
models like S4 underperformed in POMDP tasks (Morad et al., 2023), but improved SSM versions
using S5, S6 or world models have shown promise (Lu et al., 2024; Gu and Dao, 2023; Samsami
et al., 2024). Despite these advancements, vector-based memory is limited, as compressing history
into a single vector makes it challenging to scale for high-dimensional memory space.

Matrix-based memory, on the other hand, offers higher capacity by storing history in a matrix
but at the cost of increased complexity. Attention-based models, such as Transformers (Vaswani
et al., 2017), have largely replaced RNNs in SL, also delivering good results in standard POMDPs
(Parisotto et al., 2020). However, their quadratic memory requirements limit their use in envi-
ronments with long episodes. Empirical studies have also shown that Transformers struggle with
long-term memorization and credit assignment tasks (Ni et al., 2024). While classic memory-
augmented neural networks (MANNs) demonstrated good performance in well-crafted long-term
settings (Graves et al., 2016; Hung et al., 2019; Le et al., 2020), they are slow and do not scale
well in larger benchmarks like POPGym (Morad et al., 2023). New variants of LSTM (Beck et al.,
2024b), including those based on matrices, have not been tested in reinforcement learning settings
and lack theoretical grounding to ensure stability.

Simplified matrix memory models (Katharopoulos et al., 2020; Schlag et al., 2021), offer scalable so-
lutions but have underperformed compared to simple RNNs in the POPGym benchmark, highlight-
ing the challenges of designing efficient matrix memory for POMDPs. Recently, Fast and Forgetful
Memory (FFM, (Morad et al., 2024)), incorporating inductive biases from neuroscience, has demon-
strated better average results than RNNs in the benchmark. However, in the most memory-intensive
environments, the improvement remains limited. Compared to our approach, these matrix-based
memory methods lack a flexible memory calibration mechanism and do not have robust safeguards
to prevent numerical and learning issues in extremely long episodes.

6 DISCUSSION

In this paper, we introduced the Stable Hadamard Framework (SHF) and its effective instance, the
Stable Hadamard Memory (SHM), a novel memory model designed to tackle the challenges of
dynamic memory management in partially observable environments. By utilizing the Hadamard
product for memory calibration and update, SHM provides an efficient and theoretically grounded
mechanism for selectively erasing and reinforcing memories based on relevance. Our experiments
on the POPGym and POMDP benchmarks demonstrate that SHM significantly outperforms state-of-
the-art memory-based models, particularly in long-term memory tasks, while being fast to execute.
Although our theory suggests that SHM should be more stable and mitigate gradient learning issues
by reducing linear dependencies between timesteps, this stability is not guaranteed to be perfect.
Further theoretical investigation is needed to validate and refine these properties in future work.
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APPENDIX

A THEORETICAL RESULTS

A.1 CLOSED-FORM MEMORY UPDATE

Given
Mt = Mt−1 ⊙ Ct + Ut (14)

then

Mt = M0

t∏
i=1

Ci +

t∑
i=1

Ui ⊙
t∏

j=i+1

Cj (15)

Proof. We prove by induction.

Base case: for t = 1, the equation becomes for both Eqs. 14 and 15:

M1 = M0 · C1 + U1

Thus, the equation holds for t = 1.

Inductive hypothesis: Assume the equation holds for t = n:

Mn = M0

n∏
i=1

Ci +

n∑
i=1

Ui ⊙
n∏

j=i+1

Cj

Inductive step: We now prove the equation holds for t = n+ 1. From the update rule in Eq. 14:

Mn+1 = Mn ⊙ Cn+1 + Un+1

SubstituteMn using the inductive hypothesis:

Mn+1 =

M0

n∏
i=1

Ci +

n∑
i=1

Ui ⊙
n∏

j=i+1

Cj

⊙ Cn+1 + Un+1

= M0

n+1∏
i=1

Ci +

n∑
i=1

Ui ⊙
n+1∏

j=i+1

Cj + Un+1

= M0

n+1∏
i=1

Ci +

n+1∑
i=1

Ui ⊙
n+1∏

j=i+1

Cj

This matches the form of the closed-form Eq. 15 for t = n+ 1, completing the proof by induction.

A.2 PROPOSITION 3

Definition 6. Critical Memory Gradients: In the Hadamard Memory Framework, we define the
critical memory gradients of memory rules as follows:

G1 (i, t, θ) =
∂
∏t

j=i+1 Cθ(xj)

∂θ
=

t∑
j=i+1

∂Cθ (xj)

∂θ
⊙

t∏
k=i+1,k ̸=j

Cθ(xk)

G2 (i, t, θ) =

t∏
j=i+1

Cθ(xj)

Now we can proceed to the proof for Proposition 3.
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Proof. In the case Cθ (xt) = θ ∈ RH×H , the critical gradients read:

G1 (i, t, θ) =

t∑
j=i+1

t∏
k=i+1,k ̸=j

θ

= (t− i) θt−i−1

G2 (i, t, θ) = θt−i

If ∃ 0 ≤ m, k < H s.t. |θ [m, k]| > 1, G1,2 (i, t, θ) [m, k] ∼ o
(
θ [m, k]

t−i−1
)

, and thus → ∞, i.e.,
numerical problem arises. Let ∥·∥ denote the infinity norm, we also have:

∥G1 (i, t, θ)∥ =
∥∥(t− i) θt−i−1

∥∥ ≤ (t− i) ∥θ∥t−i−1

∥G2 (i, t, θ)∥ =
∥∥θt−i

∥∥ ≤ ∥θ∥t−i

Note that if ∀m, k |θ [m, k]| < 1 , ∥θ∥ < 1, both terms become 0 as t − i increases, thus learning
problem always arises. In conclusion, in this case, to avoid both numerical and learning problems,
∀m, k |θ [m, k]| = 1, which is not optimal in general.

A.3 PROPOSITION 4

Proof. Let zm,k
t = um

t vkt where zm,k
t = (θt ⊗ vc (xt)) [m, k], um

t = θt [m] and vkt = vc (xt) [k].
Using assumption (i) and (ii), vkt is a Gaussian variable, i.e., vkt ∼ N

(
0, µk

t

)
. By definition, um

t is
a categorical random variable that can take values {θ [m, lt]}Llt=1 with equal probability 1/L. For
now, we drop the subscripts m, k and t for notation ease. The PDF of z = uv can be expressed
as a mixture distribution since u is categorical and can take discrete values {ul}Ll=1. The PDF of z,
denoted as f (z), is given by:

f(z) =

L∑
l=1

P (u = ul)fulv(z)

=
1

L

L∑
l=1

fulv(z)

where fulv(z) is the PDF of ulv, and ul is a constant for each l. Thus, fulv(z) is the scaled PDF of
u:

fulv(z) =
1

|ul|
fv

(
z

ul

)
Since v ∼ N (0, µ), the PDF of v, denoted as fv(x), is symmetric about 0, we have:

fulv(z) =
1

|ul|
fv

(
z

ul

)
=

1

|ul|
fv

(
−z

ul

)
= fulv(−z).

This shows that fulv(z) is symmetric around 0 for each l. Therefore, the PDF f(z) is also symmet-
ric:

f(z) =
1

L

L∑
l=1

fulv(z) =
1

L

L∑
l=1

fulv(−z) = f(−z)

Since tanh is an odd function and the PDF of zm,k is symmetric about 0, E
[
tanh

(
zm,k

)]
= 0 and

thus E
[
1 + tanh

(
zm,k

)]
= 1. Finally, using assumption (iii), E

[∏T
t=1 z

m,k
t

]
=

∏T
t=1 E

[
zm,k
t

]
=

1.
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Task Input type Policy/Value networks RL algorithm Batch size

Meta-RL Vector 3-layer FFW + 1 Memory SAC 32layer (128, 128, 128, H)
Credit Image 2-layer CNN + 2-layer FFW SAC-D 32Assignment + 1 Memory layer (128, 128, H)

POPGym Vector 3-layer FFW + 1 Memory PPO 65,536layer (128, 64, H, 64)

Table 2: Network architecture shared across memory baselines.

A.4 PROPOSITION 5

Proof. Without loss of generalization, we can drop the indice m and k for notation ease. Since
θt ∼ U (θ), it is reasonable to assume that each of {ut, ut′}, {ut, vt}, {ut, vt′}, {ut′ , vt}, {ut′ , vt′}
are independent. In this case, let us denote X = utvt and X ′ = ut′vt′ , we have

Cov(X,X ′) = Cov(utvt, ut′vt′)

= E[utvt · ut′vt′ ]− E[utvt] · E[ut′vt′ ]

= E(utvt)E(ut′vt′)− E(ut)E(vt)E(ut′)E(vt′)
= E(ut)E(vt)[E(ut′vt′)− E(ut′)E(vt′)]
= E[ut]E[ut′ ]Cov(vt, vt′)

The variances read:

Var(X) = Var(utvt) = E[u2
t v

2
t ]− E[utvt]

2 = E[u2
t ]
(
E[v2t ]− E[vt]2

)
= E[u2

t ] · Var(vt)

Similarly:

Var(X ′) = Var(ut′vt′) = E[u2
t′ ] · Var(vt′)

Given ρ as the Pearson Correlation Coefficient, consider the ratio:

|ρ(X,X ′)|
|ρ(vt, vt′)|

=

|E[ut]E[ut′ ]Cov(vt,vt′ )|√
E[u2

t ]·Var(vt)·E[u2
t′ ]·Var(vt′ )

|Cov(vt,vt′ )|√
Var(vt)·Var(vt′ )

=
|E[ut]E[ut′ ]|√
E[u2

t ]E[u2
t′ ]

By the independence of ut and ut′ and the Cauchy-Schwarz inequality:

|E[ut]E[ut′ ]| = |E[utut′ ]| ≤
√

E[u2
t ]E[u2

t′ ],

which implies

|ρ(utvt, ut′vt′)|
|ρ(vt, vt′)|

≤ 1 ⇐⇒ |ρ (utvt, ut′vt′)| ≤ |ρ (vt, vt′)|

The equality holds when ut = βut′ .

B DETAILS ON METHODOLOGY

In this section, we describe RL frameworks used across experiments, which are adopted exactly
from the provided benchmark. Table 2 summarizes the main configurations. Further details can be
found in the benchmark papers (Ni et al., 2022; Morad et al., 2023).
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Algorithm 1: Theoretical Parallel Hadamard Memory Framework.

Input: M0 ∈ RB×H×H , C ∈ RB×T×H×H , U ∈ RB×T×H×H

Operator: ⊕ parallel prefix sum,⊗ parallel prefix product,⊙ Hadamard product
Ouput: M = {M}nt=1 ∈ RB×T×H×H

/* Parallel prefix product along T. Complexity: O(log(t)). */
1 Cp = ⊗(C, dim = 1)
/* Concatenation along T. Complexity: O(1). */

2 D = concat([M0, C] , dim = 1)
/* Parallel prefix product along T. Complexity: O(log(t)). */

3 Dp = ⊗(D, dim = 1)
/* Parallel Hadamard product (Cp ̸= 0). Complexity: O(1). */

4 E = U ⊙ 1
Cp

/* Parallel prefix sum along T. Complexity: O(log(t)). */
5 Ep = ⊕(E, dim = 1)
/* Parallel sum. Complexity: O(1). */

6 M = Dp[:, 1 :] + Ep

Task URL License
Meta-RL https://github.com/twni2016/pomdp-baselines MIT

Credit Assignment https://github.com/twni2016/Memory-RL MIT
POP-Gym https://github.com/proroklab/popgym MIT

Table 3: Benchmark repositories used in our paper.

C DETAILS OF EXPERIMENTS

We adopt public benchmark repositories to conduct our experiments. The detail is given in Table 3

C.1 SAMPLE-EFFICIENCY IN META REINFORCEMENT LEARNING AND LONG-TERM CREDIT
ASSIGNMENT DETAILS

We report the choice of memory hyperparameter H in Table. 4. Due to the lack of efficient parallel
processing in the codebase from Ni et al. (2022), running experiments with larger memory sizes is
prohibitively slow. As a result, we were only able to test models with 512 memory elements, limit-
ing the potential performance of our SHM. This constraint contrasts with the POPGym benchmark
with better parallel processing, where our method scales comfortably with larger memory sizes, as
demonstrated later in C.2.

We also report the running time and final performance for Visual Match and Key-to-Door experi-
ments for different episode lengths. The results in Table 5 demonstrate that SHM can scale reason-
ably in both computation efficiency and performance as the task complexity increases.

C.2 POPGYM HARDEST GAMES DETAILS

In this experiment, we tuned the memory model size to ensure optimal performance. Specifically, for
GRU, we tested hidden sizes of 256, 512, 1024, and 2048 on the Autoencode-Easy task. Increasing
GRU’s hidden size did not lead to performance gains but resulted in a significant rise in computation

Model GRU FWP GPT-2∗ S6 mLSTM FFM SHM (Ours)
H 512 24 512 512 24 128 24

Memory elements 512 512 512× T 512 512 512 512

Table 4: Memory dimension for Meta-RL and Credit Assignment tasks. GRU and S6 use vector
memory of size H . GPT-2 does not have a fixed size memory and attend to all previous T timesteps
in the episode. H = 512 is the dimension of Transformer’s hidden layer. FFM’s memory shape is
2×m× c where c = 4, H = m = 128. FWP and SHM’s memory shape is H ×H .
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Episode Length
Total Training Success Rate (%) Success Rate (%)
Time (hours) Visual Match Key To Door

SHM GPT-2 SHM GPT-2 SHM GPT-2
100 20 18 100 83 100 59
250 27 23 100 72 78 21
500 41 36 100 47 55 22

Table 5: Average running time and success rate across episode lengths.

Figure 4: POPGym learning curves: Mean ± std. over 3 runs.

cost. For instance, at H = 2048, the average batch inference time was 30 milliseconds, compared
to 1.6 milliseconds at H = 256. Thus, we set GRU’s hidden size to 256, as recommended by the
POPGym documentation. For FFM, we set the context size to c = 4, as the authors suggest that
a larger context size degrades performance. We tuned the trace size m ∈ {32, 128, 256, 512} on
the Autoencode-Easy task and found that m = 128 provided slightly better results, so we used this
value for all experiments. For our method, we tested H ∈ {24, 72, 128, 156} on the same task and
observed that larger values of H led to better performance, as shown in the ablation study in Sec.
4.4. However, to balance runtime, memory cost, and performance, we set H = 128 for all POPGym
experiments. The learning curves are given in Fig. 4. The final results are reported fully in Table 6.

D MORE RELATED MEMORY MODELS

Recently, Beck et al. (2024b) have proposed matrix-based LSTM (mLSTM):

Mt = f (xt)Mt−1 + i (xt) v (xt)⊗ k (xt) (16)
where f and i are the forget and input gates, respectively.
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Task Level Linear Transformer∗ GRU FFM SHM (Ours)

Autoencode
Easy -44.7±1.4 -37.9±7.7 -32.7±0.6 49.5±23.3

Medium -47.8±0.2 -43.6±3.5 -32.7±0.6 -28.8±14.4
Hard -48.1±0.1 -48.1±0.7 -47.7±0.5 -43.9±0.9

Battleship
Easy -41.3±0.5 -41.1±1.0 -34.0±7.1 -12.3±2.4

Medium -39.2±0.3 -39.4±0.5 -37.1±3.1 -16.8±0.6
Hard -38.4±0.2 -38.5±0.5 -38.8±0.3 -21.2±2.3

Concentration
Easy -18.5±0.2 -10.9±1.0 10.7±1.2 -1.9±2.4

Medium -18.6±0.2 -21.4±0.5 -24.7±0.1 -21.0±0.8
Hard -83.0±0.1 -84.0±0.3 -87.5±0.5 -83.3±0.1

RepeatPrevious
Easy 6.0±4.0 99.9±0.0 98.4±0.3 88.9±11.1

Medium -46.8±1.1 -34.7±1.7 -24.3±0.4 48.2±7.2
Hard -48.5±0.3 -41.7±1.8 -33.9±1.0 -19.4±9.9

Average All -39.1±0.4 -28.4±1.3 -24.2±1.2 -5.1±6.3

Table 6: PopGym: Mean return ± std. (×100) at the end of training over 3 runs. The range of return
(×100) is [−100, 100]. ∗ is reported from Morad et al. (2023).
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