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ABSTRACT

A common approach for compressing Natural Language Processing (NLP) net-
works is to encode the embedding layer as a matrix A ∈ Rn×d, compute its
rank-j approximation Aj via SVD (Singular Value Decomposition), and then fac-
tor Aj into a pair of matrices that correspond to smaller fully-connected layers
to replace the original embedding layer. Geometrically, the rows of A represent
points in Rd, and the rows of Aj represent their projections onto the j-dimensional
subspace that minimizes the sum of squared distances (“errors”) to the points. In
practice, these rows of A may be spread around k > 1 subspaces, so factoring A
based on a single subspace may lead to large errors that turn into large drops in
accuracy.
Inspired by projective clustering from computational geometry, we suggest re-
placing this subspace by a set of k subspaces, each of dimension j, that minimizes
the sum of squared distances over every point (row in A) to its closest subspace.
Based on this approach, we provide a novel architecture that replaces the original
embedding layer by a set of k small layers that operate in parallel and are then
recombined with a single fully-connected layer.
Extensive experimental results on the GLUE benchmark yield networks that are
both more accurate and smaller compared to the standard matrix factorization
(SVD). For example, we further compress DistilBERT by reducing the size of the
embedding layer by 40% while incurring only a 0.5% average drop in accuracy
over all nine GLUE tasks, compared to a 2.8% drop using the existing SVD ap-
proach. On RoBERTa we achieve 43% compression of the embedding layer with
less than a 0.8% average drop in accuracy as compared to a 3% drop previously.

1 INTRODUCTION AND MOTIVATION

Deep Learning revolutionized Machine Learning by improving the accuracy by dozens of percents
for fundamental tasks in Natural Language Processing (NLP) through learning representations of
a natural language via a deep neural network (Mikolov et al., 2013; Radford et al., 2018; Le and
Mikolov, 2014; Peters et al., 2018; Radford et al., 2019). Lately, it was shown that there is no need
to train those networks from scratch each time we receive a new task/data, but to fine-tune a full
pre-trained model on the specific task (Dai and Le, 2015; Radford et al., 2018; Devlin et al., 2019).
However, in many cases, those networks are extremely large compared to classical machine learning
models. For example, both BERT (Devlin et al., 2019) and XLNet (Yang et al., 2019) have more
than 110 million parameters, and RoBERTa (Liu et al., 2019b) consists of more than 125 million
parameters. Such large networks have two main drawbacks: (i) they use too much storage, e.g.
memory or disk space, which may be infeasible for small IoT devices, smartphones, or when a
personalized network is needed for each user/object/task, and (ii) classification may take too much
time, especially for real-time applications such as NLP tasks: speech recognition, translation or
speech-to-text.

Compressed Networks. To this end, many papers suggested different techniques to compress
large NLP networks, e.g., by low-rank factorization (Wang et al., 2019; Lan et al., 2019), prun-
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Figure 1: A standard embedding (or fully-connected) layer of 20 input neurons and 10 output neu-
rons. Its corresponding matrix A ∈ R20×10 has 200 parameters, where the ith row in A is the vector
of weights of the i neuron in the input layer.

ing (McCarley, 2019; Michel et al., 2019; Fan et al., 2019; Guo et al., 2019; Gordon et al., 2020),
quantization (Zafrir et al., 2019; Shen et al., 2020), weight sharing (Lan et al., 2019), and knowl-
edge distillation (Sanh et al., 2019; Tang et al., 2019; Mukherjee and Awadallah, 2019; Liu et al.,
2019a; Sun et al., 2019; Jiao et al., 2019); see more example papers and a comparison table in Gor-
don (2019) for compressing the BERT model. There is no consensus on which approach should
be used in what contexts. However, in the context of compressing the embedding layer, the most
common approach is low-rank factorization as in Lan et al. (2019), and it may be combined with
other techniques such as quantization and pruning.

In this work, we suggest a novel low-rank factorization technique for compressing the embedding
layer of a given model. This is motivated by the fact that in many networks, the embedding layer
accounts for 20%− 40% of the network size. Our approach - MESSI: Multiple (parallel) Estimated
SVDs for Smaller Intralayers - achieves a better accuracy for the same compression rate compared
to the known standard matrix factorization. To present it, we first describe an embedding layer,
the known technique for compressing it, and the geometric assumptions underlying this technique.
Then, we give our approach followed by geometric intuition, and detailed explanation about the
motivation and the architecture changes. Finally, we report our experimental results that demonstrate
the strong performance of our technique.

Embedding Layer. The embedding layer aims to represent each word from a vocabulary by a
real-valued vector that reflects the word’s semantic and syntactic information that can be extracted
from the language. One can think of the embedding layer as a simple matrix multiplication as
follows. The layer receives a standard vector x ∈ Rn (a row of the identity matrix, exactly one non-
zero entry, usually called one-hot vector) that represents a word in the vocabulary, it multiplies x by
a matrix AT ∈ Rd×n to obtain the corresponding d-dimensional word embedding vector y = ATx,
which is the row in A that corresponds to the non-zero entry of x. The embedding layer has n input
neurons, and the output has d neurons. The nd edges between the input and output neurons define
the matrix A ∈ Rn×d. Here, the entry in the ith row and jth column of A is the weight of the edge
between the ith input neuron to the jth output neuron; see Figure. 1.

Compressing by Matrix Factorization. A common approach for compressing an embedding
layer is to compute the j-rank approximation Aj ∈ Rn×d of the corresponding matrix A via SVD
(Singular Value Decomposition; see e.g., Lan et al. (2019); Yu et al. (2017) and Acharya et al.
(2019)), factor Aj into two smaller matrices U ∈ Rn×j and V ∈ Rj×d (i.e. Aj = UV ), and replace
the original embedding layer that corresponds to A by a pair of layers that correspond to U and
V . The number of parameters is then reduced to j(n + d). Moreover, computing the output takes
O(j(n+ d)) time, compared to the O(nd) time for computing ATx. As above, we continue to use
Aj to refer to a rank-j approximation of a matrix A.

Fine tuning. The layers that correspond to the matrices U and V above are sometimes used only
as initial seeds for a training process that is called fine tuning. Here, the training data is fed into the
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Figure 2: Factorization of the embedding layer (matrix) A ∈ R20×10 from Figure 1 via standard
matrix factorization (SVD) to obtain two smaller layers (matrices) U ∈ R20×4 and V ∈ R4×10.
In this example, the factorization was done based on a 4-dimensional subspace. The result is a
compressed layer that consists of 120 parameters. The original matrix had 200 parameters. See
more details in the figure.

network, and the error is measured with respect to the final classification. Hence, the structure of the
data remains the same but the edges are updated in each iteration to give a better accuracy.

Observe that typically, the SVD takes the form Aj = UDṼ , where the columns of U ∈ Rn×j are
orthogonal, the rows of Ṽ ∈ Rj×d are orthogonal, and D ∈ Rj×j is a diagonal matrix. In this paper
and in others, we say that Aj = UV where V = DṼ . Furthermore, the orthogonalization is used
only to obtain a low rank approximation Aj = UV using SVD. After that, this property is not kept
in the network during the training process (when applying the fine-tuning).

Geometric intuition. The embedding layer can be encoded into a matrix A ∈ Rn×d as explained
above. Hence, each of the n rows of A corresponds to a point (vector) in Rd, and the j-rank
approximation Aj ∈ Rn×d represents the projection on the j-dimensional subspace that minimizes
the sum of squared distances (“errors”) to the points. Projecting these points onto any j-dimensional
subspace of Rd would allow us to encode every point only via its j-coordinates on this subspace,
and store only nj entries instead of the original nd entries of A. This is the matrix U ∈ Rn×j , where
each row encodes the corresponding row in A by its j-coordinates on this subspace. The subspace
itself can be represented by its basis of j d-dimensional vectors (jd entries), which is the column
space of a matrix V T ∈ Rd×j . Figure 2 illustrates the small pair of layers that corresponds to U and
V , those layers are a compression for the original big layer that corresponds to A.

However, our goal is not only to compress the network or matrix, but also to approximate the original
matrix operator A. To this end, among all the possible j-subspaces of Rd, we may be interested in
the j-subspace that minimizes the sum of squared distances to the points, i.e., the sum of squared
projected errors. This subspace can be computed easily via SVD. The corresponding projections of
the rows of A on this subspace are the rows of the j-rank matrix Aj .

The hidden or statistical assumption in this model is that the rows of the matrix A (that represents the
embedding layer) were actually generated by adding i.i.d. Gaussian noise to each point in a set of
n points on a j-dimensional subspace, that is spanned by what are called latent variables or factors.
Given only the resulting matrix A, the j-subspace that maximizes the likelihood (probability) of
generating the original points is spanned by the j largest singular vectors of A.

Why a single distribution? Even if we accept the assumption of Gaussian noise, e.g. due to
simplicity of computations or the law of large numbers, it is not intuitively clear why we should
assume that the rows of A were sampled from a single distribution. Natural questions that arise are:
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Figure 3: Example of our compression scheme (MESSI) from A to Z. Here j = 3 and k = 2,
and we compress the embedding layer from figure 1: (i) find the set of k = 2 subspaces, each of
dimension j = 3, that minimizes the sum of squared distances from each point (row in A) to its
closest subspace. (ii) Partition the rows of A into k = 2 different subsets A1 and A2, where two
rows are in the same subset if there closest subspace is the same, (iii) for each subset, factor its
corresponding matrix into two smaller matrices based on its closest subspace to obtain the 2k = 4
matrices U1, V 1, U2 and V 2 (where for every i ∈ {1, · · · , k}, the matrix U iV i is a low (j = 3)
rank approximation for Ai), (iii) replace the original fully-connected (embedding) layer by 2 layers,
where in the first (red color) we have k = 2 parallel fully-connected layers for (initialized by) U1

and U2 as in the figure, and the second (blue color) is a fully-connected layer with all the previews
k = 2, and its weights corresponds to V 1 and V 2 as follow. For every i ∈ {1, · · · , k}, the weights
form the j = 3 neurons (nodes) that are connected in the previous layer with U i are initialized by
V i. The result is a compressed layer that consists of nj + kjd = 20 × 3 + 2 × 3 × 10 = 120
parameters. See more details in the figure.

(i) Can we get smaller and/or more accurate models in real-world networks by assuming mul-
tiple instead of a single generating distribution (i.e. multiple subspaces)?

(ii) Can we efficiently compute the corresponding factorizations and represent them as part of
a network ?

2 OUR CONTRIBUTION

We answer the above open questions by suggesting the following contributions. In short, the answers
are:

(i) In all the real-world networks that we tested, it is almost always better to assume k ≥ 2
distributions rather than a single one that generated the data. It is better in the sense that
the resulting accuracy of the network is better compared to k = 1 (SVD) for the same
compression rate.

(ii) While approximating the global minimum is Max-SNP-Hard, our experiments show that
we can efficiently compute many local minima and take the smallest one. We then explain
how to encode the result back into the network. This is by suggesting a new embedding
layer architecture that we call MESSI (Multiple (parallel) Estimated SVDs for Smaller
Intralayers); see Figure 3. Extensive experimental results show significant improvement.
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Computational Geometry meets Deep Learning. Our technique also constructs the matrix
A ∈ Rn×d from a given embedding layer. However, inspired by the geometric intuition from
the previous section, we suggest to approximate the n rows of A by clustering them to k ≥ 2
subspaces instead of one. More precisely, given an integer k ≥ 1 we aim to compute a set of k
subspaces in Rd, each of dimension j, that will minimize the sum over every squared distance of
every point (row in A) to its nearest subspace. This can be considered as a combination of j-rank
or j-subspace approximation, as defined above, and k-means clustering. In the k-means clustering
problem we wish to approximate n points by k center points that minimizes the sum over squared
distance between every point to its nearest center. In our case, the k centers points are replaced by k
subspaces, each of dimension j. In computational geometry, this type of problem is called projective
clustering (see Figure 4), and its used in many tasks in the fields of Machine Learning and Computer
Vision (Feng et al., 2011; Xu et al., 2005; Liu et al., 2012; Trittenbach and Böhm, 2019),

From Embedding layer to Embedding layers. The result of the above technique is a set of k
matrices A1

j , · · · , Ak
j , each of rank j and dimension ni × d where the ith matrix corresponds to the

cluster of ni points that were projected on the ith j-dimensional subspace. Each of those matrices
can be factored into two smaller matrices (due to its low rank), i.e., for every i ∈ {1, · · · , k}, we
have Ai

j = U iV i, where U i ∈ Rni×j , and V i ∈ Rj×d. To plug these matrices as part of the final
network instead of the embedded layer, we suggest to encode these matrices via k parallel sub-layers
as described in what follows and illustrated in Figure 3.

Our pipeline: MESSI. We construct our new architecture as follows. We use A to refer to the
n× d matrix from the embedding layer we seek to compress. The input to our pipeline is the matrix
A, positive integers j and k, and (for the final step) parameters for the fine-tuning.

1. Treating the n rows of A as n points in Rd, compute an approximate (k, j)-projective
clustering. The result is k subspaces in Rd, each of dimension j, that minimize the sum of
squared distances from each point (row in A) to its closest subspace. For the approximation,
we compute a local minimum for this problem using the Expectation-Maximization (EM)
method (Dempster et al., 1977).

2. Partition the rows of A into k different subsets according to their nearest subspace from
the previous step. The result is submatrices A1, . . . , Ak where Ai is a ni × d matrix and
n1 + . . .+ nk = n.

3. For each matrix Ai where 1 ≤ i ≤ k, factor it to two smaller matrices U i (of dimensions
ni × j) and V i (of dimensions j × d) such that U iV i is the rank-j approximation of Ai.

4. In the full network, replace the original fully-connected embedding layer by 2 layers. The
first layer is a parallelization of k separate fully-connected layers, where for every i ∈
{1, · · · , k} the ith parallel layer consists of the matrix U i, i.e., it has ni input neurons and
j output neurons. Here, each row of A is mapped appropriately. The second layer is by
combining the matrices V 1, · · ·V k. Each of the k output vectors from the previous layer
u1, . . . , uk are combined as V 1u1 + . . .+ V kuk; see Figure 3 for an illustration.

5. Fine-tune the network.

The result is a compressed embedding layer. Every matrix U i has nij parameters, and the matrix
V i has jd parameters. Therefore the compressed embedding layer consists of nj + kjd parameters,
in comparison to the uncompressed layer of nd parameters.

Practical Solution. The projective clustering problem is known to be Max-SNP-hard even for
d = 2 and j = 2, for any approximation factor that is independent of n. Instead, we suggest to use
an algorithm that provably converges to a local minimum via the Expectation-Maximization (EM)
method (Dempster et al., 1977), which is a generalization of the well known Lloyd algorithm (Lloyd,
1982). The resulting clusters and factorizations are used to determine the new architecture and its
initial weights; see Figure 3 for more details. We run on instances of AWS Amazon EC2 cloud, and
detail our results in the next section.

Open code and networks. Complete open code to reproduce the resulting networks is provided.
We expect it to be useful for future research, and give the following few examples.
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2.1 GENERALIZATIONS AND EXTENSIONS.

Our suggested architecture can be generalized and extended to support many other optimization
functions that may be relevant for different types of datasets, tasks or applications besides NLP.

`q-error. For simplicity, our suggested approach aims to minimize sum of squared distances to k
subspaces. However, it can be easily applied also to sum of distances from the points to the subspace,
which is a more robust approach toward outliers (“far away points”).

Even for k = 1 recent results of Tukan et al. (2020b) show improvement over SVD.

Distance functions. Similarly, we can replace the Euclidean `2-distance by e.g. the Manhattan dis-
tance which is the `1-norm between a point x and its projection, i.e., ‖x− x′‖1 or sum of differences
between the corresponding entries, instead of sum of squared entries, as in the Euclidean distance
‖x− x′‖2 in this paper.

Non-uniform dimensions. In this paper we assume that k subspaces approximate the input points,
and each subspace has dimension exactly j, where j, k ≥ 1 are given integers. A better strategy
is to allow each subspace to have a different dimension, ji for every i ∈ {1, · · · , k}, or add a
constraint only on the sum j1 + · · · + jk of dimensions. Similarly, the number k may be tuned as
in our experimental results. Using this approach we can improve the accuracy and enjoy the same
compression rate.

For more details about those generalizations and others, we refer the interested reader to section E.1
at the appendix.

Figure 4: Why k subspaces? Here, we have n = 120 data points in R3 that are spread around k = 3
lines (j = 1). Factoring this data based on the optimal plane P results with large errors, since some
points are far from this plane as can be seen in the left hand side of the figure. On the right hand
side, factoring the data based the 3 optimal lines `1, `2, and `3 gives a much smaller errors. Also,
storing the factorization based on the plane P requires 2(120 + 3) = 246 parameters, compared to
120× 1 + 3× 3 = 129 parameters based on `1, `2, and `3. I.e., less memory and a better result.

3 EXPERIMENTAL RESULTS

GLUE benchmark. We run our experiments on the General Language Understanding Evaluation
(GLUE) benchmark (Wang et al., 2018). It is widely-used collection of 9 datasets for evaluating
natural language understanding systems.

Networks. We use the following networks: (i) RoBERTa (Liu et al., 2019b), it consists of 120 mil-
lions parameters, and its embedding layer has 38.9 million parameters (32.5% of the entire network
size), (ii) DistilBERT (Sanh et al., 2019) consists of 66 million parameters, and its embedding layer
has 23.5 million parameters (35.5% of the entire network size), and (iii) ALBERT (base-v2) (Lan
et al., 2019), which consists of 11.7 million parameters, and its embedding layer has 3.8 million
parameters (33% of the entire network).
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Model Embedding layer
compression rate MRPC COLA MNLI SST-2 STS-B QNLI RTE WNLI QQP Avg.

DistilBERT 20%
k and j

0.98
4 | 558

3.4
4 | 558

−0.44
4 | 558

−0.54
4 | 558

−0.23
4 | 558

−0.84
5 | 545

−1.08
7 | 522

0
5 | 545

0.26
5 | 545 0.17

DistilBERT 40%
k and j

1.2
6 | 400

3.7
5 | 409

−0.1
4 | 418

0.9
5 | 409

−0.15
5 | 409

−0.7
3 | 428

−0.72
7 | 392

0
5 | 409

0.4
5 | 409 0.5

DistilBERT 50%
k and j

3.1
6 | 333

8.6
5 | 341

−0.27
5 | 341

1.4
5 | 341

−0.4
5 | 341 NA 0.36

7 | 326
0

5 | 341 NA 1.8

RoBERTA 25%− 35%
k and j

0.2
5 | 517

2.3
10 | 451

0.2
5 | 517

−0.5
5 | 517

0.44
5 | 517

0.2
5 | 517

1
10 | 451

0
5 | 517 NA 0.47

RoBERTA 40%− 50%
k and j

0.2
5 | 384

3.4
10 | 384

0.61
5 | 384

−0.3
5 | 384

0.63
5 | 384

0.2
5 | 384

1
10 | 384

0
5 | 384 NA 0.71

Table 1: In the table above, we present the compressed models with the best accuracy achieved for
specific compression rates (or intervals) of the embedding layer. We report their drop in accuracy,
and the used values of k and j. Specifically, in each entry the “accuracy drop” is presented above
the used k and j values. The last column is the average accuracy drop over all tested tasks. Observe
that: (i) negative values presents improvements in the accuracy upon the non-compressed version
of the corresponding model, and (ii) the results in this table can be improved if we allow to use the
best model from higher compression rates also, e.g., in the task RTE on the network DistilBERT, we
achieved 2.5 accuracy increase when we compressed 60% of the embedding layer, however, in this
table we did not add this result for the smaller compression rates of 20, 40 and 50.

Software and Hardware. All the experiments were conducted on a AWS c5a.16xlarge machine
with 64 CPUs and 128 RAM [GiB]. To build and train networks, we used the suggested implemen-
tation at the Transformers 1 library from HuggingFace (Wolf et al., 2019) (Transformers version
3.1.0, and PyTorch version 1.6.0 (Paszke et al., 2017)). For more detailes about the implementation,
we refer the reader to section A at the appendix.

The setup. All our experiments are benchmarked against their publicly available implementations of
the DistilBERT, RoBERTa, and ALBERT models, fine-tuned for each task, which was in some cases
higher and in other cases lower than the values printed in the publications introducing these models.
Given an embedding layer from a network that is trained on a task from GLUE, an integer k ≥ 1,
and an integer j ≥ 1. We build and initialize a new architecture that replaces the original embedding
layer by two smaller layers as explained in Figure 3. We then fine tune the resulted network for 2
epochs. We ran the same experiments for several values of k and j that defines different compression
rates. We compete with the standard matrix factorization approach in all experiments.

3.1 REPORTED RESULTS

Compressing RoBERTA and DistilBERT. (i) In Figures 5 and 6 the x-axis is the compression
rate of the embedding layer, i.e. a compression of 40% means the layer is 60% its original size. The
y-axis is the accuracy drop (relative error) with respect to the original accuracy of the network (with
fine tuning for 2 epochs). In Figure 5, each graph reports the results for a specific task from the
GLUE benchmark on RoBERTa, while Figure 6 reports the results of DistilBERT.

(ii) On the task WNLI we achieved 0 error on both networks using the two approaches of SVD and
our approach until 60% compression rate, so we did not add a figure on it.

(iii) In RoBERTa, we checked only 2 compression rates on MNLI due to time constraints, and we
achieved similar results in both techniques, e.g., we compressed 45% of the embedding layer, based
on our technique with k = 5 and j = 384 to obtain only 0.61% drop in accuracy with fine tuning
and 4.2% without, this is compared to 0.61% and 13.9% respectively for the same compression rate
via SVD factorization. In DistilBERT, we compressed 40% of the embedding layer with k = 4
and achieved a 0.1% increase in accuracy after fine-tuning, as compared to a 0.05% drop via SVD
factorization (on MNLI).

(iv) Table 1 suggests the best compressed networks in terms of accuracy VS size.

1https://github.com/huggingface/transformers
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Model Parameters MRPC COLA MNLI SST-2 STS-B RTE WNLI QQP
ALBERT (base-v2) 11.7M 89.7 57.7 84.9 92.5 90.5 77.6 59.2 90.7

MESSI-ALBERT (base-v2) 11.7M 90 58.5 84.7 92.7 90.5 78.3 60.6 90.7

Table 2: In the table above, we report the accuracy achieved by “ALBERT (base-v2)” model on the
tasks from GLUE, and we compare them to the results achieved on another model of the same size
(up to 0.18% increase) which we call “MESSI-ALBERT (base-v2)”. This model is exactly the same
as the original “ALBERT (base-v2)” model up to one change, where the original embedding layer
of “ALBERT (base-v2)” (consists of 30k rows and 128 columns) is modified to the new suggested
MESSI architecture, with k = 7, and j = 125 according the pipeline at Section 2, and without
fine-tuning. It can be seen by the table, that the new architecture achieved a better results.

Improving the accuracy of pre-trained models using MESSI. In Table 2, we test if the MESSI
architecture can improve the accuracy of a pre-trained model, while maintaining the same number
of parameters. The only change done on the given model is factoring its embedding layer to the
suggested architecture using the detailed pipeline at section 2. Here, we make sure to choose the
right values of k and j such that the original embedding layer size is maintained (up to a very small
change). We conducted this experiment on the model ALBERT (base v2). The results are actually
promising.

More results that are placed in the appendix: (i) Figure 8 in section B shows the accuracy drop
as a function of the compression rate on the RoBERTA model before fine-tuning. (ii) In section C
we compress a fully-connected layer in different settings, specifically speaking we compress the
two popular models: LeNet-300-100 on MNIST (LeCun et al., 1998), and VGG-19 (Simonyan and
Zisserman, 2014) on CIFAR10 (Krizhevsky et al., 2009), see results at Figures 9 and 10. (iii) In
section D, we suggest a way to determine the values of k and j in practice for a given compression
rate, and we report the results on compressing DistilBERT based on this suggestion; see Figure 11.
(iv) Finally, in section E we check how another clustering method can fit in our pipeline, i.e., instead
of clustering the input neurons of the fully-connected layer (rows of A) via projective clustering
(steps 1 and 2 in the pipeline at Section 2), we try the known k-means clustering, and then we
continue the same by applying SVD on each cluster and building the corresponding new layers. See
results in Figures 12, 13, 14 and 15.

Figure 5: Results on RoBERTa: Accuracy drop as a function of compression rate, with fine tuning
for 2 epochs after compression. To illustrate the dependence of MESSI on the choice of k, we have
plotted several contours for constant-k. As the reader will notice, the same dataset may be ideally
handled by different values of k depending on the desired compression.
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Figure 6: Results on DistilBERT: Accuracy drop as a function of compression rate, with fine tuning
for 2 epochs after compression.

3.2 DISCUSSION

As shown by Figures 5 and 6, our approach outperforms the traditional SVD factorization. In all
experiments, our method achieves better accuracy for the same compression rate compared to the
traditional SVD. For example, in RobERTa, we compress 43% of the embedding layer with less
that 0.8% average drop in accuracy, this is compared to the 3% drop in the standard technique for a
smaller compression rate of 40%. In DistilBERT, we achieved 40% compression of the embedding
layer while incurring only a 0.5% average drop in accuracy over all nine GLUE tasks, compared
to a 2.8% drop using the existing SVD approach. As the reader will notice, the same dataset (and
network) may be ideally handled by different values of k depending on the desired compression.

We observed that our technique shines mainly when the network is efficient, and any small change
will lead to large error, e.g., as in the CoLA/RTE/MRPC graph of Figure 5. Although we achieve
better results in all of the cases, but here the difference is more significant (up to 10%), since our
compressed layer approximates the original layer better than SVD, the errors are smaller, and the
accuracy is better. Furthermore, Figure 8 shows clearly that even without fine tuning, the new
approach yields more accurate networks. Hence, we can fine tune for smaller number of epochs and
achieve higher accuracy. Finally, by Table 2 we can see that the MESSI architecture can be used
also to improve the accuracy of pre-trained models while maintaining the original size.

3.3 CONCLUSION

We suggested a novel approach for compressing a fully-connected layer. This is by clustering the
input neurons of the layer into k-subsets (via projective clustering) and then factoring the corre-
sponding weights matrix of each subset. We then provided a novel architecture that replaces the
original fully-connected layer by a set of k small layers that operate in parallel and are then re-
combined with a single fully-connected layer. The experimental results showed that our suggested
algorithm overcomes the traditional factorization technique and achieves higher accuracy for the
same compression rate before and after fine-tuning.

3.4 FUTURE WORK

The future work includes experiments on other networks and data sets both from the field of NLP
and outside it, e.g., an inserting experiment is to modify the ALBERT network (Lan et al., 2019), by
changing its embedding layer architecture (that consists of two layers based on the standard matrix
factorization) to the suggested architecture in this paper, while maintaining the same number of pa-
rameters, and to check if this modification improved its accuracy, also the suggested generalizations
and extensions from section 2.1 should be tried, where we strongly believe they will allow us to
achieve even better results. Finally, generalizing the approach to other type of layers.
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A IMPLEMENTATION IN PYTORCH

Since we did not find straight support for the new suggested architecture, we implemented it as
follows. To represent the matrices V 1, · · · , V k that are described is Section 2, we concatenate them
all to a one large matrix V = [(V 1)T , · · · , (V k)T ]T of kj rows and d columns, and we build a fully-
connected layer the corresponds to V . For the k parallel layers (matrices) U1, · · · , Uk, we build one
large sparse matrix U of n rows and kj columns. Every row of this matrix has at least (k− 1)j zero
entries, and at most j non zero entries, where the non-zero entries of the ith row corresponds to the
rows in matrix V which encode the closest subspace to that row’s point.

Finally, during the fine tuning or training, we set those zero entries in U as non-trainable parameters,
and we make sure that after every batch of back-propagation they remain zero. Hence we have at
most nj non-zero entries (trainable parameters) in U and nj + ndk in total.

We hope that in the future, the suggested architecture will be implemented in the known Deep-
Learning libraries so it can be easily used while taking advantage of the substantial time and space
benefits presented in this paper.

Figure 7: Implementation. Example of the factorization A = UV in our implementation. Here
n = 7 and d = 7. The matrix U is built such that row z contains a row from U i where point z was
partitioned to the ith subspace. In this example, the 4th and 6th rows were both clustered to the first
subspace. Hence, the first 3 coordinates of the corresponding rows in the representation matrix U
are nonzero, and the other entries are zero. In this way, we used jk dimensions so that none of the k
subspaces of dimension j interact.
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B RESULTS BEFORE FINE TUNING

In this section we report the result of compressing RoBERTa without fine-tuning. By Figure 8
we can clearly see that even without fine tuning, the new approach yields more accurate networks
compared to the standard SVD factorization. Hence, our approach gives a better start for the learning
(fine-tuning) process, which implies that we can fine tune for smaller number of epochs and achieve
higher accuracy and smaller networks.

Figure 8: Compressing RoBERTa results: Accuracy drop as a function of compression rate, without
fine tuning.
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C COMPRESSING FULLY-CONNECTED LAYERS USING MESSI.

In this section we test our approach on two popular models: LeNet-300-100 on MNIST (LeCun
et al., 1998), and VGG-19 (Simonyan and Zisserman, 2014) on CIFAR10 (Krizhevsky et al., 2009).
Also here, we conducted our experiments on the same hardware described in Section 3.

In both experiments, we test our approach on multiple values of k and compare it to k = 1 (standard
SVD factorization). For every value of k, we compress each layer from the hidden fully-connected
layers of the given model by the same percentage and using the same value of k.

LeNet-300-100. The network consists of 266610 parameters, and it is comprised of two fully-
connected hidden layers with 300 and 100 neurons, respectively, trained on the MNIST data set.

We test our approach on k ∈ {2, 3, 4, 5}. In Figure 9, we report the accuracy drop as a function
of the compression rate for the whole network. We can see the advantage of our approach when
compressing more than 90% of the network.

Figure 9: Compressing LeNet-300-100: Accuracy drop as a function of compression rate

VGG-19. We used the implementation at 2. The network consists of 16 convolutional layers, fol-
lowed by 2 dense hidden (fully-connected) layers with 512 neurons each. Finally, the classification
layer has 10 neurons. The fully-connected layers consists of 530442 parameters.

Here, we tested our approach for k ∈ {2, 5}. In Figure 10, we report the accuracy drop as a function
of the compression rate of the fully-connected layers. The suggested approach has a clear advantage
for high compression rates.

Figure 10: Compressing VGG-19: Accuracy drop as a function of compression rate of the fully-
connected layers in the network

2https://github.com/chengyangfu/pytorch-vgg-cifar10/blob/master/vgg.py
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D MESSI-ENSEMBLE

In this section we show only the best computed results of DistilBERT: that is obtained by training
models at several k values and then evaluating the model that achieves the best accuracy on the
training set. Specifically, given a fully-connected layer of n input neurons and d output neurons, for
a given compression rate x (e.g., x = 0.4 means that we want to remove 40% of the parameters),
we try multiple values of k via binary search on k. For every such k value we compute the implied
value j = (1−x)dn/(n+kd), and we compress the network based on those k and j via the MESSI
pipeline. Finally, we save the model that achieves the best accuracy on the training set, and evaluate
its results on the test set. Figure 11 reports the results for this approach.

Figure 11: Results on DistilBERT: Accuracy drop as a function of compression rate, with fine tuning
for 2 epochs after compression. The red line (MESSI, ensemble) is obtained by training models at
several k values and then evaluating the model that achieves the best accuracy on the training set.

E PROTECTIVE CLUSTERING VS k-MEANS

Recall the suggested pipeline from section 2: The first step of it is to compute a set of k subspaces
in Rd, each of dimension j that approximates the (k, j)-projective clustering of the input matrix A.
Then, the second step partitions the input neurons (rows of A) according to their closest subspace
from the set of k subspace that is computed in the first step. Then, in step 3, we compute the SVD for
each cluster, and in steps 4 and 5 we build (and possibly fine-tune) the corresponding architecture as
described (see in Figure 3).

In this section, we compare using projective clustering to using k-means clustering. We do not apply
steps 1 and 2, as we instead partition the input neurons (rows of A) into k groups via applying k-
means clustering on them (instead of projective clustering). We then apply steps 3, 4 and 5 in exactly
the same way.

Here, we evaluated our results on the networks: RoBERTa (Liu et al., 2019b) and DistilBERT (Sanh
et al., 2019) on the RTE and MRPC tasks from the GLUE benchmark (Wang et al., 2018). Figures 12
and 13 compare the results on RoBERTA between the two clustering methods, with and without
fine-tuning, respectively, while Figures 14 and 15 do the same for the results on DistilBERT.

We also used the LeNet-300-100 model on MNIST LeCun et al. (1998) to check this (same) exper-
iment in a different setting. See Figure 16.

Discussion. In Figure 13, where we test the accuracy drop before fine-tuning, we can see that using
projective clustering for partitioning the neurons is better than running k-means on them, i.e., the
projective clustering approach yielded a better start (accuracy before fine-tuning) than the k-means
approach for the learning process.
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Figure 12: Compressing RoBERTa (with two epochs of fine-tuning): Accuracy drop as a function
of compression rate, comparing the projective clustering approach to the known k-means clustering.

Figure 13: Compressing RoBERTa (without fine-tuning): Accuracy drop as a function of compres-
sion rate, comparing the projective clustering approach to the known k-means clustering.

This could be explained by the fact that our original approach (projective clustering) aims to compute
a set of k subspaces (each of dimension j) that minimizes the sum of squared distances from each
row in the input matrix A (neuron) to its closest subspace from the set. Hence, factoring the matrix
A based on those subspaces gives a good approximation for it, which is not the case in the k-means
clustering.

This advantage may explain the difference between the two approaches after fine-tuning for the same
number of epochs as can be seen in Figure 12.

On the other hand, in Figure 15, the two methods gave similar results in terms of accuracy before fine
tuning, and we can see that this effects the results after the fine-tuning, where the two approaches
also succeeded to get similar results as can be seen in Figure 13.

Hence, the better way to determine the partition (which determines the compressed architecture) and
to initialize the new layer in the MESSI pipeline is the projective clustering approach.
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Figure 14: Compressing DistilBERT (with two epochs of fine-tuning): Accuracy drop as a function
of compression rate, comparing the projective clustering approach to the known k-means clustering.

Figure 15: Compressing DistilBERT (without fine-tuning): Accuracy drop as a function of com-
pression rate, comparing the projective clustering approach to the known k-means clustering.

Figure 16: Compressing LeNet-300-100: Accuracy drop as a function of compression rate. Here we
compare the projective clustering approach to the known k-means clustering.
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E.1 GENERALIZATIONS AND EXTENSIONS.

Here, we give more details about the suggested generalizations and extensions from section 2.1, we
also add few more:

`q-error. For simplicity, our suggested approach aims to minimize sum of squared distances to k
subspaces. However, it can be easily applied also to sum of distances from the points to the subspace.
In this case, we aim to compute the maximum-likelihood of the generating subspaces assuming a
Laplacian instead of Gaussian distribution. More generally, we may want to minimize the sum over
every distance to the power of q > 0., i.e., we take the q-norm ‖err‖q where err is the distance
between a point to its projection on its closest subspace.

Even for k = 1 recent results of Tukan et al. (2020b) show improvement over SVD.

Observe that given the optimal subspaces, the system architecture in these cases remains the same
as ours in Figure 3.

Distance functions. Similarly, we can replace the Euclidean `2-distance by e.g. the Manhattan
distance which is the `1-norm between a point x and its projection, i.e., ‖x− x′‖1 or sum of dif-
ferences between the corresponding entries, instead of sum of squared entries, as in the Euclidean
distance ‖x− x′‖2 in this paper. More generally, we may use the `p distance ‖x− x′‖p, or even
non-distance functions such as M-Estimators that can handle outliers (as in Tukan et al. (2020a))
by replacing dist(p, x) with min {dist(p, x), t} where t > 0 is constant (threshold) that makes sure
that far away points will not affect the overall sum too much.

From an implementation perspective, the EM-algorithm for k-subspaces uses a k = 1 solver routine
as a blackbox. Therefore extending to other distance functions is as simple as replacing the SVD
solver (the k = 1 for Euclidean distance) by the corresponding solver for k = 1.

Non-uniform dimensions. In this paper we assume that k subspaces approximate the input points,
and each subspace has dimension exactly j, where j, k ≥ 1 are given integers. A better strategy
is to allow each subspace to have a different dimension, ji for every i ∈ {1, · · · , k}, or add a
constraint only on the sum j1 + · · · + jk of dimensions. Similarly, the number k may be tuned as
in our experimental results. Using this approach we can improve the accuracy and enjoy the same
compression rate. This search or parameter tuning, however, might increase the computation time
of the compressed network. It also implies layers of different sizes (for each subspace) in Figure 3.

Dictionary Learning. Our approach of projective clustering is strongly related to Dictionary Learn-
ing (Tosic and Frossard, 2011; Mairal et al., 2009). Here, the input is a matrix A ∈ Rn×d and the
output is a “dictionary” V T ∈ Rd×j and projections or atoms which are the rows of U ∈ Rn×j that
minimize ‖A− UV ‖ under some norm. It is easy to prove that UV is simply the j-rank approxima-
tion of A, as explained in Section 1. However, if we have additional constraints, such as that every
row of U should have, say, only k = 1 non-zero entries, then geometrically the columns of V T are
the j lines that intersects the origin and minimize the sum of distances to the points. For k > 1 every
point is projected onto the subspace that minimizes its distance and is spanned by k columns of V T .

Coresets. Coresets are a useful tool, especially in projective clustering, to reduce the size of the
input (compress it in some sense) while preserving the optimal solution or even the sum of distances
to any set of k subspaces. However, we are not aware of any efficient implementations and the
dependency on d and k is usually exponential as in Edwards and Varadarajan (2005). A natural
open problem is to compute more efficient and practical coresets for projective clustering.

E.2 EXPERIMENTING ON `q -ERROR

To get a taste of the suggested extensions, we tried the first suggestion of `q-error, with q = 1. I.e.,
we cluster the rows of the input matrix A based on the set of k-subspaces that minimizes the sum of
(non-squared) distances from each row in A to its closest subspace from the set.

The local minimum of the new clustering problem can still be obtained by the suggested EM al-
gorithm. The only difference is that the SVD computation of the optimal subspace for a cluster of
points (k = 1) should be replaced by more involved approximation algorithm for computing the
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Clustering method Task Fine-tuning epochs j = 517 j = 348
PC-`1 MRPC 0 3.1 5.1
PC-`2 MRPC 0 3.9 5.1
PC-`1 MRPC 2 0.2 0.2
PC-`2 MRPC 2 0.2 0.2
PC-`1 RTE 0 5 6.8
PC-`2 RTE 0 3.2 7.4
PC-`1 RTE 2 0.47 1.2
PC-`2 RTE 2 0.44 1

Table 3: In the table above, we compare two approaches to cluster the rows of the input matrix A
(and check how they fit in the MESSI pipeline), the first approach is projective clustering with `1

error (PC-`1), and the second is the standard protective clustering with `2 error that we used in all
the other experiments.

subspace that minimizes sum over distances to the power of q = 1; see e.g. Tukan et al. (2020b);
Clarkson and Woodruff (2015).

However, this change increased the running time of the algorithm from minutes to days, this is due
to the fact the deterministic approximation algorithms for the new problem (`1-error) with k = 1
take a time of O(nd4) at least, where d = 768 in our case, and we need to run this approximation
algorithm many times in the EM procedure. For that, we conducted our experiments only on one
network (RoBERTA) on 2 tasks from the GLUE benchmark (MRPC and RTE).

Table 3, shows the accuracy drop for both techniques for two values of j with k = 5 on the MRPC
task, and the same on RTE with k = 10. It can be seen from the table, that mostly, using the `1 error
as an initialization is better than the `2. However,for some reason (that needs further investigation)
after fine-tuning for 2 epochs both approaches reached almost the same accuracy, even more, the `2

approach achieved a better accuracy sometime. We leave this for future research.
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