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Abstract

We present HourVideo, a benchmark dataset for one-hour video-language under-
standing. Our dataset consists of a novel task suite comprising summarization,
perception (recall, tracking), visual reasoning (spatial, temporal, predictive, causal,
counterfactual), and navigation (room-to-room, object retrieval) tasks. HourVideo
includes 500 manually curated egocentric videos from the Ego4D dataset, span-
ning durations of 20 to 120 minutes, and features 12,976 high-quality, five-way
multiple-choice questions. Benchmarking results reveal that multimodal mod-
els, including GPT-4V and LLaVA-NeXT, achieve marginal improvements over
random chance. In stark contrast, human experts significantly outperform the
state-of-the-art long-context multimodal model, Gemini Pro 1.5 (85.0% vs. 37.3%),
highlighting a substantial gap in multimodal capabilities. Our benchmark, evalua-
tion toolkit, prompts, and documentation are available at hourvideo.stanford.edu.

1 Introduction

Our world presents an endless stream of visual stimuli. Humans demonstrate a remarkable ability to
process visual stimuli over long time horizons, enabling them to perceive, plan and act in the real
world. Consider the routine task of cooking a meal. This activity involves a continuous and adaptive
visual process: identifying and using ingredients and tools, monitoring state changes of various dishes,
and adjusting cooking duration/techniques based on visual cues such as color and texture. Such
sustained visual processing is crucial to achieving the desired culinary outcomes. Naturally, endowing
this capability to autonomous agents has been a long-standing goal in Artificial Intelligence.

In recent years, large multimodal models [1–3] have emerged as a promising approach toward
achieving this goal. Typically, these models are evaluated using multiple datasets that test capabilities
such as object recognition [4, 5], image comprehension [6–8], and action recognition [9]. However,
these benchmarks are often restricted to single images or short video clips, usually lasting from a
few seconds to no more than three minutes [9–12]. While these benchmarks have spurred significant
advancements, a deeper exploration into long-form video-language understanding is essential to
develop multimodal systems that can form the basis for future autonomous agents and assistants.

A significant challenge in evaluating long-form video-language understanding capabilities is design-
ing tasks that genuinely necessitate long-term comprehension, i.e., tasks that require long-range
dependencies. Merely posing questions that can be answered by watching a brief segment of a
lengthy video effectively reduces the task to a combination of temporal localization and short-clip
understanding. Furthermore, while intriguing narrative inquiries can certainly be formulated for
long-form videos such as television shows and films, it is imperative to ensure that the questions are
not trivially answerable due to the vast prior knowledge encoded in modern large language models.

In this work, we introduce HourVideo—a benchmark dataset designed for long-form video-language
understanding. To design tasks that require long-term comprehension, we first propose a novel task
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suite (Tab. 1), comprising summarization, perception (recall, tracking), visual reasoning (spatial,
temporal, predictive, causal, counterfactual), and navigation (room-to-room, object retrieval) tasks.
For each task, we manually create question prototypes designed to ensure that correctly answering
them requires identification and synthesis of information across multiple temporal segments within
the long-form videos. Guided by our task suite, we curated 500 egocentric videos from the Ego4D
dataset [13]—covering 77 unique everyday activities and ranging from 20 to 120 minutes—to generate
questions based on our prototypes. The combination of our comprehensive task suite and everyday
mundane egocentric videos provides a robust framework to rigorously evaluate multimodal models’
capabilities in understanding long-form videos. Finally, we developed a question-answer generation
pipeline utilizing the expertise of trained human annotators (800+ hours of effort) and large language
models (LLMs), resulting in a collection of 12,976 high-quality, five-way multiple-choice questions.

We comprehensively evaluate state-of-the-art multimodal models on HourVideo (Tab. 3, Fig. 4),
including GPT-4V [2], Gemini 1.5 Pro [3], and LLaVA-NeXT [14] in a zero-shot setting. Our findings
reveal that GPT-4V and LLaVA-NeXT achieve only marginal improvements over a random predictor
(20%), obtaining accuracies of 25.7% and 22.3%, respectively. Gemini 1.5 Pro, designed specifically
for long-context multimodal understanding, obtains an accuracy of 37.3%, which, while better, is still
substantially lower than the average performance of human experts at 85.0%. These results suggest
that while the multimodal community has made meaningful progress, a significant gap remains to be
bridged before these systems can match human-level long-form video understanding capabilities. We
hope that HourVideo will serve as a benchmark to facilitate research in this direction and enable the
development of multimodal models that can understand endless streams of visual data.

2 Benchmark Design and Construction

While open-ended question answering closely emulates human interaction, automating the evaluation
of free-form natural language responses remains challenging. Given that our primary goal is to
assess long-form video-language understanding capabilities, we opt for a five-way multiple-choice
question-answering (MCQ) task. This approach simplifies the evaluation process by enabling the
calculation of an aggregate question-answering accuracy metric. In the following section, we describe
our task suite and question-answer generation pipeline in detail, both of which are designed to curate
high-quality five-way multiple-choice questions (MCQs).

2.1 Task Suite

Creating a comprehensive benchmark for long-form video-language understanding is challenging,
primarily because formulating meaningful questions that require processing and synthesizing in-
formation across various temporal segments is highly nontrivial, even for expert human annotators.
Moreover, we note that even benchmarks for image or short video clip understanding are difficult
to construct. As a result, we typically observe two common strategies for benchmark creation: (1)
pre-defined label spaces testing for a specific skill or within narrow domains (e.g., Kinetics [9] and
Something-Something [15]); or (2) gluing together different datasets, each designed to test a specific
model capability [16–19]. In contrast, a single benchmark that can comprehensively test a suite of
model capabilities can significantly benefit the research community.

We draw inspiration from both lines of research methodologies and introduce a novel suite of tasks
designed to benchmark long-form video-language understanding capabilities for one-hour-long
videos. Our task suite encompasses a comprehensive set of perceptual and cognitive tasks, including
summarization, perception (recall, tracking), visual reasoning (spatial, temporal, predictive, causal,
counterfactual), and navigation (room-to-room, object retrieval) tasks. Our strategy draws inspiration
from the two common approaches previously discussed: (1) designing narrowly focused question
prototypes to significantly streamline the question-answer creation process, and (2) creating a diverse
suite of tasks that holistically evaluate a broad spectrum of multimodal capabilities. Our task suite
with manually designed question prototypes are shown in Table 1. In particular, there are 18 sub-tasks
in our proposed task suite and example MCQs from HourVideo are shown in Fig. 1.
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A) During the construction activities, the miter saw was used more 
frequently compared to the cordless drill. 
B) During the woodworking tasks, the tape measure was used 
more often compared to the ruler. 
C) During the deck construction, the hammer was used more 
frequently compared to the impact driver. 
D) During woodworking activity, the tape measure was used more 
frequently compared to the circular saw. 
E) During the woodworking activity, the miter saw was used 
more frequently compared to the tape measure.

A)The camera wearer takes out the ingredients, peels, cuts, 
and cooks the potatoes, continues to mash them in the pot


B) Peeled, chopped, and cooked potatoes, interacted with 
individuals, adjusted cooking settings, and set the dining table. 

C)Takes out the ingredients, peels, cuts, and cooks the potatoes, 
cools the potatoes with cold water, continues to mash them in 
the pot, and adjusts the cooker setting. 

D)The camera wearer sliced, diced, and boiled potatoes, interacted 
with individuals, and modified cooking times. 

E) The camera wearer peeled, chopped, and sautéed vegetables, 
interacted with individuals, and adjusted cooking settings, 
demonstrating a methodical approach to meal preparation.

Temporal Sequencing 01:10:26
Summarization

Describe the sequence of activities the camera wearer 
performed related to preparation and cooking of food. 

00:00:40 00:01:00 00:04:58 00:16:44 00:43:32 00:54:52

Spatial 00:46:24

Select the correct statement regarding the spatial 
proximity of objects in the video.
A) The camera wearer's seat is equidistant from both the driver's 
seat and the bus door on the bus. 
B) The cashier is closer to the dining table where the camera 
wearer eats pizza than the trash bin.

C) The driver's seat is positioned directly across from the camera 
wearer's seat, while the bus door is behind the camera wearer. 
D) The weighing station is adjacent to the entrance, with the 
banana section at the far end. 
E) The entrance is nearer to the weighing station than the banana 
section at the store.

00:02:34 00:04:50 00:18:16 00:22:48 00:23:47 00:44:00

Visual Reasoning

Temporal 00:32:30

Select the correct statement regarding frequencies of 
different tool usage in the video

00:00:12 00:06:12 00:09:48 00:20:3600:19:30 00:29:52

Perception
Tracking 00:30:00

00:00:00 00:03:55 00:04:04 00:09:13 00:18:23 00:30:00

After shopping and interacting with the Cashier at the 
checkout, what will the camera wearer do next?
A) Looks at their phone while pushing a trolley, exits the store, hands 
over the trolley to a woman, then cycle back home. 
B) Looks at their phone while pushing a trolley, exits the store, hands 
over the trolley to Woman, buys a drink at the exit, then run towards 
the bus stand. 
C) Looks at their phone while pushing a trolley, exits the store, hands 
over the trolley to a man, then walk towards the bus stop. 
D) Looks at their phone while pushing a trolley, exits the store, 
hands over the trolley to Woman, then run towards the bus stand.

E) Looks at their phone while pushing a trolley, exits the store, buys a 
drink at the exit, then run towards the bus stand.

Predictive 00:46:24
00:44:0000:21:5100:20:56 00:40:2300:38:12 00:40:03

Causal 01:17:11

Why did the child move the step stool near the kitchen 
countertop?
A) The child moved the stepstool near the kitchen countertop to 
reach it and help with preparing dough and beating eggs. 
B) The child moved the stepstool near the kitchen countertop to 
access it and retrieve the cookie jar. 
C) The child moved the stepstool near the kitchen countertop to 
reach the sink over it and wash her hands. 
D) The child moved the step stool near the kitchen countertop 
to reach it and help with preparing dough.

E) The child moved the stepstool near the kitchen countertop to 
access the top drawer above it and find the measuring spoons.

00:09:50 00:09:58 00:10:28 00:12:24 00:20:26 00:26:32

A) Overall cooking time would have increased as the oven was also 
used by the camera wearer to bake cookies. 
B) Overall cooking time would have increased as the oven would 
consume more time compared to using induction stove. 
C) Overall cooking time would have increased as the oven was 
also used by the man to bake cookies.

D) Overall cooking time would have increased as the oven would 
consume more time compared to using gas cooker. 
E) Overall cooking time would have increased as the oven would 
consume more time compared to using microwave.

Counterfactual

What if the camera wearer used the oven to make 
mashed potatoes?

00:54:5200:16:4400:15:4500:10:55 00:43:3200:39:01

`

01:10:26

01:17:11
00:00:20 00:33:05 00:33:26 00:35:3100:34:08 01:13:37

Information Retrieval / Factual Recall

List the locations the camera wearer visited. 
A) Kitchen, BBQ Area, Storage Room, Garage, Room, Pavements 
B) Kitchen, Garden, Storage Room, Garage, Room, Pavements 
C) Kitchen, Bathroom, Storage Room, Garage, Room, Pavements, 
D) Kitchen, Room, Balcony, Storage Room, Garage, Living Room

E) Kitchen, Balcony, Storage Room, Garage, Room, Pavements

Person 3 
8 minutes

Person 2  
<1 minute

Person 1 
30 minutes

Identify the unique individuals the camera wearer 
interacted with.
A) 2 Adults    B) 1 Adult   C) 4 Adults    D) 5 Adults    E) 3 Adults

B) 

00:00:20 00:33:05
Navigation

Room-to-Room Navigation: How can the camera wearer get to the backyard from the kitchen? 

01:13:37

C) D) E) 

01:17:11
00:33:26 00:34:0800:33:50 01:17:0200:35:31 01:13:50

Object Retrieval: How can the camera wearer retrieve the motorcycle from the kitchen? 
A) Exit the kitchen towards the stairs and exit through the door. The motorbike is outside.  
B) Exit the kitchen through the door into the backyard, and the motorbike is on the right. 
C) Exit the kitchen and turn left. Walk through the living room and go through the door into the backyard. The motorbike is on the right.   
D) Exit the kitchen to the living room and turn left. Go through the door to the backyard; the motorbike is on the right. 
E) Exit the kitchen and turn left. Walk down the hallway and turn right before the stairs. Exit the door and the motorbike is outside. 

A)

Figure 1: Example MCQs from HourVideo for different tasks. The correct answers are underlined.
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Summarization

Key Events/ Objects Summarize the key interactions of the camera wearer in the [supermarket].

Temporal Sequencing Describe the sequence of activities performed by the camera wearer to [prepare
the desert].

Compare/ Contrast How did the camera wearer’s activities in the [apartment] differ from those in
the [restaurant]?

Perception

Information Retrieval

• Factual Recall What [dairy products] did the camera wearer [pick up] in the [supermarket]?

• Sequence Recall What did the camera wearer do immediately after [weighing tomatoes] at the
[supermarket]?

• Temporal Distance How long after starting to [eat pizza] did the camera wearer [dispose of the pizza
box]?

Tracking List the unique [individuals] the camera wearer interacted with at the [drugstore].

Visual Reasoning

Spatial

• Relationship Where was the [microwave] placed in relation to the [stove] in the [kitchen]?

• Proximity Is the [microwave] closer to the [fridge] compared to the [sink]?

• Layout Which is the correct [IMAGE] depicting the layout of the camera wearer’s
[apartment]?

Temporal

• Duration Which activity did the camera wearer spend more time on: [cooking] or [playing
the piano]?

• Frequency Did the camera wearer use the [circular saw] or [crosscut saw] more frequently
to [cut wood]?

• Pre-requisites What preparation steps did the camera wearer take before [baking cookies]?

Predictive What is the most likely activity the camera wearer will do next after [doing
laundry]?

Causal Why did the camera wearer [leave the garage for the second time]?

Counterfactual What if the camera wearer used the [oven] to [cook mashed potatoes]?

Navigation

Room-to-Room How did the camera wearer get from the [building entrance] to the [apartment]?

Object Retrieval How can the camera wearer retrieve the [TV remote] if they are in the [kitchen]?

Table 1: Our Proposed Task Suite with Question Prototypes. This table shows all 4 tasks and 18
sub-tasks proposed in HourVideo, along with the corresponding handcrafted question prototypes
designed to evaluate long-form video-language understanding capabilities.

2.2 Dataset Generation Pipeline

In this section, we provide an overview of the question-answer creation pipeline that we developed to
create HourVideo. The pipeline is summarized in Fig. 2.

Video curation, Stage 1. A crucial design consideration for this benchmark is the selection of
video sources and types. We chose the Ego4D [13] dataset for our videos for multiple reasons:
(1) its egocentric perspective aligns well with the typical visual input for autonomous agents and
assistants; (2) it features extensive visual narrations, which aid in creating diverse multiple-choice
questions; and (3) it is readily accessible under the Ego4D license. We manually reviewed 1,470
videos, ranging from 20 to 120 minutes, from the Ego4D dataset, assessing their potential to generate
relevant questions for various tasks in our task suite. Following this process, we curated 500 videos.
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Video Curation1 32

4 Blind Filtering 5 Expert MCQ Refinement

MCQ Generation MCQ Refinement using 
Human Feedback

LLM

LLM

LLM

> 100  
hours > 400  
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Figure 2: Our dataset generation pipeline. We develop a dataset generation pipeline consisting of
five stages to create HourVideo. We leverage over 800 hours of human effort in total corresponding
to Video curation (Stage 1), MCQ Refinement using Human Feedback (Stage 3) and Expert MCQ
Refinement (Stage 5) stages. We use LLMs in MCQ Generation (Stage 2) and MCQ Refinement using
Human Feedback (Stage 3). We note that causal, counterfactual and navigation questions are manually
generated by human experts (See Sec. 2.2 for details).

Candidate MCQ Generation, Stage 2. The objective of this stage is to produce high-quality MCQs
for each task, requiring analysis and synthesis of information across multiple temporal segments
in a long-form video. Initially, we manually develop question template(s) for each task in the
suite. As shown in Table 1, transforming a question template into an actual question involves
incorporating video-specific information tailored to the task and template. To facilitate this, we
utilize the detailed narrations from the Ego4D dataset, transforming them into a structured format that
can be processed by an LLM. Specifically, we segment the video at 20-minute intervals, with each
segment’s representation including a summary and a list of tools, food items, technology, humans,
pets, and physical locations encountered by the camera wearer in the video. We note that synthesizing
a structured representation and a question template into a valid question with correct and incorrect
answers presents a significant challenge, even for advanced LLMs. Consequently, for each task, we
formulate detailed prompts that offer question prototypes, comprehensive instructions, in-context
examples, and step-by-step guidance on how to transform a question template into a valid candidate
MCQ2. In total, we developed 25 task-specific prompts.

MCQ Refinement with LLMs using Human Feedback, Stage 3. The purpose of this phase is to refine
MCQ2, created in the previous stage. MCQ2 may contain invalid questions, incorrect answers, trivial
incorrect options, and various other issues. We identified that a significant source of these issues
stemmed from relying on the noisy narrations in Ego4D. For example, different narrators within the
same video could refer to a dishwasher as a "plate rack" or use other terms, and an individual might
be described as an "adult," "person with a red and white shirt," "man Y," or "teenager" at various
times in the narration. These inconsistencies, combined with our automatic question generation in the
first stage, could lead to generation of invalid MCQs. To address noisy MCQs, we implement a human
feedback system where trained annotators are tasked with: 1) assessing the validity of each question
to ensure it aligns with the video content, 2) verifying the accuracy of the given answer—if found
incorrect, they provide the correct answer in free-form text, 3) ensuring that all incorrect options are
factually wrong and clearly distinguishable from the correct answer. We gather human feedback for
all MCQ2, involving over 400 hours of human effort. We then design prompts, to automatically refine
MCQ2 using this human feedback to produce MCQ3. We engaged seven trained annotators in this stage.

Blind filtering, Stage 4. Modern LLMs possess extensive prior knowledge and can thus easily
answer certain questions without needing to analyze the videos. The objective of this phase is to
eliminate questions that can be answered through prior knowledge or can be trivially answered
without requiring any information from the video. To address this, we do blind filtering of MCQ3,
utilizing two separate blind LLMs (GPT-4-turbo and GPT-4). Specifically, we exclude any MCQ
that is correctly answered by at least one LLM without video input. Although this method may
aggressively remove MCQs, it ensures that the remaining MCQ4 are of high quality and specifically
tailored to test long-form video-language understanding.
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Figure 3: Dataset Statistics. 1⃝: HourVideo includes 500 videos sourced from the Ego4D dataset,
spanning 77 everyday scenarios. The bar chart shows the top 20 scenarios. 2⃝: We report the number
of MCQs per task/sub-task. In total, there are 12,976 questions in HourVideo. 3⃝: We show the
distribution of video duration in HourVideo. The average duration of videos in HourVideo is 45.7
minutes, with 113 videos extending beyond one hour. 4⃝: We show the distribution of number of
MCQs per video. On average, each video contains 26 MCQs.

Expert Refinement, Stage 5. The aim of this stage is to enhance the quality of MCQ4 by utilizing
a selected group of expert human annotators. This stage serves as a comprehensive step to address
various remaining issues that might have persisted through prior stages. Examples of expert refinement
include transforming a broad question like "Where did the camera wearer leave the keys?" into a
more precise query: "Where did the camera wearer leave the bike keys after returning home from
shopping?” Over 300 hours of expert human effort are employed in this stage to carefully examine
and refine MCQ4, culminating in a high-quality MCQ5. We engaged four human experts in this stage.

Manual Generation. Despite our extensive efforts to automate fully or partially, we discovered
that certain tasks did not align well with the pipeline we described earlier. Specifically, for causal,
counterfactual, spatial layout and navigation tasks, we found it more effective to manually generate
questions with human experts rather than processing through our multi-stage pipeline. Consequently,
for these tasks in our benchmark, we generated high-quality questions, albeit in a smaller quantity. In
total, 5.1% of the MCQs in HourVideo were manually generated.

Implementation details. We used GPT-4 in our pipeline as it offers impressive capabilities to
follow complex multi-step instructions. We used the Chain-of-Thought [20] prompting strategy and a
temperature of 0.1 for all stages involving LLMs in our pipeline.

2.3 HourVideo Statistics

HourVideo consists of 500 videos from the Ego4D dataset, covering 77 daily life scenarios such as
cooking, cleaning, eating, watching TV, baking, etc. (Fig. 3). The dataset includes 381 hours of video
footage, with video durations ranging from 20 to 120 minutes (Figure 3). On average, each video is
approximately 45.7 minutes long, which 15× larger than prior work in long-form video-language
understanding [12]. Additionally, 113 videos in our dataset exceed one hour in length. Each video is
accompanied by an average of 26 high-quality, five-way multiple-choice questions, totaling 12,976
questions in the dataset. Finally, we strive to ensure an even distribution of MCQs across all tasks in
our suite, with the exception of causal, counterfactual, and navigation tasks, where questions were
manually generated for a selected group of videos.

6



3 Experiments

3.1 Evaluation Protocol

HourVideo includes five-way multiple-choice questions, for which we report accuracies per task
and in aggregate across the entire dataset. A significant challenge in evaluating MCQs over long
videos is preventing information leakage across questions. Ideally, each MCQ should be evaluated
independently to avoid this issue, but unfortunately, this approach is computationally expensive and
time-consuming. Therefore, for our evaluation, we assess the questions in batches, with each batch
containing all questions related to a specific task or sub-task. For predictive tasks (reasoning), we
provide precise timestamps to trim the videos for targeted evaluation. Details on tasks and sub-tasks
requiring independent evaluation are provided in the Supplementary material.

3.2 Baselines

In this section, we compare the performance of different multimodal models on understanding long
videos in a zero-shot setting. Specifically, we evaluate three classes of models: (1) Blind LLMs,
(2) Socratic Models [21], and (3) Native multimodal models. All these models operate under a
common function A = M(V, τ,Q) where V, τ,Q,M,A refer to the long-form video input, prompt
(instruction), multiple-choice question, multimodal model, and text output respectively.

Blind LLMs. Modern LLMs possess extensive prior knowledge, enabling them to easily answer
certain questions without the need to analyze videos. Furthermore, it is likely that some questions
can be trivially answered by exploiting biases in the question-answer pairs. The ‘blind’ LLM
baseline is designed to evaluate this by asking the LLM to answer the multiple-choice question
without considering any visual information from the video, i.e., A = M(τ,Q), where τ is a generic
task-agnostic prompt prepended to the question Q. We use GPT-4 [22] as our LLM for this baseline.

Socratic Models. Most current state-of-the-art multimodal models are unable to process very long
videos. Therefore, to benchmark these models, we use the Socratic models approach [21]. In this
approach, the video V , with a total duration of t minutes, is segmented into one-minute intervals,
each denoted as V [i] for minute i. Each segment V [i] is independently captioned, yielding a sequence
of captions z1, z2, z3, . . . , zt, where zi = Video-Captioner(V [i]). These captions are aggregated to
form a comprehensive language-based representation of the video, referred to as the world state
history, which includes timestamps. This textual representation, along with a generic task-agnostic
prompt τ , serves as the input for long-form video-question answering: A = M([τ, z1, z2, . . . , zt, Q]).
We sample one-minute video clips at a rate of 0.5 fps and a resolution of 512×384. We test using
both GPT-4 [22] and LLaVA-NeXT-34B-DPO [14] as the Video-Captioner. Finally, we use GPT-4
for actual question answering, as LLaVA-NeXT-34B-DPO does not support the extended context
length required to process our world state history.

Native Multimodal Models. Multimodal video models, such as Gemini 1.5 Pro [3], are trained
jointly on multimodal data, including audio, video, images, and text. These models are particularly
adept at handling very long context lengths (2M+), making them ideal for end-to-end evaluation using
our benchmark. Evaluating these models is straightforward, as they can directly process hour-long
videos as A = M(V, τ,Q). For all experiments, we use a sampling rate of 0.5 frames per second, a
resolution of 512 × 384, and a temperature setting of 0.1.

Human performance. Due to the high costs associated with human evaluations, we sampled
14 videos from our benchmark, which included more than 18 scenarios in total including craft-
ing/painting, cooking, construction/renovation, gardening, cleaning/laundry and yard work. We ask
three human experts to conduct evaluations on 11.2 hours of video content, encompassing a total of
213 MCQs. The human experts achieve an accuracy of 85.0%. The results are shown in Fig. 4.

3.3 Results

We report all task and sub-task level quantitative results in Tab. 3. Qualitative evaluations, including
human evaluation numbers, are presented in Fig. 4. We remark that random guessing corresponds to
20% accuracy. Below, we discuss our key observations.
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Blind LLMs
GPT-4 22.7 29.6 24.2 21.9 15.2 20.6 15.8 14.9 21.4 22.2 23.6 19.3 14.7 14.5 18.7 21.2 15.8 18.8 19.6
Socratic Models
LLaVA-34B-DPO 34.0 35.5 35.8 30.3 19.3 12.7 34.5 18.3 15.3 26.7 21.3 17.9 23.5 20.9 21.3 22.4 20.8 22.4 22.3
GPT-4 40.5 41.5 43.2 33.1 20.0 20.2 36.7 18.5 21.7 37.8 25.3 22.9 27.1 24.1 24.7 26.5 20.0 26.6 25.7
Multimodal Models
Gemini 1.5 Pro* 56.4 59.5 46.7 41.8 33.6 19.7 35.7 27.4 38.2 21.4 37.2 35.4 46.8 46.3 41.0 38.7 19.2 33.9 37.3

Table 3: Baseline results on HourVideo. We report results for Blind LLMs (GPT-4), Socratic
models with GPT-4 and LLaVA-NeXT-34B-DPO video captions, and Gemini 1.5 Pro. Gemini 1.5
Pro outperforms Blind LLMs and Socratic LLMs by a significant margin across all tasks (14 out of
18 sub-tasks).

Blind LLMs vs. Socratic LLMs. On aggregate, blind LLMs achieve an accuracy of 19.6%,
indicating that our benchmark requires access to video content for effective performance. Comparing
Blind LLMs and Socratic models, both variants of Socratic models perform marginally better than
blind LLMs. It is worth noting that the GPT-4-based Socratic model approach performs considerably
better on the summarization task (41.1%) than blind LLMs (24.4%) and LLaVA-NeXT-34B-DPO
(34.6%). Qualitative comparisons are shown in Fig. 4.

Socratic models vs. Native Multimodal Models. Gemini 1.5 Pro outperforms Socratic models by a
considerable margin across all 4 tasks–summarization, perception, visual reasoning, and navigation–
indicating that similar models may be promising avenues toward long-form video-language under-
standing. On aggregate, Gemini 1.5 Pro outperforms the GPT-4-based Socratic model by 11.6%.
Despite these significant improvements, it is important to note that Gemini’s performance, at 37.3%,
still lags significantly behind that of human experts, who achieve 85.0%.

Independent vs. Task-level MCQ evaluation. To investigate the validity of our proposed
task/sub-task level evaluation method, we conducted an ablation study where each multiple-
choice question (MCQ) was evaluated independently. For this, we used 15.9 hours of video
and 570 MCQs across 25 randomly selected videos. We used Gemini 1.5 Pro, which demon-
strated the highest performance on HourVideo (37.3%). The results and evaluation costs are
shown in Tab. 2. There is a minor drop (2.1%) in performance when evaluating each MCQ
independently; however, the associated costs increase by more than threefold. These results
highlight the efficiency and validity of our proposed task-level/subtask level evaluation method.

Performance Total Tokens Evaluation Cost
Task-level 38.9% 120,818,343 $846
Individual 36.8% 374,396,885 $2621

Table 2: Performance and evaluation cost comparison for our
proposed task/sub-task level vs. individual MCQ evaluation.

We will require future benchmark
submissions to indicate whether
they used task-level or individual
MCQ evaluation when submitting
their results, allowing for greater
transparency and comparability
between methods.

4 Related Work

Dataset Comparison. Existing video benchmarks [23, 24, 11, 25–30], primarily focus on specific
domains or short videos, which limit their ability to assess long-form video understanding comprehen-
sively. Efforts like WebVid10M [31], InternVid [32], and Panda-70M [33] include detailed captions

*Our Gemini 1.5 Pro model evaluation includes 445 videos, covering 10,842 MCQ. For details, see Supple-
mentary material.
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Figure 4: Comparison between different multimodal foundation models on HourVideo across differ-
ent tasks/sub-tasks. We include average human expert performance for summarization, perception,
visual reasoning and navigation tasks. As one can observe, current multimodal models significantly
lack long-form video-language understanding capabilities.

to provide video pretraining data but consist primarily of short video clips less than one minute in
length and do not provide QA pairs. Recent works have introduced several benchmarks specifically
designed for long video understanding, such as Next-QA [34], Next-GQA [35], VideoChatGPT [36],
EgoSchema [12], MovieChat-1K [37] and MovieNet-QA [38]. However, the average video length in
these datasets is still relatively short, with Ego-Schema having an average duration of 3 minutes. In
contrast, we focus on long-form video-language understanding, with videos averaging 45 minutes in
duration (Table 4).

Benchmark # Videos Avg. len. (mins) # Questions
MSRVTT-QA [23] 2,990 0.25 72,821
ActivityNet-QA [11] 800 1.85 8,000
TVQA [25] 2,179 0.19 15,253
How2QA [26] 1,166 0.25 2,852
NExT-QA [34] 1,000 0.66 8,564
EgoSchema [12] 5,063 3.0 5,063

HourVideo 500 45.7 12,976

Table 4: Dataset statistics comparison between video under-
standing benchmarks.

Video Understanding Tasks.
Significant efforts have been
made to design tasks appropriate
for evaluating multimodal large
language models (MLLMs) [39–
46]. The evaluation of vision-
language models (VLMs) focuses
mainly on visual perception tasks
such as image-text matching, re-
trieval, captioning, object de-
tection, and visual grounding
tasks) [41–43]. Methods revolv-
ing around contrastive learning
on image-text pairs have proven to be effective methods for learning transferable representations for
these visual tasks [47–49], and have been shown to be effective in more specific domains such as
multi-disciplinary scientific understanding [46, 50] and multi-modal mathematical reasoning [44, 45].
Later work has improved upon the visual reasoning capabilities of VLMs [1, 51–58] and their ability
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to reason across complex spatio-temporal video data [59–66]. To better evaluate spatio-temporal
abilities, specific benchmarks [12, 28, 30, 67, 68] have been developed. However, the questions in
many of these datasets are often not challenging enough to fully evaluate the capabilities of models in
understanding long-form video content and can often be answered from only a single frame [69]. In
contrast, our benchmark focuses on evaluating the capabilities needed to reason over a significantly
longer duration and with more sophisticated reasoning. The questions in our dataset are designed
to be highly challenging, with novel video question categories such as navigation highlighting our
benchmark’s ability to effectively assess the limitations of current state-of-the-art models in long
video understanding.

Long-Form Video Understanding. To extend video-language models [70–79] to long videos, the
main challenge lies in efficiently encoding the temporal and spatial dynamics over a long horizon.
One widely used strategy is to maintain a memory bank to store history information in long videos
[80–85]. Alternatively, other methods have been proposed to compact spatio-temporal tokens into a
smaller set of compressed or merged tokens to reduce redundancy and alleviate computational burden
[37, 76, 86–92]. Another line of work leverages language as a bridge by first generating textual
descriptions for shorter video clips sub-sampled from the longer video and then employing an LLM
to aggregate the short captions for longer video understanding [93, 94]. In contrast, approaches like
TimeChat [95] and VTimeLLM [96] aim to enhance temporal localization capabilities by encoding
timestamp knowledge into visual tokens or using multi-stage training methods. Despite these
extensive efforts, long-video understanding remains a significant challenge for the current generation
of video understanding models.

5 Conclusion

We introduce HourVideo, a novel benchmark dataset designed to rigorously evaluate the capabilities
of multimodal models to comprehend one-hour-long videos. Our dataset consists of a novel task
suite comprising summarization, perception (recall, tracking), visual reasoning (spatial, temporal,
predictive, causal, counterfactual), and navigation (room-to-room, object retrieval) tasks. This
benchmark includes 500 egocentric videos from the Ego4D dataset, spanning durations of 20 to
120 minutes, and features 12,976 high-quality five-way multiple-choice questions. Our zero-shot
evaluation on HourVideo reveal that multimodal models such as GPT-4V and LLaVA-NeXT exhibit
performance levels only slightly better than random guessing. In stark contrast, human expert
performance substantially surpasses state-of-the-art long-context multimodal model Gemini 1.5 Pro
(85.0% accuracy versus 37.3%), highlighting significant research gap. We aim to establish HourVideo
as a benchmark challenge to spur the development of advanced multimodal models capable of truly
understanding endless streams of visual data.

Limitations and future work. Despite our substantial efforts to create a high-quality benchmark
dataset, we remark that there may still be some inconsistencies within the multiple-choice questions.
Additionally, while this is currently the largest long-form video-language understanding benchmark
of its kind to the best of our knowledge, we acknowledge the need for more holistic benchmarks that
include diverse video sources such as sports and YouTube videos. Lastly, we note that incorporating
support for the audio modality is essential for more comprehensive evaluation of multimodal models.
We discuss broader impact of HourVideo in Supplementary D.
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A HourVideo Release v1.0

We are releasing HourVideo v1.0, our proposed benchmark dataset for one-hour video-language
understanding. The benchmark dataset is provided as a single JSON file for ease of use and for
straightforward integration with existing benchmarking pipelines. For each video, the dataset includes
metadata and contains multiple-choice questions covering multiple tasks from our proposed task suite.
Each task is accompanied by a set of multiple-choice questions, each with five possible answers. For
predictive visual reasoning tasks, relevant timestamps are provided to allow precise video trimming.
Additionally, a PyTorch dataloader is provided to efficiently load the video and the benchmark
dataset. We provide all the 500 video_uids used in our benchmark, and users can simply download
the corresponding videos from the Ego4D website after reviewing and accepting the Ego4D license
agreement. We provide 2 sample videos with annotations from HourVideo. All materials are available
at hourvideo.stanford.edu.

• Structure: HourVideo v1.0 release is organized as follows :
– data/

* HourVideo_v1_0.json: Contains all 12976 questions in the benchmark dataset.
* navigation_images/: Contains all images which are part of the navigation task.
* spatial_layout_images/: Contains all images which are part of the spatial layout

(reasoning/spatial) task.
* sample_annotations/: Given that HourVideo is an evaluation benchmark, ground

truth annotations will not be released to public. For review purposes, we provide ground
truth annotations for 2 sample videos as csv files.

* csv/: We provide the benchmark in individual csv files for each video to enhance
accessibility, allowing users to conveniently view the contents for each video separately.

– src/
* video_utils.py: A script for video processing functionalities.
* hourvideo_dataloader.py: A PyTorch DataLoader script designed to efficiently load

and preprocess the dataset.
* baselines/: Contains all prompts and code for captioning/ question answering for

Blind LLMs, Socratic models and Multimodal Video Models. Remark: Except for
LLaVA-NeXT-34B-DPO captioning experiments, all other experiments require access to
proprietary models including GPT-4 and Gemini 1.5 Pro.

• Documentation: We provide a comprehensive datasheet explaining the benchmark dataset’s
purpose and intended usage.

• License: HourVideo will be made publicly available under MIT License. Do note that Ego4D
videos are publicly available under the Ego4D License [13].

• Versioning and Updates: We will maintain HourVideo, with all updates and new versions
announced publicly.

• Contact Information: For additional inquiries, please contact keshik@stanford.edu.

B Data Generation Pipeline: Additional details

B.1 Prompt Design

We meticulously design 25 prompts in total for tasks/ sub-tasks in our proposed task suite. For 9 out
of 15 tasks, we generate questions first, followed by jointly generating answers and wrong answers.
For the predictive visual reasoning and temporal pre-requisites tasks, we jointly generate questions
and answers first, followed by generating wrong answers. For causal, counterfactual, spatial layout
and navigation tasks, we generate questions, answers and wrong answers manually. We also designed
prompts for narration compilation (See Fig. B.2) and paraphrasing answers for the summarization,
temporal pre-requisites, and predictive visual reasoning tasks.

B.2 Narration Compilation Details

We segment all our videos at 20 minute intervals and extract a semi-structured representation
which includes title, description, start_identifier, end_identifier, list of tools,
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list of food items, list of technology objects, list of humans interacted,
list of pets interacted and list of unique locations in the video segment.

Figure B.1: This plot shows visual ele-
ments coverage vs. total number of narra-
tion tokens. We use collection of objects in
ImageNet-21K, VisualGenome, Tencent1M
and Places365 to quantify visual coverage.
We use Tiktoken library to calculate the
total number of tokens. We used Ego4D
dataset [13] to perform this experiment.

Finally, these segments are compiled by a LLM to form
a single structured representation for each video. The
prompt is shown in Fig. B.2. Considering that Ego4D
offers two independently collected sets of narrations
for each video, we select the narration set with the
higher token count. This design choice is based on
our empirical observation that a larger number of to-
kens typically ensures more comprehensive coverage
of visual elements. These results are shown in Fig. B.1.

B.3 Human
Feedback and Expert Refinement Details

For MCQ Refinement with Large Language Models using
Human Feedback (Stage 3), we engaged seven annota-
tors who had been trained to provide human feedback
based on examples created by our team. Continuous
quality assessments were conducted throughout this
stage to ensure the integrity and high quality of the
feedback obtained for MCQ Refinement. More than 400
hours of human effort were spent in this stage. For
Expert Refinement (Stage 5), we engaged four human
experts dedicating over 250 hours of human effort for QAW Refinement.

C Additional Experiments and Evaluation Details

C.1 Evaluation details

Evaluation Protocol. As outlined in the main paper, we have developed an evaluation protocol that
assesses multimodal models at the level of individual tasks and sub-tasks. The specific tasks and
sub-tasks requiring independent evaluation are listed as follows:

• Summarization

• Perception/Information Retrieval/Factual Recall

• Perception/Information Retrieval/Sequence Recall

• Perception/Information Retrieval/Temporal Distance

• Perception/Tracking

• Visual Reasoning/Spatial/Relationship

• Visual Reasoning/Spatial/Proximity

• Visual Reasoning/Spatial/Layout

• Visual Reasoning/Temporal/Duration

• Visual Reasoning/Temporal/Frequency

• Visual Reasoning/Temporal/Pre-requisites

• Visual Reasoning/Predictive

• Visual Reasoning/Causal

• Visual Reasoning/Counterfactual

• Navigation/Room-to-Room

• Navigation/Object Retrieval

• Navigation/Room-to-Room (Image-based)

• Navigation/Object Retrieval (Image-based)
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Narration Compilation
MAIN INSTRUCTIONS: 
In the "Long-Form Egocentric Video Narrative Compilation" task, you are working with detailed narrations 

from long-form, real-world, egocentric videos. 

Your goal is to compile these narrations into a chronological narrative that accurately reflects the linear progression of events in 
the video, from the perspective of 'C', the camera wearer ……………


For each segment, structure your summary as follows:

```json

    {

      "segment_title": "<Generated Title>",

      "segment_description": "<Generated summary>",

      "segment_start_identifier": "<Starting Unique Identifier>",

      "segment_end_identifier": "<End Unique Identifier>",

      "segment_tool_list": "<List of tools used in the segment>",

      "segment_food_list": "<List of food related items used in the segment>",

      "segment_technology_list": "<List of technology related objects used in the segment>",

      "segment_humans_list": "<List of humans/pets that C interacted with in the segment>",

      "segment_pets_list": "<List of pets that C interacted with in the segment>",

      "segment_locations_list": "<List of specific, named locations that C visited or mentioned in the segment>"

   }

```


CHRONOLOGICAL NARRATIVE COMPILATION GUIDELINES: 
  1. Concise Segment-Based Narrative Construction:

  ………………………

  2. Clarity, Brevity, and Object Emphasis in Language:

  ………………………

  3. Narrative Integrity and Object Relevance:

  ………………………

  4. Objective and Efficient Representation:

  ………………………


STRICTLY AVOID: 
………………………


ADDITIONAL CONSIDERATIONS: 
………………….


FORMATTING INSTRUCTIONS: 
………………………


EXAMPLE OUTPUT: 
[

    {

        "segment_title": "Initial Activities in Living Room and Kitchen",

        "segment_description": "'C' starts in the living room and then moves to the kitchen.

        She stands up, walks around, interacts with a man named K, and uses her phone. In the kitchen, 'C' opens the fridge, 

        takes out potatoes, and then moves to the kitchen counter where she begins to peel potatoes.,

        highlighting the use of technology and tools like a phone and knife, and the involvement of Man K and a dog.",

        "segment_start_identifier": "T0000_0",

        "segment_end_identifier": "T0010_17",

        "segment_tool_list": ["Phone", "Knife", "Fridge"],

        "segment_food_list": ["Potatoes"],

        "segment_technology_list": ["Phone"],

        "segment_humans_list": ["Man K"],

        "segment_pets_list": ["Dog"],

        "segment_locations_list": ["Kitchen", "Living Room"]

    },

    …………………………  

 ]


DENSE NARRATIONS: 
<Insert Video Narrations below>


Figure B.2: Our Narration Compilation Prompt In this Figure, we show our prompt for Narration
Compilation task. This prompt is designed to compile dense narrations to a structured format, provid-
ing step-by-step instructions, formatting guidelines and output examples for narration compilation.
The dense narrations are obtained from Ego4D [13].

This structured approach minimizes information leakage across questions and mitigates the substantial
costs associated with individual MCQ evaluation. It is important to note that the costs of individual
MCQ evaluation are proportional to the number of questions, emphasizing the need for our proposed
assessment strategy.

C.2 Additional Baselines

We conduct an additional experiment using the recently released Tarsier model [97] which reports
state-of-the-art results in multiple short-form video understanding benchmarks. Following the exact
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setup in Tarsier for long-video understanding, we use the publicly available Tarsier-7B model with 16
frames uniformly sampled from the entire video. The results are reported in Tab. C.1.

Prompts. For all our baseline experiments, we use a generic task-agnostic prompt together with
the video and MCQ tests for evaluation. All our prompts for baseline evaluations are included in the
evaluation toolkit. We leave advanced prompting strategies for future work.

Summarization Perception Visual Reasoning Navigation Avg.
Blind LLMs
GPT-4 24.4 20.0 19.1 17.6 19.6
Socratic Models
LLaVA-NeXT-34B 34.6 26.7 19.1 21.8 22.3
GPT-4 41.0 29.4 22.8 24.0 25.7
Multimodal Models
Gemini 1.5 Pro 55.8 38.2 35.7 28.1 37.3
SOTA short-form video model
Tarsier-7B (16 frames) 32.2 24.7 27.4 17.9 26.7

Table C.1: Additonal results on HourVideo using Tarsier-7B [97]. Tarsier-7B (16 frames)
performance is comparable to Socratic LLMs.

C.3 Model Refusal Rates

Model Videos/MCQs answered Refusal rate
GPT-4 (Blind) 500 / 12,930 0.35%
GPT-4 (Socratic) 500 / 12,959 0.13%
LLaVA-34B-DPO (Socratic) 500 / 12,953 0.18%
Gemini 1.5 Pro 445 / 10,842 16.45%

Table C.2: Model refusal rates: We report refusal rates for
various models for 500 videos / 12,976 MCQs. For Socratic LLMs,
we report the refusal rates for question answering. The refusal
rate for Gemini 1.5 Pro is significantly higher compared to GPT-
4.

Proprietary models, such as GPT-
4 and Gemini 1.5 Pro can abstain
from responding to MCQs for vari-
ous reasons, including video con-
tent filtering, privacy concerns,
and other undisclosed factors. In
particular, we observed that the
model refusal rates were signifi-
cantly higher for Gemini 1.5 Pro
compared to GPT-4. For Socratic
models, both GPT-4 and LLaVA-
34B-DPO models successfully caption more than 96% of the 1-min segments. We report refusal rates
for question-answering in Tab. C.2.

D Broader Impact

The Long-form Video-Language Understanding Benchmark (HourVideo) introduced in this work has
the potential to significantly advance the field of AI video understanding and enable a wide range of
useful applications. By focusing on long-form video, HourVideo challenges models to demonstrate
high-level reasoning and comprehension skills that more closely mirror human intelligence. Success
on this benchmark could lead to AI systems that can effectively perceive and interact with the real
world over extended periods of time, unlocking transformative capabilities in areas like embodied AI
and robotics, autonomous vehicles, smart environments, and augmented/virtual reality.

Embodied AI and robotics, which aim to develop artificial agents that can perceive, navigate, and
physically interact with their environment, could benefit greatly from advances in long-form video
understanding. A robot or embodied agent that can maintain a coherent, long-term understanding
of its surroundings and goals would be far more capable and adaptable than one operating with
only short-term perception. It could handle more complex, multi-stage tasks, learn from extended
observations, and build rich mental models to support planning and decision making. For example,
a home robot with long-form video understanding could tidy up a room by keeping track of object
locations, understanding the steps involved in cleaning tasks, and adapting to unexpected obstacles or
messes. Similarly, an industrial robot with long-term video comprehension could perform intricate
assembly tasks, monitor and maintain complex machinery, or collaborate seamlessly with human

21



workers. Long-form video understanding is thus a key missing piece in realizing the full potential of
embodied AI and robotics.

Progress on HourVideo could also contribute to the development of large world models – AI systems
that learn comprehensive, multi-modal representations of the world from vast amounts of data.
By processing and consolidating information from extended video sequences, these models could
construct more complete and coherent world knowledge that spans time and integrates multiple
levels of abstraction. Long-form video understanding would allow these models to not just recognize
isolated snapshots, but grasp the flow of events, the persistence and transformation of objects, the
rules of physics and causality, and the complex interactions between agents and their environments.
This deep, temporally-informed world knowledge could in turn support more advanced reasoning,
prediction, planning, and generalization.

In autonomous vehicles, long-form video understanding could enable more robust navigation and
decision-making by considering the long-term context and anticipating future events in a driving
scene. Intelligent monitoring systems could summarize and flag salient events in surveillance video
with greater nuance and fewer false positives.

Long-form video understanding is also crucial for creating compelling augmented reality (AR) and
virtual reality (VR) experiences. An AR system that can parse and adapt to a user’s visual context
over time would be a far more capable assistant than one that merely labels objects frame-by-frame.
In VR, AI characters and environments that evolve responsively to a user’s choices and actions
throughout an extended interactive session would provide a deeper sense of immersion and realism.

While these exciting applications underscore the importance of advancing long-form video under-
standing, it is equally critical to consider the potential risks and ethical implications involved. Video
data, particularly long-running egocentric video as used in HourVideo, can be highly sensitive and
revealing of personal details. As AI video understanding capabilities grow, robust safeguards must
be put in place to protect individual privacy, ensure secure data handling, maintain transparency
around data collection and use, and prevent unauthorized surveillance or abuse. The intimate window
that AR/VR systems and embodied AI agents have into users’ private spaces and behaviors further
heightens these concerns. As world models become more comprehensive and powerful, it will be
crucial to ensure they are developed and used in ways that respect privacy, promote fairness and
transparency, and align with human values.

In designing HourVideo, we have taken care to use only videos that are licensed for research and to
focus the benchmark on high-level semantic understanding rather than invasive personal information
extraction. Nonetheless, the overarching trajectory toward machines that can deeply interpret the
visual world will require ongoing vigilance and proactive efforts to align their development and
deployment with societal values.

In summary, HourVideo offers a valuable step forward for AI video understanding, with promising
implications for embodied AI, robotics, large world models, autonomous vehicles, AR/VR, and
beyond. However, for long-form video understanding technology to realize its full positive potential,
the AI research community must prioritize the responsible development of these powerful capabilities
with strong commitments to ethics, privacy, security, and beneficial impact for humanity. We believe
our benchmark will shape the progress of video understanding systems to be not only more capable,
but also more trustworthy and socially beneficial.

E Additional Information for Checklist

E.1 Amount of Compute

We report the total amount of compute used for captioning 381 hours of video content using LLaVA-
NeXT-34B-DPO in Table E.1. For GPT-4, we spent a total of ≈$10,000 in credits which includes the
entire dataset generation pipeline and baseline experiments (Blind LLMs and Socratic LLMs). Gemini
1.5 Pro baseline experiments cost approximately $105 per one-hour video across all tasks/sub-tasks.

E.2 Limitations

While HourVideo significantly advances video-language understanding by incorporating a diverse
range of tasks for extended duration with long-range dependencies, it currently uses egocentric
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Table E.1: Amount of compute/ API usage used in this project. The GPU hours include computations
for initial explorations/ prompt engineering / experiments to produce the reported values. CO2
emission values are computed using https://mlco2.github.io/impact/

Experiment Hardware GPU hours Carbon emitted in kg
Main paper : Table 2 (LLaVA-NeXT-34B) A6000 120 9.00

Main paper : Table 2 (LLaVA-NeXT-34B) RTX A5000 24 1.66

Additional Compute for Hyper-parameter tuning RTX A5000 12 1.80

Total 156 12.46

videos from the Ego4D dataset [13]. In the future, we plan to extend it to non-egocentric videos
as our task suite and data generation pipeline do not rely on ego-centric properties. Additionally,
the benchmark does not currently support audio modalities, which we acknowledge are crucial for
holistic understanding of long-form videos, and we leave this for future work. In terms of annotations,
every effort has been made to ensure high quality and consistency; however, the subjective nature of
interpreting complex video content means that some degree of interpretative variance is inevitable.
Lastly, we acknowledge that the compute required for processing extensive video content may limit
accessibility for some researchers.

E.3 Potential Negative Societal Impact

Advancements in HourVideo benchmark could significantly enhance AI capabilities towards building
autonomous agents. However, these technologies could also, for example, fuel the development
of more sophisticated surveillance systems, raising significant privacy concerns. While such ad-
vancements have potential security benefits, they pose risks if used inappropriately, threatening
individual privacy in public and private spaces. It is crucial that developments in video understanding
are accompanied by stringent ethical standards and robust privacy safeguards to prevent misuse.
We encourage ongoing dialogue and the development of comprehensive policies to ensure these
technologies are used responsibly.
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Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] Our contributions are clearly described in the abstract
and introduction.

(b) Did you describe the limitations of your work? [Yes] We describe our limitations in
Sec. 5 and more thoroughly in Supplementary E.2

(c) Did you discuss any potential negative societal impacts of your work? [Yes] We discuss
potential negative societal impacts in Supplementary D

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes] Our paper conforms to the NeurIPS ethics review guidelines.

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments (e.g. for benchmarks)...
(a) Did you include the code, data, and instructions needed to reproduce the main ex-

perimental results (either in the supplemental material or as a URL)? [Yes] All code,
annotations, and instructions for reproducing our results are provided in our project
website hourvideo.stanford.edu.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [N/A] There was no training in our benchmark (eval only).

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No] Given that our benchmark involves heavy use of costly pro-
prietory models (GPT-4, Gemini 1.5 Pro) for experiments, we did not repeat the experi-
ments. We provide all our prompts/ evaluation code at hourvideo.stanford.edu.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] Given most of our experiments
involved the use of proprietary models (GPT-4, Gemini 1.5 Pro), we report the API
usage in the Supplementary. For LLaVA-NeXT-34B-DPO captioning experiments, we
report the amount of compute in Supplementary E.1.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We cite EGO4D [13],

the source of the videos for our dataset.
(b) Did you mention the license of the assets? [Yes] Our dataset uses the EGO4D License,

as explained in Sec. 2.2.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

We release our proposed video question answering benchmark dataset. Please refer to
hourvideo.stanford.edu

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [Yes] We obtained consent via agreeing to the EGO4D License.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [No] Our videos are identical in content to those
of EGO4D, thus we do not explicitly discuss this in our paper. EGO4D does contain
videos of humans that are identifiable and does not contain offensive content.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots,

if applicable? [Yes] We supply the text instructions given to our annotators in the
Supplementary materials.

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A] No human participant risks.

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [Yes] We supply estimates of cost for our human
participants in the Supplementary Materials (datasheet).
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