
Under review as a conference paper at ICLR 2023

DEMYSTIFYING THE OPTIMIZATION AND GENERALIZA-
TION OF DEEP PAC-BAYESIAN LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

PAC-Bayes has long been a generalization analysis framework where the expected
population error can be bounded by the sum of training error and the divergence
between posterior and prior distribution. In addition to being a successful gener-
alization bound analysis tool, the PAC-Bayesian bound can also be incorporated
into an objective function to train a probabilistic neural network, which we refer to
simply as PAC-Bayesian Learning. PAC-Bayesian learning has been proven to be
able to achieve a competitive expected test set error numerically, while providing a
tight generalization bound in practice, through gradient descent training. Despite
its empirical success, the theoretical analysis of deep PAC-Bayesian learning for
neural networks is rarely explored. To this end, this paper proposes a theoretical
convergence and generalization analysis for PAC-Bayesian learning. For a deep and
wide probabilistic neural network, we show that when PAC-Bayesian learning is ap-
plied, the convergence result corresponds to solving a kernel ridge regression when
the probabilistic neural tangent kernel (PNTK) is used as its kernel. Based on this
finding, we further obtain an analytic and guaranteed PAC-Bayesian generalization
bound for the first time, which is an improvement over the Rademacher complexity-
based bound for deterministic neural networks. Finally, drawing insight from
our theoretical results, we propose a proxy measure for efficient hyperparameter
selection, which is proven to be time-saving on various benchmarks.

1 INTRODUCTION

Deep learning has demonstrated powerful learning capability due to its over-parameterization struc-
ture, in which various network architectures have been responsible for its significant leap in per-
formance (LeCun et al., 2015). Over-fitting and complex hyperparameters are two of the major
challenges in deep learning, hence designing generalization guarantees for deep networks is an
important research goal (Zhang et al., 2021). Recently, a learning framework that trains a proba-
bilistic neural network with a PAC-Bayesian bound objective function has been proposed (Bégin
et al., 2016; Dziugaite & Roy, 2017; Neyshabur et al., 2017b; Raginsky et al., 2017; Neyshabur
et al., 2017a; London, 2017; Smith & Le, 2017; Pérez-Ortiz et al., 2020; Guan & Lu, 2022), which
is known as PAC-Bayesian learning. While providing a tight generalization bound, PAC-Bayesian
learning has been proven to be able to achieve a competitive expected test set error (Ding et al., 2022).
Furthermore, this generalization bound computed from the training data can obviate the need for
splitting data into training, testing, and validation set, which is highly applicable for training a deep
network with scarce data (Pérez-Ortiz et al., 2020; Grünwald & Mehta, 2020). Meanwhile, these
advancements on PAC-Bayesian bounds have been widely adapted with different deep neural network
structures including convolutional neural network (Zhou et al., 2018; Pérez-Ortiz et al., 2020), binary
activated multilayer networks (Letarte et al., 2019), partially aggregated neural networks (Biggs &
Guedj, 2020), and graph neural network (Liao et al., 2020).

Due to the impressive empirical success of PAC-Bayesian learning, there is increasing interest in
understanding its theoretical properties. However, it is either restricted to a specific technique variant
such as Entropy-SGD which minimizes an objective indirectly by approximating stochastic gradient
ascent on the so-called local entropy (Dziugaite & Roy, 2018a) and differential privacy (Dziugaite &
Roy, 2018b), or relies heavily on empirical exploration (Neyshabur et al., 2017a; Dziugaite et al.,
2020). To our best knowledge, there has been no investigation so far into why the training of

1

Under review as a conference paper at ICLR 2023

PAC-Bayesian learning is successful and why the PAC-Bayesian bound is tight on unseen data after
training. For example, it is still unclear when applying gradient descent to PAC-Bayesian learning:

Q1: How effective is gradient descent training on a training set?
Q2: How tight is the generalization bound compared to those learning frameworks using non-

probabilistic neural networks?

The answers to these questions can be highly non-trivial due to the inherent non-convex problem
of over-parameterization (Jain & Kar, 2017) and additional randomness introduced by probabilistic
neural networks (Specht, 1990) as well as additional challenges brought by the divergence between
posterior/prior distribution pairs known as Kullback-Leibler (KL) divergence. Nevertheless, this
paper shows that it is possible to answer the above questions by leveraging the recent advances in deep
learning theory with over-parameterized setting. It has been shown that wide networks optimized with
gradient descent can achieve a near-zero training error, and the critical factor that governs the training
process is the neural tangent kernel (NTK), which can be proven to be unchanged during gradient
descent training (Jacot et al., 2018), thus providing a guarantee for achieving a global minimum
(Du et al., 2019; Allen-Zhu et al., 2019). Under the PAC-Bayesian framework, NTK is no longer
calculated from the derivative of the weights directly, but instead is calculated based on the gradient
of the distribution parameters of the weights. We call this Probabilistic NTK (PNTK), based on which
we build a convergence analysis to characterize the optimization process of PAC-Bayes learning. Due
to the explicit solution obtained by optimization analysis, we further formulate the generalization
bound of PAC-Bayesian learning for the first time, and demonstrate its advantage by comparing it
with the theoretical generalization bound of learning framework with non-stochastic neural networks
(Arora et al., 2019a; Cao & Gu, 2019; Hu et al., 2019).

We summarize our contributions as follows:

• With a detailed characterization of gradient descent training of the PAC-Bayes objective
function, we derive that the final solution is kernel ridge regression with its kernel being the
PNTK.

• Based on the optimization solution, we derive an analytical and guaranteed PAC-Bayesian
bound for deep networks for the first time. Moreover, our bound differs from other PAC-
Bayes bounds. Recent papers require distribution of posterior, while our bound is completely
independent of computing the distribution of posterior.

• The performance of PAC-Bayesian learning depends on the selection of a large number of
hyperparameters. We design a training-free proxy based on our theoretical bound and show
it is effective and time-saving.

• Our technique of analyzing optimization and generalization of probabilistic neural networks
through over-parameterization has a wide range of applications such as the Variational
Auto-encoder (Kingma & Welling, 2013; Rezende et al., 2014) and deep Bayesian net-
works (MacKay, 1992; Neal, 2012), we believe our technique can provide the basis for the
analysis of over-parameterized probabilistic neural networks.

2 RELATED WORK

PAC-Bayesian analysis. A Probably Approximately Correct (PAC) Bayes framework (McAllester,
1999a;b) can incorporate knowledge about the learning algorithm and probability distribution over a
set of hypotheses, thus providing a test performance (generalization) guarantee. Subsequently, the
PAC-Bayesian method is adopted to analyze the generalization bound of the probabilistic neural
networks (Langford & Caruana, 2002b). While the original PAC-Bayes theory only works with
a bounded loss function, Haddouche et al. (2021) expanded the PAC-Bayesian theory to learning
problems with unbounded loss functions. Furthermore, several improved PAC-Bayesian bounds
suitable for different scenarios are introduced by Bégin et al. (2014; 2016). As a result of the flexibility
and generalization properties of PAC-Bayes, it is widely used to analyze complex, non-convex, and
overparameterized optimization problems, especially over-parameterized neural networks (Guedj,
2019). Neyshabur et al. (2017b) presented a generalization bound for feedforward neural networks
with ReLU activations in terms of the product of the spectral norm of the layers and the Frobenius
norm of the weights.

2

Under review as a conference paper at ICLR 2023

PAC-Bayesian learning. In addition to obtaining the theoretical analysis for the generalization
properties of deep learning, it is important to achieve a numerical bound on generalization for
practical deep learning algorithms. Langford & Caruana (2002a) introduced a method to train a
Bayesian neural network and used a refined PAC-Bayesian bound for computing the error upper
bound. Later, Neyshabur et al. (2017a) extended Langford et al. Langford & Caruana (2002a)’s
work by developing a training objective function derived from a relaxed PAC-Bayesian bound. In the
standard application of PAC-Bayes, the prior is typically chosen to be a spherical Gaussian centered
at the origin. However, without incorporating the information of data, the KL divergence might be
unreasonably large, limiting the performance of the PAC-Bayes method. To address this gap, a large
volume of literature proposes to obtain localized PAC-Bayes bounds via distribution-dependent priors
through data (Ambroladze et al., 2007; Negrea et al., 2019; Dziugaite et al., 2020; Perez-Ortiz et al.,
2021). Furthermore, Dziugaite & Roy (2018b); Tinsi & Dalalyan (2022) showed how a differentially
private data-dependent prior yields a valid PAC-Bayes bound for a situation where the data distribution
is presumed to be unknown. More recently, research has focused on providing a PAC-Bayesian bound
for more realistic architectures, such as convolutional neural network (Zhou et al., 2018) , binary
activated multilayer networks (Letarte et al., 2019), partially aggregated neural networks (Biggs &
Guedj, 2020), and graph neural networks (Liao et al., 2020). We denote the practical use of the
PAC-Bayesian algorithm to train over-parameterized neural networks as PAC-Bayesian learning and
the target of this work is to demystify the success behind deep learning trained via the PAC-Bayesian
bound through PNTK.

3 PRELIMINARY

Notation. We use bold-faced letters for vectors and matrices and non-bold-faced letters for scalars.
We use ∥ · ∥2 to denote the Euclidean norm of a vector or the spectral norm of a matrix, while
denoting ∥ · ∥F as the Frobenius norm of a matrix. For a neural network, we denote σ(x) as the
activation function. We denote [n] = {1, 2, . . . , n}. The least eigenvalue of matrix A is denoted as
λ0(A) = λmin(A).

3.1 DEEP PROBABILISTIC NEURAL NETWORK

In PAC-Bayesian learning we use probabilistic neural networks (PNNs) instead of deterministic
networks, where the weights always follow a certain distribution. In this work, we adopt the Gaussian
distribution for the weights, and define a L-layer probabilistic neural network governed by the
following recursive expression,

x(l) =
1√
m
σ
(
W(l)x(l−1)

)
, 1 ≤ l ≤ L; f = v⊤x(L) (1)

where x(0) = x ∈ Rd is the input, W(1) ∈ Rm×d is the weight matrix at the first layer, W(l) ∈
Rm×m is the weight at the l-th layer for 2 ≤ l ≤ L, and v ∈ Rm is the weight vector at the output
layer. To keep weights follow Gaussian distribution during gradient descent training, we introduce
the re-parameterization trick (Kingma & Welling, 2013; Kingma et al., 2015):

W(l) = W(l)
µ +W(l)

σ ⊙ ξ(l), ξ(l) ∼ N (0, I), 1 ≤ l ≤ L; v = vµ + vσ ⊙ ξ(v), ξ(v) ∼ N (0, I),
(2)

where ⊙ denotes the element-wide product operation, thus ξ(l) for 1 ≤ l ≤ L and ξ(v) share the
same size as their corresponding weight matrix or vector. The key insight of re-parameterization is to
sample ξ(l) for 1 ≤ l ≤ L and ξ(v) from a normal distribution N (0, I), and leave W

(l)
µ , W(l)

σ , vµ,
and vσ to be deterministic.

We adopt random initialization for mean weights, where W(l)
µ ,vµ ∼ N (0, c2µ · I) for l ∈ [1, L]. With

an abuse of notation, we omit the size of mean 0 and variance I which is in coordinate with their
weight matrix or vector. On the other hand, we use an absolute constant to initialize variance weights,
namely W

(l)
σ ,vσ = c2σ · 1, where 1 is a matrix or vector with all elements to be 1.

3.2 PAC-BAYESIAN LEARNING

Suppose data S = {(xi, yi)}ni=1 are i.i.d. samples from a non-degenerate distribution D. Define
H to be the hypothesis space, h(x) to be the prediction of hypothesis h ∈ H over for x. Let

3

Under review as a conference paper at ICLR 2023

RD(h) = E(x,y)∼D[ℓ(y, h(x))] represent the generalization error of classifier h and R̂S(h) =
1
n

∑n
i=1 ℓ (yi, h (xi)) represent the empirical error of classifier h, where ℓ(·) is the loss function.

In PAC-Bayes, the prior Q(0) ∈ H is the prior distribution in H at initialization or before training,
and the posterior Q ∈ H is the distribution of parameters after training. To make the evaluation of
prediction based on weight parameters W(l) feasible for l ∈ [L], we adopt the Gaussian distribution
for the parameters, and the expected value for population risk and empirical error are RD(Q) =

E(x,y)∼D,h∼Q[ℓ(y, h(x))] = Eh∼Q[RD(h)], R̂S(Q) = Eh∼Q[R̂S(h)]. The PAC-Bayes theory
(Langford & Seeger, 2001; Seeger, 2002; Maurer, 2004) gives the following theorem:

Theorem 3.1. Then for any δ ∈ (0, 1], the following inequality holds uniformly for all posteriors
distributions Q ∈ H with a probability of at least 1− δ,

kl
(
R̂S(Q)∥RD(Q)

)
≤

KL(Q∥Q(0)) + log 2
√
n

δ

n
. (3)

where KL(Q∥Q(0)) = EQ

[
ln Q

Q(0)

]
is the Kullback-Leibler (KL) divergence and kl(q∥q′) =

q log(q
q′) + (1− q) log(1−q

1−q′) is the binary KL divergence. Furthermore, combined with Pinsker’s
inequality for binary KL divergence, kl(p̂∥p) ≥ (p− p̂)2/(2p), when p̂ < p, yields,

RD(Q)− R̂S(Q) ≤

√
2RD(Q)

KL(Q∥Q(0)) + log 2
√
n

δ

n
. (4)

Equation (4) is a classical result. This result can be further combined with the inequality
√
ab ≤

1
2 (λ̄a + b

λ̄
), for all λ̄ > 0, which leads to a PAC-Bayes-λ bound in Theorem 3.2, as proposed by

Thiemann et al. (2017):

Theorem 3.2. Let Q0 ∈ H be some prior distribution over H. Then for any δ ∈ (0, 1], the following
inequality holds uniformly for all posteriors distributions Q ∈ H with a probability of at least 1− δ

RD(Q) ≤ R̂S(Q)

1− λ̄/2
+

KL(Q∥Q(0)) + log 2
√
n

δ

nλ̄(1− λ̄/2)
. (5)

In this work, inspired by Catoni (2007); Rivasplata et al. (2019), we aim to promote the training
objective as PAC-Bayes bound and choose Equation (5) as the training objective. We highlight that
the original interest of Theorem 3.2 in (Thiemann et al., 2017) is to allow the optimization of a
quasiconvex objective both λ̄ and Q. However, since our main goal is to study the optimization and
generalization properties of PNNs, we set directly λ̄ = 1 and we omit the factor of two and express
the objective function as follows:

L(Q) = R̂S(Q) + λ
KL(Q∥Q(0))

n
= Eh∼Q

[
1

n

n∑
i=1

ℓ (yi, h (xi))

]
+ λ

KL(Q∥Q(0))

n
(6)

where λ is a hyperparameter introduced in a heuristic manner to make the method more flexible. Since
the term regarding δ is a constant, we omit it in the objective function. We set ℓ to be the squared
loss in the training objective function because it has a nice property such that the final solution of
the output function is explicit in the infinite-width limit. The global convergence can be extended to
cross-entropy loss like existing works (Ji & Telgarsky, 2019; Chen et al., 2019). Instead of optimizing
W(l) and v directly, the gradient descent with reparameterization trick leads to

W(l)
µ (t+ 1) = W(l)

µ (t)− η
∂L(Q)

∂W
(l)
µ (t)

; W(l)
σ (t+ 1) = W(l)

σ (t)− η
∂L(Q)

∂W
(l)
σ (t)

(7)

where η is the learning rate. For simplicity, we omit the gradient descent expression for vµ and
vσ, and will omit the corresponding terms regarding vµ, vσ in the following text unless otherwise
specified. To simplify theoretical analysis, this work considers gradient flow instead, and the same
results can be extended to gradient descent case with a careful analysis.

4

Under review as a conference paper at ICLR 2023

4 MAIN THEORETICAL RESULTS

In this section, Theorem 4.2 gives a precise characterization of how the objective function without KL
divergence decreases to zero. We then extend the convergence characterization to the full objective,
and find the final solution is a kernel ridge regression, as demonstrated by Theorem 4.3. As a
consequence, we are able to establish an analytic generalization bound through Theorem 4.4.

4.1 OPTIMIZATION ANALYSIS

To simplify the analysis, we first consider the optimization of probabilistic neural networks of the
form (1) with objective R̂S(Q). In other words, we neglect the KL divergence term at this stage and
show that the corresponding results can be extended to the target function with KL divergence in
the next section. Given this premise, we show that for a L-layer probabilistic neural network, the
gradient flow of output function admits the following dynamics

df(X; t)

dt
=

∂f(X; t)

∂θµ

∂θµ
∂t

+
∂f(X; t)

∂θσ

∂θσ
∂t

= (y − f(X; t))(Θµ(X,X; t) +Θσ(X,X; t)) (8)

where θµ ≡ ({W(l)
µ }Ll=1,vµ) and θσ ≡ ({W(l)

σ }Ll=1,vσ) are collection of mean weights and
variance weights. Besides, Θµ(X,X; t) ∈ Rn×n and Θσ(X,X; t) ∈ Rn×n are probabilistic neural
tangent kernels (PNTKs) defined as follows,

Definition 4.1 (Probabilistic Neural Tangent Kernel). The tangent kernels associated with the output
function f(X; t) at parameters θµ and θσ are defined as,

Θµ(X,X; t) =
∂f(X; t)

∂θµ

(
∂f(X; t)

∂θµ

)⊤

=

L∑
l=1

∇
W

(l)
µ
f(X; t)∇

W
(l)
µ
f(X; t)⊤ +∇vµf(X; t)∇vµf(X; t)⊤

Θσ(X,X; t) =
∂f(X; t)

∂θσ

(
∂f(X; t)

∂θσ

)⊤

=

L∑
l=1

∇
W

(l)
σ
f(X; t)∇

W
(l)
σ
f(X; t)⊤ +∇vσf(X; t)∇vσf(X; t)⊤

(9)

Different from standard (deterministic) neural networks, the probabilistic network consist of two sets
of parameters θµ and θσ , thus the PNTK has two corresponding tangent kernels.

One of the key findings of this work is that the PNTKs Θµ(X,X) and Θσ(X,X) will both converge
to a limiting deterministic kernel denoted as Θ∞(X,X) at initialization and during training if
m is sufficiently large, namely limm→∞ Θµ(X,X) = Θ∞(X,X) and limm→∞ Θσ(X,X) =
Θ∞(X,X).

As a result, in the infinite-width limit, dynamics of output function with gradient flow is linear:

df(X; t)

dt
= 2
(
y − f(X; t)

)
Θ∞(X,X) (10)

By leveraging this insight, we arrive at our main convergence theory for deep probabilistic neural
networks, which is stated formally as follows

Theorem 4.2 (Convergence of probabilistic networks with large width). Suppose σ(·) is H-Lipschitz,

λ0(K∞) > 0, and the network’s width is of m = Ω

(
2O(L) max

{
n2 log(Ln/δ)

λ2
0(K

(L)
∞)

, n
δ ,

n5 log(2/δ)10

λ2
0(K

(L)
∞)

})
with the initialization. Then, with a probability of at least 1− δ over the random initialization, we
have,

R̂S(Q(t)) ≤ exp
(
− λ0(K

(L)
∞)t

)
R̂S(Q(0)) (11)

where we define K(l)(xi,xj) ≡ (x
(l)
i)⊤x

(l)
j and K

(l)
∞ (xi,xj) ≡ limm→∞(x

(l)
i)⊤x

(l)
j

Our theorem establishes that if m is large enough, the expected training error converges to zero at a
linear rate. In particular, the least eigenvalue of PNTK governs the convergence rate. Besides, we
find the change of weight is bounded during training, which is consistent with the requirement of
PAC-Bayes theory that the loss function is bounded.

5

Under review as a conference paper at ICLR 2023

4.2 TRAINING WITH KL DIVERGENCE

According to Equation (6), there is a KL divergence term in the objective function. We expand the
KL-divergence for two Gaussian distributions, P(t) ≡ N (µt, σ

2
t), and P(0) ≡ N (µ0, σ

2
0),

KL(P(t)|P(0)) = 1

2

(
log

σ0

σt
+

(µt − µ0)
2

σ2
0

+
σt

σ0
− 1

)
(12)

We compare the gradient of mean and variance weights w(l)
µ w

(l)
σ . With a direct calculation, we have

∂f(xi)

∂w
(l)
µ

= 1√
m

∂f(xi)
∂x(l) σ′(w(l)x(l−1))x(l−1) and ∂f(xi)

∂w
(l)
σ

= 1√
m

∂f(xi)
∂x(l) σ′(w(l)x(l−1))x(l−1) ⊙ ξ(l). It

is shown that there is one more random variable ξ(l) associated with the gradient regarding variance
weights, which results in the expected gradient norm being zero. Therefore, it is equivalent to fix wσ

during gradient descent training and we arrive at the conclusion that probabilistic neural network is
performing kernel ridge regression in the infinite-width limit:

Theorem 4.3. Consider gradient descent on objective function (6). Suppose m ≥
poly(n, 1/λ0, 1/δ, 1/E). Then, with a probability of at least 1− δ over the random initialization, we
have

f
(
x, Q(t)

)
|t=∞ = Θ∞

µ (x,X)
(
Θ∞

µ (X,X) + λ/c2σI
)−1

y ± E (13)

where f(x, Q(t)) = Ef∼Q(t)f(x; t) aligns with the definition of the empirical loss function.

Theorem 4.3 reveals the regularization effect of the KL term in PAC-Bayesian learning, and presents
an explicit expression for the convergence result of the output function.

4.3 GENERALIZATION ANALYSIS

We use squared loss to train the probabilistic neural network but adopt a general and suitable loss
ℓ ∈ [0, 1] to evaluate the PNN’s generalization. Recall that in Theorem 3.2, the PAC-Bayesian bound
concerning the distribution at initialization and after optimization is given. Therefore, combined with
the results from Theorem 4.3, we provide a generalization bound for PAC-Bayesian learning with
ultra-wide condition.
Theorem 4.4 (PAC-Bayesian bound with NTK). Suppose data S = {(xi, yi)}ni=1 are i.i.d. samples
from a non-degenerate distribution D, and m ≥ poly(n, λ−1

0 , δ−1). Consider any loss function
ℓ : R × R → [0, 1] that is 1-Lipschitz in the first argument such that ℓ(y, y) = 0. Then with a
probability of at least 1− δ over the random initialization and the training samples, the probabilistic
neural network (PNN) trained by gradient descent for T ≥ Ω(1

ηλ0
log n

δ) iterations has population
risk RD(Q) that is bounded as follows:

RD(Q) ≤
y⊤(Θ∞

µ (X,X) + λ/c2σI)
−1y

nc2σ
+

λ

c2σ

√
y⊤(Θ∞

µ (X,X) + λ/c2σI)−2y

n
+O

(
log 2

√
n

δ

n

)
.

(14)

The proof can be found in the Appendix C. In this theorem, we establish a reasonable generalization
bound for the PAC-Bayesian learning framework, thus providing a theoretical guarantee. Com-
pared to the PAC-bayes bound (5), our bound is analytic and computable. We further demonstrate
the advantage of PAC-Bayesian learning by comparing it with the Rademacher complexity-based
generalization bound for deterministic neural networks with a kernel ridge solution.
Theorem 4.5 (Rademacher bound with NTK). Suppose data S = {(xi, yi)}ni=1 are i.i.d. samples
from a non-degenerate distribution D, and m ≥ poly(n, λ−1

0 , δ−1). Consider any loss function
ℓ : R × R → [0, 1] that is 1-Lipschitz in the first argument such that ℓ(y, y) = 0. Then with a
probability of at least 1− δ over the random initialization and training samples, the deterministic
neural network trained by gradient descent for T ≥ Ω(1

ηλ0
log n

δ) iterations has population risk RD
that is bounded as follows:

RD ≤
√

y⊤(Θ∞
µ (X,X) + λ/c2σI)−1y

n
+

λ

c2σ

√
y⊤(Θ∞

µ (X,X) + λ/c2σI)−2y

n
+O

(√
log n

λ0δ

n

)
.

(15)

6

Under review as a conference paper at ICLR 2023

Theorem 4.5 is obtained by following Theorem 5.1 in Hu et al. (2019), which presents a Rademacher
complexity-based generalization bound for ultra-wide neural networks with a kernel ridge regression
solution. Similar analysis for kernel regression without regularization based on NTK can be found in
Arora et al. (2019a); Cao & Gu (2019).

The main difference between two generalization bounds is
y⊤(Θ∞

µ (X,X)+λ/c2σI)
−1y

n versus√
y⊤(Θ∞

µ (X,X)+λ/c2σI)
−1y

n , which is due to the fact that the PAC-Bayesian bound count the KL
divergence while Rademacher bound calculate the reproducing kernel Hilbert space (RKHS) norm.
We find that the convergence rate of the focused term are different. One is O(1/n) and the other is
O(1/

√
n). Therefore, we conclude that the PAC-Bayesian bound has a numerical improvement over

the Rademacher complexity-based bound when n is large.

5 PROOF SKETCH

To prove Theorem 4.2, we first show that PNTKs at initialization are close to the limiting kernel
given the width is large enough. Then we prove the distance between PNTKs and limiting kernel
during training is also bounded, meanwhile loss has a linear convergence rate by induction. Our proof
framework is similar to Du et al. (2019); Arora et al. (2019a)’s. However, The main difference is
that our network architecture is much more complex (e.g. probabilistic network contains two sets of
parameters) and each set involves its own randomness which requires bounding many terms more
elaborately. The detailed proof can be found in Appendix A.

The proof of Theorem 4.3 utilizes an argument of linearization of the network model in the infinite-
width limit. This allows us to obtain an ordinary differential equation for output function with the
solution of kernel ridge regression. The details are given in Appendix B.

For generalization analysis, we defer the proofs of Theorem 4.4 to Appendix C. Our proof is based
on a characterization of the empirical error and KL divergence term via the explicit solution found in
Theorem 4.3.

6 EXPERIMENTS

As an extension of our finding of the PAC-Bayesian bound in Theorem 4.4, we provide a training-free
metric to approximate the PAC-Bayesian bound via PNTK, which can be used to select the best
hyperparameters without involving any training and eliminate excessive computation time. Besides,
we provide a empirical verification of our theory in Appendix D.1 and comparison of theoretical
bounds with empirical bounds in Appendix D.2.

6.1 EXPERIMENTAL SETUP

In all experiments, the NTK parameterization is chosen to initialize the parameters, which follows
Equation (1). Specifically, the initial mean weights θµ, are sampled from a truncated Gaussian
distribution with a mean of zero and one standard variance of 1, truncating at two standard deviations.
To ensure that the variance is positive, the initial variance for weight is transformed from the given
value of cσ through the formula cσ = log(1 + exp(ρ0)).

In section 6.2, we describe the use of both fully connected and convoluted neural network structures
to perform experiments on MINIST and CIFAR10 datasets to demonstrate the effectiveness of our
training-free PAC-Bayesian network bound for searching hyperparameters under different datasets
and network structures. In particular, we build a 3-layer fully-connected neural network with 600
neurons on each layer. On the other hand, the convolutional architecture is equipped with a total
of 13 layers with around 10 million learnable parameters. We adopt a data-dependent prior since
it is a practical and popular method (Perez-Ortiz et al., 2021; Fortuin, 2022). Specifically, this
data-dependent prior is pre-trained on a subset of total training data with empirical risk minimization.
The networks for posterior training are then initialized by the weights learned from the prior. Finally,
the generalization bound is computed using Equation (5). The relevant settings are referred to in the
work by Pérez-Ortiz et al. (2020), such as confidence parameters for the risk certificate and Chernoff
bound, and the 150,000 times of Monte Carlo samples to estimate the risk certificate.

7

Under review as a conference paper at ICLR 2023

Figure 1: The first row shows correlation results of FCN structure on the MNIST dataset. Kendall-tau
correlations between generalization bound with respect to the proportion of prior data, coefficient of
KL penalty, and ρ0 are 0.89, 0.89, and 0.93 at 1% level of significance. Similar results are found in
the CNN structure with the CIFAR10 dataset where Kendall-tau correlations are 0.89, 0.83, and 0.57,
as shown in the second row.

Setup Risk cert. Computation time (hours)

Data Method Network ℓx-e ℓ01 Single Total

MNIST

Exhaustive
Search

FCN .0010 .0212 0.50 324.00

CNN .0059 .0110 16.92 10964.16

Bayesian
Search

FCN .0010 .0212 0.50 18.00

CNN .0059 .0110 16.92 609.12

PA
FCN .0010 .0264 0.03 19.44

CNN .0085 .0160 0.03 19.44

CIFAR10

Exhaustive
Search

FCN .174 0.5377 1.09 706.32

CNN .0142 .1969 45.00 29,160.00

Bayesian
Search

FCN .174 0.5377 1.09 39.24

CNN .0142 .1969 45.00 1,620.00

PA
FCN .178 0.5490 0.03 19.44

CNN .0142 .1970 0.03 19.44

Table 1: The performance i.e., risk certificates (cross-entropy ℓx-e and accuracy ℓ01) and computation
time against three hyperparameters searching methods (exhaustive search, Bayesian search, and PA,
the training free method). For the lowest risk certificate and computational time are highlighted in
boldface, and second best are highlighted by underlining.

6.2 SELECTING HYPERPARAMETERS VIA TRAINING-FREE METRIC

The PAC-Bayesian learning framework provides competitive performance with non-vacuous general-
ization bounds. However, the tightness of this generalization bound depends on the hyperparameters
used, such as the proportionality of data used for the prior, the initialization of ρ0, and the KL
penalty weight (λ). Since these three values do not change during the training, we refer to them as
hyperparameters. Choosing the right hyperparameters via a grid search is obviously prohibitive, as
each attempt to compute the generalization bound can involve significant computational resources.

8

Under review as a conference paper at ICLR 2023

Another plausible approach is to design some kind of predictive, “training-free” metric so that we
can approximate the error bound without going through an expensive training process. In light of
this goal, we have already developed a generalization bound in theorem 4.4 via NTK. Since NTK
changes are held constant during training, we can predict the generalization bound by this proxy
metric, which can be formulated as follows:

PA =Tr

(
(Θ̂+ λ/c2σI)

−1 · yy⊤

c2σ · n
+

λ

c2σ

√
(Θ̂+ λ/c2σI)

−2 · yy⊤

n

)
(16)

where Θ̂ is an empirical NTK associated with mean weights, measured on a finite-width neural
network at initialization. yy⊤ is a n×n label similarity matrix (if two data have the same label, their
joint entry in the matrix is one and zero otherwise), and n is the number of data used. Note that the
proposed proxy metric in Eq. (16) share the same spirit of kernel alignment, a label similarity metric,
which has been widely used in the application of deep active learning (Wang et al., 2021), model
selection for fine-tuning (Deshpande et al., 2021), and neural architecture search (NAS) (Mok et al.,
2022). To demonstrate the computational practicality of this training-free metric, we compute PA
using only a subset of the data for each class (325 per class for FCN and 75 per class for CNN). We
should also mention that training-free methods for searching neural architectures are not new, and
can be found in NAS (Chen et al., 2021; Deshpande et al., 2021), MAE Random Sampling (Camero
et al., 2021), pruning at initialization (Abdelfattah et al., 2021). To the best of our knowledge, there is
currently no training-free method for selecting hyperparameters in the PAC-Bayesian framework,
which we consider to be one of the novelties of this paper.

Figure 1 demonstrates a strong correlation between PA and the actual generalization bound. Finally,
we demonstrate that by searching through all possible combinations of hyperparameters using PA,
it is possible to select a hyperparameter leading towards a result that is comparable to the best
generalization bound, but without excessive computation. To put things in perspective, in Table 1,
we compare the risk certificates and computation time for three hyperparameters finding methods
(exhaustive search, Bayesian search and PA) on the two architectures (FCN and CNN) and two
datasets (MNIST and CIFAR10). Unlike exhaustively searching where the best set of hyperparameters
are selected from 648 different hyperparameter combinations (9 data-dependent prior with different
subsets data for prior training, 9 different values of KL penalty, and 8 different values of ρ0), Bayesian
search takes only 36 iterations to find the lowest bound since it evaluates the information in past
iterations of searching and efficiently selecting the next set of hyperparameters based on the prior
knowledge. Yet, reducing the number of search iterations cannot sufficiently reduce the overall
computation time when training a large and complex model. For instance, under the CIFAR10 dataset,
it takes 45 hours to train a CNN with the bound. In contrast, using the training-free method of PA
save 83.33 times the computational time to find the bound that is close to the lowest risk certificate in
accuracy.

7 DISCUSSION

In this work, we theoretically prove that the learning dynamics of deep probabilistic neural networks
using training objectives derived from PAC-Bayes bounds are exactly described by the NTK in
an over-parameterized setting. Empirical investigation reveals that this agrees well with the actual
training process. Furthermore, the expected output function trained with a PAC-Bayesian bound
converges to the kernel ridge regression under a mild assumption. Based on this finding, we obtain
an explicit generalization bound with respect to NTK for PAC-Bayesian learning, which improves
over the generalization bound obtained through NTK on a non-probabilistic neural network. Finally,
we show that the PAC-Bayesian bound score, the training-free method, can effectively select the
hyperparameters which leads to a lower generalization bound without cost excessive computation
time cost which the brute-force grid search would incur. In summary, we establish our theoretical
analysis on PAC-Bayes with a random initialized prior. Notice that neural tangent kernel cannot
characterize the feature learning process in deep learning (Damian et al., 2022; Ba et al., 2022). This
paper does not try to capture the feature learning for probabilistic neural networks given the NTK
techniques used, but does provide sufficient new important convergence and generalization analysis
for PAC-Bayesian learning. One promising direction would be to study PAC-Bayesian learning with
data-dependent priors by NTK.

9

Under review as a conference paper at ICLR 2023

8 REPRODUCIBILITY STATEMENT

To ensure the results and conclusions of our paper are reproducible, we make the following efforts:

Theoretically, we state the full set of assumptions and include complete proofs of our theoretical
results in Section 4; Appendix A, B, and C.

Experimentally, we provide our code, and instructions needed to reproduce the main experimental
results. And we specify all the training and implementation details in Section 6 and Appendix D.

REFERENCES

Mohamed S Abdelfattah, Abhinav Mehrotra, Łukasz Dudziak, and Nicholas D Lane. Zero-cost
proxies for lightweight nas. arXiv preprint arXiv:2101.08134, 2021.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In International Conference on Machine Learning, pp. 242–252. PMLR, 2019.

Amiran Ambroladze, Emilio Parrado-Hernández, and John Shawe-Taylor. Tighter pac-bayes bounds.
Advances in neural information processing systems, 19:9, 2007.

Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of
optimization and generalization for overparameterized two-layer neural networks. In International
Conference on Machine Learning, pp. 322–332. PMLR, 2019a.

Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Ruslan Salakhutdinov, and Ruosong Wang. On
exact computation with an infinitely wide neural net. arXiv preprint arXiv:1904.11955, 2019b.

Jimmy Ba, Murat A Erdogdu, Taiji Suzuki, Zhichao Wang, Denny Wu, and Greg Yang. High-
dimensional asymptotics of feature learning: How one gradient step improves the representation.
arXiv preprint arXiv:2205.01445, 2022.

Luc Bégin, Pascal Germain, François Laviolette, and Jean-Francis Roy. Pac-bayesian theory for
transductive learning. In Artificial Intelligence and Statistics, pp. 105–113. PMLR, 2014.

Luc Bégin, Pascal Germain, François Laviolette, and Jean-Francis Roy. Pac-bayesian bounds based
on the rényi divergence. In Artificial Intelligence and Statistics, pp. 435–444. PMLR, 2016.

Felix Biggs and Benjamin Guedj. Differentiable pac-bayes objectives with partially aggregated neural
networks. arXiv preprint arXiv:2006.12228, 2020.

Andrés Camero, Hao Wang, Enrique Alba, and Thomas Bäck. Bayesian neural architecture search
using a training-free performance metric. Applied Soft Computing, 106:107356, 2021.

Yuan Cao and Quanquan Gu. Generalization bounds of stochastic gradient descent for wide and deep
neural networks. Advances in Neural Information Processing Systems, 32:10836–10846, 2019.

Olivier Catoni. Pac-bayesian supervised classification: the thermodynamics of statistical learning.
arXiv preprint arXiv:0712.0248, 2007.

Wuyang Chen, Xinyu Gong, and Zhangyang Wang. Neural architecture search on imagenet in four
gpu hours: A theoretically inspired perspective. arXiv preprint arXiv:2102.11535, 2021.

Zixiang Chen, Yuan Cao, Difan Zou, and Quanquan Gu. How much over-parameterization is
sufficient to learn deep relu networks? arXiv preprint arXiv:1911.12360, 2019.

Alexandru Damian, Jason Lee, and Mahdi Soltanolkotabi. Neural networks can learn representations
with gradient descent. In Conference on Learning Theory, pp. 5413–5452. PMLR, 2022.

Aditya Deshpande, Alessandro Achille, Avinash Ravichandran, Hao Li, Luca Zancato, Charless
Fowlkes, Rahul Bhotika, Stefano Soatto, and Pietro Perona. A linearized framework and a new
benchmark for model selection for fine-tuning. arXiv preprint arXiv:2102.00084, 2021.

10

Under review as a conference paper at ICLR 2023

Nan Ding, Xi Chen, Tomer Levinboim, Beer Changpinyo, and Radu Soricut. Pactran: Pac-bayesian
metrics for estimating the transferability of pretrained models to classification tasks. arXiv preprint
arXiv:2203.05126, 2022.

Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global
minima of deep neural networks. In International Conference on Machine Learning, pp. 1675–1685.
PMLR, 2019.

Gintare Karolina Dziugaite and Daniel Roy. Entropy-sgd optimizes the prior of a pac-bayes bound:
Generalization properties of entropy-sgd and data-dependent priors. In International Conference
on Machine Learning, pp. 1377–1386. PMLR, 2018a.

Gintare Karolina Dziugaite and Daniel M. Roy. Computing nonvacuous generalization bounds
for deep (stochastic) neural networks with many more parameters than training data. CoRR,
abs/1703.11008, 2017. URL https://arxiv.org/abs/1703.11008.

Gintare Karolina Dziugaite and Daniel M Roy. Data-dependent pac-bayes priors via differential
privacy. arXiv preprint arXiv:1802.09583, 2018b.

Gintare Karolina Dziugaite, Kyle Hsu, Waseem Gharbieh, and Daniel M Roy. On the role of data in
pac-bayes bounds. arXiv preprint arXiv:2006.10929, 2020.

Vincent Fortuin. Priors in bayesian deep learning: A review. International Statistical Review, 2022.

Peter D Grünwald and Nishant A Mehta. Fast rates for general unbounded loss functions: From erm
to generalized bayes. J. Mach. Learn. Res., 21:56–1, 2020.

Jiechao Guan and Zhiwu Lu. Fast-rate pac-bayesian generalization bounds for meta-learning. In
International Conference on Machine Learning, pp. 7930–7948. PMLR, 2022.

Benjamin Guedj. A primer on pac-bayesian learning. arXiv preprint arXiv:1901.05353, 2019.

Maxime Haddouche, Benjamin Guedj, Omar Rivasplata, and John Shawe-Taylor. Pac-bayes un-
leashed: generalisation bounds with unbounded losses. Entropy, 23(10):1330, 2021.

Wei Hu, Zhiyuan Li, and Dingli Yu. Simple and effective regularization methods for training on
noisily labeled data with generalization guarantee. arXiv preprint arXiv:1905.11368, 2019.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. arXiv preprint arXiv:1806.07572, 2018.

Prateek Jain and Purushottam Kar. Non-convex optimization for machine learning. arXiv preprint
arXiv:1712.07897, 2017.

Ziwei Ji and Matus Telgarsky. Polylogarithmic width suffices for gradient descent to achieve
arbitrarily small test error with shallow relu networks. arXiv preprint arXiv:1909.12292, 2019.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Durk P Kingma, Tim Salimans, and Max Welling. Variational dropout and the local reparameterization
trick. Advances in neural information processing systems, 28:2575–2583, 2015.

John Langford and Rich Caruana. (not) bounding the true error. In T. Dietterich, S. Becker, and
Z. Ghahramani (eds.), Advances in Neural Information Processing Systems, volume 14. MIT Press,
2002a.

John Langford and Rich Caruana. (not) bounding the true error. Advances in Neural Information
Processing Systems, 2:809–816, 2002b.

John Langford and Matthias Seeger. Bounds for averaging classifiers. 2001.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444,
2015.

11

https://arxiv.org/abs/1703.11008

Under review as a conference paper at ICLR 2023

Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S Schoenholz, Jeffrey Pennington, and Jascha
Sohl-Dickstein. Deep neural networks as gaussian processes. arXiv preprint arXiv:1711.00165,
2017.

Jaehoon Lee, Lechao Xiao, Samuel S Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-
Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear models
under gradient descent. arXiv preprint arXiv:1902.06720, 2019.

Gaël Letarte, Pascal Germain, Benjamin Guedj, and François Laviolette. Dichotomize and generalize:
Pac-bayesian binary activated deep neural networks. arXiv preprint arXiv:1905.10259, 2019.

Renjie Liao, Raquel Urtasun, and Richard Zemel. A pac-bayesian approach to generalization bounds
for graph neural networks. arXiv preprint arXiv:2012.07690, 2020.

Ben London. A pac-bayesian analysis of randomized learning with application to stochastic gradient
descent. arXiv preprint arXiv:1709.06617, 2017.

David JC MacKay. A practical bayesian framework for backpropagation networks. Neural computa-
tion, 4(3):448–472, 1992.

Andreas Maurer. A note on the pac bayesian theorem. arXiv preprint cs/0411099, 2004.

David A McAllester. Pac-bayesian model averaging. In Proceedings of the twelfth annual conference
on Computational learning theory, pp. 164–170, 1999a.

David A McAllester. Some PAC-Bayesian theorems. Machine Learning, 37(3):355–363, 1999b.

Jisoo Mok, Byunggook Na, Ji-Hoon Kim, Dongyoon Han, and Sungroh Yoon. Demystifying the
neural tangent kernel from a practical perspective: Can it be trusted for neural architecture search
without training? In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 11861–11870, 2022.

Radford M Neal. Bayesian learning for neural networks, volume 118. Springer Science & Business
Media, 2012.

Jeffrey Negrea, Mahdi Haghifam, Gintare Karolina Dziugaite, Ashish Khisti, and Daniel M Roy.
Information-theoretic generalization bounds for sgld via data-dependent estimates. arXiv preprint
arXiv:1911.02151, 2019.

Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nathan Srebro. Exploring general-
ization in deep learning. arXiv preprint arXiv:1706.08947, 2017a.

Behnam Neyshabur, Srinadh Bhojanapalli, and Nathan Srebro. A pac-bayesian approach to spectrally-
normalized margin bounds for neural networks. arXiv preprint arXiv:1707.09564, 2017b.

Marı́a Pérez-Ortiz, Omar Rivasplata, John Shawe-Taylor, and Csaba Szepesvári. Tighter risk certifi-
cates for neural networks. CoRR, abs/2007.12911, 2020. URL https://arxiv.org/abs/
2007.12911.

Maria Perez-Ortiz, Omar Rivasplata, Benjamin Guedj, Matthew Gleeson, Jingyu Zhang, John Shawe-
Taylor, Miroslaw Bober, and Josef Kittler. Learning pac-bayes priors for probabilistic neural
networks. arXiv preprint arXiv:2109.10304, 2021.

Maxim Raginsky, Alexander Rakhlin, and Matus Telgarsky. Non-convex learning via stochastic
gradient langevin dynamics: a nonasymptotic analysis. In Conference on Learning Theory, pp.
1674–1703. PMLR, 2017.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and
approximate inference in deep generative models. In International conference on machine learning,
pp. 1278–1286. PMLR, 2014.

Omar Rivasplata, Vikram M Tankasali, and Csaba Szepesvari. Pac-bayes with backprop. arXiv
preprint arXiv:1908.07380, 2019.

12

https://arxiv.org/abs/2007.12911
https://arxiv.org/abs/2007.12911

Under review as a conference paper at ICLR 2023

Matthias Seeger. Pac-bayesian generalisation error bounds for gaussian process classification. Journal
of machine learning research, 3(Oct):233–269, 2002.

Samuel L Smith and Quoc V Le. A bayesian perspective on generalization and stochastic gradient
descent. arXiv preprint arXiv:1710.06451, 2017.

Donald F Specht. Probabilistic neural networks. Neural networks, 3(1):109–118, 1990.

Niklas Thiemann, Christian Igel, Olivier Wintenberger, and Yevgeny Seldin. A strongly quasiconvex
pac-bayesian bound. In International Conference on Algorithmic Learning Theory, pp. 466–492.
PMLR, 2017.

Laura Tinsi and Arnak Dalalyan. Risk bounds for aggregated shallow neural networks using gaussian
priors. In Conference on Learning Theory, pp. 227–253. PMLR, 2022.

Haonan Wang, Wei Huang, Andrew Margenot, Hanghang Tong, and Jingrui He. Deep active learning
by leveraging training dynamics. arXiv preprint arXiv:2110.08611, 2021.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep
learning (still) requires rethinking generalization. Communications of the ACM, 64(3):107–115,
2021.

Wenda Zhou, Victor Veitch, Morgane Austern, Ryan P Adams, and Peter Orbanz. Non-vacuous
generalization bounds at the imagenet scale: a pac-bayesian compression approach. arXiv preprint
arXiv:1804.05862, 2018.

13

Under review as a conference paper at ICLR 2023

A PROOF OF THEOREM 4.2

Theorem A.1 (Restatement of Theorem 4.2). Suppose σ(·) is H-Lipschitz and the network’s width

is of m = Ω

(
2O(L) max

{
n2 log(Ln/δ)

λ2
0(K

(L)
∞)

, n
δ ,

n5 log(2/δ)10

λ2
0(K

(L)
∞)

})
with the initialization. Then, with a

probability of at least 1− δ over the random initialization, we have,

R̂S(Q(t)) ≤ exp
(
− λ0(K

(L)
∞)t

)
R̂S(Q(0))

where we define K(l)(xi,xj) ≡ (x
(l)
i)⊤x

(l)
j and K

(l)
∞ (xi,xj) ≡ limm→∞(x

(l)
i)⊤x

(l)
j

Proof Sketch of Theorem A.1. To study the behavior of output function under gradient flow, we first
write down its dynamics

df(X; t)

dt
=

∂f(X; t)

∂θµ

∂θµ
∂t

+
∂f(X; t)

∂θσ

∂θσ
∂t

= (y − f(X; t))(Θµ(X,X; t) +Θσ(X,X; t))

where Θµ and Θσ are the PNTKs of the whole network, composed by the NTK of each layer. We
observe that if Θµ and Θσ converge to a deterministic kernel, then the dynamics of output function
admit a linear system, which is tractable during evolution.

Before demonstrating the main steps, we introduce a Neural Network Gaussian Process (NNGP) of
our studied neural network in the infinite-width limit (Lee et al., 2017), which is defined as follows:

K(l)(xi,xj) ≡ (x
(l)
i)⊤x

(l)
j K(l)

∞ (xi,xj) ≡ lim
m→∞

(x
(l)
i)⊤x

(l)
j

where subscript i, j denote the index of input samples. Instead of showing the Θµ and Θσ are close
to Θ∞ in infinite-width limit, we use K(L) as an anchor kernel. With the relation of NKT and NNGP,
we can simplify our proof. Therefore, to prove Theorem A.1, three core steps are:

Step 1 Show at initialization λmin(Θµ(0)), λmin(Θσ(0)) ≥ λmin(K
(L))

2 and the required condition
on m.

Step 2 Show during training λmin(Θµ(0)), λmin(Θσ(0)) ≥ λmin(K
(L))

2 and the required condition
on m.

Step 3 Show during training the empirical loss has a linear convergence rate.

In our proof, we mainly focus on deriving the condition on m by analyzing λmin(Θµ(0)) and
λmin(Θσ(0)) at initialization through Lemma A.2 and Lemma A.3. For step 2, we construct Lemma

A.5 and Lemma A.6 to demonstrate that λmin(Θµ(0)), λmin(Θσ(0)) ≥ λmin(K
(L))

2 . This This leads
to the conclusion that the required condition on m during train. Finally, we summarize all the previous
lemmas and conclude that the training error converges at a linear rate through Lemma A.7.

A.1 STEP 1. BOUNDING LEAST EIGENVALUE OF PNTK AT INITIALIZATION

We first study the behavior of tangent kernels with an ultra-wide condition, namely m =
poly(n, 1/λ0, 1/δ) at initialization. Lemmas A.2 and A.3 demonstrate that if m is large, then
the feature of each layer is approximately normalized, Θµ(0) and Θσ(0) have a lower bound on the
smallest eigenvalue with a high probability.

Lemma A.2 (Initial norm at initialization). Suppose σ(·) is H-Lipschitz. If m = Ω

(
nLgC(L)2

δ

)
,

where C ≡ (c2µ+c2σ)H(2|σ(0)|
√

2
π +2H), while Wµ and Wσ are initialized by the form described

in Section 3.1, then with probability at least 1− δ over random initialization, for each l ∈ [L] and
i ∈ [n], we have

1

2
≤ ∥x(l)

i (0)∥2 ≤ 2

where the geometric series function gC(l) =
∑n−1

i=0 Ci.

14

Under review as a conference paper at ICLR 2023

Lemma A.3 (PNTK at initialization). Suppose σ(·) is H-Lipschitz. If m = Ω
(

n2 log(Ln/δ)2O(L)

λ2
min(K

(L))

)
,

while Wµ and Wσ are initialized by the form described in Section 3.1, then with probability at least
1− δ, we have

λmin(Θ
(L)
µ (0)) ≥ 3

4
λmin(K

(L))

λmin(Θ
(L)
σ (0)) ≥ 3

4
λmin(K

(L))

Proof of Lemma A.2. The proof is by induction method. The induction hypothesis is that with
probability at least 1− (l − 1) δ

nL over W(1)(0), . . . ,W(l−1)(0), for every 1 ≤ l′ ≤ l − 1, we have

1

2
≤ 1− gC(l

′)

2gC(L)
≤ ∥x(l′)

i (0)∥2 ≤ 1 +
gC(l

′)

2gC(L)
≤ 2

where the geometric series function gC(l) =
∑n−1

i=0 Ci.

Note that there are two randomness in each W(l) for l ∈ [L], which can be seen from the expression:

W(l) = W(l)
µ +W(l)

σ ⊙ ξ(l)

The first randomness comes from the initialization of W(l)
µ , and the second randomness is from

random variable ξ. We then unify the two randomness into one, namely W(l) ∼ N (0, (c2µ + c2σ) · I)
through the following argument:

P(W (l)
ij) =

1√
2πcσ

e
−

(
W

(l)
ij

−W
(l)
µ,ij

)2
2c2σ P(W (l)

µ,ij)

Plugging the density function P(Wµ,ij) of variable µi into the above expression, we can obtain,

P(W (l)
ij) =

∫
1√
2πcσ

e
−

(
W

(l)
ij

−W
(l)
µ,ij

)2
2c2σ

1√
2πcµ

e
−

(
W

(l)
µ,ij

−0

)2
2c2µ dW

(l)
µ,ij

=
1√

2π(c2µ + c2σ)
e
−

(
W

(l)
ij

−0

)2
2(c2µ+c2σ)

With the result of P(Wµ,ij) at hand, we continue to bound ∥x(l)
i ∥22. We calculate the expectation over

the randomness from W(l)(0). According to the feed-forward expression, we know that

∥x(l)
i (0)∥22 =

1

m

m∑
r=1

σ(w(l)
r (0)⊤xl−1

i (0))2

Then we have

E
[
∥x(l)

i (0)∥22
]
= E

[
σ(w(l)

r (0)⊤x
(l−1)
i (0))2

]
= (c2µ + c2σ)EZ∼N (0,1)σ(∥x(l−1)∥2Z)2

15

Under review as a conference paper at ICLR 2023

Because σ(·) is H-Lipschitz, for 1
2 ≤ α ≤ 2, we have∣∣EZ∼N (0,1)

[
σ(αZ)2

]
− EZ∼N (0,1)

[
σ(Z)2

]∣∣
≤ EZ∼N (0,1)

[
|σ(αZ)2 − σ(Z)2|

]
≤ H|α− 1| · EZ∼N (0,1)

[
|Z(σ(αZ) + σ(Z))|

]
≤ H|α− 1| · EZ∼N (0,1)

[
|Z|(|2σ(0)|+H|(α+ 1)Z|)

]
≤ H|α− 1| · (2|σ(0)|EZ∼N (0,1)[|Z|] +H|α+ 1|EZ∼N (0,1)[Z

2])

= H|α− 1| · (2|σ(0)|
√

2

π
+H|α+ 1|)

≤ C

c2µ + c2σ
|α− 1|

where we define C ≡ (c2µ + c2σ)H(2σ(0)
√

2
π + 2H).

For the variance we have

Var
[
∥x(l)

i (0)∥22
]
=

(c2σ + c2µ)
2

m
Var
[
σw(l)

r (0)⊤x
(l)
i (0)

2]
≤

(c2σ + c2µ)
2

m
E
[
σ(w(l)

r (0)⊤x
(l)
i (0))4

]
≤

(c2σ + c2µ)
2

m
E
[(

|σ(0)|+H|w(l)
r (0)⊤x

(l)
i (0)|

)4]
≤ C2

m
.

where C2 ≡ σ(0)4 + 8|σ(0)|3H
√

2/π + 24σ(0)2H2 + 64σ(0)H3
√

2/π + 512H4 and the last
inequality we used the formula for the first four absolute moments of Gaussian.

Applying Chebyshev’s inequality and plugging in our assumption on m, we have with probability
1− δ

nL over W(l), ∣∣∣∣∥∥x(l)
i (0)

∥∥2
2
− E

∥∥x(l)
i (0)

∥∥2
2

∣∣∣∣ ≤ 1

2gC(L)
.

Thus with probability 1− d δ
nL over W(1), . . . ,W(l),∣∣∣∣∥∥x(l)

i (0)
∥∥
2
− 1

∣∣∣∣ ≤ ∣∣∣∣∥∥x(l)
i (0)

∥∥2
2
− 1

∣∣∣∣
≤ CgC(l − 1)

2gC(L)
+

1

2g(L)

=
gC(l)

2gC(L)

Using union bounds over [n], we prove the lemma.

Proof of Lemma A.3. For a weight matrix, we decompose it into m weight vectors, namely W(l) =

[w
(l)
1 ,w

(l)
2 , · · · ,w(l)

m]. Then the derivative of output over the parameters w
(l)
µ,r and w

(l)
σ,r can be

expressed as
∂f(xi)

∂w
(l)
µ,r

=
1√
m

∂f(xi)

∂x(l)
σ′(w(l)

r x(l−1))x(l−1)

∂f(xi)

∂w
(l)
σ,r

=
1√
m

∂f(xi)

∂x(l)
σ′(w(l)

r x(l−1))x(l−1) ⊙ ξ(l)r

(17)

16

Under review as a conference paper at ICLR 2023

According to the definition of PNTK for each layer:

Θ(l)
µ = ∇

W
(l)
µ
f(X; t)∇

W
(l)
µ
f(X; t)⊤

Θ(l)
σ = ∇

W
(l)
σ
f(X; t)∇

W
(l)
σ
f(X; t)⊤

Through a standard calculation, we show that PNTKs can be expressed as

Θ
(L)
µ,ij = (x

(L−1)
i)⊤x

(L−1)
j · 1

m

m∑
r=1

v2rσ
′((w(L)

r)⊤x
(L−1)
i)σ′((w(L)

r)⊤x
(L−1)
j)

Θ
(L)
σ,ij = (x

(L−1)
i)⊤x

(L−1)
j · 1

m

m∑
r=1

v2rσ
′((w(L)

r)⊤x
(L−1)
i)σ′((w(L)

r)⊤x
(L−1)
j) · ξ2r

Note that the difference between Θ
(L)
µ , Θ(L)

σ and K(L) can be decomposed as follows:

Θ(L)
µ −K(H) = (Θ(L)

µ (0)−K(L)
∞) + (K(L)

∞ −K(L))

Θ(L)
σ −K(H) = (Θ(L)

σ (0)−K(L)
∞) + (K(L)

∞ −K(L))

We split the proof process into two phases:

• First we use concentration inequality to show that if m = Ω

(
n2 log(n2/δ)
λ2
min(K

(L))

)
, we have

∥∥∥∥Θ(L)
µ (0)−K(L)

∞

∥∥∥∥
2

≤ λmin(K
(L))

4

∥∥∥∥Θ(L)
σ (0)−K(L)

∞

∥∥∥∥
2

≤ λmin(K
(L))

4

• Second, we show that if m = Ω

(
n2 log(Ln/δ)2O(L)

λ2
min(K

(L))

)
, then we have,∥∥∥∥K(L)

∞ −K(L)

∥∥∥∥
∞

≤ λmin(K
(L))

2

Phase 1, bounding Θ
(L)
µ . Plugging the derivative result regarding mean weights in Equation (17)

into the definition of PNTK (Eqution 9) yields:

Θ
(L)
µ,ij(0) = (x

(L−1)
i)⊤x

(L−1)
j · 1

m

m∑
r=1

v2rσ
′((w(L)

r)⊤x
(L−1)
i)σ′((w(L)

r)⊤x
(L−1)
j)

By an analysis, we find that for all pairs of i, j, Θ(L)
µ,ij(0) is the average of m i.i.d. random variables,

with the expectation

K
(L)
∞,ij = (c2µ + c2σ) · Ew∼N (0,I)

[
(x

(L−1)
i)⊤x

(L−1)
j σ′(w⊤x

(L−1)
i)⊤σ′(w⊤x

(L−1)
j)

]
Then by Hoeffding’s inequality, we know that the following inequality holds with probability at least
1− δ′, ∣∣∣∣Θ(L)

µ,ij(0)−K
(L)
∞,ij

∣∣∣∣ ≤
√

log(2/δ′)

2m

Because NTK matrix is of size n × n, we then apply a union bound over all i, j ∈ [n] (by setting
δ′ = δ/n2), and obtain that

∣∣∣∣Θ(L)
µ,ij(0)−K

(L)
∞,ij

∣∣∣∣ ≤
√

log(2n2/δ)

2m

17

Under review as a conference paper at ICLR 2023

Thus we have, ∥∥∥∥Θ(L)
µ (0)−K(L)

∞

∥∥∥∥2
2

≤
∥∥∥∥Θ(L)

µ (0)−K(L)
∞

∥∥∥∥2
F

≤
∑
i,j

∣∣∣∣Θ(L)
µ,ij(0)−K

(L)
∞,ij

∣∣∣∣2
= O

(
n2 log(2n2/δ)

m

)
Finally, if

√
n2 log(2n2/δ)

m ≤ λmin(K
(L))

4 , which implies m = Ω

(
n2 log(n2/δ)
λ2
min(K

(L))

)
, then with probability

at least 1− δ, ∥∥∥∥Θ(L)
µ (0)−K(L)

∞

∥∥∥∥
2

≤ λmin(K
(L))

4

Phase 1, bounding Θ
(L)
σ (0). Plugging the derivative result regarding mean weights in Equation

(17) into the definition of PNTK (Eqution 9) yields:

Θ
(L)
σ,ij(0) = (x

(L−1)
i)⊤x

(L−1)
j · 1

m

m∑
r=1

v2rσ
′((w(L)

r)⊤x
(L−1)
i)σ′((w(L)

r)⊤x
(L−1)
j) · ξ2r

Note that the tangent kernel Θ(L)
σ,ij(0) differs from Θ

(L)
µ,ij(0) with an additional term ξ2r . It is known

the ξ2r ∼ χ1 independently with σ′((w
(L)
r)⊤x

(L−1)
i ≥ 0)⊤σ′((w

(L)
r)⊤x

(L−1)
j ≥ 0).

Because E[χ1] = 1, the expectation of Θ(L)
σ,ij(0) equals the expectation of Θ(L)

µ,ij(0). Thus for all
pairs of i, j, Θσ

ij(0) is the average of m i.i.d. random variables with the expectation

E
[
Θ(L)

σ (0)

]
= K(L)

∞

Now we calculate the concentration bound. It is known that ξ2r is independent and sub-exponential.
Then, by sub-exponential tail bound, we know that the following holds with probability at least 1− δ′,∣∣∣∣Θ(L)

σ,ij(0)−K
(L)
∞,ij

∣∣∣∣ ≤
√

log(8/δ′)

2m

This bound is of the same order to concentration bound for Θ(L)
µ,ij(0). Thus we can take all the

arguments for Θ(L)
µ,ij(0) above to finalize the proof.

If
√

n2 log(8n2/δ)
m ≤ λmin(K

(L))
4 , which implies m = Ω

(
n2 log(n2/δ)
λ2
min(K

(L))

)
, then with probability at least

1− δ, ∥∥∥∥Θ(L)
σ (0)−K(L)

∞

∥∥∥∥
2

≤ λmin(K
(L))

4

Phase 2, bounding
∥∥∥∥K(L)

∞ − K(L)

∥∥∥∥
2

. We show with probability 1 − δ over the W(l), for any

1 ≤ l ≤ L− 1, 1 ≤ i, j ≤ n,∥∥∥∥ 1

m

m∑
r=1

(x
(l)
i)⊤x

(l)
i −K

(l)
∞,ij

∥∥∥∥
∞

≤ E
√

log(Ln/δ)

m

The error constant E depends on the choice of activation function, and satisfies

E ≤ C · 2O(L)

18

Under review as a conference paper at ICLR 2023

with C being a positive constant. The 2O(L) term comes form perturbation propagation through the
neural network. The proof is by induction, and detailed proof can be found in the proof of Theorem
E.1 in Du et al. (2019). Applying the union bound to the number of paths concludes the theorem, and
the condition of m follows:

m = Ω

(
n2 log(Ln/δ)2O(L)

λ2
min(K

(L))

)

Remark A.1. The concentration bound is over two randomness, one is initialization of Wµ and the
other is Gaussian variable ξ.

A.2 STEP 2. BOUNDING LEAST EIGENVALUE OF PNTK DURING TRAINING.

The next problem is that PNTKs are time-dependent matrices, thus varying during training. To
account for this problem, we establish following lemmas stating that if the weight W(l)(t) is close to
W(l)(0) during gradient descent training, then the corresponding PNTKs Θ(L)

µ (t) and Θ
(L)
σ (t) are

close to their initialization Θ
(L)
µ (t), Θ(L)

σ (t) respectively.

Importantly, we introduce an auxiliary weight matrix W̃(l)(t) ≡ W
(l)
µ (t) +W

(l)
σ (t)⊙ ξ(0), and an

auxiliary weight vector ṽ(t) ≡ vµ(t) + vσ(t)⊙ ξv(0), where ξ(0) and ξv(0) are the exact value of
random variables at initialization. Then we demonstrate lemmas in step 2 as follows:
Lemma A.4. If Wµ(0) and Wσ(0) are initialized by the form described in Section 3.1, and suppose
for every l ∈ [L],

∥∥W(l)(0)
∥∥
2
≤ cw,0

√
m,
∥∥x(l)(0)

∥∥
2
≤ cx,0 and

∥∥W̃(l)(t)−W(l)(0)
∥∥
F
≤

√
mR

for some constant cw,0, cx,0 > 0 and R ≤ cw,0. If σ(·) is H-Lipschitz, then with probability at least
1− δ, we have ∥∥x(l)(t)− x(l)(0)

∥∥
2
≤ HRcx,0gcx(l)(1 + log(2/δ))

where cx = 2
√
cσHcw,0.

Lemma A.5. If Wµ(0) and Wσ(0) are initialized by the form described in Section 3.1, and
uppose σ(·) is H−Lipschitz and β−smooth. Suppose for l ∈ [L],

∥∥W(l)(0)
∥∥
2

≤ cw,0
√
m,∥∥v(0)∥∥

2
≤ v2,0

√
m,

∥∥v(0)∥∥
4

≤ a4,0m
1/4 , 1

cx,0
≤
∥∥x(l)(0)

∥∥
2

≤ cx,0. If
∥∥W̃(l)(t) −

W(l)(0)
∥∥
F
,
∥∥ṽ(t) − v(0)

∥∥
2
≤

√
mR where R ≤ cgcx(L)

−1λmin(K
(L))n−1(1 + log(2/δ))−2,

R ≤ cgcx(L)
−1λmin(K

(L))n−1(1 + log(2/δ))−3, and R ≤ cgcx(L)
−1 for some small constant c

and cx = 2
√
cσHcw,0 then with probability at least 1− δ, we have∥∥∥∥Θ(L)

µ (t)−Θ(L)
µ (0)

∥∥∥∥
2

≤ λmin(K
(L))

4∥∥∥∥Θ(L)
σ (t)−Θ(L)

σ (0)

∥∥∥∥
2

≤ λmin(K
(L))

4

Lemma A.6. If R̂S(Q, t′) ≤ exp(−λmin(K
(L))t′)R̂S(Q, 0) holds for 0 ≤ t′ ≤ t, we have for any

0 ≤ s ≤ t ∥∥∥∥W̃(l)(s)−W(l)(0)

∥∥∥∥
F

,

∥∥∥∥ṽ(s)− v(0)

∥∥∥∥
2

≤ R′√m

where R′ =
16(1+log(2/δ))2cx,0v2,0(cx)

L√
n∥y−f(X,Q(0))∥2

λ0
√
m

for some small constant c with cx =

max{2√cσLcw,0, 1}.

Proof of Lemma A.4. The proof sketch is by induction method.

For l = 0, where the target is input which is fixed, thus satisfying the hypothesis. Now suppose the
induction hypothesis holds for l′ = 0, . . . , l − 1, we consider l′ = l.

19

Under review as a conference paper at ICLR 2023

∥∥∥∥x(l)(t)− x(l)(0)

∥∥∥∥
2

=

√
1

m

∥∥∥∥σ(W(l)(t)x(l−1)(t))− σ(W(l)(0)x(l−1)(0))

∥∥∥∥
2

≤
√

1

m

∥∥∥∥σ(W(l)(t)x(l−1)(t))− σ(W(l)(t)x(l−1)(0))

∥∥∥∥
2

+

√
1

m

∥∥∥∥σ(W(l)(t)x(l−1)(0))− σ(W(l)(0)x(l−1)(0))

∥∥∥∥
2

≤
√

1

m
H

(∥∥∥∥W(l)(0)

∥∥∥∥
2

+

∥∥∥∥W(l)(t)− W̃(l)(t)

∥∥∥∥
2

+

∥∥∥∥W̃(l)(t)−W(l)(0)

∥∥∥∥
F

)
·
∥∥∥∥x(l−1)(t)− x(l−1)(0)

∥∥∥∥
2

+

√
1

m
H

(∥∥∥∥W(l)(t)− W̃(l)(t)

∥∥∥∥
2

+

∥∥∥∥W̃(l)(t)−W(l)(0)

∥∥∥∥
F

)∥∥∥∥xh−1(0)

∥∥∥∥
2

≤
√

1

m
H
(
cw,0

√
m+R

√
m(1 + log(2/δ))

)
HRcx,0gcx(l − 1)

+

√
1

m
H
√
mR(1 + log(2/δ)cx,0

≤HRcx,0 (cxgcx(l − 1) + 1) (1 + log(2/δ))

≤HRcx,0gcx(l)(1 + log(2/δ))

Proof of Lemma A.5. For simplicity we define zi,r(t) = w
(L)
r (t)⊤x

(L−1)
i (t).

Now we bound the distance between Θ
(L)
µ,ij(t) and Θ

(L)
µ,ij(0) through the following inequality:∣∣∣∣Θ(L)

µ,ij(t)−Θ
(L)
µ,ij(0)

∣∣∣∣
=

∣∣∣∣x(L−1)
i (t)⊤x

(L−1)
j (t)

1

m

m∑
r=1

vr(t)
2σ′ (zi,r(t))σ

′ (zj,r(t))

− x
(L−1)
i (0)⊤x

(L−1)
j (0)

1

m

m∑
r=1

vr(0)
2σ′ (zi,r(0))σ

′ (zj,r(0))

∣∣∣∣
≤
∣∣∣∣x(L−1)

i (t)⊤x
(L−1)
j (t)− x

(L−1)
i (0)⊤x

(L−1)
j (0)

∣∣∣∣ 1m
m∑
r=1

vr(0)
2

∣∣∣∣σ′ (zi,r(t))σ
′ (zj,r(t))

∣∣∣∣
+

∣∣∣∣x(L−1)
i (0)⊤x

(L−1)
j (0)

∣∣∣∣ 1m
∣∣∣∣ m∑
r=1

vr(0)
2 (σ′ (zi,r(t))σ

′ (zj,r(t))− σ′ (zi,r(0))σ
′ (zj,r(0)))

∣∣∣∣
+

∣∣∣∣x(L−1)
i (t)⊤x

(L−1)
j (t)

∣∣∣∣ 1m
∣∣∣∣ m∑
r=1

(
vr(t)

2 − vr(0)
2
)
σ′ (zi,r(t))σ

′ (zj,r(t))

∣∣∣∣
≤H2v22,0

∣∣∣∣x(L−1)
i (t)⊤x

(L−1)
j (t)− x

(L−1)
i (0)⊤x

(L−1)
j (0)

∣∣∣∣
+ c2x,0

1

m

∣∣∣∣ m∑
r=1

vr(0)
2 (σ′ (zi,r(t))σ

′ (zj,r(t))− σ′ (zi,r(0))σ
′ (zj,r(0)))

∣∣∣∣
+ 4H2c2x,0

1

m

m∑
r=1

∣∣∣∣vr(t)2 − vr(0)
2

∣∣∣∣
≡Ii,j1 + Ii,j2 + Ii,j3 .

20

Under review as a conference paper at ICLR 2023

For Ii,j1 , by Lemma A.4, we have

Ii,j1 =H2v22,0

∣∣∣∣x(L−1)
i (t)⊤x

(L−1)
j (t)− x

(L−1)
i (0)⊤x

(L−1)
j (0)

∣∣∣∣
≤H2v22,0

∣∣∣∣(x(L−1)
i (t)− x

(L−1)
i (0))⊤x

(L−1)
j (t)

∣∣∣∣+H2v22,0

∣∣∣∣x(L−1)
i (0)⊤(x

(L−1)
j (t)− x

(L−1)
j (0))

∣∣∣∣
≤v22,0H

3cx,0gcx(L)R(1 + log(2/δ)) · (cx,0 +Hcx,0gcx(L)R(1 + log(2/δ)))

+ v22,0H
3cx,0gcx(L)Rcx,0(1 + log(2/δ))

≤3v22,0c
2
x,0H

3gcx(L)R(1 + log(2/δ))2

For Ii,j2 , we have

Ii,j2 =c2x,0
1

m

∣∣∣∣ m∑
r=1

vr(0)
2σ′ (zi,r(t))σ

′ (zj,r(t))− vr(0)
2σ′ (zi,r(0))σ

′ (zj,r(0))

∣∣∣∣
≤c2x,0

1

m

m∑
r=1

vr(0)
2

∣∣∣∣ (σ′ (zi,r(t))− σ′ (zi,r(0)))σ
′ (zj,r(t))

∣∣∣∣
+ vr(0)

2

∣∣∣∣ (σ′ (zj,r(t))− σ′ (zj,r(0)))σ
′ (zi,r(0))

∣∣∣∣
≤
βHc2x,0

m

(
m∑
r=1

vr(0)
2

∣∣∣∣zi,r(t)− zi,r(0)

∣∣∣∣+ vr(0)
2

∣∣∣∣zj,r(t)− zj,r(0)

∣∣∣∣
)

≤
βHv24,0c

2
x,0√

m

√√√√ m∑
r=1

∣∣∣∣zi,r(t)− zi,r(0)

∣∣∣∣2 +
√√√√ m∑

r=1

∣∣∣∣zj,r(t)− zj,r(0)

∣∣∣∣2
 .

Using the same proof for Lemma A.4, it is easy to see that
m∑
r=1

∣∣∣∣zi,r(t)− zi,r(0)

∣∣∣∣2 ≤ c2x,0gcx(L)
2mR2(1 + log(2/δ))2.

Thus

Ii,j2 ≤ 2βv24,0c
3
x,0Lgcx(L)R(1 + log(2/δ)).

For Ii,j3 ,

Ii,j3 = 4H2c2x,0
1

m

m∑
r=1

∣∣∣∣vr(t)2 − vr(0)
2

∣∣∣∣
≤ 4H2c2x,0

1

m

m∑
r=1

∣∣∣∣vr(t)− vr(0)

∣∣∣∣∣∣∣∣vr(t)∣∣∣∣+ ∣∣∣∣vr(t)− vr(0)

∣∣∣∣∣∣∣∣vr(0)∣∣∣∣
≤ 12H2c2x,0v2,0R(1 + log(2/δ)).

Therefore we can bound the perturbation∥∥∥∥Θ(L)
µ (t)−Θ(L)

µ (0)

∥∥∥∥
F

=

√√√√ n∑
i,j=1

∣∣∣∣Θ(L)
µ,ij(t)−Θ

(L)
µ,ij(0)

∣∣∣∣2
≤
[(

2βcx,0v
2
4,0 + 3H2

)
Hc2x,0v

2
2,0gcx(L)(1 + log(2/δ))2

+ 12H2c2x,0v2,0(1 + log(2/δ))
]
nR

21

Under review as a conference paper at ICLR 2023

Recall the bound on R, which is R ≤ cgcx(L)
−1λmin(K

(L))n−1(1 + log(2/δ))−2, we have the
desired result for Θ(L)

µ : ∥∥∥∥Θ(L)
µ (t)−Θ(L)

µ (0)

∥∥∥∥
2

≤ λmin(K
(L))

4

Then we bound the distance between Θ
(L)
σ,ij(t) and Θ

(L)
σ,ij(0) through the following inequality:∣∣∣∣Θ(L)

σ,ij(t)−Θ
(L)
σ,ij(0)

∣∣∣∣
=

∣∣∣∣x(L−1)
i (t)⊤x

(L−1)
j (t)

1

m

m∑
r=1

vr(t)
2σ′ (zi,r(t))σ

′ (zj,r(t)) · ξ2r (t)

− x
(L−1)
i (0)⊤x

(L−1)
j (0)

1

m

m∑
r=1

vr(0)
2σ′ (zi,r(0))σ

′ (zj,r(0) · ξ2r (0)) ∣∣∣∣
≤
∣∣∣∣x(L−1)

i (t)⊤x
(L−1)
j (t)− x

(L−1)
i (0)⊤x

(L−1)
j (0)

∣∣∣∣ 1m
m∑
r=1

vr(0)
2

∣∣∣∣σ′ (zi,r(t))σ
′ (zj,r(t))

∣∣∣∣ · ξ2r
+

∣∣∣∣x(L−1)
i (0)⊤x

(L−1)
j (0)

∣∣∣∣ 1m
∣∣∣∣ m∑
r=1

vr(0)
2 (σ′ (zi,r(t))σ

′ (zj,r(t))− σ′ (zi,r(0))σ
′ (zj,r(0)))

∣∣∣∣
+

∣∣∣∣x(L−1)
i (t)⊤x

(L−1)
j (t)

∣∣∣∣ 1m
∣∣∣∣ m∑
r=1

(
vr(t)

2 − vr(0)
2
)
σ′ (zi,r(t))σ

′ (zj,r(t)) · ξ2r (t)
∣∣∣∣

+

∣∣∣∣x(L−1)
i (0)⊤x

(L−1)
j (0)

∣∣∣∣ 1m
∣∣∣∣ m∑
r=1

vr(0)
2 (σ′ (zi,r(0))σ

′ (zj,r(0))) (ξ
2
r (t)− ξ2r (0))

∣∣∣∣
≤H2v22,0(1 + log(2/δ))

∣∣∣∣x(L−1)
i (t)⊤x

(L−1)
j (t)− x

(L−1)
i (0)⊤x

(L−1)
j (0)

∣∣∣∣(1 + log(2/δ))

+ c2x,0(1 + log(2/δ))
1

m

∣∣∣∣ m∑
r=1

vr(0)
2 (σ′ (zi,r(t))σ

′ (zj,r(t))− σ′ (zi,r(0))σ
′ (zj,r(0)))

∣∣∣∣
+ 4H2c2x,0(1 + log(2/δ))

1

m

m∑
r=1

∣∣∣∣vr(t)2 − vr(0)
2

∣∣∣∣
+ 4H2c2x,0v

2
2,0

1

m

m∑
r=1

∣∣∣∣ξr(t)2 − ξr(0)
2

∣∣∣∣
=(1 + log(2/δ))(Ii,j1 + Ii,j2 + Ii,j3) + Ii,j4 .

For Ii,j4 , by the tail bound fora chi-square variable, we have

Ii,j4 ≤ 4H2c2x,0v
2
2,0

(
1 +

√
log(2/δ)

m

)
Therefore we can bound the perturbation∥∥∥∥Θ(L)

σ (t)−Θ(L)
σ (0)

∥∥∥∥
F

=

√√√√ n∑
i,j=1

∣∣∣∣Θ(L)
σ,ij(t)−Θ

(L)
σ,ij(0)

∣∣∣∣2
≤
[(

2βcx,0v
2
4,0 + 3H2

)
Hc2x,0v

2
2,0gcx(L)(1 + log(2/δ))3

+ 12H2c2x,0v2,0(1 + log(2/δ))2 + 4H2c2x,0v
2
2,0(1 +

√
log(2/δ)

m
)
]
nR

22

Under review as a conference paper at ICLR 2023

Recall the bound on R, which is R ≤ cgcx(L)
−1λmin(K

(L))n−1(1 + log(2/δ))−3, we have the
desired result for Θ(L)

σ : ∥∥∥∥Θ(L)
σ (t)−Θ(L)

σ (0)

∥∥∥∥
2

≤ λmin(K
(L))

4

Proof of Lemma A.6. We first consider the derivative of W(l)
µ and have:∥∥∥∥ d

ds
W(l)

µ (s)

∥∥∥∥
F

=η

∥∥∥∥(1

m

)L−l+1
2

n∑
i=1

(yi − f(xi; s))x
(l−1)
i (s)

(
v(s)⊤

(
L∏

k=l+1

J
(k)
i (s)W(k)(s)

)
J
(l)
i (s)

)∥∥∥∥
F

≤η

(
1

m

)L−l+1
2 ∥∥v(s)∥∥

2

n∑
i=1

∣∣yi − f(xi; s)
∣∣∥∥x(l−1)

i (s)
∥∥
2

L∏
k=l+1

∥∥W(k)(s)
∥∥
2

L∏
k=l

∥∥J(k)(s)
∥∥
2
,

∥∥∥∥ d

ds
vµ(s)

∥∥∥∥
2

= η

∥∥∥∥ n∑
i=1

(yi − f(xi; s))x
(L)
i (s)

∥∥∥∥
2

.

where

J(l′) ≡ diag
(
σ′
(
(w

(l′)
1)⊤x(l′−1)

)
, . . . , σ′

(
(w(l′)

m)⊤x(l′−1)
))

∈ Rm×m

are the derivative matrices induced by the activation function.

To bound
∥∥x(l−1)

i (s)
∥∥
2
, we can just apply Lemma A.4 and get∥∥x(l−1)

i (s)
∥∥
2
≤ Hcx,0gcx(h)R(1 + log(2/δ)) + cx,0 ≤ 2cx,0(1 + log(2/δ)).

To bound
∥∥W(k)(s)

∥∥
2
, we use our assumption

L∏
k=l+1

∥∥W(k)(s)
∥∥
2
≤

L∏
k=l+1

(∥∥W(k)(0)
∥∥
2
+
∥∥W(k)(s)−W(k)(0)

∥∥
2

)

≤
L∏

k=l+1

(cw,0

√
m+R′√m)(1 + log(2/δ))

= (cw,0 +R′)
L−l

m
L−l
2 (1 + log(2/δ))

≤ (2cw,0)
L−l

m
L−l
2 (1 + log(2/δ)).

Note that
∥∥J(k)(s)

∥∥
2
≤ H . Plugging in these two bounds back, we obtain∥∥∥∥ d

ds
W(l)

µ (s)

∥∥∥∥
F

≤4ηcx,0v2,0c
L
x (1 + log(2/δ))2

n∑
i=1

|yi − f(xi; s)|

≤4ηcx,0v2,0c
L
x (1 + log(2/δ))2

√
n∥y − f(X; s)∥2

≤(1 + log(2/δ))2e−λ0s
1

4
ηλ0R

′√m.

Similarly, we have ∥∥∥∥ d

dt
vµ(s)

∥∥∥∥
2

≤2ηcx,0

n∑
i=1

|yi − f(xi; s)|

≤e−λ0s
1

4
ηλ0R

′√m.

23

Under review as a conference paper at ICLR 2023

Next, we consider the derivative of W(l)
σ and have:∥∥∥∥ d

ds
W(l)

σ (s)

∥∥∥∥
F

= η

∥∥∥∥(1

m

)L−l+1
2

EQ(s)

[n∑
i=1

(yi − f(xi, Q(s)))x
(l−1)
i (s)⊙ ξ(l)

]
(
v(s)⊤

(
L∏

k=l+1

J
(k)
i (s)W(k)(s)

)
J
(l)
i (s)

)∥∥∥∥
F

= 0

where we have used we use the definition of loss R̂S(Q) = Ef∼QR̂S(f) and interchanged integration
and differentiation. Similarly, for vσ we have,∥∥∥∥ d

ds
vσ(s)

∥∥∥∥
2

= η

∥∥∥∥EQ(s)

[n∑
i=1

(yi − f(xi; s))x
(L)
i (s)⊙ ξ(v)

]∥∥∥∥
2

= 0

Integrating the derivative of weights, we obtain∥∥∥∥W̃(l)(s)−W(l)(0)

∥∥∥∥
F

≤
∥∥∥∥W(l)

µ (s)−W(l)
µ (0)

∥∥∥∥
F

+

∥∥∥∥(W(l)
σ (s)−W(l)

σ (0)

)
· ξ(l)(0)

∥∥∥∥
F

≤
∫ s

s′=0

∥∥∥∥ d

ds′
W(l)

µ (s′)

∥∥∥∥
F

≤ R′√m∥∥∥∥ṽ(s)− v(0)

∥∥∥∥
2

≤
∫ s

s′=0

∥∥∥∥ d

ds′
vµ(s

′)

∥∥∥∥
2

≤ R′√m

A.3 SETP 3. TOWARDS LINEAR CONVERGENCE RATE OF EMPIRICAL LOSS

Now we process to analyze the convergence rate of empirical error. Combined with fact that least
eigenvalue of PNTKs and change of weights are bounded during training, the behavior of the loss is
traceable. To finalize the proof for Theorem 4.2, we show:

Lemma A.7. If R′ < R, we have R̂S(Q(t)) ≤ exp(−λ0t)R̂S(Q(0)).

Proof of Lemma A.7. According to the gradient flow of output function, we have

df(xi, t)

dt
=

L∑
l=1

(〈
∂f(xi; t)

∂W
(l)
µ

,
dW

(l)
µ (t)

dt

〉
+

〈
∂f(x; t)

∂W
(l)
σ

,
dW

(l)
σ (t)

dt

〉)
+

〈
∂f(xi; t)

∂vµ
,
dvµ(t)

dt

〉
+

〈
∂f(x; t)

∂vσ
,
dvσ(t)

dt

〉
=

n∑
j=1

(yi − f(xj))

[L∑
l=1

(〈
∂f(xi)

∂W
(l)
µ

,
f(xj)

∂W
(l)
µ

〉
+

〈
∂f(xi)

∂W
(l)
σ

,
∂f(xj)

∂W
(l)
σ

〉)

+

〈
∂f(xi)

∂vµ
,
f(xj)

∂vµ

〉
+

〈
∂f(xi)

∂vσ
,
∂f(xj)

∂vσ

〉]
≥

n∑
j=1

(yj − f(xj ; t))(Θ
(L)
µ,ij +Θ

(L)
σ,ij)

Then the dynamics of loss can be calculated,

24

Under review as a conference paper at ICLR 2023

d

dt
R̂S(Q(t)) =

1

2

d

dt

∥∥∥∥Ef∼Q(t)f(X; t)− y

∥∥∥∥2
2

≤ −
(
y − f(X, Q(t))

)⊤(
Θ(L)

µ (t) +Θ(L)
σ (t)

)(
y − f(X, Q(t))

)
≤ −λ0

∥∥∥∥y − Ef∼Q(t)f(X; t)

∥∥∥∥2
2

where we have used the condition R′ < R. Therefore, we have the desired result:

R̂S(Q, t) ≤ exp(−λ0t)R̂S(Q, 0)

Finally, we provide a bound for R̂S(Q(0)):∥∥∥∥y − f(X, Q(0))

∥∥∥∥2
2

=

n∑
i=1

(
y2i + yif(xi, Q(0)) + f(xi, Q(0))2]

)

=

n∑
i=1

(1 +O(1))

= O(n)

Recall that in Lemma A.5 and Lemma A.6:

R ≤ cgcx(L)
−1λmin(K

(L))n−1(1 + log(2/δ))−3

R′ =
16(1 + log(2/δ))2cx,0v2,0 (cx)

L √
n∥y − f(X, Q(0))∥2

λ0
√
m

Thus R′ < R yields

m = Ω

(
n5 log(2/δ)10

λ4
0

)

B PROOF OF THEOREM 4.3

Theorem B.1 (Restatement of Theorem 4.3). Consider gradient descent on objective function (6).
Suppose m ≥ poly(n, 1/λ0, 1/δ, 1/E). Then, with a probability of at least 1− δ over the random
initialization, we have

f
(
x, Q(t)

)
|t=∞ = Θ∞

µ (x,X)
(
Θ∞

µ (X,X) + λ/c2σI
)−1

y ± E

where f(x, Q(t)) = Ef∼Q(t)f(x; t) aligns with the definition of the empirical loss function.

Proof of Theorem B.1. To proceed the proof, we first establish the result of kernel ridge regression in
the infinite-width limit, and then bound the perturbation on the predict. According the linearization
rules for infinitely-wide networks (Lee et al., 2019), the output function can be expressed as,

fntk(x, t) = ϕµ(x)
⊤(θµ(t)− θµ(0)) + ϕσ(x)

⊤(θσ(t)− θσ(0)),

where ϕµ(x) = ∇θµ
f(x, Q(0)), and ϕσ(x) = ∇θσ

f(x, Q(0)). Recall that θσ does not change
during training, as calculated in the proof of Lemma A.6, then the KL divergence reduces to

KL =
1

2

(θµ(t)− θµ(0))
2

c2σ

25

Under review as a conference paper at ICLR 2023

Then the gradient flow equation for θ)µ becomes,

dθµ(t)

dt
=

∂L(Q(t))

∂θµ

=
(
fntk(X, Q(t))− y

)
ϕµ(X) + λ/c2σ

(
θµ(t)− θµ(0)

)
= Θ∞

µ (X,X)
(
θµ(t)− θµ(0)

)
− ϕµ(X)⊤y + λ/c2σ

(
θµ(t)− θµ(0)

)
which is an ordinary differential equation regarding θµ(t), and the solution is,

θµ(t) = ϕµ(X)⊤
(
Θ∞

µ (X,X) + λ/c2σI
)−1

y
(
I− e−(Θ∞

µ (X,X)+λ/c2σI)t
)

Plug this result into the linearization of expected output function, we have,

fntk(x, t) = Θ∞
µ (x,X)(Θ∞

µ (X,X) + λ/c2σI)
−1y(I− e−(Θ∞

µ (X,X)+λ/c2σI)t)

Then we take the time to be infinity and have

fntk(x)|t=∞ = Θ∞
µ (x,X)(Θ∞

µ (X,X) + λ/c2σI)
−1y.

The next step is to show that ∣∣f(x, Q(t))− fntk(x)
∣∣ ≤ O(E).

where E = Einit +
√
n

λ2
0
log(n

EΘλ0
)EΘ with |f(x, Q(0)| ≤ Einit and ∥ limm→∞ Θµ −Θµ(t)∥2 ≤ EΘ.

The proof relies a careful analysis on the trajectories induced by gradient flows for optimizing the
neural network and the NTK predictor. The detailed proof can be found in the proof of Theorem 3.2
in Arora et al. (2019b), and we can replace kernel ridge regression here by kernel regression.

C PROOFS OF SECTION 4.3

C.1 PROOF OF THEOREM 4.4

Theorem C.1 (Restatement of Theorem 4.4). Suppose data S = {(xi, yi)}ni=1 are i.i.d. samples
from a non-degenerate distribution D, and m ≥ poly(n, λ−1

0 , δ−1). Consider any loss function
ℓ : R × R → [0, 1] that is 1-Lipschitz in the first argument such that ℓ(y, y) = 0. Then with a
probability of at least 1− δ over the random initialization and the training samples, the probabilistic
neural network (PNN) trained by gradient descent for T ≥ Ω(1

ηλ0
log n

δ) iterations has population
risk RD(Q) that is bounded as follows:

RD(Q) ≤
y⊤(Θ∞

µ (X,X) + λ/c2σI)
−1y

nc2σ
+

λ

c2σ

√
y⊤(Θ∞

µ (X,X) + λ/c2σI)
−2y

n
+O

(
log 2

√
n

δ

n

)
.

Proof of Theorem C.1. The generalization bound consists two terms, one is the empirical error, and
another is KL divergence.

(1) We first bound the empirical error
√∑n

i=1(fntk(xi, Q(t = ∞))− yi)2 with following inequality,√√√√ n∑
i=1

(fntk(xi, Q(t = ∞))− yi)2 =

∥∥∥∥Θ∞
µ (X,X)(Θ∞

µ (X,X) + λ/c2σI)
−1y − y

∥∥∥∥
2

=

∥∥∥∥λ/c2σ(Θ∞
µ (X,X) + λ/c2σI

)−1
y

∥∥∥∥
2

= λ/c2σ

√
y⊤
(
Θ∞

µ (X,X
)
+ λ/σ2

0I)
−2y

26

Under review as a conference paper at ICLR 2023

Then we can further bound the error term as follows:

1

n

n∑
i=1

ℓ
(
fntk(xi

)
, yi) =

1

n

n∑
i=1

[
ℓ(fntk(xi), yi)− ℓ(yi, yi)

]

≤ 1

n

n∑
i=1

∣∣∣∣fntk(xi)− yi

∣∣∣∣
≤ 1√

n

√√√√ n∑
i=1

∣∣∣∣fntk(xi)− yi

∣∣∣∣2

≤ λ

c2σ

√
y⊤(Θ∞

µ (X,X) + λ/c2σI)
−2y

n

(2) The next step is to calculate the KL divergence. According to the solution of differential equation
in Theorem B.1, we have,

θµ(t)− θµ(0) = ϕµ(x)
⊤(Θ∞

µ (X,X) + λ/c2σI
)−1(

I− e−(Θ∞
µ (X,X)+λ/c2σI)t

)
y,

then t = ∞ yields:

θµ(t)− θµ(0) = ϕµ(x)
⊤(Θ∞

µ (X,X) + λ/c2σI
)−1

y

Therefore, the KL divergence is,

KL = 1/c2σ · y⊤(Θ∞
µ (X,X) + λ/c2σI

)−1
Θ∞

µ (X,X)
(
Θ∞

µ (X,X) + λ/c2σI
)−1

y

≤ 1

c2σ
y⊤(Θ∞

µ (X,X) + λ/c2σI
)−1

y

Finally, by Equation 5, we achieve the PAC-Bayesian generalization bound,

RD(Q) ≤
y⊤(Θ∞

µ (X,X) + λ
c2σ
I
)−1

y

nc2σ
+

λ

c2σ

√
y⊤
(
Θ∞

µ (X,X) + λ
c2σ
I
)−2

y

n
+O

(
log 2

√
n

δ

n

)
.

C.2 PROOF OF THEOREM 4.5

Theorem C.2 (Restatement of Theorem 4.5). Suppose data S = {(xi, yi)}ni=1 are i.i.d. samples
from a non-degenerate distribution D, and m ≥ poly(n, λ−1

0 , δ−1). Consider any loss function
ℓ : R × R → [0, 1] that is 1-Lipschitz in the first argument such that ℓ(y, y) = 0. Then with a
probability of at least 1− δ over the random initialization and training samples, the deterministic
neural network trained by gradient descent for T ≥ Ω(1

ηλ0
log n

δ) iterations has population risk RD
that is bounded as follows:

RD ≤

√
y⊤(Θ∞

µ (X,X) + λ/c2σI)
−1y

n
+

λ

c2σ

√
y⊤(Θ∞

µ (X,X) + λ/c2σI)
−2y

n
+O

(√
log n

λ0δ

n

)
.

Proof of Theorem C.2. In this proof, we use Rademacher-complexity analysis. Let H be the re-
producing kernel Hilbert space (RKHS) corresponding to the kernel k(·, ·). It is known that the
RKHS norm of a function fntk(x) = Θ∞

µ (x,X)
(
Θ∞

µ (X,X) + λ/c2σI
)−1

y = α⊤k(x,X) is

∥fntk∥H =
√

α⊤k(X,X)α, where k = Θ∞
µ (X,X) and α = (Θ∞

µ (X,X) + λ/c2σI
)−1

y. Then
we can bound the ∥fntk∥H.

27

Under review as a conference paper at ICLR 2023

∥fntk∥H =
√
y⊤(Θ∞

µ (X,X) + λ/c2σI)
−1Θ∞

µ (X,X)(Θ∞
µ (X,X) + λ/c2σI)

−1y

≤
√

y⊤(Θ∞
µ (X,X) + λ/c2σI)

−1y

For function class FB = {f(x) = α⊤k(x,X) : ∥f∥H ≤ B}, it is shown that its empirical
Rademacher complexity can be bounded as Arora et al. (2019a),

R̂S(FB) =
1

n
E
[

sup
f∈FB

n∑
i=1

f(xi)γi

]
≤

B
√
Tr[k(X,X)]

n

Assume that Tr[k(X,X)] ≈ n. Recall the standard generalization bound from Rademacher complex-
ity, with probability at least 1− δ, we have,

sup
f∈F

[
ED[ℓ(f(x), y)]−

1

n

n∑
i=1

ℓ(f(xi), yi)

]
≤ 2R̂S(F) + 3

√
log(2/δ)

2n

There we have,

RD ≤

√
y⊤(Θ∞

µ (X,X) + λ/c2σI)
−1y

n
+

λ

c2σ

√
y⊤(Θ∞

µ (X,X) + λ/c2σI)
−2y

n
+O

(√
log n

λ0δ

n

)
.

D ADDITIONAL EXPERIMENTS

This section contains additional experimental results. Training is performed with a server with a CPU
with 5,120 cores, and a 32 GB Nvidia Quadro V100.

D.1 VALIDATION OF THEORETICAL RESULTS

We first provide empirical support showing that the training dynamics of wide probabilistic neural
networks using the training objective derived from a PAC-Bayes bound are captured by PNTK, which
validates Lemma A.6.

Consider a three hidden layer ReLU fully-connected network of the training objective derived from
the PAC-Bayesian lambda bound in Equation (5), using an ordinary MSE function as loss. The neural
network is trained with a full-batch gradient descent using learning rates equal to one on a fixed
subset of MNIST (|D| = 128) of ten classifications. A random initialized prior with no connection to
data is used since it is in line with our theoretical setting and we only intend to observe the change in
parameters rather than the performance of the actual bound.

After T = 217 steps of gradient descent updates from different random initialization, we plot the
changes of W(l)

µ and W
(l)
σ of input/output/hidden layer with respect to width m for each layer on

Figure 2. We observe that the relative Frobenius norm change in the input/output layer’s weights
scales as 1/

√
m while the hidden layers’ weight scales is 1/m during the training, which verifies

Lemma A.6.

D.2 COMPARISON BETWEEN THEORETICAL BOUNDS AND EMPIRICAL BOUNDS

We make a comparison between theoretical bounds (Equations 14, 15) and empirical bounds. The
experiments are performed on two different network structures, a fully connected neural network
and a convoluted neural network on MNIST and CIFAR10 datasets. In particular, we build a 3-layer
fully-connected neural network with 600 neurons on each layer. The convolutional architecture is
equipped with a total of 13 layers with around 10 million learnable parameters. We adopt the same
hyper-parameter for both theoretical bounds and empirical bounds. The result is shown in Figure
3. First, for theoretical bounds, we find that the PAC-Bayes bound is smaller than the Rademacher
bound. Secondly, we find that both theoretical bounds are larger than empirical bounds, which meets
our expectations.

28

Under review as a conference paper at ICLR 2023

Figure 2: Relative Frobenius norm change in µ and σ respectively during training with MSE loss
which is derived from the classic PAC-Bayesian bound, where m is the width of the network.

Figure 3: Comparing NTK Rademacher bound, NTK PAC-Bayesian bound and Empirical Bound
with different datasets and network structures.

Figure 4: Comparison between the gradient of mean µ and standard deviations σ.

29

Under review as a conference paper at ICLR 2023

Figure 5: Correlation between aggregated proxy PA and generalization bound.

D.3 COMPARISON OF GRADIENT NORM WITH RESPECT TO MEAN WEIGHT AND VARIANCE
WEIGHT

We then conduct an experiment to compare the gradient of norm with respect to θµ and θσ. The
result is shown in Figure 4. We can see that the gradient norm of ∇θµf(x) is much larger than that
of ∇θσf(x), which implies that θσ is effectively fixed during gradient descent training.

D.4 CORRELATION BETWEEN GENERALIZATION BOUND PROXY METRIC AND
GENERALIZATION BOUND

In Figure 1, we observe a positive and significant correlation between PA and generalization
bound held among different values of a selected hyperparameter while fixing other hyperparameters.
Furthermore, we provide a Figure 5 presenting the correlation for aggregated values of ρ0 and λ,
under the circumstance where 50% data is used for prior training. We can clearly see that lower PA
corresponds to the lower bound, with a strong positive Kendall-tau correlation of 0.7.

D.5 GRID SEARCH

For selecting hyperparameters, we conduct a grid search over ρ0, percent of prior data, and KL
penalty λ. Notably, we do grid sweep over the data for prior training with different proportion in
[0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] since 0.2 is the minimum proportion required for obtaining a
reasonably lower value generalization bound (Dziugaite et al., 2020). For the rest, we run over ρ0 at
value [0.03, 0.05, 0.07, 0.09, 0.1, 0.3, 0.5, 0.7] for FCN ([0.05, 0.07, 0.09, 0.1, 0.3, 0.5, 0.7, 0.9] for
CNN) and KL penalty at [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1] for both structures.

30

	Introduction
	Related Work
	Preliminary
	Deep probabilistic neural network
	PAC-Bayesian learning

	Main Theoretical Results
	Optimization analysis
	Training with KL divergence
	Generalization analysis

	Proof Sketch
	Experiments
	Experimental setup
	Selecting hyperparameters via training-free metric

	Discussion
	Reproducibility Statement
	Proof of Theorem 4.2
	Step 1. Bounding least eigenvalue of PNTK at initialization
	Step 2. Bounding least eigenvalue of PNTK during training.
	Setp 3. Towards linear convergence rate of empirical loss

	Proof of Theorem 4.3
	Proofs of Section 4.3
	Proof of Theorem 4.4
	Proof of Theorem 4.5

	Additional Experiments
	Validation of theoretical results
	Comparison between theoretical bounds and empirical bounds
	Comparison of gradient norm with respect to mean weight and variance weight
	Correlation between generalization bound proxy metric and generalization bound
	Grid search

