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Example Classification of 
Artworks in the WikiArt dataset 
on the basis of Artistic Movements. 

Clustering obtained on the above WikiArt set by using  
Neural Style Features, obtained from a Style Transfer model.
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Figure 1: The figure shows a sample of the WikiArt dataset, which has ground truth clusters depict-
ing various art movements from Baroque to Mannerism. The above artworks are re-clustered using
the neural style representation FStyleShot; the infographics show the distribution of ground-truth in
different clusters. Even though the re-clustering through FStyleShot representation does not produce
clusters that adhere to ground truth, we can see that the artworks present in the same cluster are
similar to each other in terms of style, highlighting a fundamental discrepancy between historical art
categorizations and perceptual style representations.

ABSTRACT

Neural networks claim to capture artistic style, but it remains unclear whether
their representations can organize artworks in unsupervised settings, or which as-
pects of style they truly encode. We present the first comprehensive analysis of
neural style representations for unsupervised clustering of visual artworks. Our
study systematically compares representations derived from classification net-
works, generative models, diffusion architectures, and vision-language systems,
including our novel language-based features. Using both real-world artwork col-
lections and synthetically curated datasets, we evaluate how effectively these rep-
resentations capture style across multiple definitions. Our results show that spe-
cialized style representations consistently outperform generic embeddings, yet no
single representation works across all style definitions. This variability reflects
the inherent ambiguity of “style” itself, revealing a gap between human percep-
tion, art-historical categories, and machine-learned features. Taken together, our
findings position visual art as a rigorous testbed for advancing unsupervised repre-
sentation learning with broader implications for digital curation, cultural heritage,
and style-aware computer vision.
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1 INTRODUCTION

Style is central to visual art. It embodies an artist’s identity, emotional expression, cultural context,
and aesthetic choices. In computer vision, style has also become an important dimension for under-
standing images beyond object categories. Neural representations of style now support a range of
tasks such as style classification (Agarwal et al., 2015; Imran et al., 2023; Nunez-Garcia et al., 2022),
style transfer (Gatys et al., 2016; Hong et al., 2023; Jing et al., 2019), and style-based retrieval (Ruta
et al., 2023; 2021b). These tasks have driven the development of diverse architectures, from convo-
lutional networks to generative models to vision-language systems, each claiming to capture artistic
style effectively.

Yet their effectiveness in unsupervised settings remains largely unknown. Unsupervised anal-
ysis matters because it tests whether representations capture intrinsic stylistic relationships without
labels - insights that supervised tasks cannot provide. It also has practical importance: large collec-
tions such as WikiArt or museum archives contain tens of thousands of artworks without consistent
annotation. Curators and historians need computational tools that can automatically organize these
collections, reveal latent stylistic patterns, and uncover artistic influences beyond fixed taxonomies
(Refer Appendix A for a more detailed discussion.)

A deeper challenge is that “style” itself has multiple valid definitions. It may refer to broad art
movements (e.g., Impressionism, Cubism), an individual artist’s signature, low-level attributes such
as color or brushstrokes, or even medium and technique (refer Section 4.2). Each definition yields
a different but legitimate organization of artworks. Yet no prior work has systematically tested how
neural representations behave across these alternative style definitions in unsupervised settings.

The few existing studies of unsupervised clustering of artworks rely on general-purpose image fea-
tures, not style-specific ones (Castellano & Vessio, 2020). They fail to address the key issue of
disentangling style from content and overlook the definitional complexity of artistic style. More-
over, the evaluation is hindered by the lack of controlled datasets that isolate style from content - a
critical requirement for rigorously testing style-content disentanglement capabilities.

This gap motivates our work. We establish style-based clustering as a distinct computational
paradigm and present the first comprehensive analysis of 16 state-of-the-art neural style rep-
resentations evaluated in the context of unsupervised clustering across multiple definitions of
style.

This paper makes the following significant contributions:

1. Comprehensive evaluation framework: We develop a unified framework of datasets, clustering
algorithms, and evaluation protocols for comparing how representations capture different notions of
style.

2. Controlled synthetic datasets: We create synthetically curated datasets that systematically iso-
late style from content, enabling rigorous evaluation of style-content disentanglement - a capability
that real-world datasets cannot provide.

3. Benchmarking and analysis: We provide the first systematic performance analysis across 16
neural representation methods and 2 clustering architectures, tested across multiple definitions of
style using visual art as a testbed.

4. Language style representations: We introduce novel language-based style representations de-
rived from captioning and concept annotation using vision-language models.

Key Results. Our study yields three main insights. First, style-specific representations, especially
from style-transfer models, outperform generic embeddings in unsupervised clustering. Second, no
single representation works across all definitions of style, reflecting both the ambiguity of “style”
and the gap between perception, art-historical categories, and learned features. Third, clustering
architectures enhance cluster geometry but not style fidelity, underscoring the tension between gen-
eral unsupervised objectives and style-specific organization. These findings establish visual art as a
rigorous testbed for advancing representation learning.

Paper Organization. Section 2 reviews related work; Section 3 outlines the style representations;
Section 4 describes the experimental setup; Section 5 presents results and discussion; and Section 6
concludes with key takeaways and future directions.
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2 RELATED WORK

Our work is the first systematic study of style-based clustering in visual art, comparing diverse
representations of neural style in multiple definitions of style. We organize related work into three
areas.

Evaluation of Neural Style Representations: Neural style representations have been evaluated,
but almost exclusively in the context of downstream tasks. For supervised classification, Imran et al.
(2023) tested CNN features such as VGG-19 and ResNet-50, while Chu & Wu (2018) analyzed
Gram-based correlations. Varshney et al. (2023) explored fusion features for Madhubani art, and
other works focused on artist-specific (Deng et al., 2020) or movement-based (El Vaigh et al., 2021)
prediction. These evaluations show that neural features capture stylistic cues, but only relative to
predefined categories.

In style transfer, representations have also been assessed, but in terms of synthesis quality. From
Gram matrices (Gatys et al., 2016) to GAN, transformer and diffusion-based methods (Jing et al.,
2019; Hong et al., 2023; Sohn et al., 2023; Yang et al., 2023), evaluation typically concerns visual
fidelity or transfer control. While such models implicitly encode stylistic information, their capacity
to support unsupervised clustering across different definitions of style has not been examined.

In contrast, we systematically evaluate a wide range of representations, including classification-
based, transfer-based, and multimodal-based representations in the context of unsupervised cluster-
ing of artworks.

Unsupervised Artwork Clustering: Unsupervised clustering of artworks has been explored only
in limited ways, and never with a focus on style. Early efforts relied on manual grouping (Spehr
et al., 2009) or simple K-means on image features (Coates & Ng, 2012; Ng et al., 2001). Gairola
et al. (2020) used Gram features for soft style assignments via K-means. More broadly, deep clus-
tering has shown strong performance across domains such as segmentation, medical imaging, and
anomaly detection (Yang et al., 2018; Chen et al., 2022; Kart et al., 2021; Ma et al., 2021; Adaloglou
et al., 2023; Alkin et al., 2025). For art, Castellano and Vessio applied deep clustering to image and
DenseNet features (Castellano & Vessio, 2020; 2022), but without addressing style-content disen-
tanglement or comparing specialized style representations.

Clustering Evaluation: Clustering quality is typically assessed with both internal and external met-
rics. Internal measures include Silhouette Coefficient (Rousseeuw, 1987) and Calinski–Harabasz
Index (Caliński & JA, 1974), among others Dunn (1973); Davies & Bouldin (2009); Glielmo et al.
(2021); Golalipour et al. (2021); Guo et al. (2023); Zhang et al. (2021). We adopt Silhouette and
Calinski–Harabasz as complementary internal metrics. External evaluation relies on clustering accu-
racy (Fränti & Sieranoja, 2024), Adjusted Rand Index (ARI) (Rand, 1971), and Normalized Mutual
Information (NMI) (Shannon, 1948), which are widely used for artwork clustering (Yao et al., 2024;
Castellano & Vessio, 2022; Zhong et al., 2021). Since clustering accuracy can be misleading under
class imbalance, we emphasize ARI and NMI as more robust measures.

Summary: Prior work has developed many style representations and attempted clustering of art-
works, but evaluations remain tied to supervised tasks or generic features. No study has systemat-
ically compared neural style representations for unsupervised clustering across multiple definitions
of style-the central gap our work addresses.

3 STYLE REPRESENTATION EXPLORATION

The effectiveness of style-based clustering depends critically on the choice of neural representations.
Different architectures trained for classification, transfer, or multimodal alignment may capture style
in fundamentally different ways, yet their suitability for unsupervised organization remains unclear.
To address this, we explore five categories of style representations (Fig. 3):

1. Generic task-based representations from broadly trained encoders (e.g., DenseNet, DI-
NOv2, LongCLIP).

2. Style feature-based representations that compute explicit statistics such as Gram matrices
or introspective style attribution.

3
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Table 1: Summary of style representations explored. Our contributions are highlighted in bold.

Category Model Source / Training Representation Extracted
Generic Task-based DenseNet (FDense) ImageNet CNN (Huang

et al., 2018)
1024-dim pooled final layer fea-
tures

Vision–Language
(FLongCLIP )

LongCLIP (Zhang et al.,
2024)

Joint image–text embeddings (long
captions)

Self-supervised
(FDINO)

DINOv2 (Oquab et al.,
2023)

SSL-based semantic embeddings

Style Feature-based Gram Matrices
(FGram, Fg·c)

VGG19 conv5 1 (Gatys
et al., 2015)

Gram matrix statistics; cosine simi-
larity variant

Introspective Style Attri-
bution (FIntroStyle)

Diffusion UNet (Kumar
et al., 2025)

Channel-wise mean/variance em-
beddings

Style-Transfer StyleGAN (FStyleGAN ) GAN (Karras et al.,
2019)

Latent w vector

Stytr2 (FStytr2) Transformer (Deng
et al., 2022)

Encoder outputs from patch embed-
dings

StyleShot (FStyleShot) Transformer (Gao et al.,
2024)

Multi-scale patch embeddings

Mamba-ST (FMamba) VSSM (Botti et al.,
2024)

Style encoder representations

DEADiff (FDEADiff ) Diffusion T2I (Qi et al.,
2024)

Q-Former embeddings (style disen-
tangled)

Language-based
(ours)

Style Caption
(FStyleCap)

InternVL2 + LongCLIP Encoded style captions

Style Concept Annota-
tions (FAnnot)

InternVL2 + taxonomy Structured annotations across 59
concepts

Style-Trained Contrastive Style De-
scriptors (FCSD)

ViT on LAION Aes-
thetics (Somepalli et al.,
2024)

Contrastive embeddings with style
tags

Artwork-Trained ViTs
(ours)

Fine-tuned on
WikiArt (Tan et al.,
2016)

(i) Art movement (FArtMove), (ii)
Artist (FArtist)

3. Style-transfer representations from GANs, transformers, and diffusion models developed
for synthesis and transfer tasks.

4. Language-based representations (ours) that provide interpretable embeddings derived
from captions and structured concept annotations.

5. Style-trained image models, including contrastively trained descriptors and artwork-
trained ViTs (ours) fine-tuned on WikiArt.

Table 1 summarizes all representations considered, while full details - including the implementation
of our novel languag-based and artwork-trained models - are provided in Appendix B.

4 EXPERIMENTAL SETUP AND EVALUATION

We design our experimental setup to test how different neural representations capture style across
multiple definitions of the term. This requires (i) clustering models that span simple and expressive
approaches, (ii) datasets that operationalize different notions of style, and (iii) evaluation metrics
that combine algorithmic rigor with human judgment.

4.1 CLUSTERING MODELS

To assess clustering effectiveness, we use two complementary approaches:

K-Means Clustering: A standard baseline that partitions the feature space by Euclidean dis-
tance MacQueen et al. (1967). It provides a simple test of whether style information is directly
encoded in representations (Appx. Fig. 6A).

Deep Embedded Clustering (DEC): A stronger model that jointly optimizes embeddings and clus-
ter assignments via an autoencoder Xie et al. (2016). DEC captures non-linear relationships and

4
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tests whether style emerges only when representations are refined through deep clustering (Appx.
Fig. 6B).

4.2 DATASETS

A major challenge in studying style-based clustering is the lack of ground-truth datasets, combined
with the fact that style in artworks admits multiple valid definitions. In the literature, style has been
treated as: statistical properties of neural representations (Gatys et al., 2015); distinctive signatures
of artists or movements (Elgammal et al., 2017); low-level attributes such as color, texture, or brush-
strokes (Liu et al., 2024); domain-specific distributions (Zhu et al., 2020); perceptually significant
cues from human studies (Muller, 1979); and transformative operations applied to content (Huang
et al., 2025).

To capture these diverse perspectives, we employ four complementary datasets: (i) WikiArt-
ArtMove for movement-based categories; (ii) WikiArt-Artist for individual artistic signatures; (iii)
DomainNet-3k for disentangling style (medium) from content (object category); and (iv) Synthetic
Curated Datasets (MSC/MMC), introduced in this work, which provide controlled style–content
separation via style transfer.

A full summary of dataset statistics, style definitions, and usage purposes is provided in Table 2,
with further details and sample artworks in Appendix E.

Table 2: Datasets used in our study, each operationalizing a different definition of style for unsu-
pervised clustering evaluation. Our synthetic curated datasets (MSC/MMC) are novel contribu-
tions providing controlled style–content disentanglement.

Dataset Images Clusters Definition & Purpose Notes / Examples

WikiArt-ArtMove 78,978 27 Art movements (e.g., Realism,
Baroque, Impressionism). Tests
alignment with art-historical
categories.

Large-scale benchmark cover-
ing 27 movements across cen-
turies. Provides ground-truth
groupings for movement-based
evaluation. See Fig. 8(a);
Figs. 14–18.

WikiArt-Artist 25,550 40 Individual artist signatures
(e.g., Picasso, Van Gogh, Dali).
Evaluates artist-specific style
alignment.

Subset of 40 artists with distinc-
tive personal styles. Useful for
testing whether models capture
fine-grained stylistic variation.
See Fig. 8(a); Figs. 19–23.

DomainNet-3k 3,000 6 style + 50 content Medium-based domains (cli-
part, sketch, photo, painting,
etc.). Used to assess con-
tent–style disentanglement.

Cross-domain dataset where the
same objects appear in different
styles. Tests whether represen-
tations separate style from se-
mantics. See Fig. 8(b); Fig. 12.

Synthetic Curated (MSC/MMC) 4,000 40 style + 100 content Style-transfer images (color,
texture, shading). Introduced
in this work for controlled
disentanglement experi-
ments.

Generated via StyleShot
and Mamba-ST using refer-
ences from Munch, WikiArt,
Brueghel, and Clipart. Provides
synthetic but well-controlled
style–content separations. See
Fig. 8(c)–(d), 10, 24–28.

4.3 QUANTITATIVE EVALUATION METRICS

Our evaluation framework employs four complementary metrics - divided into internal and external
measures - to comprehensively assess clustering quality. Internal metrics measure inherent proper-
ties (cohesiveness and separation) of the clustering itself, while external metrics use ground truth-
style labels to measure alignment with predefined categories. See Appendix D for metric details.

4.3.1 INTERNAL EVALUATION METRICS

Silhouette Coefficient (SC) Rousseeuw (1987) quantifies how appropriately each artwork is as-
signed to its cluster by measuring the ratio between intra-cluster cohesion and inter-cluster separa-
tion. Values range from -1 to +1, with higher values indicating more distinct cluster boundaries. By
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Figure 2: Box plots for the survey conducted on the clusters obtained from 450 samples from the
WikiArt-ArtMove dataset. Clusters were obtained on the subset using FDense, FStyleCap, FStyleShot

and FCSD features and K-Means clustering model. The survey was conducted on the art movement
ground truth as well. The survey included questions relating to cluster cohesion, cluster separation,
and overall clustering quality. Overall, 25 participants responded to the survey.

evaluating individual data point placement, SC reveals how effectively each representation distin-
guishes the unique attributes of artworks and separates them from stylistically different works.

Calinski-Harabasz Index (CHI) Caliński & JA (1974) captures clustering quality at both individual
and cluster levels by computing the ratio of between-cluster dispersion to within-cluster dispersion.
Higher values indicate more compact and well-separated clusters. This multi-level perspective helps
evaluate each representation’s capacity to differentiate stylistic attributes across diverse artworks,
providing insight into both local and global separation efficacy.

4.3.2 EXTERNAL EVALUATION METRICS

Adjusted Rand Index (ARI) Rand (1971) measures agreement between predicted clusters and
ground truth style categories, with values ranging from -1 to 1. Scores above 0 indicate correspon-
dence beyond random chance, with 1 representing perfect alignment. By quantifying the agreement
between algorithmically derived clusters and style-definition-based categories, ARI directly assesses
how well a representation captures the particular style definition embodied in the ground truth.

Normalized Mutual Information (NMI) Vinh et al. (2010) quantifies the statistical dependency
between predicted clusters and ground truth categorizations. Ranging from 0 to 1, higher values in-
dicate a stronger correlation between the information contained in both clusterings. NMI effectively
measures how much knowing an artwork’s algorithmic cluster reduces uncertainty about its ground
truth style category, providing a complementary perspective to ARI.

We can apply internal metrics (SC, CHI) across all experiments as they require no ground truth,
while external metrics (ARI, NMI) are used exclusively with datasets where definitive style labels
are available.

4.4 HUMAN PERCEPTUAL EVALUATION

Qualitative Comparison: We illustrate clustering outcomes by sampling artworks from the ground-
truth datasets and visualizing the clusters produced by different representations. While limited in
scope, these examples serve as an accessible reference for assessing the effectiveness of each clus-
tering method (see Appendix G).

Survey: Finally, because style is inherently subjective, we complement algorithmic metrics with
human evaluation. Twenty-five participants with art backgrounds rated clustering results on co-
hesiveness, separation, and overall quality (1–10 scale). Importantly, no style definition was im-
posed—participants applied their own aesthetic criteria. This lets us capture perceptual judgments
of style that cannot be reduced to categorical ground truth (see Appendix F).
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ARI NMIRepresentations K-Means DEC K-Means DEC
FDense 0.052 0.059 0.172 0.177

FLongCLIP 0.099 0.078 0.288 0.271FGeneric

FDINO 0.052 0.043 0.189 0.176
FGram 0.042 0.064 0.13 0.151
Fg.c 0.012 0.012 0.034 0.034FStyleFeat

FIntroStyle 0.04 0.03 0.15 0.124
FStyleGAN 0.034 0.021 0.103 0.095
FStytr2 0.021 0.03 0.078 0.092
FMamba 0.034 0.029 0.117 0.085
FStyleShot 0.055 0.043 0.161 0.151

FST

FDEADiff 0.1 0.081 0.3 0.273
FStyleCap 0.071 0.058 0.225 0.192

FLang FAnnot 0.069 0.043 0.208 0.162
FCSD 0.12 0.095 0.33 0.232

FTrain FArtMove 0.27 0.161 0.45 0.325

ARI NMIRepresentations K-Means DEC K-Means DEC
FDense 0.0001 0.0001 0.007 0.007

FLongCLIP 0.076 0.053 0.307 0.271FGeneric

FDINO 0.0976 0.0813 0.29 0.267
FGram 0.0003 0.0002 0.009 0.008
Fg.c 0.0002 0.0001 0.008 0.008FStyleFeat

FIntroStyle 0.02 0.01 0.2 0.179
FStyleGAN 0.069 0.067 0.214 0.204
FStytr2 0.0017 0.0002 0.008 0.007
FMamba 0.075 0.095 0.239 0.229
FStyleShot 0.0005 0.0009 0.008 0.008

FST

FDEADiff 0.22 0.192 0.45 0.413
FStyleCap 0.0008 0.006 0.01 0.014

FLang FAnnot 0.0006 0.052 0.019 0.197
FCSD 0.31 0.262 0.51 0.461

FTrain FArtist 0.54 0.471 0.68 0.634

Table 3: Quantitative evaluation on the WikiArt-ArtMove (left) dataset and the WikiArt-Artist
(right) dataset for both K-Means and DEC model with their respective ground truths. The best ,
second best , third best , and the worst results are highlighted for each metric. The WikiArt-Artist

dataset of 40 artists contains 25,550 artworks from the artists with the highest amount of artworks.
The range of values for each evaluation metric is: ARI: -1 to 1, NMI: 0 to 1. For qualitative com-
parison of the WikiArt-ArtMove refer to Appendix Figures 14, 15, 16, 17, and 18. For qualitative
comparison of WikiArt-Artist refer to Appendix Figure 19, 20, 21, 22, and 23.

5 RESULTS AND DISCUSSION

Our work investigates several fundamental questions at the intersection of neural representations
and artistic style clustering. Specifically, we ask: (i) Does style-based clustering require specialized
neural representations beyond general-purpose image features? (ii) How do different neural style
representations perform in capturing stylistic similarities across clustering tasks? (iii) What influ-
ence do clustering architectures have on performance outcomes and are certain algorithms inherently
better suited to style-based organization? (iv) Can a single representation adequately capture diverse
definitions of style across contexts, or are specialized representations required for different stylistic
dimensions? (v) Do artistic styles exhibit structural or hierarchical relationships that clustering can
uncover?

We address these questions through a systematic evaluation of 16 distinct neural style representations
and two clustering approaches (K-Means and Deep Embedded Clustering, DEC). Performance is
measured along two complementary axes: (a) style-specific clustering quality (Adjusted Rand Index
and Normalized Mutual Information) and (b) general cluster structure (Silhouette Coefficient and
Calinski-Harabasz Index). Our findings are organized around five research questions, corresponding
to the subsections below.

5.1 DO STYLE-BASED CLUSTERING TASKS REQUIRE SPECIALIZED REPRESENTATIONS?

Finding 1: Generic image representations fail to capture the nuanced stylistic elements of visual
artworks.

On the DomainNet dataset (refer to Table 8 and Figures 12, 13 in the Appendix), generic repre-
sentations trained for broad image tasks (FDense, FLongCLIP , FDINO) were unable to disentangle
content and style (domain) and performed poorly across both evaluation dimensions. In contrast,
specialized style representations (FStyleCap, FCSD, FMamba) demonstrated much stronger perfor-
mance in style-based clustering. While some style-specific representations (e.g., FStyleCap, FCSD)
retained partial sensitivity to content, others like FMamba specialized narrowly on style. This estab-
lishes the need for explicitly style-focused features in artwork clustering. Refer to Appendix G.1 for
more details on the experiment.

5.2 HOW DO NEURAL STYLE REPRESENTATIONS PERFORM UNDER TRADITIONAL
ART-HISTORICAL DEFINITIONS OF STYLE?

Finding 2: All neural style representations perform poorly under traditional art-historical style def-
initions.

7
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ARI NMI SC CHIFeatures K-Means DEC K-Means DEC Base K-Means DEC Base K-Means DEC
FDense 0.594 0.611 0.893 0.861 0.078 0.071 0.709 41.89 41.06 3379.81

FLongCLIP 0.541 0.471 0.653 0.592 0.047 0.031 0.641 53.41 51.67 4431.23FGeneric

FDINO 0.371 0.334 0.582 0.489 0.225 0.221 0.413 261.34 231.85 2347.51
FGram 0.837 0.684 0.932 0.889 0.221 0.205 0.47 270.27 293.25 1380.32
Fg.c 0.078 0.079 0.343 0.344 -0.229 0.28 0.51 805.3 25425.8 84313.98FStyleFeat

FIntroStyle 0.71 0.643 0.84 0.793 0.113 0.11 0.401 131.24 117 1731.38
FStyleGAN 0.5 0.478 0.758 0.719 -0.03 -0.003 0.869 17.65 19.24 12064.25
FStytr2 0.91 0.676 0.95 0.867 0.482 0.45 0.377 1065.08 1132 3019.4
FMamba 0.91 0.771 0.96 0.919 0.443 0.42 0.526 652.4 646.91 7759.72

*FStyleShot 0.9 0.87 0.97 0.951 0.399 0.39 0.696 364.31 364.6 4846.23
FST

FDEADiff 0.84 0.812 0.91 0.898 0.06 0.04 0.523 31.73 28.53 7341.23
FStyleCap 0.347 0.334 0.565 0.567 0.018 0.04 0.827 30.99 39.09 59267.93

FLang FAnnot 0.213 0.214 0.467 0.457 -0.0003 0.027 0.936 31.535 44.25 57340.58
FCSD 0.96 0.831 0.98 0.922 0.281 0.27 0.502 195.82 192.79 1858.74
FArtist 0.0002 0.0001 0.015 0.012 0.12 0.11 0.14 87.39 77.57 121.33FTrain

FArtMove 0.0003 0.0002 0.015 0.013 0.15 0.13 0.15 93.41 88.49 98.63

Table 4: Metrics scores for the Mixed curated dataset created using StyleShot (MSC) for all fea-
tures for both K-Means and DEC model. The best , second best , third best , and the worst
results are highlighted for each metric. MSC contains 4000 images and 40 different styles. The
range of values for each metric is: ARI: -1 to 1, NMI: 0 to 1, SC: -1 to 1, and CHI: 0 to ∞. The
Base column indicates the SC and CHI values with perfect ground truth and no modification to the
input embedding. *As StyleShot was used to create the curated dataset, we excluded FStyleShot

from ranking. For qualitative comparison, refer to Appendix Figures 24, 25, 26, 27, and 28.

On WikiArt’s art movement and artist labels, all models achieved low clustering scores (Table 3).
Even though artist-trained (FArtist) and movement-trained (FArtMove) features performed rela-
tively better on their respective definitions, overall performance remained low, reflecting the com-
plexity of WikiArt’s style categories. Language-based features (FLang) showed modest advantages
over visual descriptors (FGram, FST ).

Human evaluation (Figure 2) further revealed a disconnect between formal art-historical categories
and intuitive human perception: participants often did not group artworks according to WikiArt’s
style labels. For further details on our human evaluation survey, please refer to Appendix F.

5.3 WHICH REPRESENTATIONS BEST CAPTURE PERCEPTUAL STYLE FEATURES?

Finding 3: Neural style transfer architectures yield the most effective representations for clustering
when style is defined via perceptual features such as texture, color, or line quality.

On our synthetically curated datasets (Table 4 and Appendix Table 9), representations from style
transfer models (FST ) consistently achieved top performance, outperforming both traditional Gram-
based features and newer diffusion-based descriptors. Contrastive style descriptors (FCSD) also
performed strongly. Diffusion-based style features (FDEADiff , FIntroStyle) excelled on curated
datasets but underperformed on WikiArt, suggesting they capture simple perceptual traits better
than historically grounded artistic styles. Language-based features (FLang) showed moderate style-
capturing ability but excelled in internal cluster quality (SC, CHI), indicating semantic interpretabil-
ity rather than purely visual style similarity.

5.4 HOW DO CLUSTERING ARCHITECTURES INFLUENCE STYLE-BASED ORGANIZATION?

Finding 4: K-Means achieves slightly higher style accuracy, while DEC produces more distinct
clusters but does not necessarily improve style alignment.

K-Means consistently outperformed DEC on style-specific metrics (ARI, NMI). However, DEC pro-
duced higher SC and CHI scores, revealing better geometric separation in latent space. Importantly,
these gains in cluster geometry did not always translate into better style-based clustering (Refer to
Appendix Figure 7 in Appendix C for quantitative graphical comparison). DEC also offered com-
putational efficiency, reducing runtime substantially on large datasets.

5.5 DO NEURAL REPRESENTATIONS REVEAL HIERARCHICAL RELATIONSHIPS AMONG
ARTISTIC STYLES?

Finding 5: Neural style representations expose intricate hierarchical structures in artistic style cor-
pora.
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Two lines of evidence support this : (i) Cluster Distribution Analysis: models like FGram grouped
artworks into a few dominant clusters, which revealed fine-grained subclusters upon further parti-
tioning; (ii) Hierarchical Clustering: dendrograms built on WikiArt using FStyleCap demonstrated
coherent multi-level style organizations.(Refer to Appendix H for details. Together, these findings
indicate that artistic style is inherently hierarchical, and clustering approaches should account for
this rather than assuming flat structures.

5.6 LIMITATIONS

Our study has three main limitations: (i) Ground Truth Definitions: We evaluate clustering against
three style definitions (synthetic datasets, WikiArt categories, and DomainNet domains). Broader
definitions of style remain unexplored. (ii) Visual Artworks Domain: Our analysis focuses on
artworks, but the framework could generalize to domains like fashion, music, or architecture. (iii)
LLM’s Ability to Interpret Styles for Language Representations: The quality of our language-
based features depends on how well vision-language models interpret artistic style. While presently
imperfect, these representations establish a useful benchmark for future multimodal style studies.

SUMMARY OF FINDINGS

Overall, style-based clustering is highly sensitive to both the choice of representation and the def-
inition of style. Specialized features outperform generic embeddings, but no single representation
works consistently across all style definitions, reflecting the inherent ambiguity of “style.” Cluster-
ing architectures introduce additional trade-offs: improved geometry does not guarantee improved
style fidelity. Finally, style-based clustering uncovers hierarchical structures that future methods
should explicitly model. These results position visual art as a demanding but valuable testbed for
advancing unsupervised representation learning.

6 CONCLUSION

We established style-based clustering of visual artworks as a distinct computational task, highlight-
ing its methodological challenges and practical significance. Our framework systematically eval-
uated sixteen neural style representations—spanning classification networks, generative models,
diffusion-based architectures, and our novel language-based features—across multiple style defi-
nitions and clustering settings.

Our experiments reveal five key insights: (1) specialized style features outperform generic embed-
dings, (2) all models struggle under traditional art-historical definitions, (3) style transfer models
excel when style is defined via perceptual attributes, (4) clustering architectures trade off between
cluster geometry and style fidelity, and (5) style organization is inherently hierarchical. These find-
ings demonstrate both the promise and the limitations of current neural style representations for
unsupervised clustering.

Beyond visual art, the implications are broader. Many domains - from fashion and design to archi-
tecture and music - face similar challenges where domain-specific style or aesthetic choices must be
disentangled from underlying semantic content. Visual art provides a demanding testbed for probing
these issues, exposing the limits of current models and guiding the design of future representations
that capture nuanced, multi-faceted notions of style.

In short, neural style representations remain powerful but imperfect tools for unsupervised organi-
zation. Our analysis not only clarifies their strengths and weaknesses but also points toward oppor-
tunities for building representations that bridge human perception, cultural constructs, and machine
learning.

Key Takeaway: Specialized neural style representations outperform generic embeddings for clus-
tering visual art, but no representation works consistently across all style definitions. This highlights
the inherent ambiguity of “style” and positions visual art as a rigorous testbed for advancing unsu-
pervised representation learning.
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7 DECLARATION OF LLM USAGE

LLM (or Grammarly) has been used in the paper only for writing, editing, or formatting purposes
and does not impact the core methodology. In our experimental work, we have used Large Vision
Language Model (LVLM) (LLMs with a Vision component) for implementing an original method
of obtaining new style representations for artworks by annotating the styles present in the artworks
with the LVLM and encoding the textual style descriptions. This was the core requirement of our
work.
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Armand Joulin. Emerging properties in self-supervised vision transformers, 2021. URL https:
//arxiv.org/abs/2104.14294.

Giovanna Castellano and Gennaro Vessio. Deep convolutional embedding for digitized painting
clustering, 2020.

Giovanna Castellano and Gennaro Vessio. A deep learning approach to clustering visual
arts. International Journal of Computer Vision, 130(11):2590–2605, August 2022. ISSN
1573-1405. doi: 10.1007/s11263-022-01664-y. URL http://dx.doi.org/10.1007/
s11263-022-01664-y.

Nenglun Chen, Lei Chu, Hao Pan, Yan Lu, and Wenping Wang. Self-supervised image represen-
tation learning with geometric set consistency. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 19292–19302, 2022.

Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
Zhang, Xizhou Zhu, Lewei Lu, Bin Li, Ping Luo, Tong Lu, Yu Qiao, and Jifeng Dai. Internvl:
Scaling up vision foundation models and aligning for generic visual-linguistic tasks, 2024. URL
https://arxiv.org/abs/2312.14238.

Wei-Ta Chu and Yi-Ling Wu. Deep correlation features for image style classification. In Proceedings
of the 24th ACM International Conference on Multimedia, MM ’16, pp. 402–406, New York,
NY, USA, 2016. Association for Computing Machinery. ISBN 9781450336031. doi: 10.1145/
2964284.2967251. URL https://doi.org/10.1145/2964284.2967251.

Wei-Ta Chu and Yi-Ling Wu. Image style classification based on learnt deep correlation features.
IEEE Transactions on Multimedia, PP:1–1, 02 2018. doi: 10.1109/TMM.2018.2801718.

10

https://arxiv.org/abs/2303.17896
https://arxiv.org/abs/2303.17896
https://arxiv.org/abs/2402.10093
https://arxiv.org/abs/2402.10093
http://www.novadevelopment.com/
https://arxiv.org/abs/2409.10385
https://arxiv.org/abs/2409.10385
https://arxiv.org/abs/2104.14294
https://arxiv.org/abs/2104.14294
http://dx.doi.org/10.1007/s11263-022-01664-y
http://dx.doi.org/10.1007/s11263-022-01664-y
https://arxiv.org/abs/2312.14238
https://doi.org/10.1145/2964284.2967251


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Adam Coates and Andrew Y. Ng. Learning Feature Representations with K-Means, pp. 561–580.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2012. ISBN 978-3-642-35289-8. doi: 10.1007/
978-3-642-35289-8 30. URL https://doi.org/10.1007/978-3-642-35289-8_
30.

David L Davies and Donald W Bouldin. A cluster separation measure. IEEE transactions on pattern
analysis and machine intelligence, (2):224–227, 2009.

Yingying Deng, Fan Tang, Weiming Dong, Chongyang Ma, Feiyue Huang, Oliver Deussen, and
Changsheng Xu. Exploring the representativity of art paintings. IEEE Transactions on Multime-
dia, 23:2794–2805, 2020.

Yingying Deng, Fan Tang, Weiming Dong, Chongyang Ma, Xingjia Pan, Lei Wang, and Changsheng
Xu. Stytr2: Image style transfer with transformers, 2022.

Joseph C Dunn. A fuzzy relative of the isodata process and its use in detecting compact well-
separated clusters. 1973.

Cheikh Brahim El Vaigh, Noa Garcia, Benjamin Renoust, Chenhui Chu, Yuta Nakashima, and Ha-
jime Nagahara. Gcnboost: Artwork classification by label propagation through a knowledge
graph. In Proceedings of the 2021 International Conference on Multimedia Retrieval, pp. 92–
100, 2021.

Ahmed Elgammal, Bingchen Liu, Mohamed Elhoseiny, and Marian Mazzone. Can: Creative adver-
sarial networks, generating ”art” by learning about styles and deviating from style norms, 2017.
URL https://arxiv.org/abs/1706.07068.
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Figure 3: The sub-figures 1-16 show the Architectures for extracting various neural style represen-
tations where representation 1-3 are Generic Task-based Models, 4-6 are from Style Feature-based
Models, 7-11 are from Style Transfer based Models, 12-13 are from Language models and 14-16
are from Style Trained models.

A STYLE-BASED CLUSTERING AND ITS SIGNIFICANCE

Artistic style becomes clear when we see multiple works together, not from single pieces alone.
Art experts have traditionally done this pattern recognition by hand. Some researchers have tried
using crowdsourcing for more detailed style categories (Ruta et al., 2021a), but this approach faces
challenges: style is subjective, and finding patterns in large collections requires enormous human
effort. Computational methods can transform how we analyze style at scale.

Computer-assisted style clustering offers several key advantages. First, it can analyze collections
far larger than any human could handle, finding hidden relationships that might never be discovered
otherwise. Second, it can identify subtle style categories that go beyond traditional art history labels.
Artists often work in many different styles throughout their careers - much more varied than broad
terms like “Cubism” or “Impressionism” can capture.

Third, computational clustering can trace how artistic styles evolve over time by mapping relation-
ships between works. This creates new stories about how art developed within individual careers
and across broader movements. Fourth, these groupings create valuable resources for style transfer
applications, from creative tools to museum exhibits. Finally, style-based clusters help in educa-
tion by letting students explore how styles connect and vary through organized groups rather than
random examples.

These benefits show that style-based clustering is more than just a technical tool - it’s a valuable
method for art research, digital curation, and helping people engage with visual culture.

B NEURAL STYLE REPRESENTATIONS DETAILS

The essential first component in style-based clustering is the choice of neural representations that
can help us identify the style in an artwork. In our main paper, we briefly touched upon the different
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representations utilized in our evaluation framework. In this section, we provide additional details
for each of the representations used. In general, we explore five categories of style representations
(Fig. 3):

1. Generic task-based representations from broadly trained encoders (e.g., DenseNet, DI-
NOv2, LongCLIP).

2. Style feature-based representations that compute explicit statistics such as Gram matrices
or introspective style attribution.

3. Style-transfer representations from GANs, transformers, and diffusion models developed
for synthesis and transfer tasks.

4. Language-based representations (ours) that provide interpretable embeddings derived
from captions and structured concept annotations.

5. Style-trained image models, including contrastively trained descriptors and artwork-
trained ViTs (ours) fine-tuned on WikiArt.

B.1 GENERIC TASK BASED REPRESENTATIONS (FGeneric)

In the field of machine learning, popular image-based representations made for specific tasks were
found to perform well in various computer vision tasks. In our experiments, we test three different
kinds of representations found to perform well for different vision-based tasks, in the context of
style-based clustering.

B.1.1 DENSENET REPRESENTATIONS (FDense)

Some previous approaches for clustering visual artworks (Castellano & Vessio, 2022) utilize the last
layer of DenseNet (Huang et al., 2018) to extract representations from the artworks and incorporate
them into the DEC model. The last layer would contain rich information about the artwork, as each
layer of the DenseNet is connected to all its previous layers. In our exploration, we utilize FDense

representations to check whether these representations can also be effective in style-based clustering
for visual artworks. Similar to Castellano & Vessio (2022), after obtaining the representations for
each artwork in the dimensions 1024×7×7, we apply global average pooling (GAP) (Lin et al.,
2014) to obtain 1024-representation vector for each artwork.

B.1.2 VISION LANGUAGE REPRESENTATION (FLongCLIP )

Vision language representations are one of the most popular categories of representations as they are
utilized for multiple image-based downstream tasks such as image classification, image captioning,
image generation, etc. These models utilize text-image pairs to learn a common representation
between the text and the image associated with it. For the task of style-based clustering, we test
one of the more recent CLIP (Radford et al., 2021) models, LongCLIP (Zhang et al., 2024). Similar
to the CLIP model, LongCLIP utilizes a text encoder and an image encoder to learn the common
representations between a text and image pair. LongCLIP improves upon CLIP by introducing
two fine-tuning strategies, knowledge preserved stretching of positional embedding and primary
component matching of CLIP representations. This strategy allows LongCLIP to support longer
text provide better representations for different downstream tasks. We test these representations for
style-based clustering.

B.1.3 SELF-SUPERVISED REPRESENTATION (FDINO)

The representations from self-supervised Vision Transformer Models (ViTs) were found to have
emerging properties which stand out when compared to convolutional neural networks (Caron et al.,
2021). Initially utilized for semantic segmentation, the DINO model (Caron et al., 2021) has also
been used for different downstream tasks such as Image classification, Image restoration, etc. For
our work, we utilize the DINOv2 model (Oquab et al., 2023). DINOv2 utilizes vision transformers
as the student-teacher network where two different transformations of an input image are passed to
each network. Both networks follow the same architecture while the parameters vary. The student
network learns to predict the global representations of an input image by minimizing the cross
entropy loss between the student and teacher representation.
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B.2 STYLE FEATURE-BASED STYLE REPRESENTATIONS (FStyleFeat)

In the early adoption of neural networks, Gatys et al. (2015) found that the gram matrices of rep-
resentations extracted from the intermediate layers of the VGG network contain information about
the style features associated with a certain input image. Following this work, many different works
explored the extraction of intermediate representations from different models, as they believed the
intermediate representations would contain style features present in the input image. We utilize such
representations from these works for evaluating their efficacy in style-based clustering.

B.2.1 GRAM MATRICES BASED STYLE REPRESENTATIONS (FGram AND Fg·c)

Gram based representations were introduced by Gatys et al. (2015) for addressing the style trans-
fer problem. Chu & Wu (2016; 2018) explore different combinations of representations extracted
from different layers of CNN, as well as different mathematical correlations and combinations of
these representations for style classification. They observe that the gram matrices of representations
obtained from conv5 1 (FGram) yield one of the best results in the classification task. They also
observe that the dot product of FGram and cosine similarity of the representations extracted from
conv5 1 (Fg·c) also produces good results. In our work, we use FGram and Fg·c and explore their
impact on unsupervised style-based clustering. We reduce the dimensions of FGram and Fg·c from
512×512 to 512 for each artwork using GAP.

B.2.2 INTROSPECTIVE STYLE ATTRIBUTION REPRESENTATION (FIntroStyle)

We extract the style features from the IntroStyle model (Kumar et al., 2025), a diffusion based style
attribution model. It finds the attribution by computing the style features from images and matching
them based on Wasserstein distance metric. Following the standard process, an image is initially
fed into the VAE encoder and the obtained latent is noised to timestep t. The noised latent is passed
through the denoising network and the features are extracted from the intermediate layers of the
unet. These features are known to be effective at disentangling image properties proving helpful
for several downstream tasks. From these intermediate features, the feature statistics are computed
as channel-wise means and variances and used as compact style representations. We extract these
representations and use them as FIntroStyle in our work.

B.3 OUR CONTRIBUTION: LANGUAGE STYLE REPRESENTATIONS (FLang )

In this section, we discuss in detail our two proposed approaches for style-based clustering that
explicitly factor in the artistic style information from the artworks through visio-language-based
models. The style representations presented thus far capture the style of an artwork in an inter-
pretation which is difficult for a human to interpret in a meaningful way. Providing the style with
some sort of interpretability that is easily understood by a human could provide a meaningful way to
study the style aspects of an artwork. Expressing the style of an artwork through a textual medium
allows a user to easily interpret the style of an artwork and find the correlation between the clustered
artworks. To this end, we propose two types of textual style representations (FLang): FStyleCap and
FAnnot.

B.3.1 ARTWORK STYLE CAPTION REPRESENTATION (FStyleCap)

In this approach, we generate the artwork representation using the style caption of the artwork. The
style information in the style caption describes the style aspects present in an artwork. Formally, we
obtain FStyleCap for an artwork ai as:

FStyleCap = T (C(ai, instruction)) (1)

WhereC is the style caption generator and T is the text encoder to encode the caption for the artwork
ai. In this work, we leverage an open-source multi-modal large language model(MLLM) called
InternVL 2 (Chen et al., 2024). It achieves state-of-the-art performances in most of the validation
benchmarks competing with both closed-source proprietary models and other open-source models.
It comes in 5 variants and we use the smallest 2 billion parameter model in our work. For the vision
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(a) Style Caption: “The style of the given image is
reminiscent of early 20th-century European art, pos-
sibly influenced by the works of artists like Gustave
Moreau or the post-impressionist movement. The use
of bold, expressive lines and a monochromatic palette
is characteristic of this era. The detailed shading and
cross-hatching techniques suggest a focus on texture
and depth, creating a sense of three-dimensionality
and movement within the composition. The figure
in the background, rendered in a simplified manner,
adds a sense of context and narrative to the scene.
The overall style is evocative of a time when artistic
expression was deeply intertwined with the emotional
and psychological states of the subject matter.”

(b) Style Caption: “The style of the given image is
Abstract Expressionism. This style is characterized
by loose, gestural brushwork, vibrant colors, and a
focus on the physical act of painting. The painting
appears to convey a sense of movement and emotion,
with a dynamic interplay of shapes and colors that
evoke a lively and energetic atmosphere. The use of
bold, contrasting colors and abstract forms suggests
a departure from traditional representational art, in-
stead embracing an expressive and personal interpre-
tation of the subject matter.

Figure 4: Examples of artwork style captions (FStyleCap) with the InternVL 2 model for a few
artworks from Edvard Munch.

Table 5: Visual elements and style concepts from Kim et al. (2018) utilized for FAnnot.

Visual Elements Concepts
Subject Representational, Non-representational

Line
Blurred, Broken, Controlled, Curved, Diagonal,
Horizontal, Vertical, Meandering, Thick, Thin,
Active, Energetic, Straight

Texture Bumpy, Flat, Smooth, Gestural, Rough

Color Calm, Cool, Chromatic, Monochromatic, Muted,
Warm, Transparent

Shape
Ambiguous, Geometric, Amorphous, Biomorphic,
Closed, Open, Distorted, Heavy, Linear, Organic,
Abstract, Decorative, Kinetic, Light

Light and Space Bright, Dark, Medium, Atmospheric, Planar,
Perspective

General Principles
of Art

Overlapping, Balance, Contrast, Harmony, Pattern,
Repetition, Rhythm, Unity, Variety, Symmetry,
Proportion, Parallel

part, the 2B variant uses the InternViT model, while for the language part, it uses the Internlm2-chat-
1 model (Chen et al., 2024). These models support multiple different modalities like image, text,
video, etc., and can handle different outputs such as images, bounding boxes, masks, etc. thereby
providing multitask functionality. The InternVL 2 model takes the instruction and the artwork as
input and gives us an output text that describes the style of the image. A few examples are showcased
in Figure 4.

Next, we use Long-CLIP Zhang et al. (2024) as the text encoder (T ) for artwork captions. We then
use these artwork representations FStyleCap as input artwork representations in the DEC model. It
is to be noted that we use InternVL and Long-CLIP as a proxy for C and T respectively and it could
be replaced with other image captioning and text encoder models.
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(a) Style Annotation
Subject: representational
Line: blurred, controlled, meandering, thick, thin
Texture: smooth, gestural, rough
Color: monochromatic
Shape: ambiguous, biomorphic, organic, abstract,
decorative
Light and Space: dark, planar, perspective
General Principles of Art: overlapping, balance,
contrast, harmony, pattern, repetition

(b) Style Annotation
Subject: representational, non-representational
Line: blurred, controlled, energetic, straight
Texture: smooth, gestural, rough
Color: cool, warm, muted, chromatic
Shape: ambiguous, organic, abstract, decorative
Light and Space: bright, dark, atmospheric, planar
General Principles of Art: balance, contrast, har-
mony, pattern, repetition, rhythm, unity, variety,
symmetry, proportion, parallel.

Figure 5: Examples of artwork style concept annotation (FAnnot) with the Intern-VL2 model.

B.3.2 ARTWORK STYLE CONCEPT ANNOTATION REPRESENTATION (FAnnot)

In this approach, we annotate artworks with style concepts based on the fundamental principles of
art (Ocvirk, 1968). A set of 59 different concepts across seven visual elements has been utilized by
Kim et al. (2018) in their work. Formally, we obtain the artwork representation for an artwork ai
with style concept annotation as:

FAnnot = T (S(ai, taxonomy, instruction) (2)

where S is the style concept annotator and T is the multi-hot encoder to encode the style concepts
of an artwork into a multi-hot vector. The style concept annotator considers the taxonomy given in
Figure 5 (c) and the instruction is to associate the style concepts (for each visual element) from the
taxonomy to a given artwork ai. The instruction is constructed in a manner where the instruction
includes a query for each style attribute. Similar to FStyleCap, we leverage the InternVL 2 as the
style concept annotator. After obtaining the style concepts, we turn the 59 style concepts into a multi-
hot vector based on whether a style concept is present in the artwork or not. The style information
available with this method is fine-grained across various artistic style dimensions. It is to be noted
that we use InternVL 2 as a proxy and it could be replaced with other style concept annotators. A
few examples of style annotations can be seen in Figure 5.

B.4 STYLE-TRANSFER BASED STYLE REPRESENTATIONS (FST )

Style transfer is a heavily explored problem where a style-transfer model transfers the style of a style
reference image to a content image. Most style-transfer approaches encode the style reference image
to obtain style representations which are then used by the model to transfer the style to a content
image. In this subsection, we explore different state-of-the-art style-transfer approaches to identify
the process used to extract the style representations FST from a style reference image.

B.4.1 STYLEGAN BASED STYLE REPRESENTATIONS (FStyleGAN )

In StyleGAN (Karras et al., 2019), the generator architecture of the GAN network is modified to
include a mapping network and a synthesis network. This architectural design enables disentan-
glement of the latent factors of variation thereby providing scale-specific control over styles during
image synthesis. The mapping network projects the input latent code z of an image to a disentangled
intermediate latent space w and the synthesis network, starting the generation from a learned con-
stant vector, leverages these w vectors at different scales to influence the style aspects of the image
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by controlling the AdaIN operations after each convolutional layer. In our work, we utilize these w
vectors that are responsible for style control and use them as StyleGAN features, FStyleGAN .

B.4.2 STYTR2 BASED STYLE REPRESENTATIONS (FStytr2)

In the Stytr2 (Deng et al., 2022) approach, the style reference image is split into patches. These
patches are then passed through a linear projection layer to obtain a sequential representation em-
bedding. The sequential representation embeddings are then passed through a transformer encoder,
which consists of a multi-head self-attention block and a feed-forward network. After passing them
through the transformer encoder, the output representations extracted from the encoder represent the
style information present in an artwork. We term these style representations as FStytr2 representa-
tions.

B.4.3 MAMBA BASED STYLE REPRESENTATIONS (FMamba)

In the Mamba-ST (Botti et al., 2024) approach, similar to Stytr2, both the style reference image
and the content image are split into patches and each patch is projected into a 1D embedding us-
ing a patch embedding layer. These patch embeddings are then normalized and passed through the
domain-specific(content and style) Mamba encoders, followed by an ST-Mamba decoder. When the
model is trained using the perceptual and identity losses, the mamba encoders containing base vi-
sual state-space machines (VSSMs) learn the domain-specific representations while the ST-Mamba
decoder with the help of ST-VSSM learns to fuse the style and content information performing the
style-transfer. We leverage the representations from the style mamba encoder since they encompass
the style information present in artworks and term them as FMamba.

B.4.4 STYLESHOT BASED STYLE REPRESENTATIONS (FStyleShot)

In the StyleShot (Gao et al., 2024) approach, similar to the previous approaches, the style reference
image is split into patches. Unlike the previous approaches, the image is split into multi-scale
patches (1/4, 1/8, and 1/16 of an image). For each scale, a distinct ResBlock is utilized to obtain the
patch embeddings fp at each scale. To integrate these multi-level style embeddings, a learnable style
embedding fs is concatenated with the multi-scale embedding (fp) and the combined embedding is
fed into a standard transformer. The learnable style embedding (fs) is then extracted from the output
of the transformer to obtain a rich style embedding, which we term FStyleShot.

B.4.5 DIFFUSION BASED STYLE REPRESENTATIONS (FDEADiff )

We utilize the DEADiff (Qi et al., 2024) model, a diffusion-based text-to-image stylization model
that generates images according to the style of a reference image, conditioned on a text prompt. It
follows a non-reconstructive learning paradigm to disentangle styles from semantics, by training on
paired image datasets that share either the same style or content, but not both, to prevent semantics
from getting captured into the style representations. It utilizes Q-Former networks that are instructed
to use ‘style’ and ‘content’ queries to extract the decoupled representations separately from the ref-
erence images. The decoupled representations are then injected into the diffusion’s unet at different
cross-attention layers through a disentangled conditioning mechanism. The semantic features are in-
jected into coarse, low-level layers, while the style features are injected into fine, high-level layers,
ensuring that the style and content are not conflicted in the generated image. We extract the output
features of the Q-Former network for style and use them as FDEADiff representations in this work.

B.5 SPECIAL STYLE-TRAINED IMAGE MODEL BASED REPRESENTATIONS (FTrain)

Here, we explore the representations extracted from the models that are trained on the datasets with
specific style definitions like artwork attribution, Wikiart’s artist-based and art movement-based
definitions, etc.

B.5.1 CONTRASTIVE STYLE DESCRIPTORS (FCSD)

In this work (Somepalli et al., 2024), the Vision Transformer models (ViT base and large variants)
are trained on a multi-label contrastive objective to learn style information from artworks that adhere
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to different style attributes. The dataset used for training is curated from LAION Aesthetics by
selecting and filtering images according to a predefined set of style tags. The style tags are obtained
by combining the bank of artists, mediums, and movement references used on typical user prompts
for Stable Diffusion. Each image in the curated dataset can have more than one tag with each tag
representing a style attribute. Once the model is trained on this dataset, the representations from the
last layer of the ViT backbone are extracted and used as FCSD.

B.5.2 ARTWORK-TRAINED IMAGE MODEL BASED REPRESENTATIONS

In Chu & Wu (2016; 2018), we observe that training the models on a classification task also makes
their representations robust for clustering. Similarly in the case of CSD (Somepalli et al., 2024), we
notice that the training dataset used, LAION Aesthetics, contains WikiArt’s data as a subset, and
the respective representations from the pre-trained model yield higher results in the clustering task
than the rest of the representations, as evident from the metric scores. To this end, we venture into
this direction by fine-tuning a ViT model on the WikiArt data considering two different ground truth
labelings: artist-based and art movement-based.

1. FArtist: For the artist-based ground truth dataset, we sorted the artists based on the number
of artworks they produced in descending order and selected the artworks from the top 40
artists. We do this to maintain class balance and ensure a sufficient number of samples per
each artist class. The total artworks obtained are 25550 which accounts for 32% of the
whole WikiArt dataset. Out of this, we use 85% of the data for training and the remaining
for testing.

2. FArtMove: Similarly, for the art movement-based ground truth dataset, we sample the same
number of artworks (20887 artworks) for the training set as we did for the artist-based data.
We use the existing WikiArt subset for the test set.

Using these two different ground truths, we fine-tune two separate models that are pre-trained on
Imagenet-21k each for 45 epochs with the cross-entropy loss. We extract the representations from
the last layers of the fine-tuned ViT models and use them for clustering.

B.6 DIMENSIONALITY OF REPRESENTATIONS

In Section B of our paper, we mentioned that we chose global average pooling to reduce the di-
mensions of our FStyleFeat representations. In this section, we explain in detail our reasoning for
choosing the global pooling average as our dimensionality reduction method. The dimensions of
the FStyleFeat representations are very high - ranging from 50000 to 200000 approximately. The
representation space is too large for efficient clustering; hence, we perform dimensionality reduction
before clustering. We utilize Global Average Pooling (GAP) (Lin et al., 2014) as our dimensionality
reduction method. We choose GAP over Principal Component Analysis (PCA) (Wold et al., 1987)
as it is computationally intensive to apply PCA on a large dataset such as WikiArt (78,978 artworks),
and the reduced representations with both methods form similar clusters. We verify this by experi-
menting with PCA and GAP on the subset of WikiArt dataset and finding that the quantitative results
are quite similar to each other as can be seen in Table 6. We use the remaining representations (FST ,
FLang , and FTrain) directly for clustering as their dimensionality is sufficiently low. The dimen-
sions before and after using GAP, as well as the respective dimensions of all representations can be
seen in Table 6.
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Figure 6: Figures A-B show the architectures which utilize the different representations for style-
based clustering which are k-means and deep-embedded clustering models respectively.

Table 6: Summary of the dimensions of different representations and the dimensionality reduction
method used is presented on the left. As a few neural representations are high-dimensional, we
utilize dimensionality reduction to reduce them to a feasible size for computation. The table on the
right showcases the impact of dimensionality reduction methods on the clustering metrics, which
was tested on the WikiArt-ArtMove dataset. We observe that using dimensionality reduction tech-
niques minimally affect the clustering results.

Representation
Dimensionality

Reduction
(Yes/No)

Dimensionality
Reduction

Method

Dimensions
before

Reduction

Dimensions
after

Reduction

FGeneric

FDense Yes GAP 1024x7x7 1024
FLongCLIP No N/A 768 -
FDINO Yes GAP 257x384 384

FStyleFeat

FGram Yes GAP 512x512 512
Fg.c Yes GAP 512x512 512

FIntroStyle No N/A 1280 -

FST

FStyleGAN No N/A 512 -
FStytr2 No N/A 512 -
FMamba No N/A 512 -
FStyleshot No N/A 9216 -
FDEADiff No N/A 12288 -

FLang
FStyleCap No N/A 768 -
FAnnot No N/A 59 -

FTrain

FCSD No N/A 768 -
FArtist No N/A 1024 -

FArtMove No N/A 1024 -

Dimensionality
Reduction SC CHI

No Dimensionality
Reduction 0.16 595.19

Principal Component
Analysis (PCA) 0.191 333.84

Global Average
Pooling (GAP) 0.204 405.41

C CLUSTERING MODEL ARCHITECTURES

In this section, we discuss the various clustering architectures we utilize for achieving style-based
clustering. For our evaluation framework, we utilize two different clustering architectures:

1. K-Means Clustering architecture
2. Deep Embedding Clustering architecture

Please refer to Figure 6 for an architectural overview of both the clustering architectures.

C.1 K-MEANS CLUSTERING MODEL

The K-Means clustering model (MacQueen et al., 1967) first initializes a random set of points as
cluster centroids which is equal to the number of clusters (K) provided as input. Each data point
is assigned to a certain centroid based on which centroid has the smallest Euclidean distance to
the specific data point. After all the data points are assigned to a certain centroid, we obtain K
clusters where each cluster comprises a number of data points. After obtaining the clusters, a new
set of centroids is calculated by averaging all the data points present in each cluster. The process of
assigning data points to clusters is repeated again. This process is repeated until there is no change
in the assignment of data points to a centroid, which gives us the final set of K clusters.
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C.2 DEEP CLUSTERING MODEL

We briefly discussed the Deep embedded clustering model in Section Experiments and Evaluation
Criteria of our paper. In this section, we discuss in detail the generalized architecture for Deep Em-
bedded Clustering(DEC) with a deep neural network that produces deep-layer features F for image
data, an autoencoder, and a clustering module is presented in Figure 6 (B). The fundamental idea of
the DEC method (Xie et al., 2016) is to learn a mapping from the data space to a lower-dimensional
feature space which is iteratively optimized with a clustering objective. The model consists of an
autoencoder and a clustering layer connected to the embedding layer of the autoencoder.

Autoencoder: Autoencoders are deep neural networks that can project the input data into latent
space using an encoder and reconstruct the original input from latent space using a decoder. The
encoder present in the autoencoder first takes the input data and transforms the data with a non-linear
mapping ϕθ : X −→ Z where X is the input space of the data and Z is the hidden latent space. The
decoder learns to reconstruct the original input based on the latent representation, ψ : Z −→ X . The
latent embedded features are then propagated through the decoder so it can reconstruct the latent
features back to the original input space. The non-linear mapping of ϕ and ψ is learnt by updating
the autoencoder parameters by minimizing a classic mean squared reconstruction loss:

Lr =
1

n

n∑
i=1

||x′i − xi||2 =
1

n

n∑
i=1

||ψ(ϕ(xi))− xi||2 (3)

where n is the cardinality of the input features, xi is the i-th input sample, x′i is the reconstruction
performed by the decoder and || · || is the Eucledian Distance.

Clustering Layer: The clustering layer takes the latent embedded features from the encoder based
on the non-linear mapping ϕ : X −→ Z and initially assigns each embedded point to k cluster
centroids by using k-means clustering

{
cj ∈ Z

}k

j=1
where cj represents the jth cluster centroid.

After the initialization, each embedded point, zi = ϕ(xi) is mapped to a cluster centroid cj by using
a cluster assignment Q based on Student’s t-distribution:

qij =
(1 + ||zi − cj ||2)−1∑
j′(1 + ||zi − cj′ ||2)−1

(4)

where j′ represent every cluster and qij represents the membership probability of zi to belong to the
cluster j which basically soft assigns zi to cluster centroid cj . qij represents the similarity between a
datapoint zi and the cluster centroid cj which gives us the confidence of a datapoint being assigned
to a particular cluster.

The decoder of the autoencoder is abandoned and the DEC model jointly optimizes clustering layer
and encoder based on the auxiliary target distribution pij calculated from qij derived from Eq.4
which emphasizes the data points that have higher confidence assigned to them while also minimiz-
ing the loss contribution of each centroid:

pij =
q2ij/fj∑
j′ q

2
ij′/fj′

(5)

where fj =
∑

j qij are the soft cluster frequencies. The DEC model optimizes the target function by
minimizing the Kullback-Leibler(KL) divergence between P and Q where P is the auxiliary target
function defined in Eq.5 and Q is the cluster assignment based on Student’s t-distribution. This
improves the initial cluster estimate by learning from previous high-confidence predictions.

Lc = KL(P ||Q) =
∑
i

∑
j

pij log

(
pij
qij

)
(6)

The cluster centers cj and the encoder parameters θ (of autoencoder) are then jointly optimized
using Stochastic Gradient Descent (SGD) with momentum (Xie et al., 2016).

Implementation Details: We conduct our experiments on A100 GPU with 15 GB RAM and 5GB
VRAM. The deep embedded clustering model is trained using the Adam optimizer. The number of
iterations are set to 8000 and the convergence threshold is set to 0.0001.
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We test with varying the DEC encoder’s final layer’s size (refer to Table 7) to see if it has an effect
on the features. We observe that the there is minimal change in the cluster ability of the features
when the they are encoded to different sized latents.

Table 7: Quantitative results for the WikiArt-ArtMove dataset when the size of final layer of the
encoder used in DEC is varied. We observe minimal change in the results even when we change the
final layer of the encoder.

Encoder Final
Layer Size SC CHI

10 0.118 8059.72
50 0.102 226.7
100 0.204 465.31

C.3 IMPACT OF DEC CLUSTERING ON STYLE-BASED CLUSTERING

The choice of clustering architecture plays a crucial role in style-based clustering performance.
DEC clustering directly influences the latent representations assigned to each cluster by adaptively
modifying input representations when the original features fail to form adequate clusters. This
modification process enables DEC to better differentiate between representation-specific features,
ultimately producing more distinct and well-separated clusters.

Our analysis of Figure 7 reveals a consistent pattern across DEC iterations: internal evaluation
metrics (Silhouette Coefficient and Calinski-Harabasz Index) show continuous improvement, while
external metrics (ARI: Adjusted Rand Index, NMI: Normalized Mutual Information) remain rel-
atively stable. This phenomenon occurs consistently across different neural style representations,
including FStyleCap, FGram, and FStyleShot.

The divergence between internal and external metric performance indicates that DEC success-
fully enhances the geometric quality of clusters—creating more cohesive and well-separated
groups—without necessarily improving the semantic alignment with ground-truth style categories.
This suggests that while DEC optimizes cluster structure in the representation space, the enhanced
clustering may not directly translate to better style-based groupings.

D ADDITIONAL DETAILS ON EVALUATION METRICS

Internal Evaluation Metrics

• Silhouette Coefficient (SC) (Rousseeuw, 1987): SC is the measure of how similar a data
point is to other data points in its own cluster and how similar the same data point is to the
data points in a separate cluster. This metric is calculated on the data point level. SC ranges
from -1 to +1, where a high value indicates that the data points are well-matched to their
own clusters and poorly matched to other clusters. A lower value would indicate that the
data points are wrongly assigned to clusters. The SC for a single sample is given by:

SC =
b− a

max(a, b)
(7)

where a is the distance between the sample and the closest data point in the same cluster,
whereas b is the distance between the sample and the closest data point in a different cluster.
The SC is calculated as the average of the SC associated with every data point.

• Calinski-Harabasz Index (CHI) (Caliński & JA, 1974): CHI is the ratio of the sum of
intra-cluster dispersion and inter-cluster dispersion for all clusters. This metric is calculated
at the cluster level. A higher value of CHI indicates that the clusters are more spread out
and dense. The CHI is given by:

CHI =
BCSS

WCSS
× n− k

k − 1
(8)

where kis the number of clusters, n is the total number of samples, and BCSS (Between
Clusters Sum of Squares) is the weighted sum of squared Euclidean distances between all
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(a) FStyleCap

(b) FGram

(c) FStyleShot

Figure 7: Evolution of evaluation metrics across DEC iterations for different neural style repre-
sentations on the Mixed StyleShot Curated dataset (MSC). The initial iteration represents K-means
initialization, with subsequent iterations corresponding to DEC model updates (labels updated ev-
ery 140 training iterations). Internal metrics (SC:Silhouette Coefficient and CHI:Calinski-Harabasz
Index) consistently improve across iterations, indicating enhanced cluster cohesion and separation
in the representation space. However, external metrics (ARI: Adjusted Rand Index, NMI: Normal-
ized Mutual Information) remain stable, suggesting that while DEC optimizes geometric cluster
quality, the representation modifications do not improve semantic alignment with ground-truth style
categories.

the cluster centroids and the dataset centroid. It is given by BCSS =
∑k

i=1 ni||ci − c||2,
where for a cluster i, ni is the number of data points in a cluster, ci is the centroid of the
cluster, and c is the centroid of the entire data. WCSS (Within Clusters Sum of Squares)
is the sum of squared Euclidean distance between all the data points in a cluster and their
respective cluster centroid. It is given by WCSS =

∑k
i=1

∑
x∈Ci

||x − ci||2 where for a
cluster i, Ci represents a cluster and x is a data point that belongs to cluster Ci.

External Evaluation Metrics

• Adjusted Rand Index (ARI) (Rand, 1971): Rand Index (RI) is a measure of similarity
between two data clusterings. It takes all pairs of samples from both ground truth and
predicted clusterings and considers all pairs of agreements and disagreements in their as-
signments to clusters. It then adjusts the index to account for change by taking into account
the expected similarity between the two clusterings. The Rand Index score ranges from -1
to 1. Values ranging between -1 to 0 indicate disagreement between the two data clusterings
whereas values ranging from 0 to 1 indicate agreement between the two data clusterings.
The Rand Index (RI) is given by

RI =
(x+ y)

n
2

(9)

where x represents the number of data points belonging to the same cluster in both the
clusters obtained from the clustering model and the ground truth, whereas y denotes the
number of data points that belong to different clusters across both the ground truth and
the clusters produced by the clustering model. n denotes the total number of data points.
Since RI does not take the random assignment of data points into consideration, we use
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ARI which accounts for this chance of random assignments. ARI is given by:

ARI =
RI − E

Max(RI)− E
(10)

where RI is the Rand Index, E is the expected Rand Index and Max(RI) is the maximum
value that RI can take (always 1).

• Normalized Mutual Information (NMI) (Shannon, 1948): Mutual Information (MI) is
used to calculate the information shared between the ground truth clustering and the pre-
dicted clustering. The MI ranges from 0 to 1, where a value closer to 0 would indicate no
correlation between ground truth and predicted clusters whereas a value closer to 1 would
indicate a near-perfect correlation between ground truth and predicted clusters. The MI is
given by:

MI =

|U |∑
i=1

|V |∑
j=1

|U ∩ V |
N

log
N |U ∩ V |
|U ||V |

(11)

where U and V are the predicted clustering and the ground truth clustering respectively,
|U | and |V | are the number of samples in both the clusterings and N is the total number
of samples. Since MI is not normalized, the calculated value of MI might be higher due
to the imbalance of cluster distribution in the datasets. Hence we use Normalized Mutual
Information, which normalizes the Mutual Information and is given by:

NMI =
2×MI

[H(U) +H(V )]
(12)

where MI is the mutual information and H is the entropy of the respective clustering.

E ADDITIONAL DETAILS ON DATASETS

In this section, we present a few additional details on the datasets we use for our experiments. In
our experiments, we use four different datasets with different style definitions:

1. WikiArt Art Movement based dataset (WikiArt-ArtMove): For this dataset, we utilize the
complete WikiArt collection (WikiArt.org, 2010; WikiArt) of 78,978 artworks categorized
into 27 art movements. A few samples can be seen in Figure 8 (a).

2. WikiArt Artist-based dataset (WikiArt-Artist): We pick 25,550 artworks from the top 40
artists with the highest number of artworks from the WikiArt art dataset and categorize
them based on the artist who created a certain artwork. A few samples can be seen in
Figure 8 (a).

3. DomainNet dataset: We create a subset of the DomainNet dataset (Peng et al., 2019) by
taking 10 images from each style class (6 classes) for 50 content classes. In total, we
obtain 3000 images from 50 content classes and 6 style classes. A few samples can be seen
in Figure 8 (b).

4. Synthetically Curated datasets: By leveraging style-transfer techniques, we create two
synthetically curated datasets called Mixed StyleShot Curated dataset (MSC) and Mixed
Mamba Curated dataset (MMC), created by using StyleShot (Gao et al., 2024) and Mamba-
ST (Botti et al., 2024) respectively. We utilize 50 content images from the MSCOCO Lin
et al. (2015) dataset and pick 10 style images from four datasets: the WikiArt-ArtMove
dataset, the Edvard Munch Archive, the Brueghel dataset, and the Clip Art Illustrations
dataset.

• Edvard Munch Archive (EMA): We experiment with the artwork collection ded-
icated to the artist Edvard Munch. We specifically consider sketch and watercolor
paintings, comprising 7410 artworks created by Edvard Munch (Sivertsen et al.,
2023). The artworks are categorized based on shading and color. We present a
few examples in 9 (a).

• Brueghel Dataset (BD): The Brueghel dataset (Shen et al., 2019) consists of 1587
artworks created by Jan Brueghel the Elder. This dataset consists of artworks in
different media like oil, ink, and watercolor, along with various painting surface
materials such as paper, panel, and copper. We present a few examples in 9 (b).
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• Clip Art Illustrations Dataset (CAID): Clip art images consist of various styles
such as sketches, woodcuts, cartoons, and gradient-shading. We adopt the clip
art illustrations dataset used in Garces et al. (2014), consisting of 4591 clip art
illustrations. 1000 of the illustrations have been collected from the Art Explosions
dataset (Art-Explosion, 2024), and 3591 of those illustrations are from the clip art
included in Microsoft Office. We present a few examples in 9 (c).

We present a few samples from curated datasets created using StyleShot and Mamba-ST in Figure 8
(c) and (d).
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(a) WikiArt dataset

(b) DomainNet dataset

(c) Mixed curated StyleShot Dataset

(d) Mixed curated Mamba-ST dataset

Figure 8: Representative samples for the (a) WikiArt-ArtMove and WikiArt-Artist, (b) DomainNet,
(c) Mixed curated StyleShot Dataset and (d) Mixed curated Mamba-ST dataset. (Please zoom in for
finer details)
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(a) Edvard Munch archive

(b) Brueghel dataset

(c) Clip Art Illustrations dataset

Figure 9: Representative samples from the additional datasets (a) Edvard Munch archive, (b)
Brueghel dataset and (c) Clip-art illustrations dataset. (Please zoom in for finer details).
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Figure 10: Examples of content images and style images and their respective style-transfer output
images from Styleshot (top row) and Mamba-ST (bottom row). The content images were picked
from the MS-Coco dataset (Lin et al., 2015) and the style images were picked from WikiArt dataset
(column 1), Munch dataset (column 2), Brueghel dataset (column 3) and Clip-art illustrations dataset
(column 4). (Please zoom in for finer details).
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Figure 11: Screenshot of the questions asked for a specific clustering in the human perception survey.

F HUMAN PERCEPTION SURVEY DETAILS

Comprehensive human evaluation of clustering quality across multiple neural representations
presents significant scalability challenges. While we primarily rely on quantitative metrics, we con-
ducted a targeted human perception study to assess clustering quality from a cognitive perspective.
Our study involved 25 participants with visual arts backgrounds, as detailed in the main paper.

Each participant evaluated 5 high-resolution clustering visualizations representing different cluster-
ing approaches, presented in randomized order without method identification. Participants rated
each clustering result on a 1-10 scale across three dimensions (see Figure 11 for example stimuli):

• Q1. Intra-cluster Cohesiveness: How stylistically similar are artworks within individual
clusters?

• Q2. Inter-cluster Separation: How stylistically distinct are the clusters from one another?
• Q3. Overall Quality: What is the overall effectiveness of the style-based clustering?

Participants were instructed that clustering was performed based on artistic style, with other visual
elements (e.g., content, subject matter) considered relevant only insofar as they contribute to stylistic
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characteristics. Importantly, we provided no explicit definition of “style,” allowing participants to
apply their own aesthetic understanding and perceptual frameworks.

The survey results revealed distinct preferences among clustering methods. Participants consistently
rated FStyleShot from the FST category as producing the highest quality and most cohesive clusters,
despite somewhat lower inter-cluster separation scores. Across all methods, inter-cluster separation
received the most variable and generally lowest ratings, suggesting this aspect of clustering is most
challenging to achieve perceptually.

Notably, even while the ground truth WikiArt movement-based clustering was included as one of
the five methods, participants did not rate it as the optimal style clustering. This finding highlights
potential discrepancies between art historical categorizations and contemporary perceptual judg-
ments of stylistic similarity, suggesting that human-perceived style relationships may diverge from
established art movement taxonomies.

These results point toward the importance of perception-driven approaches to understanding artistic
style, representing a promising direction for future investigation in computational aesthetics and
style analysis.
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Table 8: Quantitative results and indicative qualitative rating for content-based clustering (left) and
style-based clustering (right) on the DomainNet dataset. The dataset includes 3000 images from 6
style classes and 50 content classes. For both content and style-based clustering FDense, the generic
representation performs poorly, whereas the style-specific representations perform adequately for
content but perform really well for style.

Representations ARI NMI Qualitative
Rating

FDense 0.106 0.364 Poor
FStyleCap 0.15 0.435 Poor
FMamba 0.012 0.179 Very Poor
FDEADiff 0.06 0.33 Very Poor
FCSD 0.116 0.401 Poor

FLongCLIP 0.298 0.616 Poor
FDINO 0.108 0.405 Poor

Representations ARI NMI Qualitative
Rating

FDense 0.291 0.352 Poor
FStyleCap 0.547 0.591 Good
FMamba 0.514 0.561 Fair
FDEADiff 0.733 0.736 Very Good
FCSD 0.654 0.681 Good

FLongCLIP 0.427 0.529 Fair
FDINO 0.517 0.568 Fair

G QUALITATIVE COMPARISON AND ADDITIONAL QUANTITATIVE RESULTS

In this section, we present the additional details for the results in our main paper which could not be
included in our main paper.

G.1 DOMAINNET DATASET: QUANTITATIVE AND QUALITATIVE RESULTS

In Table 8, we showcase the quantitative results for the DomainNet dataset for both content and style
clustering utilizing the style representation from each category along with a generic representation
(FDense). Both content and style based clusterings were obtained by setting the number of clusters
to be equal to either the number of content classes or the style classes. As mentioned in our main
paper, we observe that the generic representations perform adequately for both content as well as
style clustering. For style-clustering, we observe that the style-specific representations out perform
FDense by a large margin. This is further reinforced when we look at Figure 13 which showcase the
color representations across all feature representations for content and style clustering. We further
showcase qualitative result for content and style clustering with FStyleCap in Figure 12 which also
showcase the same behavior.

G.2 WIKIART-ARTMOVE DATASET: QUALITATIVE EVALUATION

For the art movement WikiArt dataset, we present the ground truth in Figure 14. In Figures 15, 16,
17 and 18 we present the qualitative results along with their color representation for the WikiArt-
ArtMove dataset with the representative feature representations from each category of style-based
representations. We observe that for the art movement style definition, all 4 representations perform
poorly in terms of ground truth, but when observed visually, the cluster formed through the style-
based representations are similar in terms of style. This is further support by the human survey
results in 2, where the participants preferred the FStyleShot representation clusters over the WikiArt-
ArtMove ground truth clusters.

G.3 WIKIART-ARTIST DATASET: QUALITATIVE EVALUATION

In Figure 19, we present the ground truth associated with the artist-based style definition for the
WikiArt-Artist dataset. We then present the qualitative results of different representations on this
dataset in Figures 20, 21, 22 and 23. We observe that the most of the style representations apart
from FCSD perform poorly on style-clustering based on artists. As FCSD is trained on multiple
artwork labels like the artist, it’s able to perform well in creating distinct style-based clusters.

G.4 SYNTHETICALLY CURATED DATASETS: QUANTITATIVE AND QUALITATIVE
EVALUATION

In our main paper, we presented the quantitative results with the synthetically curated dataset created
using StyleShot. In Table 9, we showcase the quantitative results on the curated dataset obtained
through Mamba-ST (MMC). We observe a similar trend as the MSC dataset of style-transfer based
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CONTENT based Clustering STYLE based Clustering

Ground Truth

FDense

FStyleCap

FMamba

FCSD

Figure 12: Qualitative comparison of style-based and content-based clustering through the select
four neural feature representations on the DomainNet dataset.

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

CONTENT based Clustering STYLE based Clustering

Ground Truth

FDense

FStyleCap

FMamba

FCSD

Figure 13: Visual comparison of the relative effectiveness of style-based and content-based clus-
tering through the select four neural feature representations on the DomainNet dataset. For perfect
clustering, each cluster would have a distinct and homogeneous color patches.
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(a) Ground Truth style clusters (b) Class distribution in Ground Truth clusters

Figure 14: Artwork samples from the WikiArt-ArtMove dataset serving as the ground truth for qual-
itative comparison of clustering with different neural representations.

(a) Style clusters using FGram (b) Class distribution in FGram clusters

Figure 15: Qualitative results of style clustering on the sample WikiArt-ArtMove dataset (Fig. 14)
using FGram (category: FClass) neural style representation.

(a) Style clusters using FStyleCap (b) Class distribution in FStyleCap clusters

Figure 16: Qualitative results of style clustering on the sample WikiArt-ArtMove dataset (Fig. 14)
using FStyleCap (category: FLang) neural style representation.

representations performing the best for this style definition. We also present the qualitative results
for the MSC in Figures 25, 26, 27 and 28, where both FStytr2 and FCSD show almost perfect
clustering based on ground truth.
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(a) Style clusters using FStyleShot (b) Class distribution in FStyleShot clusters

Figure 17: Qualitative results of style clustering on the sample WikiArt-ArtMove dataset (Fig. 14)
using FStyleShot (category: FST ) neural style representation.

(a) Style clusters using FCSD (b) Class distribution in FCSD clusters

Figure 18: Qualitative results of style clustering on the sample WikiArt-ArtMove dataset (Fig. 14)
using FCSD (category: FTrain) neural style representation.
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(a) Ground Truth style clusters (b) Class distribution in Ground Truth clusters

Figure 19: Artwork samples from the WikiArt-Artist dataset serving as the ground truth for qualita-
tive comparison of clustering with different neural representations.

(a) Style clusters using FGram (b) Class distribution in FGram clusters

Figure 20: Qualitative results of style clustering on the sample WikiArt-Artist dataset (Fig. 19) using
FGram (category: FStyleFeat) neural style representation.

(a) Style clusters using FStyleCap (b) Class distribution in FStyleCap clusters

Figure 21: Qualitative results of style clustering on the sample WikiArt-Artist dataset (Fig. 19) using
FStyleCap (category: FLang) neural style representation.
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(a) Style clusters using FStyleShot (b) Class distribution in FStyleShot clusters

Figure 22: Qualitative results of style clustering on the sample WikiArt-Artist dataset (Fig. 19) using
FStyleShot (category: FST ) neural style representation.

(a) Style clusters using FCSD (b) Class distribution in FCSD clusters

Figure 23: Qualitative results of style clustering on the sample WikiArt-Artist dataset (Fig. 19) using
FCSD (category: FTrain) neural style representation.
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Table 9: Metrics scores for the Mixed curated dataset created using Mamba-ST (MMC) for all
features for both K-Means and DEC model. The best , second best , third best and the worst
results are highlighted for each metric. MMC contains 4000 images and 40 different styles. The
range of values for each metric is: ARI: -1 to 1, NMI: 0 to 1, SC: -1 to 1, and CHI: 0 to ∞. The Base
column indicates the SC and CHI values with perfect ground truth and no modification to the input
embedding. We observe a similar trend with the MMC dataset as the MSC dataset as both datasets
are created using style-transfer methods. *As Mamba-ST was used to create the curated dataset, we
excluded FMamba from ranking.

ARI NMI SC CHIFeatures K-Means DEC K-Means DEC Base K-Means DEC Base K-Means DEC
FDense 0.164 0.049 0.25 0.13 0.02 0.097 0.959 21.49 46.26 120196.98

FLongCLIP 0.044 0.041 0.092 0.085 0.19 0.179 0.387 97.34 82.85 2347.93FGeneric

FDINO 0.058 0.049 0.115 0.103 0.181 0.164 0.345 106.91 79.01 1923.11
FGram 0.816 0.698 0.961 0.926 0.29 0.259 0.514 613.29 618.8 3750.41
Fg.c 0.134 0.129 0.448 0.446 -0.096 0.16 0.52 2205.62 9985.58 89669.42FStyleFeat

FIntroStyle 0.28 0.241 0.41 0.391 0.085 0.08 0.235 109.31 87 1233.49
FStyleGAN 0.417 0.384 0.669 0.634 -0.03 -0.005 0.909 17.43 18.82 19549.91
FStytr2 0.98 0.991 0.99 0.995 0.6 0.6 0.719 4368.14 4476 15056.43

*FMamba 0.9 0.836 0.97 0.94 0.468 0.45 0.608 617.04 617.93 7992.44
FStyleshot 0.96 0.748 0.98 0.938 0.304 0.28 0.631 304.53 298.51 5845.3

FST

FDEADiff 0.039 0.028 0.09 0.073 0.123 0.11 0.463 53.47 41.93 56413.32
FStyleCap 0.03 0.01 0.092 0.068 -0.02 0.096 0.963 8.027 48.83 178514.62

FLang FAnnot 0.053 0.051 0.21 0.212 -0.037 0.024 0.936 15.37 44.64 38490.53
FCSD 0.86 0.632 0.94 0.839 0.141 0.13 0.299 101.6 100.24 1413.48
FArtist 0.00004 0.00002 0.05 0.04 0.091 0.07 0.157 67.31 52.59 139.42FTrain

FArtMove 0.0001 0.0001 0.06 0.04 0.103 0.08 0.171 71.56 59.42 125.71

(a) Ground Truth style clusters (b) Class distribution in Ground Truth clusters

Figure 24: Artwork samples from the Synthetically Curated StyleShot dataset serving as the ground
truth for qualitative comparison of clustering with different neural representations.
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(a) FGram style clusters (b) Class distribution in FGram clusters

Figure 25: Qualitative results of style clustering on the sample Synthetically Curated StyleShot
dataset (Fig. 24) using FGram (category: FStyleFeat) neural style representation.

(a) FStyleCap style clusters (b) Class distribution in FStyleCap clusters

Figure 26: Qualitative results of style clustering on the sample Synthetically Curated StyleShot
dataset (Fig. 24) using FStyleCap (category: FLang) neural style representation.
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(a) FStytr2 style clusters (b) Class distribution in FStytr2 clusters

Figure 27: Qualitative results of style clustering on the sample Synthetically Curated StyleShot
dataset (Fig. 24) using FStytr2 (category: FST ) neural style representation.

(a) FCSD style clusters (b) Class distribution in FCSD clusters

Figure 28: Qualitative results of style clustering on the sample Synthetically Curated StyleShot
dataset (Fig. 24) using FCSD (category: FTrain) neural style representation.
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(a) Ground Truth
(Art Movement)

(b) FDense (c) FGram (d) Fg·c

(e) FStyleCap (f) FAnnot (g) FStyleGAN

(h) FStytr2 (i) FMamba (j) FStyleShot (k) FCSD

Figure 29: Cluster distributions for each representation obtained on the Wikiart-AM dataset.

Figure 30: Sub-clustering on a single cluster from the results of the WikiArt-AM dataset for FGram

features through the DEC model. (a) shows the distribution of the number of samples in each cluster
before and after sub-clustering. (b) shows the qualitative results after we obtain the sub clusters of a
single cluster with most samples. Samples on the left are from the original cluster and samples on
the right are from the sub-clusters.
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H HIERARCHICAL NATURE OF STYLE RELATIONSHIPS IN ARTWORK
DATASETS

Style-based clustering reveals fundamental insights into artistic datasets, particularly the hierarchical
organization of stylistic relationships. Our experiments demonstrate that styles in artwork datasets
exhibit inherent hierarchical structures, supported by the following empirical evidence:

H.1 UNEVEN CLUSTER DISTRIBUTION INDICATES HIERARCHICAL ORGANIZATION

Analysis of cluster distributions across different representations (Figure 29) on the WikiArt dataset
reveals significant imbalances in cluster assignments. Representations such as FGram and Fg·c ex-
hibit pronounced peaks, with the majority of artworks concentrated in only 1-3 clusters, creating
highly uneven cluster sizes. An initial examination of these dominant clusters shows artworks that
appear stylistically similar. However, sub-clustering analysis reveals finer-grained stylistic distinc-
tions.

For instance, when we apply sub-clustering to the largest cluster in the WikiArt-AM dataset us-
ing the FGram representation (Figure 30), the seemingly homogeneous style cluster decomposes
into multiple distinct stylistic subclusters. This decomposition demonstrates that high correlations
within representations, such as FGram, initially mask the underlying stylistic diversity, confirming
the presence of hierarchical style structures.

H.2 HIERARCHICAL CLUSTERING REVEALS MULTI-LEVEL STYLE ORGANIZATION

We applied hierarchical clustering to the WikiArt dataset using FStyleCAP representations for both
art movement and artist-based style definitions (Figures 31 and 32). The resulting dendrograms
clearly illustrate hierarchical style relationships at multiple granularity levels.

H.2.1 ART MOVEMENT HIERARCHY

At the highest hierarchical level, art movements with similar stylistic foundations cluster together.
For example, Minimalism and Color Field Painting initially group due to their shared abstract char-
acteristics. As we traverse down the hierarchy, these movements separate into distinct clusters,
reflecting nuanced differences in their abstract styles. Similarly, Pointillism, High Renaissance, and
Northern Renaissance initially cluster together based on their common focus on realistic subject
matter. At deeper hierarchical levels, Pointillism separates first due to its distinctive pointillist tech-
nique, while High Renaissance and Northern Renaissance eventually split, revealing subtle stylistic
differences between these Renaissance movements.

H.2.2 ARTIST-LEVEL HIERARCHY

The hierarchical structure extends to individual artists (Figure 32). At the top level, abstract and
cubist artists—Pablo Picasso, Juan Gris, and Georges Braque—form one cluster, while realist and
symbolist artists like John French Sloan and Nicholas Roerich form another, clearly distinguishing
abstract from representational styles. Deeper in the hierarchy, even artists within the same movement
separate into distinct clusters. For instance, despite both being prominent cubist artists, Juan Gris
and Pablo Picasso ultimately occupy different clusters, reflecting their individual interpretations and
techniques within the cubist movement.

These hierarchical patterns demonstrate that artistic styles exist at multiple levels of abstraction,
from broad categorical distinctions to subtle individual variations, providing a rich framework for
understanding stylistic relationships in artwork datasets.
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(a) Complete dendrogram for the WikiArt dataset

(b) Sample Art Movement distribution dendrogram

(c) Sample Artworks from each level of the hierarchy based on Art Movement categorization

Figure 31: Hierarchical distribution of Art Movements in the WikiArt dataset. We showcase the sam-
ple art movement-wise artworks distribution dendrogram in (b) and the respective sample artworks
in (c). The dendrogram is obtained with 27 art movements with the FStyleCap features. We display
the top 5 art movements. We observe that the WikiArt dataset contains hierarchies showcasing a
higher level of similarity between art movements at the top of the hierarchy. The art movements get
separated into distinct clusters when we move down the hierarchy.
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(a) Complete dendrogram for the WikiArt dataset

(b) Sample Artist distribution Dendrogram

(c) Sample Artworks from each level of the hierarchy based on Artist categorization

Figure 32: Hierarchical distribution of Artists in the WikiArt dataset. We showcase the sample artist-
wise distribution dendrogram in (b) and the respective sample artworks in (c). The dendrogram is
obtained with 765 artists with the FStyleCap features. We display the top 5 artists in this dataset
based on the number of artworks. We observe a hierarchical trend similar to the art movements
distribution. The artists with similar styles are grouped at the top of the hierarchy, whereas the
artists get separated into different clusters when we move down the hierarchy.
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