
000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 SOLVING THE TRAVELING SALESMAN PROBLEM WITH POSITIONAL ENCODING

Anonymous authors

Paper under double-blind review

ABSTRACT

We propose transformer-based neural solvers for the Euclidean Traveling Salesman Problem (TSP) that rely on positional encodings rather than coordinate projections. By adapting ALiBi and RoPE, modern positional encodings originally developed for large language models, to the Euclidean setting, our **Positional Encoding-based Neural Solvers (PENS)** inherit useful invariances and locality biases. To address the increased density of large instances, we introduce a simple yet effective rescaling of city coordinates that further boosts performance. Trained only on TSP-100, PENS achieves **state-of-the-art results for instances with up to 10 000 cities**, a scale that was previously dominated by methods requiring graph sparsification. These findings demonstrate that positional encodings provide effective inductive biases for neural combinatorial optimization.

1 INTRODUCTION

Generalizing to large-scale Euclidean Traveling Salesman Problem (TSP) instances remains a challenge for current neural combinatorial optimization (NCO) solvers. To cope with this difficulty, recent methods sparsify the input graph and restrict the decision-making to each node’s nearest neighbors. While effective, this departs from the original goal of NCO: learning heuristics without hard-coded structures. Ideally, a strong solver should rely on minimal priors about the problem, giving the neural network the flexibility to learn powerful heuristics.

Most NCO solvers adopt a transformer architecture and begin by projecting raw city coordinates into the hidden dimension of the model. This mirrors how early positional encoding was done in transformers.

Motivated by this observation, we explore the benefits of recent positional encoding methods, namely ALiBi (Press et al., 2022) and RoPE (Su et al., 2024), as a means for the model to better capture spatial relationships between cities. While these methods were developed for large language models initially, we demonstrate that incorporating these encodings yields consistent improvements over coordinate-based baselines, on both small- and large-scale instances. We refer to our approach as **Positional Encoding-based Neural Solvers (PENS)**.

Large-scale instances also present a challenge due to the dense spatial distribution of cities in the unit square, making them difficult for neural solvers to distinguish (Fang et al., 2024). We show that applying a simple rescaling of the city coordinates, that is, stretching the input space by an appropriate factor, substantially improves model performance. On instances with 10 000 cities, this adjustment alone divides the optimality gap by two. When combined with ALiBi positional encoding, it enables our pure transformer model to outperform the state-of-the-art sparsification-based neural solver on large-scale TSP instances.

In summary, our key contributions are as follows.

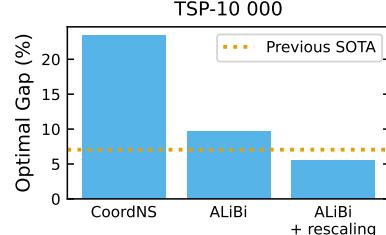


Figure 1: On TSP-10 000, PENS-A (our ALiBi-based solver) outperforms both our coordinate baseline and the previous state of the art, while requiring no input sparsification.

054 1. We introduce modern positional encoding methods, inspired by recent advances in Natural
055 Language Processing (NLP), to represent TSP inputs within transformer-based neural
056 solvers.
057

058 2. We demonstrate that stretching the input space through coordinate rescaling significantly
059 improves solver performance on large-scale instances.
060

061 3. We achieve state-of-the-art results on both small and large TSP instances, without relying
062 on sparsification or handcrafted heuristics.
063

064

065 The paper is organized as follows. Section 2 reviews related work, Section 3 provides background
066 on the TSP and positional encodings, and Section 4 introduces our approach with ALiBi, RoPE, and
067 coordinate rescaling. Section 5 reports results and ablations, and Section 6 concludes.
068

070 2 RELATED WORK

071 Neural approaches to the TSP began with Vinyals et al. (2015), who introduced Pointer Networks
072 trained in a supervised fashion on optimal tours. Kool et al. (2019) later combined the same architecture
073 with reinforcement learning, achieving an average 4.53% gap on TSP-100 instances. Joshi et al. (2022)
074 emphasized the importance of problem-size generalization, while Fang et al. (2024) highlighted interference
075 from irrelevant nodes and embedding aliasing, which hinder scalability to larger TSPs.
076

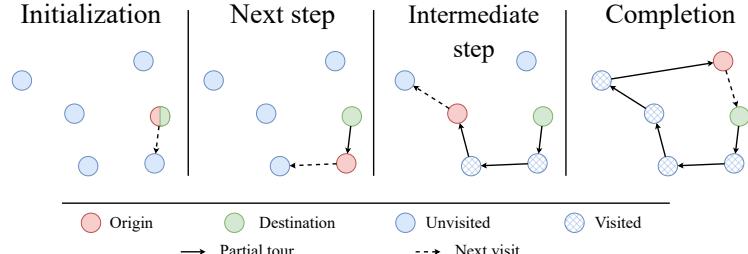
077 While the TSP is defined on a **complete graph**, a common strategy is to sparsify the input to facilitate
078 training and inference (Fu et al., 2021; Qiu et al., 2022; Sun & Yang, 2023). Approaches include
079 local/global policies (Gao et al., 2024; Fang et al., 2024) and anchor compression (Wen et al., 2025).
080 While sparsification helps at large scales, it is problem-specific and may degrade performance on
081 smaller instances. For instance, Zhou et al. (2025) showed that the optimal number of neighbors
082 depends on instance size. Motivated by these findings, we focus on neural solvers for complete TSP
083 graphs. Prior work in this setting includes Drakulic et al. (2023) and Luo et al. (2023), who train
084 transformers to construct tours step by step, with Drakulic et al. (2023) solving the path-TSP to enforce
085 invariance to past decisions. We advance this line of work by introducing positional encodings
086 as the input mechanism.
087

088 Because all cities are interconnected, **self-attention** naturally fits the TSP representation. Several
089 works adapt attention to bias local interactions: Jin et al. (2023); Gao et al. (2024); Wang et al.
090 (2025) add distance-dependent terms to the last attention layer, while Xiao et al. (2025a) modulate
091 attention logits based on problem size. The latter closely resembles concurrent developments in
092 NLP (Nakanishi, 2025).

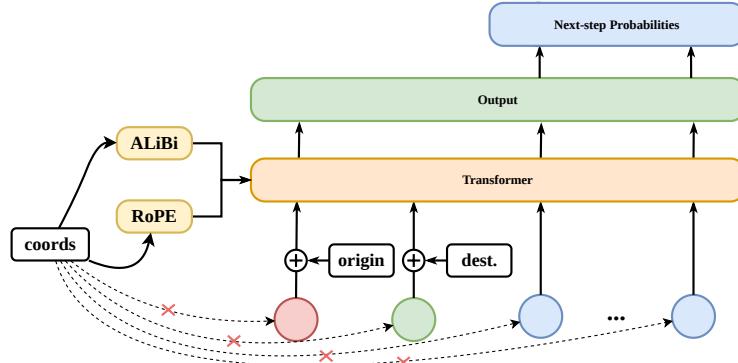
093 Transformers require **positional encodings** to perceive input order. Since Vaswani et al. (2017),
094 many alternatives have been proposed. In particular, ALiBi (Press et al., 2022) and RoPE (Su et al.,
095 2024) bias attention logits using relative positions, and have become the standard in large language
096 models such as BLOOM (Le Scao et al., 2022), MPT (Team, 2023), LLaMa (Touvron et al., 2023),
097 and Gemma (Gemma Team, 2024).

098 Finally, the TSP is theoretically **invariant** to translation, rotation, reflection, and rescaling of the
099 input coordinates. Architectures that embed these invariances are known to generalize more effectively.
100 While POMO (Kwon et al., 2020) and Sym-NCO (Kim et al., 2022) enforce invariance
101 implicitly through data augmentation and regularization, and Ouyang et al. (2024) use relative
102 coordinates to capture translation invariance, using the distance matrix offers a representation that is
103 intrinsically invariant. Several works have adopted this input representation (Kwon et al., 2021;
104 Georgiev et al., 2024; Pan et al., 2025). Notably, Kwon et al. (2021) also propose modifying the
105 transformer attention layer to embed the distance matrix, sharing similar motivation to our work.
106 We advance this direction by designing invariant neural solvers through the specific lens of modern
107 positional encodings.

Figure 2: Using Positional Encoding to solve Path-TSP.



(a) **Path-TSP** Illustration on an instance with 6 cities. At each step, the solver extends the partial tour by predicting the next city, after which the origin is updated. The process continues until all cities are visited, and the tour is closed by reaching the destination.



(b) **Model design** Each city is initialized with a random Gaussian embedding, while spatial information is injected through ALiBi or RoPE. Origin and destination are marked with dedicated learnable embeddings. The next city is predicted by scoring each candidate via a dot-product between the origin and the candidate embeddings.

3 BACKGROUND AND MOTIVATION

In this section, we first introduce the traveling salesman problem and known issues of neural solvers when generalizing to larger instances. We then present the original attention operation and the positional encodings used in our method.

3.1 TRAVELING SALESMAN PROBLEM IN NCO

The classical traveling salesman problem (TSP) is defined on a set of N cities $\{\mathbf{x}_i\}_{i=1}^N$ in the 2D Euclidean plane. The goal is to find the shortest cycle that visits all cities exactly once. We represent the coordinates in a matrix $\mathbf{X} \in \mathbb{R}^{N \times 2}$. Random instances are generated by sampling city locations uniformly in the unit square.

Path-TSP Path-TSP (Drakulic et al., 2023) generalizes the TSP by designating an origin and a destination, o and $d \in \{1, \dots, N\}$. The objective is to find the shortest path that visits all cities once, starting at x_o and ending at x_d . The original TSP is recovered when $o = d$. This formulation is particularly well suited to autoregressive neural solvers: each decision step can be expressed as a Path-TSP problem, where the model predicts the next city to visit after the current origin. After each prediction, the origin is updated to the last visited city, and previously visited cities are excluded. See Figure 2a for an illustration.

When scaling to large instances, two challenges arise during inference (Fang et al., 2024): interference from irrelevant nodes and embedding aliasing.

162 **Interference from irrelevant nodes** As the number of cities increases, the self-attention mechanism
 163 (described in Section 3.2) aggregates information over many irrelevant nodes. This dilutes
 164 useful signal and makes the attention distribution less selective, preventing the model from focusing
 165 on informative neighbors.

167 **Embedding aliasing** Because cities are sampled uniformly in the unit square, larger instances lead
 168 to denser configurations. In this regime, city embeddings tend to overlap, making it difficult for the
 169 model to distinguish nearby nodes. Fang et al. (2024) address this issue by introducing multiple
 170 local views, where the input space is rescaled to reduce aliasing.

172 **3.2 ATTENTION AND POSITIONAL ENCODINGS**

174 The transformer is a neural architecture that processes a sequence of N tokens, each represented by
 175 a d -dimensional vector, gathered in a matrix $\mathbf{X} \in \mathbb{R}^{N \times d}$. In natural language processing (NLP), a
 176 token typically corresponds to a subword, and the full sequence of tokens represents an input text.
 177 At each layer, tokens exchange information through the attention mechanism. From \mathbf{X} , queries
 178 $\mathbf{Q} = \mathbf{X}\mathbf{W}_q$, keys $\mathbf{K} = \mathbf{X}\mathbf{W}_k$, and values $\mathbf{V} = \mathbf{X}\mathbf{W}_v$ are generated, where \mathbf{W}_q , \mathbf{W}_k , and \mathbf{W}_v are
 179 learnable projection matrices. The original self-attention operation (Vaswani et al., 2017) is defined
 180 as

$$181 \text{Attention}(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = \text{softmax}\left(\frac{\mathbf{Q}\mathbf{K}^\top}{\sqrt{d}}\right)\mathbf{V}.$$

183 The matrix $\mathbf{Q}\mathbf{K}^\top$ contains the attention logits that determine how information is shared between
 184 tokens.

186 **ALiBi** The transformer by default treats the tokens \mathbf{X} as an unordered set. However, when tokens
 187 correspond to elements of a sequence, their order must be incorporated for meaningful processing.
 188 ALiBi (Press et al., 2022) is a positional encoding method that integrates token positions directly
 189 into the attention computation by adding a distance-dependent bias to the attention logits:

$$191 \text{Attention}(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = \text{softmax}\left(\frac{\mathbf{Q}\mathbf{K}^\top}{\sqrt{d}} - m\mathbf{D}\right)\mathbf{V},$$

194 where \mathbf{D} is the pairwise distance between token positions in the input sequence and $m > 0$ is
 195 a slope parameter. This formulation not only provides positional information, but also biases the
 196 model toward attending more strongly to nearby tokens, as the attention scores decay linearly with
 197 distance.

198 **RoPE** RoPE (Su et al., 2024) is another positional encoding method based on relative positions.
 199 Instead of adding a bias to the attention logits, RoPE applies a rotation to queries and keys that
 200 depends on their position in the sequence. For a vector $\mathbf{x} \in \mathbb{R}^d$ at position p , RoPE applies a block-
 201 diagonal rotation matrix $\mathbf{R}^d(\Theta, p)$ composed of two-dimensional rotations applied to the $d/2$ pairs,
 202 with frequencies $\Theta = (\theta_i)_{i=1}^{d/2}$:

$$204 \text{RoPE}(\mathbf{x}, p) = \mathbf{R}^d(\Theta, p)\mathbf{x}.$$

206 Under this encoding, the attention logit between a query at position p and a key at position n becomes

$$209 \mathbf{q}_p^\top \mathbf{k}_n = (\mathbf{R}^d(\Theta, p)\mathbf{W}_q \mathbf{x}_p)^\top (\mathbf{R}^d(\Theta, n)\mathbf{W}_k \mathbf{x}_n) \\ 210 = \mathbf{x}_p^\top \mathbf{W}_q^\top \mathbf{R}^d(\Theta, n - p)\mathbf{W}_k \mathbf{x}_n.$$

213 Thus, the logits depend only on the relative offset $n - p$, making RoPE a relative positional en-
 214 coding. The rotation frequencies Θ are fixed in advance and are not learned. Intuitively, positions
 215 are converted into rotation phases, so relative distances between tokens correspond to relative phase
 shifts in their embeddings.

216 **Axial-RoPE** Axial-RoPE (Heo et al., 2024) extends RoPE to two-dimensional inputs such as images, where each token has coordinates (x, y) . Queries and keys are split into two halves: the first half is rotated according to the x -coordinate and the second half according to the y -coordinate. The resulting vectors are then concatenated back together. This design allows RoPE to encode relative positions along both axes independently.

221

4 METHOD

224 We now explain how we use ALiBi (Press et al., 2022) and RoPE (Su et al., 2024; Heo et al., 2024) inside the transformer to solve the TSP. We call our neural solvers **Positional Encoding-based**
225 **Neural Solvers (PENS)**.

228

4.1 INPUT PERCEPTION WITH ALIBI AND RoPE

230 Most NCO solvers, such as BQ-NCO (Drakulic et al., 2023), begin by projecting the N city coordinates $\mathbf{X} \in \mathbb{R}^{N \times 2}$ into the hidden dimension d of the transformer using a learnable linear transformation $\mathbf{W} \in \mathbb{R}^{2 \times d}$. The initial node embeddings are thus given by \mathbf{XW} .

233 In contrast, we do not provide raw coordinates directly to the model. Each city is first assigned
234 a random Gaussian embedding $\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_d)$, and its spatial information is injected exclusively
235 through positional encodings. Specifically, we adapt ALiBi (Press et al., 2022) and RoPE (Su et al.,
236 2024; Heo et al., 2024) to operate on city distances and coordinates, respectively. This design choice
237 removes the reliance on coordinate projection and allows us to exploit the inductive biases of these
238 positional encoding schemes.

239 This approach offers several advantages:

241

- 242 • **ALiBi** biases attention according to pairwise city distances, promoting invariance to trans-
243 lations, rotations, and symmetries while improving generalization to larger TSP instances.
- 244 • **RoPE** encodes both the magnitude and orientation of relative displacements, ensuring
245 translation invariance and providing richer positional features than coordinate projection
246 alone.

247 **ALiBi** In the standard transformer, ALiBi introduces a linear bias proportional to the relative index
248 distance between tokens. We adapt this idea by replacing index distance with the Euclidean distance
249 between cities. Concretely, we construct the distance matrix $\mathbf{D} \in \mathbb{R}^{N \times N}$ with entries $d_{ij} = \|\mathbf{x}_i -$
250 $\mathbf{x}_j\|_2$. The ALiBi bias is then applied so that attention between two cities decreases as their distance
251 grows. This mechanism softly encourages information to propagate locally.

252 Each attention head uses a different slope parameter m_h , defined as

253
$$m_h = \frac{10}{\sqrt{2^h}}, \quad \forall h \in \{0, \dots, n_{\text{heads}} - 1\}.$$

256 Larger slopes correspond to heads focusing on short-range interactions, while smaller slopes allow
257 long-range information flow. Because the bias depends only on pairwise distances, which are in-
258 variant to translations, rotations, and reflections, the resulting solver is natively invariant to these
259 transformations.

261 **RoPE** To adapt RoPE to two-dimensional city coordinates, we use the axial formulation (Hao
262 et al., 2024): the first half of each query and key vectors are rotated by the x -coordinate, and the
263 second half by the y -coordinate. The rotation frequencies follow Heo et al. (2024) and are defined
264 for the unit square as

265
$$\theta_i = 14 \cdot 100^{-i/(d/4)}, \quad \forall i \in \{0, \dots, d/4 - 1\}.$$

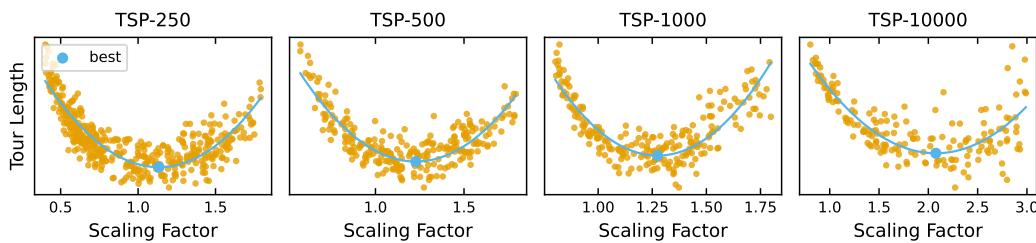
266 This encoding is strictly translation-invariant, since shifting all coordinates by the same vector
267 does not affect the angular relations between cities. Unlike ALiBi, which only modulates atten-
268 tion strength based on distances, RoPE preserves both the magnitude and orientation of relative

270 displacements between cities. As a result, it provides a more expressive representation of spatial
 271 relations, though without invariance to rotations or reflections. For simplicity, we refer to this axial
 272 formulation as RoPE throughout the paper.

274 4.2 STRETCHING THE INPUT SPACE

275
 276 As mentioned in Section 3.1, embedding aliasing (Fang et al., 2024) occurs when city coordinates
 277 become densely distributed, making them difficult for a neural solver to distinguish. To mitigate
 278 this effect, we apply a uniform multiplicative scaling factor to the coordinates before passing them
 279 to the model. This rescaling reduces the chance that distinct cities are mapped to nearly identical
 280 embeddings, which can happen when cities cluster too closely. By spreading them apart, the
 281 model’s attention operates in a regime where small coordinate differences are more distinguishable,
 282 improving the solver’s ability to learn meaningful spatial relations.

283 We evaluate the impact of the scaling factor by solving random TSP instances across a range of scaling
 284 values. The results, summarized in Figure 3, show that solution quality improves as the scaling
 285 factor increases, up to a point of diminishing returns. To approximate the best scaling factor, we fit
 286 a quadratic curve to the experimental results and compute its minimum. This procedure is applied
 287 independently for each trained neural solver. Importantly, the scaling factor is tuned exclusively on
 288 held-out random instances, never on the benchmark instances used for final evaluation.



290
 291 Figure 3: Performance of PENS-A, our ALiBi-based solver, when rescaling city coordinates on
 292 random TSP instances of varying sizes. Each scatter point reports the average tour length (measured
 293 on the original coordinate scale) for a given scaling factor. A quadratic curve is fitted to the results for
 294 each TSP size to estimate the optimal scaling factor. The estimated optimal scaling factor increases
 295 with the size of the instances.

304 4.3 ARCHITECTURE

305 Our solver follows a standard transformer backbone (Zhang & Sennrich, 2019; Xiong et al., 2020),
 306 enhanced with Scalable-Softmax (SSMax) (Nakanishi, 2025; Xiao et al., 2025a), which has been
 307 shown to improve generalization across problem sizes (Xiao et al., 2025a). Within the self-attention
 308 layers, spatial information is incorporated using either ALiBi or Axial-RoPE, as described in Sec-
 309 tion 4.1.

310 Each city is initialized with a random Gaussian embedding $\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_d)$. In addition, we introduce
 311 two learnable vectors $\mathbf{e}_o, \mathbf{e}_d \in \mathbb{R}^d$ that represent the origin and destination. These vectors are added
 312 to the initial embeddings of the corresponding cities, providing explicit markers for the start and end
 313 of the tour.

314 At decoding time, the next city is predicted by scoring the compatibility between the hidden repre-
 315 sentation of the current origin and each remaining candidate. Let $\mathbf{x}_o^{(L)} \in \mathbb{R}^d$ denote the final hidden
 316 state of the current origin after L layers, and let $\mathbf{X}_c^{(L)} \in \mathbb{R}^{N_c \times d}$ be the states of the N_c remaining
 317 cities. Output logits are computed as

$$318 \quad (\mathbf{x}_o^{(L)} \mathbf{W}_q) (\mathbf{X}_c^{(L)} \mathbf{W}_k)^\top = \mathbf{q}_o \mathbf{K}_c^\top \in \mathbb{R}^{N_c},$$

319 where $\mathbf{W}_q, \mathbf{W}_k \in \mathbb{R}^{d \times d}$ are learnable matrices, $\mathbf{q}_o = \mathbf{x}_o^{(L)} \mathbf{W}_q$, and $\mathbf{K}_c = \mathbf{X}_c^{(L)} \mathbf{W}_k$. This final step
 320 does not use positional encodings or SSMax, keeping the output layer lightweight and focused on
 321 city-to-city compatibility.

324 An overview of the model is shown in Figure 2b, and more details are provided in Appendix A.3.
325

326

327 5 RESULTS

328

329 We now present our main findings. We first describe the training setup, evaluation metrics, and the
330 state-of-the-art baselines used for comparison. We then report results on both synthetic and real
331 benchmarks, and conduct ablation studies to assess the impact of individual design choices.

332

333 5.1 EXPERIMENTAL SETUP

334

335 **Models** We train three model variants that differ in their positional encoding strategy: one using
336 ALiBi, one using RoPE, and one combining both, which we denote as **PENS-A**, **PENS-R**, and
337 **PENS-AR**, respectively. All models follow the hyperparameters of BQ-NCO (Drakulic et al., 2023):
338 they consist of 9 transformer layers with a hidden dimension of 192, a feedforward dimension of 512,
339 and 12 attention heads. Each model has a total of 2.8M learnable parameters. For comparison, we
340 also train an additional baseline, **CoordNS** (Coordinates-based Neural Solver), that directly projects
341 the raw city coordinates without any additional positional encoding mechanism.

342 **Training setup** All models are trained on random uniform TSP-100 instances. For each instance
343 in a batch, we randomly select an origin-destination pair from its optimal tour, which defines a
344 path-TSP problem. Solvers are trained to predict the next city to visit immediately after the origin.
345 Training labels are obtained from optimal solutions computed with Concorde (Applegate et al.,
346 2006).

347 We use the AdamW optimizer for 1M training steps with a batch size of 1024, using a cosine
348 annealing learning rate schedule that decays from 10^{-4} to 10^{-5} . Each model requires three days of
349 training on a single NVIDIA RTX5090 GPU.

350 **Evaluation** We evaluate all methods on both randomly generated TSPs and TSPLIB (Reinelt,
351 1995), with problems ranging from 100 up to 10 000 cities. Optimal solutions are obtained with
352 Concorde (Applegate et al., 2006), except for TSP-10 000, where we limit Concorde to six hours
353 per instance.

354 We measure performance using the (near-)optimality gap, defined as:

355

$$\text{gap} = \frac{c_{\text{model}} - c_{\text{conc}}}{c_{\text{conc}}},$$

356

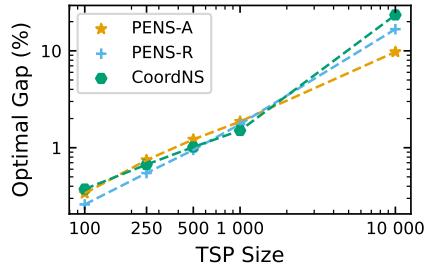
357 where c_{model} and c_{conc} are the solution costs produced by the model and Concorde, respectively.
358 Solutions are generated autoregressively. Because the decoding strategy strongly influences the
359 final quality (François et al., 2019; Xia et al., 2024), we adopt greedy decoding: we select the most
360 probable city at each step, without any additional search process. To reduce variance, each instance
361 is solved five times and we report the average gap. We also report the total runtime across all
362 instances, using a batch size of 1.

363 **Baselines** We compare our models against state-of-the-art neural TSP solvers covering different
364 problem scales. We include LEHD (Luo et al., 2023) and BQ-NCO (Drakulic et al., 2023), which
365 operate on the complete graph and represent the state of the art for instances with up to 1000 cities.
366 For larger instances, we evaluate INViT (Fang et al., 2024) and DGL (Xiao et al., 2025b), which
367 sparsify the input graph and are the current state of the art on problems with 10 000 cities. For
368 INViT, we consider both reported variants, INViT-2V and INViT-3V, which use two and three local
369 views during inference, respectively. In addition, we evaluate BQ-NCO enhanced with the Entropy-
370 Scaling Factor (ESF) (Xiao et al., 2025a), which has been shown to improve its performance on
371 large-scale problems.

372 All baselines solvers are autoregressive, like ours. For fairness, we evaluate them under greedy
373 decoding, ensuring that comparisons isolate model architecture rather than decoding strategy.

378
379
380
381
382
383
384
385
386
387

Model	Uniform TSP				
	100	250	500	1000	10 000
CoordNS	0.37	0.67	1.05	1.51	23.47
PENS-A	0.34	0.75	1.22	1.86	9.74
PENS-R	0.26	0.55	0.95	1.75	16.73



388
389
390
391
Figure 4: We compare PENS-A (using ALiBi), PENS-R (using RoPE) and CoordNS that directly
uses the cities coordinates. PENS-R is the best at small-scale while PENS-A clearly leads at large-
scale instances. We conclude that RoPE provides rich positional features while ALiBi prevents
large-scale collapse.

5.2 RESULTS

392
393
394
PE effectiveness We first compare PENS-A and PENS-R against CoordNS, our baseline projecting
395 the raw city coordinates. Our results in Figure 4 indicate that RoPE is most effective on small-
396 scale problems, while ALiBi dramatically improves large-scale generalization. PENS-A leverages
397 the invariances and local bias introduced by ALiBi, yielding robustness when the self-attention
398 mechanism involves thousands of cities. Conversely, the fact that PENS-R leads on small-scale sug-
399 gests that RoPE offers rich features that are easier for the solver to exploit, but lacks a mechanism to
400 maintain performance as the problem size grows. Thus, RoPE contributes richer positional features,
401 whereas ALiBi offers a more robust mechanism for large-scale generalization.

Model	Uniform TSP									
	100		250		500		1000		10 000	
	gap	factor	gap	factor	gap	factor	gap	factor	gap	factor
PENS-A	0.34	-	0.75	-	1.22	-	1.86	-	9.74	-
	0.36	1.01	0.71	1.13	1.14	1.23	1.68	1.27	5.46	2.08
PENS-R	0.26	-	0.55	-	0.95	-	1.75	-	16.73	-
	0.27	1.00	0.53	1.03	0.88	1.08	1.52	1.15	11.86	1.24

412
413
414
415
Table 1: Optimality gap (in %) for multiple TSP sizes, comparing the original scale (factor 1.00)
against the best estimated scaling factor. Gaps are computed with respect to the original coordinate
scale. Rescaling has little effect on small instances, but substantially improves performance on larger
ones.

416
417
Rescaling the input As mentioned in Section 3.1, embedding aliasing (Fang et al., 2024) occurs
418 when city coordinates become too densely distributed, making them difficult for the model to distin-
419 guish. To mitigate this effect, we apply a uniform scaling factor to the coordinates before providing
420 them to the neural solver. This simple adjustment yields a marked improvement on large instances:
421 for example, PENS-A on TSP-10 000 reduces its optimality gap from 9.47% to 5.46%, a nearly
422 twofold gain that establishes it as the state-of-the-art solver at this scale (see Table 2). At smaller
423 sizes (fewer than 1000 cities), the impact of rescaling is marginal. The complete results are provided
424 in Table 3 in the Appendix.

425
426
Main results Our evaluations on uniform TSPs and TSPLIB are reported in Table 2. From a
427 quality standpoint, PENS-R achieves state-of-the-art results on instances with less than 1 000 cities,
428 while PENS-A dominates on instances with 10 000 cities. Notably, PENS-A outperforms INViT-
429 3V (Fang et al., 2024), the strongest sparsity-based solver previously reported on TSP-10 000. In
430 terms of efficiency, RoPE only introduces an additional $O(N)$ overhead, whereas ALiBi requires
431 an additional $O(N^2)$ term. We note, however, that RoPE currently benefits from optimized flash-
attention implementations (Dao et al., 2022; Dao, 2024), similar optimizations could also be applied

432 to ALiBi. Finally, while PENS-A and PENS-R each specialize at different scales, their combination,
 433 PENS-AR, yields consistently strong performance across all scales, as shown in Table 2.
 434

Model	Uniform TSP										TSPLIB					
	100		250		500		1000		10 000		1~100		101~1000		1001 ~ 10 000	
gap	time	gap	time	gap	time	gap	time	gap	time	gap	time	gap	time	gap	time	gap
BQ-NCO	0.31	0.6m	0.67	1.5m	1.17	3.8m	2.19	13m	19.94	245m	0.48	0.1m	2.80	0.6m	11.31	27m
BQ-NCO + ESF	0.34	0.6m	0.67	1.6m	1.04	4.0m	1.71	14m	15.12	322m	0.50	0.1m	2.76	0.6m	8.49	29m
LEHD	0.49	0.4m	0.95	1.0m	1.63	2.0m	3.06	4m	28.85	53m	0.61	0.1m	3.14	0.4m	12.34	5m
INVIT-2V	4.92	0.9m	5.98	2.3m	6.45	4.8m	6.69	10m	7.08	20m	6.04	0.1m	8.63	0.8m	10.88	6m
INVIT-3V	4.85	1.0m	5.92	2.8m	6.30	5.9m	6.76	13m	7.05	25m	4.91	0.1m	9.07	0.9m	12.33	7m
DGL	2.19	0.5m	3.37	1.2m	4.72	2.3m	5.74	5m	7.81	4m	2.60	0.1m	7.33	0.4m	9.44	2m
PENS-A	0.34	1.4m	0.75	3.7m	1.22	7.6m	1.68	15m	5.46	69m	0.52	0.1m	3.32	1.3m	6.64	8m
PENS-R	0.26	1.8m	0.55	4.6m	0.95	9.3m	1.52	19m	11.86	18m	0.39	0.1m	2.89	1.6m	8.14	8m
PENS-AR	0.20	1.9m	0.46	4.9m	0.94	9.8m	1.50	20m	7.13	81m	0.34	0.1m	3.14	1.6m	5.51	11m

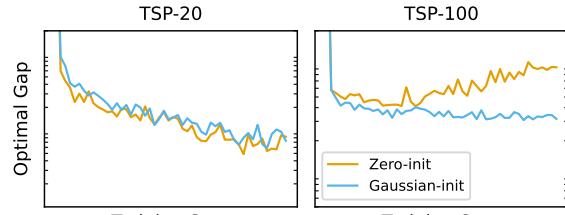
444 Table 2: Comparison with state-of-the-art neural solvers. All models are evaluated on the same set
 445 of instances using greedy decoding. For instances with more than 1000 cities, our models use their
 446 best estimated scaling factors. We show both the optimal gap (in %) and the total time required
 447 to solve the instances. BQ-NCO (Drakulic et al., 2023), BQ-NCO + ESF (Xiao et al., 2025a) and
 448 LEHD (Luo et al., 2023) are solvers that do not sparsify the input graph while INVIT-2V, INVIT-
 449 3V (Fang et al., 2024) and DGL (Xiao et al., 2025b) do sparsify. Sparsification reduces performance
 450 on small instances but improves scalability to large ones. PENS-A, based on ALiBi, achieves state-
 451 of-the-art results on TSP-10 000 without sparsification. Combining ALiBi and RoPE, PENS-AR
 452 attains state-of-the-art performance across nearly all benchmarks.

453
 454 **Gaussian embeddings initialization** We assess the impact of initializing city embeddings with
 455 random Gaussian vectors against zero vectors. To this end, we train small versions of PENS-A and
 456 PENS-R on TSP-20 and evaluate them on TSP-20, TSP-50, and TSP-100.

457 Figure 5: Performance comparison between zero initialization and Gaussian initialization.

Model	Uniform TSP		
	20	50	100
PENS-A			
Zero-init	0.096	1.629	4.996
Gaussian-init	0.178	1.649	4.282
PENS-R			
Zero-init	0.070	1.600	9.896
Gaussian-init	0.068	1.163	3.459

468 (a) Final optimality gaps (in %) on TSP-
 469 20/50/100. Gaussian embeddings improves
 470 large-scale performance.



471 (b) Training curves for PENS-R on TSP-20, evaluated on
 472 both TSP-20 and TSP-100. The zero-initialized variant
 473 quickly overfits to the training scale (TSP-20).

474 The results, summarized in Table 5a, indicate that Gaussian initialization does not affect perfor-
 475 mance on TSP-20, the training problem size. However, it significantly improves generalization to
 476 larger instances, particularly for PENS-R. Figure 5b further illustrates this effect: the zero-initialized
 477 variant quickly overfits to TSP-20, whereas Gaussian embeddings maintain progress across problem
 478 sizes.

479 We hypothesize that the stochasticity introduced by Gaussian embeddings promote the learning of
 480 simpler heuristics that transfer more effectively to larger instances.

481 6 CONCLUSION AND FUTURE WORK

482 We have proposed the use of modern positional encodings to enhance the capacity of neural TSP
 483 solvers and demonstrated the importance of rescaling city coordinates to improve distinguishability
 484 on large-scale instances. Combined, our Positional Encoding-based Neural Solvers (PENS) achieve
 485 state-of-the-art performance across a wide range of problem sizes. Importantly, our solvers operate

486 directly on the raw representation of the problem, avoiding the need for input sparsification, which
487 risks oversimplifying the problem.
488

489 While these solvers are effective, they currently require a full forward pass at each decoding step,
490 which can limit efficiency. Future work includes exploring ways to cache or reuse intermediate
491 computations, similar to key-value caching in language models (Kwon et al., 2023), to accelerate
492 decoding. It would also be interesting to extend ALiBi-based solvers to problems defined solely
493 by a cost matrix, such as the asymmetric TSP, and to learn ALiBi slopes and RoPE angles in an
494 end-to-end manner to further improve performance.
495

496 **Reproducibility statement** The code, data and models are fully released at the provided URL
497 (temporarily as supplementary materials during the review process). Implementation details are
498 described in Section 5.1 and in Appendix A.3. To ensure reproducibility, the code is distributed with
499 pinned dependencies, and the README includes the commands to generate data, train models and
500 run evaluations. We also provide code to reproduce the baseline results from previous works.
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

540 REFERENCES
541

542 David Applegate, Robert Bixby, Vasek Chvatal, and William Cook. Concorde TSP Solver, 2006.
543 URL <https://www.math.uwaterloo.ca/tsp/concorde.html>.

544 Tri Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning. In *Inter-
545 national Conference on Learning Representations (ICLR)*, 2024.

546 Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. FlashAttention: Fast and
547 memory-efficient exact attention with IO-awareness. In *Advances in Neural Information Process-
548 ing Systems (NeurIPS)*, 2022.

549 Darko Drakulic, Sofia Michel, Florian Mai, Arnaud Sors, and Jean-Marc Andreoli. Bq-
550 nco: Bisimulation quotienting for efficient neural combinatorial optimization. In A. Oh,
551 T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), *Advances in
552 Neural Information Processing Systems*, volume 36, pp. 77416–77429. Curran Associates,
553 Inc., 2023. URL https://papers.nips.cc/paper_files/paper/2023/hash/f445ba15f0f05c26e1d24f908ea78d60-Abstract-Conference.html.

554 Han Fang, Zhihao Song, Paul Weng, and Yutong Ban. INViT: A generalizable routing problem
555 solver with invariant nested view transformer. In Ruslan Salakhutdinov, Zico Kolter, Katherine
556 Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), *Pro-
557 ceedings of the 41st International Conference on Machine Learning*, volume 235 of *Pro-
558 ceedings of Machine Learning Research*, pp. 12973–12992. PMLR, 21–27 Jul 2024. URL <https://proceedings.mlr.press/v235/fang24c.html>.

559 Antoine François, Quentin Cappart, and Louis-Martin Rousseau. How to evaluate machine learning
560 approaches for combinatorial optimization: Application to the travelling salesman problem, 2019.

561 Zhang-Hua Fu, Kai-Bin Qiu, and Hongyuan Zha. Generalize a small pre-trained model to arbitrarily
562 large tsp instances. *Proceedings of the AAAI Conference on Artificial Intelligence*, 35(8):7474–
563 7482, May 2021. ISSN 2159-5399. doi: 10.1609/aaai.v35i8.16916. URL <https://doi.org/10.1609/aaai.v35i8.16916>.

564 Chengrui Gao, Haopu Shang, Ke Xue, Dong Li, and Chao Qian. Towards generalizable neural
565 solvers for vehicle routing problems via ensemble with transferrable local policy. In *Proceed-
566 ings of the Thirty-Third International Joint Conference on Artificial Intelligence*, IJCAI-2024, pp.
567 6914–6922. International Joint Conferences on Artificial Intelligence Organization, August 2024.
568 doi: 10.24963/ijcai.2024/764. URL <https://www.ijcai.org/proceedings/2024/764>.

569 Gemma Team. Gemma: Open models based on gemini research and technology, 2024.

570 Dobrik Georgiev Georgiev, Danilo Numeroso, Davide Bacci, and Pietro Lio. Neural algorithmic
571 reasoning for combinatorial optimisation. In Soledad Villar and Benjamin Chamberlain
572 (eds.), *Proceedings of the Second Learning on Graphs Conference*, volume 231 of *Proceed-
573 ings of Machine Learning Research*, pp. 28:1–28:15. PMLR, 27–30 Nov 2024. URL <https://proceedings.mlr.press/v231/georgiev24a.html>.

574 Jianye Hao, Tianpei Yang, Hongyao Tang, Chenjia Bai, Jinyi Liu, Zhaopeng Meng, Peng Liu, and
575 Zhen Wang. Exploration in deep reinforcement learning: From single-agent to multiagent do-
576 main. *IEEE Transactions on Neural Networks and Learning Systems*, 35(7):8762–8782, July
577 2024. ISSN 2162-2388. doi: 10.1109/tnnls.2023.3236361. URL <https://ieeexplore.ieee.org/abstract/document/10021988>.

578 Byeongho Heo, Song Park, Dongyoon Han, and Sangdoo Yun. *Rotary Position Embedding for
579 Vision Transformer*, pp. 289–305. Springer Nature Switzerland, 11 2024. doi: 10.1007/978-3-031-72684-2_17.

580 Yan Jin, Yuandong Ding, Xuanhao Pan, Kun He, Li Zhao, Tao Qin, Lei Song, and Jiang Bian. Point-
581 erformer: Deep reinforced multi-pointer transformer for the traveling salesman problem. *Pro-
582 ceedings of the AAAI Conference on Artificial Intelligence*, 37(7):8132–8140, June 2023. ISSN
583 2159-5399. doi: 10.1609/aaai.v37i7.25982.

594 Chaitanya K. Joshi, Quentin Cappart, Louis-Martin Rousseau, and Thomas Laurent. Learning the
595 travelling salesperson problem requires rethinking generalization. *Constraints*, 27(1–2):70–98,
596 April 2022. ISSN 1572-9354. doi: 10.1007/s10601-022-09327-y. URL <https://link.springer.com/article/10.1007/s10601-022-09327-y>.

597

598 Minsu Kim, Junyoung Park, and Jinkyoo Park. Sym-nco: Leveraging symmetry for neural com-
599 binatorial optimization. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh
600 (eds.), *Advances in Neural Information Processing Systems*, volume 35, pp. 1936–1949. Curran
601 Associates, Inc., 2022. URL https://papers.nips.cc/paper_files/paper/2022/hash/0cddb777d3441326544e21b67f41bdc8-Abstract-Conference.html.

602

603

604 Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems! In
605 *International Conference on Learning Representations*, 2019. URL <https://openreview.net/forum?id=ByxBF8RqYm>.

606

607

608 Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
609 Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
610 serving with pagedattention. In *Proceedings of the ACM SIGOPS 29th Symposium on Operating
611 Systems Principles*, 2023.

612

613 Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Se-
614 ungjai Min. Pomo: Policy optimization with multiple optima for reinforcement learn-
615 ing. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Ad-
616 vances in Neural Information Processing Systems*, volume 33, pp. 21188–21198. Curran As-
617 sociates, Inc., 2020. URL <https://proceedings.neurips.cc/paper/2020/hash/f231f2107df69eab0a3862d50018a9b2-Abstract.html>.

618

619 Yeong-Dae Kwon, Jinho Choo, Iljoo Yoon, Minah Park, Duwon Park, and Youngjune Gwon. Ma-
620 trix encoding networks for neural combinatorial optimization. In A. Beygelzimer, Y. Dauphin,
621 P. Liang, and J. Wortman Vaughan (eds.), *Advances in Neural Information Processing Systems*,
622 2021. URL https://openreview.net/forum?id=C__ChZs8WjU.

623

624 Teven Le Scao, Thomas Wang, Daniel Hesslow, Stas Bekman, M Saiful Bari, Stella Bider-
625 man, Hady Elsahar, Niklas Muennighoff, Jason Phang, Ofir Press, Colin Raffel, Victor Sanh,
626 Sheng Shen, Lintang Sutawika, Jaesung Tae, Zheng Xin Yong, Julien Launay, and Iz Belt-
627 agy. What language model to train if you have one million GPU hours? In Yoav Gold-
628 berg, Zornitsa Kozareva, and Yue Zhang (eds.), *Findings of the Association for Computational
629 Linguistics: EMNLP 2022*, pp. 765–782, Abu Dhabi, United Arab Emirates, December 2022.
630 Association for Computational Linguistics. doi: 10.18653/v1/2022.findings-emnlp.54. URL
631 <https://aclanthology.org/2022.findings-emnlp.54/>.

632

633 Fu Luo, Xi Lin, Fei Liu, Qingfu Zhang, and Zhenkun Wang. Neural combinatorial optimization
634 with heavy decoder: Toward large scale generalization. In *Thirty-seventh Conference on Neu-
635 ral Information Processing Systems*, 2023. URL <https://openreview.net/forum?id=RB14oAbdpm>.

636

637 Ken M. Nakanishi. Scalable-softmax is superior for attention, 2025.

638

639 Wenbin Ouyang, Yisen Wang, Paul Weng, and Shaochen Han. Generalization in deep rl for tsp
640 problems via equivariance and local search. *SN Computer Science*, 5(4), March 2024. ISSN
641 2661-8907. doi: 10.1007/s42979-024-02689-5. URL <https://link.springer.com/article/10.1007/s42979-024-02689-5>.

642

643 Wenzheng Pan, Hao Xiong, Jiale Ma, Wentao Zhao, Yang Li, and Junchi Yan. UniCO: On
644 unified combinatorial optimization via problem reduction to matrix-encoded general TSP. In
645 *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=yEwakMNIex>.

646

647 Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and Enrico Shippole. YaRN: Efficient context win-
648 dow extension of large language models. In *The Twelfth International Conference on Learning
649 Representations*, 2024. URL <https://openreview.net/forum?id=wHBfxhZulu>.

648 Ofir Press, Noah Smith, and Mike Lewis. Train short, test long: Attention with linear biases enables
649 input length extrapolation. In *International Conference on Learning Representations*, 2022. URL
650 <https://openreview.net/forum?id=R8sQPpGCv0>.
651

652 Ruizhong Qiu, Zhiqing Sun, and Yiming Yang. Dimes: A differentiable meta
653 solver for combinatorial optimization problems. In S. Koyejo, S. Mohamed,
654 A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neural Infor-*
655 *mation Processing Systems*, volume 35, pp. 25531–25546. Curran Associates, Inc.,
656 2022. URL https://papers.nips.cc/paper_files/paper/2022/hash/a3a7387e49f4de290c23beea2dfcdc75-Abstract-Conference.html.
657

658 Gerhard Reinelt. Tsplib, 1995. URL [http://comopt.ifi.uni-heidelberg.de/](http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/)
659 [software/TSPLIB95/](http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/).
660

661 Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
662 hanced transformer with rotary position embedding. *Neurocomputing*, 568:127063, February
663 2024. ISSN 0925-2312. doi: 10.1016/j.neucom.2023.127063.

664 Yutao Sun, Li Dong, Barun Patra, Shuming Ma, Shaohan Huang, Alon Benhaim, Vishrav Chaud-
665 hary, Xia Song, and Furu Wei. A length-extrapolatable transformer, 2022.

666 Zhiqing Sun and Yiming Yang. DIFUSCO: Graph-based diffusion solvers for combinatorial opti-
667 mization. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL
668 <https://openreview.net/forum?id=JV8Ff01gVV>.
669

670 MosaicML NLP Team. Introducing mpt-7b: A new standard for open-source, commercially usable
671 llms, 2023. URL www.mosaicml.com/blog/mpt-7b.

672 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
673 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
674 mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
675 language models, 2023.

676 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
677 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
678 Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), *Ad-*
679 *vances in Neural Information Processing Systems*, volume 30. Curran Associates, Inc.,
680 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fb053c1c4a845aa-Paper.pdf.

681 Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In *Proceedings of the 29th*
682 *International Conference on Neural Information Processing Systems - Volume 2*, NIPS’15, pp.
683 2692–2700, Cambridge, MA, USA, 2015. MIT Press.

684 Yang Wang, Ya-Hui Jia, Wei-Neng Chen, and Yi Mei. Distance-aware attention reshaping for en-
685 hancing generalization of neural solvers. *IEEE Transactions on Neural Networks and Learning*
686 *Systems*, pp. 1–15, 2025. doi: 10.1109/TNNLS.2025.3588209.

687 Junrui Wen, Yifei Li, Bart Selman, and Kun He. Localescaper: A weakly-supervised framework
688 with regional reconstruction for scalable neural tsp solvers, 2025.

689 Yifan Xia, Xianliang Yang, Zichuan Liu, Zhihao Liu, Lei Song, and Jiang Bian. Position: Re-
690 thinking post-hoc search-based neural approaches for solving large-scale traveling salesman
691 problems. In *Forty-first International Conference on Machine Learning*, 2024. URL <https://openreview.net/forum?id=cEJ9jNJUJP>.

692 Yubin Xiao, Di Wang, Xuan Wu, Yuesong Wu, Boyang Li, Wei Du, Liupu Wang, and You Zhou.
693 Improving generalization of neural vehicle routing problem solvers through the lens of model
694 architecture. *Neural Networks*, 187:107380, July 2025a. ISSN 0893-6080. doi: 10.1016/j.neunet.
695 2025.107380.

702 Yubin Xiao, Yuesong Wu, Rui Cao, Di Wang, Zhiguang Cao, Peng Zhao, Yuanshu Li, You Zhou, and
703 Yuan Jiang. DGL: Dynamic global-local information aggregation for scalable VRP generalization
704 with self-improvement learning. In *Proceedings of International Joint Conference on Artificial*
705 *Intelligence*, pp. 1–9, 2025b.

706 Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang,
707 Yanyan Lan, Liwei Wang, and Tie-Yan Liu. On layer normalization in the transformer archi-
708 tecture. In *Proceedings of the 37th International Conference on Machine Learning*, ICML’20.
709 JMLR.org, 2020.

710 Biao Zhang and Rico Sennrich. Root mean square layer normalization. In H. Wal-
711 lach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett (eds.), *Ad-*
712 *vances in Neural Information Processing Systems*, volume 32. Curran Associates, Inc.,
713 2019. URL [https://proceedings.neurips.cc/paper_files/paper/2019/
714 file/1e8a19426224ca89e83cef47f1e7f53b-Paper.pdf](https://proceedings.neurips.cc/paper_files/paper/2019/file/1e8a19426224ca89e83cef47f1e7f53b-Paper.pdf).

715 Changliang Zhou, Xi Lin, Zhenkun Wang, and Qingfu Zhang. L2r: Learning to reduce search space
716 for generalizable neural routing solver, 2025.

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 A APPENDIX
757

758 A.1 ATTENTION VISUALIZATION
759

760 We explore how models act under different scaling factors. To this end, we fix a single TSP-10 000
761 instance and visualize the average attention logits of the origin city with respect to all other cities
762 (Figure 6).

763 For small scaling factors (below 1.5), all models attend mainly to cities close to the origin and to
764 the destination. At larger scaling factors, however, only PENS-A (the ALiBi-based solver) maintains
765 consistent attention, continuing to focus on both local neighborhoods and the destination. In
766 contrast, the baseline fails to attend to the destination, while PENS-R exhibits periodic attention
767 to specific regions of the square, likely caused by rotations of queries and keys that constructively
768 interfere. Similar periodic patterns have been reported in the NLP domain (Sun et al., 2022; Peng
769 et al., 2024), where enhancements were proposed to improve context-length generalization.
770

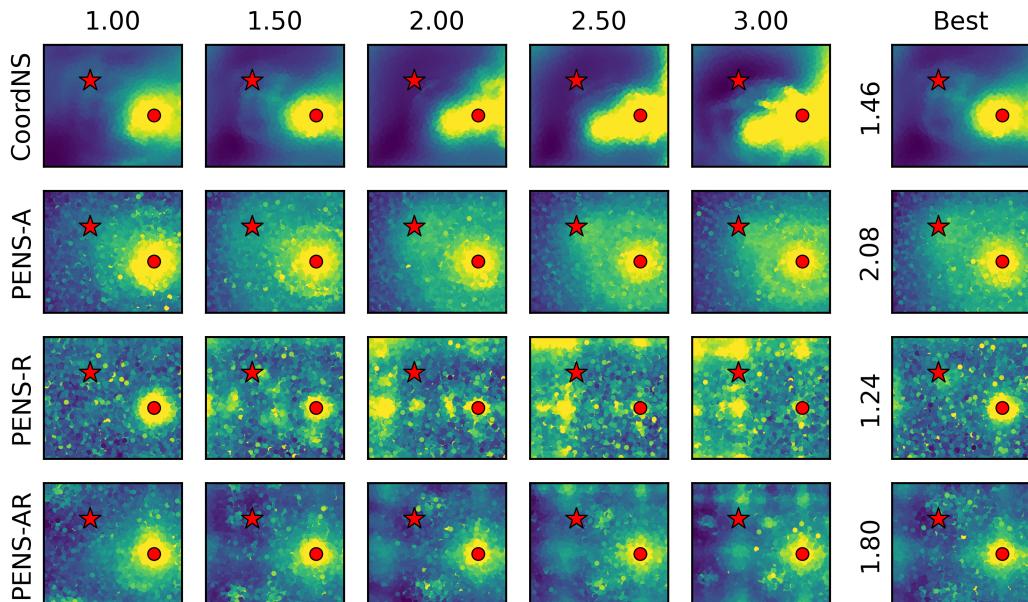


Figure 6: Attention patterns on a path-TSP-10 000 instance under different scaling factors. Each panel shows the average attention logits from the origin city (red circle) to all others. The destination is marked with a red star. The rightmost column uses the best estimated scaling factor of each model. ALiBi-based solvers remain consistent across scales, concentrating on local neighborhoods and the destination, while other models deteriorate or show periodic artifacts.

801 A.2 EVALUATION DETAILS
802

803 We report all results in Table 3. Additional details about baselines are provided in Table 4. As
804 described in Section 5.1, we evaluate all baselines using greedy decoding in order to isolate the
805 impact of the architecture. For reference, the decoding strategies originally used in the respective
806 papers are also listed in Table 4. All baselines are evaluated using the official code released by the
807 authors.

808 A.3 IMPLEMENTATION DETAILS
809

Transformer We use a prenorm Transformer (Xiong et al., 2020) with RMSNorm (Zhang & Sen-
nrich, 2019), which is the most common transformer variant in current practice.

Model	Uniform TSP										TSPLIB										
	100			250			500			1000			10 000			1~100		101~1000		1001 ~ 10 000	
	128 inst. gap	128 inst. time	10 inst. gap	10 inst. time	12 inst. gap	12 inst. time	36 inst. gap	36 inst. time	24 inst. gap	24 inst. time											
BQ-NCO	0.31	0.6m	0.67	1.5m	1.17	3.8m	2.19	13m	19.94	245m	0.48	0.1m	2.80	0.6m	11.31	27m					
BQ-NCO + ESF	0.34	0.6m	0.67	1.6m	1.04	4.0m	1.71	14m	15.12	322m	0.50	0.1m	2.76	0.6m	8.49	29m					
LEHD	0.49	0.4m	0.95	1.0m	1.63	2.0m	3.06	4m	28.85	53m	0.61	0.1m	3.14	0.4m	12.34	5m					
INVIT-2V	4.92	0.9m	5.98	2.3m	6.45	4.8m	6.69	10m	7.08	20m	6.04	0.1m	8.63	0.8m	10.88	6m					
INVIT-3V	4.85	1.0m	5.92	2.8m	6.30	5.9m	6.76	13m	7.05	25m	4.91	0.1m	9.07	0.9m	12.33	7m					
DGL	2.19	0.5m	3.37	1.2m	4.72	2.3m	5.74	5m	7.81	4m	2.60	0.1m	7.33	0.4m	9.44	2m					
PENS-A	0.34	1.4m	0.75	3.7m	1.22	7.6m	1.86	15m	9.74	69m	0.52	0.1m	3.32	1.3m	8.82	8m					
PENS-A (<i>scaled</i>)	0.36	1.4m	0.71	3.7m	1.14	7.6m	1.68	15m	5.46	69m	0.48	0.1m	3.53	1.3m	6.64	8m					
PENS-R	0.26	1.8m	0.55	4.6m	0.95	9.3m	1.75	19m	16.73	18m	0.39	0.1m	2.89	1.6m	8.73	8m					
PENS-R (<i>scaled</i>)	0.27	1.8m	0.53	4.6m	0.88	9.3m	1.52	19m	11.86	18m	0.43	0.1m	3.04	1.6m	8.14	8m					
PENS-AR	0.20	1.9m	0.46	4.9m	0.94	9.8m	1.75	20m	9.51	81m	0.34	0.1m	3.14	1.6m	6.39	11m					
PENS-AR (<i>scaled</i>)	0.22	1.9m	0.50	4.9m	0.89	9.8m	1.56	20m	7.13	81m	0.38	0.1m	3.13	1.6m	5.51	11m					

Table 3: Results of our models and the baseline solvers. For each PENS variant, we report performance with and without input rescaling. For TSPLIB instances, the rescaling factor is estimated by linear interpolation from uniform TSP results based on instance size. Optimal gaps are shown in %.

Method	Graph type	# Params	Venue	Decoding
LEHD (Luo et al., 2023)	Complete	1.4M	NeurIPS 2023	RRC
BQ-NCO (Drakulic et al., 2023)	Complete	3.1M	NeurIPS 2023	BS
BQ-NCO+ESF (Xiao et al., 2025a)	Complete	3.1M	Neural Networks 2025	BS
INVIT-2V/3V (Fang et al., 2024)	Sparsified	1.7M/2.6M	ICML 2024	BS + POMO
DGL (Xiao et al., 2025b)	Sparsified	0.8M	IJCAI 2025	BS + POMO
PENS (<i>ours</i>)	Complete	2.7M	-	-

Table 4: Overview of the evaluated baselines. RRC denotes *Random Re-Construct*, which randomly regenerates partial solutions. BS stands for *Beam Search*. POMO refers to Kwon et al. (2020), which augments each instance with multiple starting points, solves them independently, and returns the best solution.

Scalable Softmax Scalable Softmax (SSMax) (Nakanishi, 2025) was proposed for LLMs to improve long-context capabilities. A related approach, the *Entropy-based Scaling Factor* (ESF), was later introduced for neural TSP solvers (Xiao et al., 2025a). The idea is to attenuate irrelevant tokens in long sequences by increasing the signal-to-noise ratio before the weighted sum. This is achieved by multiplying the attention logits by a scaling factor s :

$$\text{Attention}(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = \mathbf{V} \text{ softmax} \left(s \frac{\mathbf{Q} \mathbf{K}^\top}{\sqrt{d}} \right),$$

where $s \propto \log(N)$ and N is the sequence length. Nakanishi (2025) use a learned scaling factor, while Xiao et al. (2025a) set it according to the training instance size. In this work, we simply use

$$s = \log(N + 1).$$

ALiBi slopes We initially experimented with trainable slopes but found them difficult to optimize: removing weight decay and adding a regularization loss were required to prevent convergence to zero. Empirically, the learned slopes varied between 0 and 10, which motivated us to fix them as

$$m_h = \frac{10}{\sqrt{2^h}},$$

inspired by the original ALiBi method (Press et al., 2022).

Flex-attention Our self-attention layer deviates slightly from standard RoPE and ALiBi implementations, preventing the use of existing flash-attention kernels (Dao et al., 2022; Dao, 2024). We instead rely on PyTorch’s flex-attention¹, which allowed us to implement these layers efficiently. Flex-attention is still in beta and required workarounds not covered in the documentation. We invite the reader to consult our released code for details. To manage memory on large instances, we also employed chunked attention (Kwon et al., 2023).

¹See <https://pytorch.org/blog/flexattention/>.