SOLVING THE TRAVELING SALESMAN PROBLEM WITH
POSITIONAL ENCODING

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose transformer-based neural solvers for the Euclidean Traveling Sales-
man Problem (TSP) that rely on positional encodings rather than coordinate pro-
jections. By adapting ALiBi and RoPE, modern positional encodings originally
developed for large language models, to the Euclidean setting, our Positional
Encoding-based Neural Solvers (PENS) inherit useful invariances and local-
ity biases. To address the increased density of large instances, we introduce a
simple yet effective rescaling of city coordinates that further boosts performance.
Trained only on TSP-100, PENS achieves state-of-the-art results for instances
with up to 10 000 cities, a scale that was previously dominated by methods re-
quiring graph sparsification. These findings demonstrate that positional encodings
provide effective inductive biases for neural combinatorial optimization.

1 INTRODUCTION

Generalizing to large-scale Euclidean Traveling

Salesman Problem (TSP) instances remains a chal- TSP-10 000
lenge for current neural combinatorial optimiza-
tion (NCO) solvers. To cope with this difficulty, re-
cent methods sparsify the input graph and restrict the
decision-making to each node’s nearest neighbors.
While effective, this departs from the original goal of
NCO: learning heuristics without hard-coded struc-
tures. Ideally, a strong solver should rely on minimal 0 Coorans ALiBi ALiBi
priors about the problem, giving the neural network + rescaling

the flexibility to learn powerful heuristics. Figure 1: On TSP-10 000, PENS-A (our
Most NCO solvers adopt a transformer architecture ALiBi-based solver) outperforms both our
and begin by projecting raw city coordinates into the ~coordinate baseline and the previous state of
hidden dimension of the model. This mirrors how the art, while requiring no input sparsifica-
early positional encoding was done in transformers. tion.

Motivated by this observation, we explore the ben-

efits of recent positional encoding methods, namely

ALiBi (Press et al.,|2022) and RoPE (Su et al., 2024), as a means for the model to better capture
spatial relationships between cities. While these methods were developed for large language models
initially, we demonstrate that incorporating these encodings yields consistent improvements over
coordinate-based baselines, on both small- and large-scale instances. We refer to our approach as
Positional Encoding-based Neural Solvers (PENS).

Previous SOTA

N
o
T

o
(6]
T

=
o
T

(6]
T

Optimal Gap (%)

Large-scale instances also present a challenge due to the dense spatial distribution of cities in the
unit square, making them difficult for neural solvers to distinguish (Fang et al., 2024). We show
that applying a simple rescaling of the city coordinates, that is, stretching the input space by an
appropriate factor, substantially improves model performance. On instances with 10 000 cities,
this adjustment alone divides the optimality gap by two. When combined with ALiBi positional
encoding, it enables our pure transformer model to outperform the state-of-the-art sparsification-
based neural solver on large-scale TSP instances.

In summary, our key contributions are as follows.

1. We introduce modern positional encoding methods, inspired by recent advances in Natu-
ral Language Processing (NLP), to represent TSP inputs within transformer-based neural
solvers.

2. We demonstrate that stretching the input space through coordinate rescaling significantly
improves solver performance on large-scale instances.

3. We achieve state-of-the-art results on both small and large TSP instances, without relying
on sparsification or handcrafted heuristics.

The paper is organized as follows. Section [2] reviews related work, Section [3| provides background
on the TSP and positional encodings, and Section[d]introduces our approach with ALiBi, RoPE, and
coordinate rescaling. Section [3|reports results and ablations, and Section [f]concludes.

2 RELATED WORK

Neural approaches to the TSP began with |[Vinyals et al.| (2015), who introduced Pointer Networks
trained in a supervised fashion on optimal tours. Kool et al.| (2019) later combined the same archi-
tecture with reinforcement learning, achieving an average 4.53% gap on TSP-100 instances. [Joshi
et al.| (2022) emphasized the importance of problem-size generalization, while [Fang et al.| (2024)
highlighted interference from irrelevant nodes and embedding aliasing, which hinder scalability to
larger TSPs.

While the TSP is defined on a complete graph, a common strategy is to sparsify the input to facili-
tate training and inference (Fu et al., 2021} |Qiu et al.| [2022; |Sun & Yang}[2023). Approaches include
local/global policies (Gao et al.,|2024; [Fang et al.l|2024) and anchor compression (Wen et al.,[2025).
While sparsification helps at large scales, it is problem-specific and may degrade performance on
smaller instances. For instance, [Zhou et al| (2025) showed that the optimal number of neighbors
depends on instance size. Motivated by these findings, we focus on neural solvers for complete TSP
graphs. Prior work in this setting includes |Drakulic et al.| (2023) and |Luo et al.|(2023)), who train
transformers to construct tours step by step, with Drakulic et al.|(2023)) solving the path-TSP to en-
force invariance to past decisions. We advance this line of work by introducing positional encodings
as the input mechanism.

Because all cities are interconnected, self-attention naturally fits the TSP representation. Several
works adapt attention to bias local interactions: Jin et al.| (2023); |Gao et al.[(2024); Wang et al.
(2025)) add distance-dependent terms to the last attention layer, while Xiao et al.| (2025a) modulate
attention logits based on problem size. The latter closely resembles concurrent developments in
NLP (Nakanishi, [2025)).

Transformers require positional encodings to perceive input order. Since [Vaswani et al. (2017),
many alternatives have been proposed. In particular, ALiBi (Press et al., 2022)) and RoPE (Su et al.,
2024]) bias attention logits using relative positions, and have become the standard in large language
models such as BLOOM (Le Scao et al.,|2022)), MPT (Team) 2023), LLaMa (Touvron et al., 2023),
and Gemma (Gemma Teaml [2024).

Finally, the TSP is theoretically invariant to translation, rotation, reflection, and rescaling of the
input coordinates. Architectures that embed these invariances are known to generalize more ef-
fectively. While POMO (Kwon et al} [2020) and Sym-NCO (Kim et al., 2022)) enforce invariance
implicitly through data augmentation and regularization, and |Ouyang et al|(2024) use relative co-
ordinates to capture translation invariance, using the distance matrix offers a representation that is
intrinsically invariant. Several works have adopted this input representation (Kwon et al., 2021}
Georgiev et al., 2024} |Pan et al., 2025). Notably, Kwon et al.| (2021} also propose modifying the
transformer attention layer to embed the distance matrix, sharing similar motivation to our work.
We advance this direction by designing invariant neural solvers through the specific lens of modern
positional encodings.

Figure 2: Using Positional Encoding to solve Path-TSP.

Initialization Next step Intermediate Completion
C o o | @

—~ —~ - ~ ~ P —
O \u) (OX . \\‘\ '
9) q @) Q & ¢
A \ \
O (@) O----0 & & O—O

() Origin Destination () Unvisited () Visited
—> Partial tour --» Next visit

(a) Path-TSP Illustration on an instance with 6 cities. At each step, the solver
extends the partial tour by predicting the next city, after which the origin is
updated. The process continues until all cities are visited, and the tour is
closed by reaching the destination.

(Next-step Probabilities)

f

Output

Transformer

coords

(b) Model design Each city is initialized with a random Gaussian embedding,
while spatial information is injected through ALiBi or RoPE. Origin and des-
tination are marked with dedicated learnable embeddings. The next city is
predicted by scoring each candidate via a dot-product between the origin and
the candidate embeddings.

3 BACKGROUND AND MOTIVATION

In this section, we first introduce the traveling salesman problem and known issues of neural solvers
when generalizing to larger instances. We then present the original attention operation and the
positional encodings used in our method.

3.1 TRAVELING SALESMAN PROBLEM IN NCO

The classical traveling salesman problem (TSP) is defined on a set of N cities {z;} ; in the 2D
Euclidean plane. The goal is to find the shortest cycle that visits all cities exactly once. We represent
the coordinates in a matrix X € R"*2, Random instances are generated by sampling city locations
uniformly in the unit square.

Path-TSP Path-TSP (Drakulic et al., 2023) generalizes the TSP by designating an origin and a
destination, o and d € {1,...,N}. The objective is to find the shortest path that visits all cities
once, starting at x,, and ending at x4. The original TSP is recovered when o = d. This formulation
is particularly well suited to autoregressive neural solvers: each decision step can be expressed as a
Path-TSP problem, where the model predicts the next city to visit after the current origin. After each
prediction, the origin is updated to the last visited city, and previously visited cities are excluded.
See Figure 24| for an illustration.

When scaling to large instances, two challenges arise during inference (Fang et al., 2024)): interfer-
ence from irrelevant nodes and embedding aliasing.

Interference from irrelevant nodes As the number of cities increases, the self-attention mech-
anism (described in Section aggregates information over many irrelevant nodes. This dilutes
useful signal and makes the attention distribution less selective, preventing the model from focusing
on informative neighbors.

Embedding aliasing Because cities are sampled uniformly in the unit square, larger instances lead
to denser configurations. In this regime, city embeddings tend to overlap, making it difficult for the
model to distinguish nearby nodes. [Fang et al.| (2024) address this issue by introducing multiple
local views, where the input space is rescaled to reduce aliasing.

3.2 ATTENTION AND POSITIONAL ENCODINGS

The transformer is a neural architecture that processes a sequence of N tokens, each represented by
a d-dimensional vector, gathered in a matrix X € R™*9_ In natural language processing (NLP), a
token typically corresponds to a subword, and the full sequence of tokens represents an input text.
At each layer, tokens exchange information through the attention mechanism. From X, queries
Q= XW,, keys K = XW;, and values V = X W, are generated, where W,, W, and W, are
learnable projection matrices. The original self-attention operation (Vaswani et al.} 2017) is defined
as

-
Attention(Q, K, V') = softmax<m<> V.
Vd

The matrix QK " contains the attention logits that determine how information is shared between
tokens.

ALiBi The transformer by default treats the tokens X as an unordered set. However, when tokens
correspond to elements of a sequence, their order must be incorporated for meaningful processing.
ALiBi (Press et al., [2022) is a positional encoding method that integrates token positions directly
into the attention computation by adding a distance-dependent bias to the attention logits:

KT
Attention(Q, K, V') = softmax (Q

Vd

where D is the pairwise distance between token positions in the input sequence and m > 0 is
a slope parameter. This formulation not only provides positional information, but also biases the
model toward attending more strongly to nearby tokens, as the attention scores decay linearly with
distance.

— mD) Vv,

RoPE ROPE (Su et al., 2024) is another positional encoding method based on relative positions.
Instead of adding a bias to the attention logits, RoPE applies a rotation to queries and keys that
depends on their position in the sequence. For a vector & € R at position p, RoPE applies a block-
diagonal rotation matrix R%(©, p) composed of two-dimensional rotations applied to the d/2 pairs,

with frequencies © = (Qi)?ﬁ:

RoPE(z, p) = RY(©,p) x.

Under this encoding, the attention logit between a query at position p and a key at position n becomes

T
q;kn = (RY(©,p) W,z,) (RY(©,n) Wiz,,)
=z, W, RY(©,n — p) Wy,

Thus, the logits depend only on the relative offset n — p, making RoPE a relative positional en-
coding. The rotation frequencies © are fixed in advance and are not learned. Intuitively, positions
are converted into rotation phases, so relative distances between tokens correspond to relative phase
shifts in their embeddings.

Axial-RoPE Axial-RoPE (Heo et al.| [2024) extends RoPE to two-dimensional inputs such as im-
ages, where each token has coordinates (z,y). Queries and keys are split into two halves: the first
half is rotated according to the z-coordinate and the second half according to the y-coordinate. The
resulting vectors are then concatenated back together. This design allows RoPE to encode relative
positions along both axes independently.

4 METHOD

‘We now explain how we use ALiBi (Press et al.,|2022)) and RoPE (Su et al., |2024; |Heo et al., 2024)
inside the transformer to solve the TSP. We call our neural solvers Positional Encoding-based
Neural Solvers (PENS).

4.1 INPUT PERCEPTION WITH ALIBI AND ROPE

Most NCO solvers, such as BQ-NCO (Drakulic et al., 2023), begin by projecting the N city coordi-
nates X € RY*2 into the hidden dimension d of the transformer using a learnable linear transfor-
mation W € R?*?, The initial node embeddings are thus given by X W.

In contrast, we do not provide raw coordinates directly to the model. Each city is first assigned
a random Gaussian embedding x ~ N(0, I;), and its spatial information is injected exclusively
through positional encodings. Specifically, we adapt ALiBi (Press et al.,[2022)) and RoPE (Su et al.,
2024} Heo et al.,2024) to operate on city distances and coordinates, respectively. This design choice
removes the reliance on coordinate projection and allows us to exploit the inductive biases of these
positional encoding schemes.

This approach offers several advantages:

* ALiBi biases attention according to pairwise city distances, promoting invariance to trans-
lations, rotations, and symmetries while improving generalization to larger TSP instances.

* RoPE encodes both the magnitude and orientation of relative displacements, ensuring
translation invariance and providing richer positional features than coordinate projection
alone.

ALiBi In the standard transformer, ALiBi introduces a linear bias proportional to the relative index
distance between tokens. We adapt this idea by replacing index distance with the Euclidean distance
between cities. Concretely, we construct the distance matrix D € RV with entries d;; = ||z; —
x||2. The ALiBi bias is then applied so that attention between two cities decreases as their distance
grows. This mechanism softly encourages information to propagate locally.

Each attention head uses a different slope parameter my,, defined as

10

mp = —5, Vhe{0,... Nheats — 1}

Larger slopes correspond to heads focusing on short-range interactions, while smaller slopes allow
long-range information flow. Because the bias depends only on pairwise distances, which are in-
variant to translations, rotations, and reflections, the resulting solver is natively invariant to these
transformations.

RoPE To adapt RoPE to two-dimensional city coordinates, we use the axial formulation (Hao
et al., |2024): the first half of each query and key vectors are rotated by the z-coordinate, and the
second half by the y-coordinate. The rotation frequencies follow |[Heo et al.| (2024) and are defined
for the unit square as

0; = 141007/ Y vie{0,...,d/4—1}.
This encoding is strictly translation-invariant, since shifting all coordinates by the same vector

does not affect the angular relations between cities. Unlike ALiBi, which only modulates atten-
tion strength based on distances, RoPE preserves both the magnitude and orientation of relative

displacements between cities. As a result, it provides a more expressive representation of spatial
relations, though without invariance to rotations or reflections. For simplicity, we refer to this axial
formulation as RoPE throughout the paper.

4.2 STRETCHING THE INPUT SPACE

As mentioned in Section embedding aliasing (Fang et al.| 2024) occurs when city coordinates
become densely distributed, making them difficult for a neural solver to distinguish. To mitigate
this effect, we apply a uniform multiplicative scaling factor to the coordinates before passing them
to the model. This rescaling reduces the chance that distinct cities are mapped to nearly identi-
cal embeddings, which can happen when cities cluster too closely. By spreading them apart, the
model’s attention operates in a regime where small coordinate differences are more distinguishable,
improving the solver’s ability to learn meaningful spatial relations.

We evaluate the impact of the scaling factor by solving random TSP instances across a range of scal-
ing values. The results, summarized in Figure 3| show that solution quality improves as the scaling
factor increases, up to a point of diminishing returns. To approximate the best scaling factor, we fit
a quadratic curve to the experimental results and compute its minimum. This procedure is applied
independently for each trained neural solver. Importantly, the scaling factor is tuned exclusively on
held-out random instances, never on the benchmark instances used for final evaluation.

TSP-250 TSP-500 TSP-1000 TSP-10000
T bESt. T T T T T T T T T T T T
e
S
()]
o
Q
-
5
e
0.5 1.0 15 1.0 15 1.00 1.25 150 1.75 1.0 15 2.0 25 3.0
Scaling Factor Scaling Factor Scaling Factor Scaling Factor

Figure 3: Performance of PENS-A, our ALiBi-based solver, when rescaling city coordinates on
random TSP instances of varying sizes. Each scatter point reports the average tour length (measured
on the original coordinate scale) for a given scaling factor. A quadratic curve is fitted to the results for
each TSP size to estimate the optimal scaling factor. The estimated optimal scaling factor increases
with the size of the instances.

4.3 ARCHITECTURE

Our solver follows a standard transformer backbone (Zhang & Sennrich, [2019; | Xiong et al., |2020),
enhanced with Scalable-Softmax (SSMax) (Nakanishi, [2025; Xiao et al., [2025a), which has been
shown to improve generalization across problem sizes (Xiao et al.,[2025a)). Within the self-attention
layers, spatial information is incorporated using either ALiBi or Axial-RoPE, as described in Sec-

tion 411

Each city is initialized with a random Gaussian embedding x ~ N(0, I;). In addition, we introduce
two learnable vectors e,, e, € R¢ that represent the origin and destination. These vectors are added
to the initial embeddings of the corresponding cities, providing explicit markers for the start and end
of the tour.

At decoding time, the next city is predicted by scoring the compatibility between the hidden repre-

sentation of the current origin and each remaining candidate. Let wS,L) € R denote the final hidden
state of the current origin after L layers, and let X, C(L) € RNexd be the states of the N, remaining
cities. Output logits are computed as

@PW)XWy = g, K] € RY,

where W, W), € R%%4 are learnable matrices, qo = w(OL)Wq, and K, = X ﬁL)Wk. This final step
does not use positional encodings or SSMax, keeping the output layer lightweight and focused on
city-to-city compatibility.

An overview of the model is shown in Figure 2b] and more details are provided in Appendix [A.3]

5 RESULTS

We now present our main findings. We first describe the training setup, evaluation metrics, and the
state-of-the-art baselines used for comparison. We then report results on both synthetic and real
benchmarks, and conduct ablation studies to assess the impact of individual design choices.

5.1 EXPERIMENTAL SETUP

Models We train three model variants that differ in their positional encoding strategy: one using
ALiBi, one using RoPE, and one combining both, which we denote as PENS-A, PENS-R, and
PENS-AR, respectively. All models follow the hyperparameters of BQ-NCO (Drakulic et al.,[2023):
they consist of 9 transformer layers with a hidden dimension of 192, a feedforward dimension of 512,
and 12 attention heads. Each model has a total of 2.8M learnable parameters. For comparison, we
also train an additional baseline, CoordNS (Coordinates-based Neural Solver), that directly projects
the raw city coordinates without any additional positional encoding mechanism.

Training setup All models are trained on random uniform TSP-100 instances. For each instance
in a batch, we randomly select an origin-destination pair from its optimal tour, which defines a
path-TSP problem. Solvers are trained to predict the next city to visit immediately after the origin.
Training labels are obtained from optimal solutions computed with Concorde (Applegate et al.,
2006).

We use the AdamW optimizer for 1M training steps with a batch size of 1024, using a cosine
annealing learning rate schedule that decays from 10~# to 10~°. Each model requires three days of
training on a single NVIDIA RTX5090 GPU.

Evaluation We evaluate all methods on both randomly generated TSPs and TSPLIB (Reinelt,
1995)), with problems ranging from 100 up to 10 000 cities. Optimal solutions are obtained with
Concorde (Applegate et al., 20006), except for TSP-10 000, where we limit Concorde to six hours
per instance.

We measure performance using the (near-)optimality gap, defined as:

_ Cmodel — Cconc
gap = ———

Cconc

where Cmodel and ceonc are the solution costs produced by the model and Concorde, respectively.
Solutions are generated autoregressively. Because the decoding strategy strongly influences the
final quality (Francois et al.| 2019} |Xia et al.| |2024)), we adopt greedy decoding: we select the most
probable city at each step, without any additional search process. To reduce variance, each instance
is solved five times and we report the average gap. We also report the total runtime across all
instances, using a batch size of 1.

Baselines We compare our models against state-of-the-art neural TSP solvers covering different
problem scales. We include LEHD (Luo et al., 2023) and BQ-NCO (Drakulic et al., |2023)), which
operate on the complete graph and represent the state of the art for instances with up to 1000 cities.
For larger instances, we evaluate INViT (Fang et al., 2024) and DGL (Xiao et al., [2025b), which
sparsify the input graph and are the current state of the art on problems with 10 000 cities. For
INViT, we consider both reported variants, INViT-2V and INViT-3V, which use two and three local
views during inference, respectively. In addition, we evaluate BQ-NCO enhanced with the Entropy-
Scaling Factor (ESF) (Xiao et al., [2025a), which has been shown to improve its performance on
large-scale problems.

All baselines solvers are autoregressive, like ours. For fairness, we evaluate them under greedy
decoding, ensuring that comparisons isolate model architecture rather than decoding strategy.

—
PENS-A

Ui TSP S 10k PENS-R L2587 %y

niform 2 [@ CoordNS 27

Model 109 250 500 1000 10000 8

CoordNS 037 067 1.05 151 2347 2.l 8]

PENS-A 034 075 122 186 974 A o ;

PENS-R 026 055 095 175 16.73 o ferr
100 250 500 1 000 10 000

TSP Size

Figure 4: We compare PENS-A (using ALiBi), PENS-R (using RoPE) and CoordNS that directly
uses the cities coordinates. PENS-R is the best at small-scale while PENS-A clearly leads at large-
scale instances. We conclude that RoPE provides rich positional features while ALiBi prevents
large-scale collapse.

5.2 RESULTS

PE effectiveness We first compare PENS-A and PENS-R against CoordNS, our baseline project-
ing the raw city coordinates. Our results in Figure |4 indicate that RoPE is most effective on small-
scale problems, while ALiBi dramatically improves large-scale generalization. PENS-A leverages
the invariances and local bias introduced by ALiBi, yielding robustness when the self-attention
mechanism involves thousands of cities. Conversely, the fact that PENS-R leads on small-scale sug-
gests that RoPE offers rich features that are easier for the solver to exploit, but lacks a mechanism to
maintain performance as the problem size grows. Thus, RoPE contributes richer positional features,
whereas ALiBi offers a more robust mechanism for large-scale generalization.

Uniform TSP
Model 100 250 500 1000 10 000
gap factor gap factor gap factor gap factor gap factor
0.34 - 0.75 - 1.22 - 1.86 - 9.74 -
PENS-A~ 036 101 071 113 1.4 123 168 127 546 208
0.26 - 0.55 - 0.95 - 1.75 - 16.73 -
PENSR 997 100 053 103 088 1.08 152 115 11.86 1.24

Table 1: Optimality gap (in %) for multiple TSP sizes, comparing the original scale (factor 1.00)
against the best estimated scaling factor. Gaps are computed with respect to the original coordinate
scale. Rescaling has little effect on small instances, but substantially improves performance on larger
ones.

Rescaling the input As mentioned in Section embedding aliasing (Fang et al., 2024) occurs
when city coordinates become too densely distributed, making them difficult for the model to distin-
guish. To mitigate this effect, we apply a uniform scaling factor to the coordinates before providing
them to the neural solver. This simple adjustment yields a marked improvement on large instances:
for example, PENS-A on TSP-10 000 reduces its optimality gap from 9.47% to 5.46%, a nearly
twofold gain that establishes it as the state-of-the-art solver at this scale (see Table 2). At smaller
sizes (fewer than 1000 cities), the impact of rescaling is marginal. The complete results are provided
in Table [3]in the Appendix.

Main results Our evaluations on uniform TSPs and TSPLIB are reported in Table From a
quality standpoint, PENS-R achieves state-of-the-art results on instances with less than 1 000 cities,
while PENS-A dominates on instances with 10 000 cities. Notably, PENS-A outperforms INViT-
3V (Fang et al.| [2024)), the strongest sparsity-based solver previously reported on TSP-10 000. In
terms of efficiency, RoPE only introduces an additional O(NN) overhead, whereas ALiBi requires
an additional O(N?) term. We note, however, that RoPE currently benefits from optimized flash-
attention implementations (Dao et al., 2022} |Dao} 2024), similar optimizations could also be applied

to ALiBi. Finally, while PENS-A and PENS-R each specialize at different scales, their combination,
PENS-AR, yields consistently strong performance across all scales, as shown in Table 2}

Uniform TSP TSPLIB
Model 100 250 500 1000 10 000 1~100 101~1000 1001 ~ 10 000

gap time gap time gap time gap time gap time gap time gap time gap time
BQ-NCO 031 0.6m 067 15m 1.17 38m 219 13m 1994 245m 048 0.Im 280 0.6m 11.31 27m
BQ-NCO+ESF 034 0.6m 067 1.6m 104 40m 171 14m 1512 322m 0.50 0.Im 2.76 0.6m 8.49 29m
LEHD 049 04m 095 1.0m 1.63 2.0m 306 4m 2885 53m 0.61 O0.lm 3.14 04m 1234 5m
INVIiT-2V 492 09m 598 23m 645 48m 6.69 10m 7.08 20m 6.04 O0.lm 863 0.8m 10.88 6m
INVIT-3V 485 1.0m 592 28m 630 59m 6.76 I13m 7.05 25m 491 O0.m 9.07 09m 1233 Tm
DGL 219 05m 337 12m 472 23m 574 Sm 781 4m 260 O0.Im 7.33 04m 9.44 2m
PENS-A 034 14m 075 37m 122 76m 168 15m 546 69m 0.52 0.lm 3.32 13m 6.64 8m
PENS-R 026 1.8m 0.55 4.6m 095 93m 152 19m 11.86 18m 0.39 0.Im 2.89 16m 814 8m
PENS-AR 020 19m 046 49m 094 98m 156 20m 7.13 8lm 034 0.m 314 16m 551 11m

Table 2: Comparison with state-of-the-art neural solvers. All models are evaluated on the same set
of instances using greedy decoding. For instances with more than 1000 cities, our models use their
best estimated scaling factors. We show both the optimal gap (in %) and the total time required
to solve the instances. BQ-NCO (Drakulic et al., 2023), BQ-NCO + ESF (Xiao et al., 2025a) and
LEHD (Luo et al., 2023)) are solvers that do not sparsify the input graph while INViT-2V, INViT-
3V (Fang et al.,|2024) and DGL (Xiao et al.,|2025b)) do sparsify. Sparsification reduces performance
on small instances but improves scalability to large ones. PENS-A, based on ALiBi, achieves state-
of-the-art results on TSP-10 000 without sparsification. Combining ALiBi and RoPE, PENS-AR
attains state-of-the-art performance across nearly all benchmarks.

Gaussian embeddings initialization We assess the impact of initializing city embeddings with
random Gaussian vectors against zero vectors. To this end, we train small versions of PENS-A and
PENS-R on TSP-20 and evaluate them on TSP-20, TSP-50, and TSP-100.

Figure 5: Performance comparison between zero initialization and Gaussian initialization.

Uniform TSP
Model 20 50 100 TSP-20 TSP-100

PENS-A a

Zero-init 0.096 1.629 4.996 8

Gaussian-init ~ 0.178 1.649 4.282 E

PENS-R = -

Zero-init 0.070 1.600 9.896 S Lo

Gaussian-init 0.068 1.163 3.459 aussiann

Training Step Training Step

(a) Final optimality gaps (in %) on TSP- (b) Training curves for PENS-R on TSP-20, evaluated on
20/50/100. Gaussian embeddings improves both TSP-20 and TSP-100. The zero-initialized variant
large-scale performance. quickly overfits to the training scale (TSP-20).

The results, summarized in Table @ indicate that Gaussian initialization does not affect perfor-
mance on TSP-20, the training problem size. However, it significantly improves generalization to
larger instances, particularly for PENS-R. Figure[5b|further illustrates this effect: the zero-initialized
variant quickly overfits to TSP-20, whereas Gaussian embeddings maintain progress across problem
sizes.

We hypothesize that the stochasticity introduced by Gaussian embeddings promote the learning of
simpler heuristics that transfer more effectively to larger instances.

6 CONCLUSION AND FUTURE WORK

We have proposed the use of modern positional encodings to enhance the capacity of neural TSP
solvers and demonstrated the importance of rescaling city coordinates to improve distinguishability
on large-scale instances. Combined, our Positional Encoding-based Neural Solvers (PENS) achieve
state-of-the-art performance across a wide range of problem sizes. Importantly, our solvers operate

directly on the raw representation of the problem, avoiding the need for input sparsification, which
risks oversimplifying the problem.

While these solvers are effective, they currently require a full forward pass at each decoding step,
which can limit efficiency. Future work includes exploring ways to cache or reuse intermediate
computations, similar to key-value caching in language models (Kwon et al., 2023), to accelerate
decoding. It would also be interesting to extend ALiBi-based solvers to problems defined solely
by a cost matrix, such as the asymmetric TSP, and to learn ALiBi slopes and RoPE angles in an
end-to-end manner to further improve performance.

Reproducibility statement The code, data and models are fully released at the provided URL
(temporarily as supplementary materials during the review process). Implementation details are
described in Section[5.1]and in Appendix[A.3] To ensure reproducibility, the code is distributed with
pinned dependencies, and the README includes the commands to generate data, train models and
run evaluations. We also provide code to reproduce the baseline results from previous works.

10

REFERENCES

David Applegate, Robert Bixby, Vasek Chvatal, and William Cook. Concorde TSP Solver, 2006.
URLhttps://www.math.uwaterloo.ca/tsp/concorde.html.

Tri Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning. In Inter-
national Conference on Learning Representations (ICLR), 2024.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. FlashAttention: Fast and
memory-efficient exact attention with IO-awareness. In Advances in Neural Information Process-
ing Systems (NeurlPS), 2022.

Darko Drakulic, Sofia Michel, Florian Mai, Arnaud Sors, and Jean-Marc Andreoli. Bg-
nco: Bisimulation quotienting for efficient neural combinatorial optimization. In A. Oh,
T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in
Neural Information Processing Systems, volume 36, pp. 77416-77429. Curran Associates,
Inc., 2023. URL https://papers.nips.cc/paper_files/paper/2023/hash/
£f445balb5f0f05c26e1d24f908ea’78d60-Abstract-Conference.html.

Han Fang, Zhihao Song, Paul Weng, and Yutong Ban. INViT: A generalizable routing problem
solver with invariant nested view transformer. In Ruslan Salakhutdinov, Zico Kolter, Kather-
ine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), Pro-
ceedings of the 41st International Conference on Machine Learning, volume 235 of Proceed-
ings of Machine Learning Research, pp. 12973-12992. PMLR, 21-27 Jul 2024. URL https:
//proceedings.mlr.press/v235/fang24c.htmll

Antoine Frangois, Quentin Cappart, and Louis-Martin Rousseau. How to evaluate machine learning
approaches for combinatorial optimization: Application to the travelling salesman problem, 2019.

Zhang-Hua Fu, Kai-Bin Qiu, and Hongyuan Zha. Generalize a small pre-trained model to arbitrarily
large tsp instances. Proceedings of the AAAI Conference on Artificial Intelligence, 35(8):7474—
7482, May 2021. ISSN 2159-5399. doi: 10.1609/aaai.v35i8.16916. URL https://doi.
org/10.1609/aaai.v3518.16916.

Chengrui Gao, Haopu Shang, Ke Xue, Dong Li, and Chao Qian. Towards generalizable neural
solvers for vehicle routing problems via ensemble with transferrable local policy. In Proceed-
ings of the Thirty-Third International Joint Conference on Artificial Intelligence, IICAI-2024, pp.
6914-6922. International Joint Conferences on Artificial Intelligence Organization, August 2024.
doi: 10.24963/ijcai.2024/764. URL https://www.ijcai.org/proceedings/2024/
164,

Gemma Team. Gemma: Open models based on gemini research and technology, 2024.

Dobrik Georgiev Georgiev, Danilo Numeroso, Davide Bacciu, and Pietro Lio. Neural algorith-
mic reasoning for combinatorial optimisation. In Soledad Villar and Benjamin Chamberlain
(eds.), Proceedings of the Second Learning on Graphs Conference, volume 231 of Proceed-
ings of Machine Learning Research, pp. 28:1-28:15. PMLR, 27-30 Nov 2024. URL https:
//proceedings.mlr.press/v231/georgiev24a.htmll

Jianye Hao, Tianpei Yang, Hongyao Tang, Chenjia Bai, Jinyi Liu, Zhaopeng Meng, Peng Liu, and
Zhen Wang. Exploration in deep reinforcement learning: From single-agent to multiagent do-
main. [EEE Transactions on Neural Networks and Learning Systems, 35(7):8762-8782, July
2024. ISSN 2162-2388. doi: 10.1109/tnnls.2023.3236361. URL https://ieeexplore.
ieee.org/abstract/document/10021988.

Byeongho Heo, Song Park, Dongyoon Han, and Sangdoo Yun. Rotary Position Embedding for
Vision Transformer, pp. 289-305. Springer Nature Switzerland, 11 2024. doi: 10.1007/
978-3-031-72684-2_17.

Yan Jin, Yuandong Ding, Xuanhao Pan, Kun He, Li Zhao, Tao Qin, Lei Song, and Jiang Bian. Point-
erformer: Deep reinforced multi-pointer transformer for the traveling salesman problem. Pro-
ceedings of the AAAI Conference on Artificial Intelligence, 37(7):8132-8140, June 2023. ISSN
2159-5399. doi: 10.1609/aaai.v37i7.25982.

11

https://www.math.uwaterloo.ca/tsp/concorde.html
https://papers.nips.cc/paper_files/paper/2023/hash/f445ba15f0f05c26e1d24f908ea78d60-Abstract-Conference.html
https://papers.nips.cc/paper_files/paper/2023/hash/f445ba15f0f05c26e1d24f908ea78d60-Abstract-Conference.html
https://proceedings.mlr.press/v235/fang24c.html
https://proceedings.mlr.press/v235/fang24c.html
https://doi.org/10.1609/aaai.v35i8.16916
https://doi.org/10.1609/aaai.v35i8.16916
https://www.ijcai.org/proceedings/2024/764
https://www.ijcai.org/proceedings/2024/764
https://proceedings.mlr.press/v231/georgiev24a.html
https://proceedings.mlr.press/v231/georgiev24a.html
https://ieeexplore.ieee.org/abstract/document/10021988
https://ieeexplore.ieee.org/abstract/document/10021988

Chaitanya K. Joshi, Quentin Cappart, Louis-Martin Rousseau, and Thomas Laurent. Learning the
travelling salesperson problem requires rethinking generalization. Constraints, 27(1-2):70-98,
April 2022. ISSN 1572-9354. doi: 10.1007/s10601-022-09327-y. URL https://link.
springer.com/article/10.1007/s10601-022-09327-y.

Minsu Kim, Junyoung Park, and Jinkyoo Park. Sym-nco: Leveraging symmetricity for neural com-
binatorial optimization. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh
(eds.), Advances in Neural Information Processing Systems, volume 35, pp. 1936-1949. Curran
Associates, Inc., 2022. URL https://papers.nips.cc/paper_files/paper/
2022 /hash/0cddb777d3441326544e21b67f41bdc8-Abstract-Conference.
htmll

Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems! In
International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=ByxBFsRgYm.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Se-
ungjai Min. Pomo: Policy optimization with multiple optima for reinforcement learn-
ing. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Ad-
vances in Neural Information Processing Systems, volume 33, pp. 21188-21198. Curran As-
sociates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
£231£2107df69eab0a3862d50018a9%9b2-Abstract.html.

Yeong-Dae Kwon, Jinho Choo, Iljoo Yoon, Minah Park, Duwon Park, and Youngjune Gwon. Ma-
trix encoding networks for neural combinatorial optimization. In A. Beygelzimer, Y. Dauphin,
P. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems,
2021. URL https://openreview.net/forum?id=C__ChZs8WjU.

Teven Le Scao, Thomas Wang, Daniel Hesslow, Stas Bekman, M Saiful Bari, Stella Bider-
man, Hady Elsahar, Niklas Muennighoff, Jason Phang, Ofir Press, Colin Raffel, Victor Sanh,
Sheng Shen, Lintang Sutawika, Jaesung Tae, Zheng Xin Yong, Julien Launay, and Iz Belt-
agy. What language model to train if you have one million GPU hours? In Yoav Gold-
berg, Zornitsa Kozareva, and Yue Zhang (eds.), Findings of the Association for Computational
Linguistics: EMNLP 2022, pp. 765-782, Abu Dhabi, United Arab Emirates, December 2022.
Association for Computational Linguistics. doi: 10.18653/v1/2022 findings-emnlp.54. URL
https://aclanthology.org/2022.findings—emnlp.54/.

Fu Luo, Xi Lin, Fei Liu, Qingfu Zhang, and Zhenkun Wang. Neural combinatorial optimization
with heavy decoder: Toward large scale generalization. In Thirty-seventh Conference on Neu-
ral Information Processing Systems, 2023. URL https://openreview.net/forum?id=
RBI4oAbdpm.

Ken M. Nakanishi. Scalable-softmax is superior for attention, 2025.

Wenbin Ouyang, Yisen Wang, Paul Weng, and Shaochen Han. Generalization in deep rl for tsp
problems via equivariance and local search. SN Computer Science, 5(4), March 2024. ISSN
2661-8907. doi: 10.1007/s42979-024-02689-5. URL https://link.springer.com/
article/10.1007/s42979-024-02689-5.

Wenzheng Pan, Hao Xiong, Jiale Ma, Wentao Zhao, Yang Li, and Junchi Yan. UniCO: On
unified combinatorial optimization via problem reduction to matrix-encoded general TSP. In
The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=yEwakMNIex

Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and Enrico Shippole. YaRN: Efficient context win-
dow extension of large language models. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=wHBfxhZulu.

12

https://link.springer.com/article/10.1007/s10601-022-09327-y
https://link.springer.com/article/10.1007/s10601-022-09327-y
https://papers.nips.cc/paper_files/paper/2022/hash/0cddb777d3441326544e21b67f41bdc8-Abstract-Conference.html
https://papers.nips.cc/paper_files/paper/2022/hash/0cddb777d3441326544e21b67f41bdc8-Abstract-Conference.html
https://papers.nips.cc/paper_files/paper/2022/hash/0cddb777d3441326544e21b67f41bdc8-Abstract-Conference.html
https://openreview.net/forum?id=ByxBFsRqYm
https://openreview.net/forum?id=ByxBFsRqYm
https://proceedings.neurips.cc/paper/2020/hash/f231f2107df69eab0a3862d50018a9b2-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/f231f2107df69eab0a3862d50018a9b2-Abstract.html
https://openreview.net/forum?id=C__ChZs8WjU
https://aclanthology.org/2022.findings-emnlp.54/
https://openreview.net/forum?id=RBI4oAbdpm
https://openreview.net/forum?id=RBI4oAbdpm
https://link.springer.com/article/10.1007/s42979-024-02689-5
https://link.springer.com/article/10.1007/s42979-024-02689-5
https://openreview.net/forum?id=yEwakMNIex
https://openreview.net/forum?id=yEwakMNIex
https://openreview.net/forum?id=wHBfxhZu1u

Ofir Press, Noah Smith, and Mike Lewis. Train short, test long: Attention with linear biases enables
input length extrapolation. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=R8sQPpGCv0.

Ruizhong Qiu, Zhiqing Sun, and Yiming Yang. Dimes: A differentiable meta
solver for combinatorial optimization problems. In S. Koyejo, S. Mohamed,
A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Infor-
mation Processing Systems, volume 35, pp. 25531-25546. Curran Associates, Inc.,
2022. URL |https://papers.nips.cc/paper_files/paper/2022/hash/
a3a7387e49f4de290c23beea2dfcdc75-Abstract-Conference.html.

Gerhard Reinelt. Tsplib, 1995. URL http://comopt.ifi.uni-heidelberg.de/
software/TSPLIB95/.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding. Neurocomputing, 568:127063, February
2024. ISSN 0925-2312. doi: 10.1016/j.neucom.2023.127063.

Yutao Sun, Li Dong, Barun Patra, Shuming Ma, Shaohan Huang, Alon Benhaim, Vishrav Chaud-
hary, Xia Song, and Furu Wei. A length-extrapolatable transformer, 2022.

Zhiqing Sun and Yiming Yang. DIFUSCO: Graph-based diffusion solvers for combinatorial opti-
mization. In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL
https://openreview.net/forum?id=JV8Ff01gVV.

MosaicML NLP Team. Introducing mpt-7b: A new standard for open-source, commercially usable
Ilms, 2023. URL www.mosaicml.com/blog/mpt—"7bl

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
L ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053clcd4a845aa—Paper.pdfl

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In Proceedings of the 29th
International Conference on Neural Information Processing Systems - Volume 2, NIPS’15, pp.
2692-2700, Cambridge, MA, USA, 2015. MIT Press.

Yang Wang, Ya-Hui Jia, Wei-Neng Chen, and Yi Mei. Distance-aware attention reshaping for en-
hancing generalization of neural solvers. IEEE Transactions on Neural Networks and Learning
Systems, pp. 1-15, 2025. doi: 10.1109/TNNLS.2025.3588209.

Junrui Wen, Yifei Li, Bart Selman, and Kun He. Localescaper: A weakly-supervised framework
with regional reconstruction for scalable neural tsp solvers, 2025.

Yifan Xia, Xianliang Yang, Zichuan Liu, Zhihao Liu, Lei Song, and Jiang Bian. Position: Re-
thinking post-hoc search-based neural approaches for solving large-scale traveling salesman
problems. In Forty-first International Conference on Machine Learning, 2024. URL https:
//openreview.net/forum?id=cEJ9 JNJuJP.

Yubin Xiao, Di Wang, Xuan Wu, Yuesong Wu, Boyang Li, Wei Du, Liupu Wang, and You Zhou.
Improving generalization of neural vehicle routing problem solvers through the lens of model
architecture. Neural Networks, 187:107380, July 2025a. ISSN 0893-6080. doi: 10.1016/j.neunet.
2025.107380.

13

https://openreview.net/forum?id=R8sQPpGCv0
https://papers.nips.cc/paper_files/paper/2022/hash/a3a7387e49f4de290c23beea2dfcdc75-Abstract-Conference.html
https://papers.nips.cc/paper_files/paper/2022/hash/a3a7387e49f4de290c23beea2dfcdc75-Abstract-Conference.html
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
https://openreview.net/forum?id=JV8Ff0lgVV
www.mosaicml.com/blog/mpt-7b
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://openreview.net/forum?id=cEJ9jNJuJP
https://openreview.net/forum?id=cEJ9jNJuJP

Yubin Xiao, Yuesong Wu, Rui Cao, Di Wang, Zhiguang Cao, Peng Zhao, Yuanshu Li, You Zhou, and
Yuan Jiang. DGL: Dynamic global-local information aggregation for scalable VRP generalization
with self-improvement learning. In Proceedings of International Joint Conference on Artificial
Intelligence, pp. 1-9, 2025b.

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang,
Yanyan Lan, Liwei Wang, and Tie-Yan Liu. On layer normalization in the transformer archi-
tecture. In Proceedings of the 37th International Conference on Machine Learning, ICML’20.
JMLR.org, 2020.

Biao Zhang and Rico Sennrich. = Root mean square layer normalization. In H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.,
2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/
file/1e8al9426224ca89e83cefd7fle7f53b-Paper.pdfl

Changliang Zhou, Xi Lin, Zhenkun Wang, and Qingfu Zhang. L2r: Learning to reduce search space
for generalizable neural routing solver, 2025.

14

https://proceedings.neurips.cc/paper_files/paper/2019/file/1e8a19426224ca89e83cef47f1e7f53b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/1e8a19426224ca89e83cef47f1e7f53b-Paper.pdf

A APPENDIX

A.1 ATTENTION VISUALIZATION

We explore how models act under different scaling factors. To this end, we fix a single TSP-10 000
instance and visualize the average attention logits of the origin city with respect to all other cities
(Figure|[6).

For small scaling factors (below 1.5), all models attend mainly to cities close to the origin and to
the destination. At larger scaling factors, however, only PENS-A (the ALiBi-based solver) main-
tains consistent attention, continuing to focus on both local neighborhoods and the destination. In
contrast, the baseline fails to attend to the destination, while PENS-R exhibits periodic attention
to specific regions of the square, likely caused by rotations of queries and keys that constructively
interfere. Similar periodic patterns have been reported in the NLP domain (Sun et al.| 2022} [Peng|
2024), where enhancements were proposed to improve context-length generalization.

Best

CoordNS
1.46

PENS-A
1.24 2.08

PENS-R

PENS-AR
1.80

Figure 6: Attention patterns on a path-TSP-10000 instance under different scaling factors. Each
panel shows the average attention logits from the origin city (red circle) to all others. The destination
is marked with a red star. The rightmost column uses the best estimated scaling factor of each model.
ALiBi-based solvers remain consistent across scales, concentrating on local neighborhoods and the
destination, while other models deteriorate or show periodic artifacts.

A.2 EVALUATION DETAILS

We report all results in Table 3] Additional details about baselines are provided in Table] As
described in Section [5.1} we evaluate all baselines using greedy decoding in order to isolate the
impact of the architecture. For reference, the decoding strategies originally used in the respective
papers are also listed in Table[d] All baselines are evaluated using the official code released by the
authors.

A.3 IMPLEMENTATION DETAILS

Transformer We use a prenorm Transformer (Xiong et al., 2020) with RMSNorm (Zhang & Sen-
2019), which is the most common transformer variant in current practice.

15

Uniform TSP TSPLIB

Model 100 250 500 1000 10 000 1~100 101~1000 1001 ~ 10 000
128 inst. 128 inst. 128 inst. 128 inst. 10 inst. 12 inst. 36 inst. 24 inst.

gap time gap time gap time gap time gap time gap time gap time gap time
BQ-NCO 0.31 0.6m 0.67 1.5Sm 1.17 38m 219 13m 1994 245m 048 0.Im 280 06m 11.31 27m
BQ-NCO + ESF 034 06m 0.67 1.6m 104 40m 171 14m 1512 322m 0.50 O0.Im 276 0.6m 8.49 29m
LEHD 049 04m 095 1.0m 1.63 20m 3.06 4m 2885 53m 0.61 0.lm 3.14 04m 12.34 Sm
INVIiT-2V 492 09m 598 23m 645 48m 6.69 10m 7.08 20m 6.04 0Im 863 0.8m 10.88 6m
INVIT-3V 485 10m 592 28m 630 59m 6.76 13m 7.05 25m 491 O0.Im 9.07 09m 1233 7m
DGL 219 05m 337 12m 472 23m 574 S5m 781 4m 260 0.Im 7.33 04m 9.44 2m
PENS-A 034 14m 0.75 37m 122 76m 186 15m 9.74 69m 0.52 0.Im 3.32 13m 8.82 8m
PENS-A (scaled) 036 14m 0.71 37m 114 7.6m 168 15m 546 69m 0.48 O0.Im 3.53 13m 6.64 8m
PENS-R 026 18m 055 4.6m 095 93m 1.75 19m 16.73 18m 0.39 0.Im 289 1.6m 8.73 8m
PENS-R (scaled) 027 18m 0.53 4.6m 088 93m 152 19m 11.86 18m 0.43 O0.Im 3.04 16m 8.14 8m
PENS-AR 020 19m 0.46 49m 094 98m 1.75 20m 9.51 8lm 034 0.Im 3.14 16m 6.39 11m

PENS-AR (scaled) 0.22 19m 0.50 49m 0.89 98m 1.56 20m 7.13 8Ilm 038 O0.Im 3.13 1.6m 5.51 1lm

Table 3: Results of our models and the baseline solvers. For each PENS variant, we report perfor-
mance with and without input rescaling. For TSPLIB instances, the rescaling factor is estimated by
linear interpolation from uniform TSP results based on instance size. Optimal gaps are shown in %.

Method Graph type #Params Venue Decoding
LEHD (Luo et al.|[2023) Complete 1.4M NeurIPS 2023 RRC
BQ-NCO (Drakulic et al.|[2023) Complete 3.1M NeurIPS 2023 BS
BQ-NCO+ESF (Xiao et al.||2025a) Complete 3.1M Neural Networks 2025 BS
INViT-2V/3V (Fang et al.|[2024) Sparsified 1.7M/2.6M ICML 2024 BS + POMO
DGL (Xiao et al.|[2025b) Sparsified 0.8M 1JICAI 2025 BS + POMO
PENS (ours) Complete 2. M - -

Table 4: Overview of the evaluated baselines. RRC denotes Random Re-Construct, which randomly
regenerates partial solutions. BS stands for Beam Search. POMO refers to [Kwon et al.| (2020),
which augments each instance with multiple starting points, solves them independently, and returns
the best solution.

Scalable Softmax Scalable Softmax (SSMax) (Nakanishi, |2025) was proposed for LLMs to im-
prove long-context capabilities. A related approach, the Entropy-based Scaling Factor (ESF), was
later introduced for neural TSP solvers (Xiao et al.,2025al). The idea is to attenuate irrelevant tokens
in long sequences by increasing the signal-to-noise ratio before the weighted sum. This is achieved
by multiplying the attention logits by a scaling factor s:

KT
Attention(Q, K, V') = V softmax (s Q) ,
Vd
where s o< log(IV) and N is the sequence length. Nakanishil (2025) use a learned scaling factor,
while Xiao et al.|(2025a)) set it according to the training instance size. In this work, we simply use

s =log(N +1).

ALiBi slopes We initially experimented with trainable slopes but found them difficult to optimize:
removing weight decay and adding a regularization loss were required to prevent convergence to
zero. Empirically, the learned slopes varied between 0 and 10, which motivated us to fix them as
mp = %a
inspired by the original ALiBi method (Press et al., 2022).

Flex-attention Our self-attention layer deviates slightly from standard RoPE and ALiBi imple-
mentations, preventing the use of existing flash-attention kernels (Dao et al., 2022} |Dao, [2024). We
instead rely on PyTorch’s flex-attention'| which allowed us to implement these layers efficiently.
Flex-attention is still in beta and required workarounds not covered in the documentation. We invite
the reader to consult our released code for details. To manage memory on large instances, we also
employed chunked attention (Kwon et al.,[2023).

''See https://pytorch.org/blog/flexattention/,

16

https://pytorch.org/blog/flexattention/

	Introduction
	Related Work
	Background and Motivation
	Traveling Salesman Problem in NCO
	Attention and Positional Encodings

	Method
	Input Perception with ALiBi and RoPE
	Stretching the input space
	Architecture

	Results
	Experimental Setup
	Results

	Conclusion and Future Work
	Appendix
	Attention visualization
	Evaluation details
	Implementation details

