
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

SOLVING THE TRAVELING SALESMAN PROBLEM WITH
POSITIONAL ENCODING

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose transformer-based neural solvers for the Euclidean Traveling Sales-
man Problem (TSP) that rely on positional encodings rather than coordinate pro-
jections. By adapting ALiBi and RoPE, modern positional encodings originally
developed for large language models, to the Euclidean setting, our Positional
Encoding-based Neural Solvers (PENS) inherit useful invariances and local-
ity biases. To address the increased density of large instances, we introduce a
simple yet effective rescaling of city coordinates that further boosts performance.
Trained only on TSP-100, PENS achieves state-of-the-art results for instances
with up to 10 000 cities, a scale that was previously dominated by methods re-
quiring graph sparsification. These findings demonstrate that positional encodings
provide effective inductive biases for neural combinatorial optimization.

1 INTRODUCTION

CoordNS ALiBi ALiBi
+ rescaling

0

5

10

15

20

Op
tim

al
 G

ap
 (%

)

TSP-10 000
Previous SOTA

Figure 1: On TSP-10 000, PENS-A (our
ALiBi-based solver) outperforms both our
coordinate baseline and the previous state of
the art, while requiring no input sparsifica-
tion.

Generalizing to large-scale Euclidean Traveling
Salesman Problem (TSP) instances remains a chal-
lenge for current neural combinatorial optimiza-
tion (NCO) solvers. To cope with this difficulty, re-
cent methods sparsify the input graph and restrict the
decision-making to each node’s nearest neighbors.
While effective, this departs from the original goal of
NCO: learning heuristics without hard-coded struc-
tures. Ideally, a strong solver should rely on minimal
priors about the problem, giving the neural network
the flexibility to learn powerful heuristics.

Most NCO solvers adopt a transformer architecture
and begin by projecting raw city coordinates into the
hidden dimension of the model. This mirrors how
early positional encoding was done in transformers.
Motivated by this observation, we explore the ben-
efits of recent positional encoding methods, namely
ALiBi (Press et al., 2022) and RoPE (Su et al., 2024), as a means for the model to better capture
spatial relationships between cities. While these methods were developed for large language models
initially, we demonstrate that incorporating these encodings yields consistent improvements over
coordinate-based baselines, on both small- and large-scale instances. We refer to our approach as
Positional Encoding-based Neural Solvers (PENS).

Large-scale instances also present a challenge due to the dense spatial distribution of cities in the
unit square, making them difficult for neural solvers to distinguish (Fang et al., 2024). We show
that applying a simple rescaling of the city coordinates, that is, stretching the input space by an
appropriate factor, substantially improves model performance. On instances with 10 000 cities,
this adjustment alone divides the optimality gap by two. When combined with ALiBi positional
encoding, it enables our pure transformer model to outperform the state-of-the-art sparsification-
based neural solver on large-scale TSP instances.

In summary, our key contributions are as follows.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

1. We introduce modern positional encoding methods, inspired by recent advances in Natu-
ral Language Processing (NLP), to represent TSP inputs within transformer-based neural
solvers.

2. We demonstrate that stretching the input space through coordinate rescaling significantly
improves solver performance on large-scale instances.

3. We achieve state-of-the-art results on both small and large TSP instances, without relying
on sparsification or handcrafted heuristics.

The paper is organized as follows. Section 2 reviews related work, Section 3 provides background
on the TSP and positional encodings, and Section 4 introduces our approach with ALiBi, RoPE, and
coordinate rescaling. Section 5 reports results and ablations, and Section 6 concludes.

2 RELATED WORK

Neural approaches to the TSP began with Vinyals et al. (2015), who introduced Pointer Networks
trained in a supervised fashion on optimal tours. Kool et al. (2019) later combined the same archi-
tecture with reinforcement learning, achieving an average 4.53% gap on TSP-100 instances. Joshi
et al. (2022) emphasized the importance of problem-size generalization, while Fang et al. (2024)
highlighted interference from irrelevant nodes and embedding aliasing, which hinder scalability to
larger TSPs.

While the TSP is defined on a complete graph, a common strategy is to sparsify the input to facili-
tate training and inference (Fu et al., 2021; Qiu et al., 2022; Sun & Yang, 2023). Approaches include
local/global policies (Gao et al., 2024; Fang et al., 2024) and anchor compression (Wen et al., 2025).
While sparsification helps at large scales, it is problem-specific and may degrade performance on
smaller instances. For instance, Zhou et al. (2025) showed that the optimal number of neighbors
depends on instance size. Motivated by these findings, we focus on neural solvers for complete TSP
graphs. Prior work in this setting includes Drakulic et al. (2023) and Luo et al. (2023), who train
transformers to construct tours step by step, with Drakulic et al. (2023) solving the path-TSP to en-
force invariance to past decisions. We advance this line of work by introducing positional encodings
as the input mechanism.

Because all cities are interconnected, self-attention naturally fits the TSP representation. Several
works adapt attention to bias local interactions: Jin et al. (2023); Gao et al. (2024); Wang et al.
(2025) add distance-dependent terms to the last attention layer, while Xiao et al. (2025a) modulate
attention logits based on problem size. The latter closely resembles concurrent developments in
NLP (Nakanishi, 2025).

Transformers require positional encodings to perceive input order. Since Vaswani et al. (2017),
many alternatives have been proposed. In particular, ALiBi (Press et al., 2022) and RoPE (Su et al.,
2024) bias attention logits using relative positions, and have become the standard in large language
models such as BLOOM (Le Scao et al., 2022), MPT (Team, 2023), LLaMa (Touvron et al., 2023),
and Gemma (Gemma Team, 2024).

Finally, the TSP is theoretically invariant to translation, rotation, reflection, and rescaling of the
input coordinates. Architectures that embed these invariances are known to generalize more ef-
fectively. While POMO (Kwon et al., 2020) and Sym-NCO (Kim et al., 2022) enforce invariance
implicitly through data augmentation and regularization, and Ouyang et al. (2024) use relative co-
ordinates to capture translation invariance, using the distance matrix offers a representation that is
intrinsically invariant. Several works have adopted this input representation (Kwon et al., 2021;
Georgiev et al., 2024; Pan et al., 2025). Notably, Kwon et al. (2021) also propose modifying the
transformer attention layer to embed the distance matrix, sharing similar motivation to our work.
We advance this direction by designing invariant neural solvers through the specific lens of modern
positional encodings.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Figure 2: Using Positional Encoding to solve Path-TSP.

DestinationOrigin Unvisited Visited

CompletionInitialization

Partial tour Next visit

Intermediate
step

Next step

(a) Path-TSP Illustration on an instance with 6 cities. At each step, the solver
extends the partial tour by predicting the next city, after which the origin is
updated. The process continues until all cities are visited, and the tour is
closed by reaching the destination.

...

origin dest.

Transformer

Output

s1

ALiBi

RoPE
coords

Next-step Probabilities

(b) Model design Each city is initialized with a random Gaussian embedding,
while spatial information is injected through ALiBi or RoPE. Origin and des-
tination are marked with dedicated learnable embeddings. The next city is
predicted by scoring each candidate via a dot-product between the origin and
the candidate embeddings.

3 BACKGROUND AND MOTIVATION

In this section, we first introduce the traveling salesman problem and known issues of neural solvers
when generalizing to larger instances. We then present the original attention operation and the
positional encodings used in our method.

3.1 TRAVELING SALESMAN PROBLEM IN NCO

The classical traveling salesman problem (TSP) is defined on a set of N cities {xi}Ni=1 in the 2D
Euclidean plane. The goal is to find the shortest cycle that visits all cities exactly once. We represent
the coordinates in a matrix X ∈ RN×2. Random instances are generated by sampling city locations
uniformly in the unit square.

Path-TSP Path-TSP (Drakulic et al., 2023) generalizes the TSP by designating an origin and a
destination, o and d ∈ {1, . . . , N}. The objective is to find the shortest path that visits all cities
once, starting at xo and ending at xd. The original TSP is recovered when o = d. This formulation
is particularly well suited to autoregressive neural solvers: each decision step can be expressed as a
Path-TSP problem, where the model predicts the next city to visit after the current origin. After each
prediction, the origin is updated to the last visited city, and previously visited cities are excluded.
See Figure 2a for an illustration.

When scaling to large instances, two challenges arise during inference (Fang et al., 2024): interfer-
ence from irrelevant nodes and embedding aliasing.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Interference from irrelevant nodes As the number of cities increases, the self-attention mech-
anism (described in Section 3.2) aggregates information over many irrelevant nodes. This dilutes
useful signal and makes the attention distribution less selective, preventing the model from focusing
on informative neighbors.

Embedding aliasing Because cities are sampled uniformly in the unit square, larger instances lead
to denser configurations. In this regime, city embeddings tend to overlap, making it difficult for the
model to distinguish nearby nodes. Fang et al. (2024) address this issue by introducing multiple
local views, where the input space is rescaled to reduce aliasing.

3.2 ATTENTION AND POSITIONAL ENCODINGS

The transformer is a neural architecture that processes a sequence of N tokens, each represented by
a d-dimensional vector, gathered in a matrix X ∈ RN×d. In natural language processing (NLP), a
token typically corresponds to a subword, and the full sequence of tokens represents an input text.
At each layer, tokens exchange information through the attention mechanism. From X , queries
Q = XWq , keys K = XWk, and values V = XWv are generated, where Wq , Wk, and Wv are
learnable projection matrices. The original self-attention operation (Vaswani et al., 2017) is defined
as

Attention(Q,K,V ) = softmax

(
QK⊤
√
d

)
V .

The matrix QK⊤ contains the attention logits that determine how information is shared between
tokens.

ALiBi The transformer by default treats the tokens X as an unordered set. However, when tokens
correspond to elements of a sequence, their order must be incorporated for meaningful processing.
ALiBi (Press et al., 2022) is a positional encoding method that integrates token positions directly
into the attention computation by adding a distance-dependent bias to the attention logits:

Attention(Q,K,V ) = softmax

(
QK⊤
√
d

−mD

)
V ,

where D is the pairwise distance between token positions in the input sequence and m > 0 is
a slope parameter. This formulation not only provides positional information, but also biases the
model toward attending more strongly to nearby tokens, as the attention scores decay linearly with
distance.

RoPE RoPE (Su et al., 2024) is another positional encoding method based on relative positions.
Instead of adding a bias to the attention logits, RoPE applies a rotation to queries and keys that
depends on their position in the sequence. For a vector x ∈ Rd at position p, RoPE applies a block-
diagonal rotation matrix Rd(Θ, p) composed of two-dimensional rotations applied to the d/2 pairs,
with frequencies Θ = (θi)

d/2
i=1:

RoPE(x, p) = Rd(Θ, p)x.

Under this encoding, the attention logit between a query at position p and a key at position n becomes

q⊤
p kn =

(
Rd(Θ, p)Wqxp

)⊤(
Rd(Θ, n)Wkxn

)
= x⊤

p W
⊤
q Rd(Θ, n− p)Wkxn.

Thus, the logits depend only on the relative offset n − p, making RoPE a relative positional en-
coding. The rotation frequencies Θ are fixed in advance and are not learned. Intuitively, positions
are converted into rotation phases, so relative distances between tokens correspond to relative phase
shifts in their embeddings.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Axial-RoPE Axial-RoPE (Heo et al., 2024) extends RoPE to two-dimensional inputs such as im-
ages, where each token has coordinates (x, y). Queries and keys are split into two halves: the first
half is rotated according to the x-coordinate and the second half according to the y-coordinate. The
resulting vectors are then concatenated back together. This design allows RoPE to encode relative
positions along both axes independently.

4 METHOD

We now explain how we use ALiBi (Press et al., 2022) and RoPE (Su et al., 2024; Heo et al., 2024)
inside the transformer to solve the TSP. We call our neural solvers Positional Encoding-based
Neural Solvers (PENS).

4.1 INPUT PERCEPTION WITH ALIBI AND ROPE

Most NCO solvers, such as BQ-NCO (Drakulic et al., 2023), begin by projecting the N city coordi-
nates X ∈ RN×2 into the hidden dimension d of the transformer using a learnable linear transfor-
mation W ∈ R2×d. The initial node embeddings are thus given by XW .

In contrast, we do not provide raw coordinates directly to the model. Each city is first assigned
a random Gaussian embedding x ∼ N (0, Id), and its spatial information is injected exclusively
through positional encodings. Specifically, we adapt ALiBi (Press et al., 2022) and RoPE (Su et al.,
2024; Heo et al., 2024) to operate on city distances and coordinates, respectively. This design choice
removes the reliance on coordinate projection and allows us to exploit the inductive biases of these
positional encoding schemes.

This approach offers several advantages:

• ALiBi biases attention according to pairwise city distances, promoting invariance to trans-
lations, rotations, and symmetries while improving generalization to larger TSP instances.

• RoPE encodes both the magnitude and orientation of relative displacements, ensuring
translation invariance and providing richer positional features than coordinate projection
alone.

ALiBi In the standard transformer, ALiBi introduces a linear bias proportional to the relative index
distance between tokens. We adapt this idea by replacing index distance with the Euclidean distance
between cities. Concretely, we construct the distance matrix D ∈ RN×N with entries dij = ∥xi −
xj∥2. The ALiBi bias is then applied so that attention between two cities decreases as their distance
grows. This mechanism softly encourages information to propagate locally.

Each attention head uses a different slope parameter mh, defined as

mh =
10
√
2
h
, ∀h ∈ {0, . . . , nheads − 1}.

Larger slopes correspond to heads focusing on short-range interactions, while smaller slopes allow
long-range information flow. Because the bias depends only on pairwise distances, which are in-
variant to translations, rotations, and reflections, the resulting solver is natively invariant to these
transformations.

RoPE To adapt RoPE to two-dimensional city coordinates, we use the axial formulation (Hao
et al., 2024): the first half of each query and key vectors are rotated by the x-coordinate, and the
second half by the y-coordinate. The rotation frequencies follow Heo et al. (2024) and are defined
for the unit square as

θi = 14 · 100−i/(d/4), ∀i ∈ {0, . . . , d/4− 1}.

This encoding is strictly translation-invariant, since shifting all coordinates by the same vector
does not affect the angular relations between cities. Unlike ALiBi, which only modulates atten-
tion strength based on distances, RoPE preserves both the magnitude and orientation of relative

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

displacements between cities. As a result, it provides a more expressive representation of spatial
relations, though without invariance to rotations or reflections. For simplicity, we refer to this axial
formulation as RoPE throughout the paper.

4.2 STRETCHING THE INPUT SPACE

As mentioned in Section 3.1, embedding aliasing (Fang et al., 2024) occurs when city coordinates
become densely distributed, making them difficult for a neural solver to distinguish. To mitigate
this effect, we apply a uniform multiplicative scaling factor to the coordinates before passing them
to the model. This rescaling reduces the chance that distinct cities are mapped to nearly identi-
cal embeddings, which can happen when cities cluster too closely. By spreading them apart, the
model’s attention operates in a regime where small coordinate differences are more distinguishable,
improving the solver’s ability to learn meaningful spatial relations.

We evaluate the impact of the scaling factor by solving random TSP instances across a range of scal-
ing values. The results, summarized in Figure 3, show that solution quality improves as the scaling
factor increases, up to a point of diminishing returns. To approximate the best scaling factor, we fit
a quadratic curve to the experimental results and compute its minimum. This procedure is applied
independently for each trained neural solver. Importantly, the scaling factor is tuned exclusively on
held-out random instances, never on the benchmark instances used for final evaluation.

0.5 1.0 1.5
Scaling Factor

To
ur

 L
en

gt
h

TSP-250
best

1.0 1.5
Scaling Factor

TSP-500

1.00 1.25 1.50 1.75
Scaling Factor

TSP-1000

1.0 1.5 2.0 2.5 3.0
Scaling Factor

TSP-10000

Figure 3: Performance of PENS-A, our ALiBi-based solver, when rescaling city coordinates on
random TSP instances of varying sizes. Each scatter point reports the average tour length (measured
on the original coordinate scale) for a given scaling factor. A quadratic curve is fitted to the results for
each TSP size to estimate the optimal scaling factor. The estimated optimal scaling factor increases
with the size of the instances.

4.3 ARCHITECTURE

Our solver follows a standard transformer backbone (Zhang & Sennrich, 2019; Xiong et al., 2020),
enhanced with Scalable-Softmax (SSMax) (Nakanishi, 2025; Xiao et al., 2025a), which has been
shown to improve generalization across problem sizes (Xiao et al., 2025a). Within the self-attention
layers, spatial information is incorporated using either ALiBi or Axial-RoPE, as described in Sec-
tion 4.1.

Each city is initialized with a random Gaussian embedding x ∼ N (0, Id). In addition, we introduce
two learnable vectors eo, ed ∈ Rd that represent the origin and destination. These vectors are added
to the initial embeddings of the corresponding cities, providing explicit markers for the start and end
of the tour.

At decoding time, the next city is predicted by scoring the compatibility between the hidden repre-
sentation of the current origin and each remaining candidate. Let x(L)

o ∈ Rd denote the final hidden
state of the current origin after L layers, and let X(L)

c ∈ RNc×d be the states of the Nc remaining
cities. Output logits are computed as

(x(L)
o Wq)(X

(L)
c Wk)

⊤ = qoK
⊤
c ∈ RNc ,

where Wq,Wk ∈ Rd×d are learnable matrices, qo = x
(L)
o Wq , and Kc = X

(L)
c Wk. This final step

does not use positional encodings or SSMax, keeping the output layer lightweight and focused on
city-to-city compatibility.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

An overview of the model is shown in Figure 2b, and more details are provided in Appendix A.3.

5 RESULTS

We now present our main findings. We first describe the training setup, evaluation metrics, and the
state-of-the-art baselines used for comparison. We then report results on both synthetic and real
benchmarks, and conduct ablation studies to assess the impact of individual design choices.

5.1 EXPERIMENTAL SETUP

Models We train three model variants that differ in their positional encoding strategy: one using
ALiBi, one using RoPE, and one combining both, which we denote as PENS-A, PENS-R, and
PENS-AR, respectively. All models follow the hyperparameters of BQ-NCO (Drakulic et al., 2023):
they consist of 9 transformer layers with a hidden dimension of 192, a feedforward dimension of 512,
and 12 attention heads. Each model has a total of 2.8M learnable parameters. For comparison, we
also train an additional baseline, CoordNS (Coordinates-based Neural Solver), that directly projects
the raw city coordinates without any additional positional encoding mechanism.

Training setup All models are trained on random uniform TSP-100 instances. For each instance
in a batch, we randomly select an origin-destination pair from its optimal tour, which defines a
path-TSP problem. Solvers are trained to predict the next city to visit immediately after the origin.
Training labels are obtained from optimal solutions computed with Concorde (Applegate et al.,
2006).

We use the AdamW optimizer for 1M training steps with a batch size of 1024, using a cosine
annealing learning rate schedule that decays from 10−4 to 10−5. Each model requires three days of
training on a single NVIDIA RTX5090 GPU.

Evaluation We evaluate all methods on both randomly generated TSPs and TSPLIB (Reinelt,
1995), with problems ranging from 100 up to 10 000 cities. Optimal solutions are obtained with
Concorde (Applegate et al., 2006), except for TSP-10 000, where we limit Concorde to six hours
per instance.

We measure performance using the (near-)optimality gap, defined as:

gap =
cmodel − cconc

cconc
,

where cmodel and cconc are the solution costs produced by the model and Concorde, respectively.
Solutions are generated autoregressively. Because the decoding strategy strongly influences the
final quality (François et al., 2019; Xia et al., 2024), we adopt greedy decoding: we select the most
probable city at each step, without any additional search process. To reduce variance, each instance
is solved five times and we report the average gap. We also report the total runtime across all
instances, using a batch size of 1.

Baselines We compare our models against state-of-the-art neural TSP solvers covering different
problem scales. We include LEHD (Luo et al., 2023) and BQ-NCO (Drakulic et al., 2023), which
operate on the complete graph and represent the state of the art for instances with up to 1000 cities.
For larger instances, we evaluate INViT (Fang et al., 2024) and DGL (Xiao et al., 2025b), which
sparsify the input graph and are the current state of the art on problems with 10 000 cities. For
INViT, we consider both reported variants, INViT-2V and INViT-3V, which use two and three local
views during inference, respectively. In addition, we evaluate BQ-NCO enhanced with the Entropy-
Scaling Factor (ESF) (Xiao et al., 2025a), which has been shown to improve its performance on
large-scale problems.

All baselines solvers are autoregressive, like ours. For fairness, we evaluate them under greedy
decoding, ensuring that comparisons isolate model architecture rather than decoding strategy.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Model Uniform TSP
100 250 500 1000 10 000

CoordNS 0.37 0.67 1.05 1.51 23.47
PENS-A 0.34 0.75 1.22 1.86 9.74
PENS-R 0.26 0.55 0.95 1.75 16.73

100 250 500 1 000 10 000
TSP Size

1

10

Op
tim

al
 G

ap
 (%

) PENS-A
PENS-R
CoordNS

Figure 4: We compare PENS-A (using ALiBi), PENS-R (using RoPE) and CoordNS that directly
uses the cities coordinates. PENS-R is the best at small-scale while PENS-A clearly leads at large-
scale instances. We conclude that RoPE provides rich positional features while ALiBi prevents
large-scale collapse.

5.2 RESULTS

PE effectiveness We first compare PENS-A and PENS-R against CoordNS, our baseline project-
ing the raw city coordinates. Our results in Figure 4 indicate that RoPE is most effective on small-
scale problems, while ALiBi dramatically improves large-scale generalization. PENS-A leverages
the invariances and local bias introduced by ALiBi, yielding robustness when the self-attention
mechanism involves thousands of cities. Conversely, the fact that PENS-R leads on small-scale sug-
gests that RoPE offers rich features that are easier for the solver to exploit, but lacks a mechanism to
maintain performance as the problem size grows. Thus, RoPE contributes richer positional features,
whereas ALiBi offers a more robust mechanism for large-scale generalization.

Model
Uniform TSP

100 250 500 1000 10 000
gap factor gap factor gap factor gap factor gap factor

PENS-A 0.34 - 0.75 - 1.22 - 1.86 - 9.74 -
0.36 1.01 0.71 1.13 1.14 1.23 1.68 1.27 5.46 2.08

PENS-R 0.26 - 0.55 - 0.95 - 1.75 - 16.73 -
0.27 1.00 0.53 1.03 0.88 1.08 1.52 1.15 11.86 1.24

Table 1: Optimality gap (in %) for multiple TSP sizes, comparing the original scale (factor 1.00)
against the best estimated scaling factor. Gaps are computed with respect to the original coordinate
scale. Rescaling has little effect on small instances, but substantially improves performance on larger
ones.

Rescaling the input As mentioned in Section 3.1, embedding aliasing (Fang et al., 2024) occurs
when city coordinates become too densely distributed, making them difficult for the model to distin-
guish. To mitigate this effect, we apply a uniform scaling factor to the coordinates before providing
them to the neural solver. This simple adjustment yields a marked improvement on large instances:
for example, PENS-A on TSP-10 000 reduces its optimality gap from 9.47% to 5.46%, a nearly
twofold gain that establishes it as the state-of-the-art solver at this scale (see Table 2). At smaller
sizes (fewer than 1000 cities), the impact of rescaling is marginal. The complete results are provided
in Table 3 in the Appendix.

Main results Our evaluations on uniform TSPs and TSPLIB are reported in Table 2. From a
quality standpoint, PENS-R achieves state-of-the-art results on instances with less than 1 000 cities,
while PENS-A dominates on instances with 10 000 cities. Notably, PENS-A outperforms INViT-
3V (Fang et al., 2024), the strongest sparsity-based solver previously reported on TSP-10 000. In
terms of efficiency, RoPE only introduces an additional O(N) overhead, whereas ALiBi requires
an additional O(N2) term. We note, however, that RoPE currently benefits from optimized flash-
attention implementations (Dao et al., 2022; Dao, 2024), similar optimizations could also be applied

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

to ALiBi. Finally, while PENS-A and PENS-R each specialize at different scales, their combination,
PENS-AR, yields consistently strong performance across all scales, as shown in Table 2.

Model

Uniform TSP TSPLIB
100 250 500 1000 10 000 1∼100 101∼1000 1001 ∼ 10 000

gap time gap time gap time gap time gap time gap time gap time gap time

BQ-NCO 0.31 0.6m 0.67 1.5m 1.17 3.8m 2.19 13m 19.94 245m 0.48 0.1m 2.80 0.6m 11.31 27m
BQ-NCO + ESF 0.34 0.6m 0.67 1.6m 1.04 4.0m 1.71 14m 15.12 322m 0.50 0.1m 2.76 0.6m 8.49 29m
LEHD 0.49 0.4m 0.95 1.0m 1.63 2.0m 3.06 4m 28.85 53m 0.61 0.1m 3.14 0.4m 12.34 5m
INViT-2V 4.92 0.9m 5.98 2.3m 6.45 4.8m 6.69 10m 7.08 20m 6.04 0.1m 8.63 0.8m 10.88 6m
INViT-3V 4.85 1.0m 5.92 2.8m 6.30 5.9m 6.76 13m 7.05 25m 4.91 0.1m 9.07 0.9m 12.33 7m
DGL 2.19 0.5m 3.37 1.2m 4.72 2.3m 5.74 5m 7.81 4m 2.60 0.1m 7.33 0.4m 9.44 2m

PENS-A 0.34 1.4m 0.75 3.7m 1.22 7.6m 1.68 15m 5.46 69m 0.52 0.1m 3.32 1.3m 6.64 8m
PENS-R 0.26 1.8m 0.55 4.6m 0.95 9.3m 1.52 19m 11.86 18m 0.39 0.1m 2.89 1.6m 8.14 8m
PENS-AR 0.20 1.9m 0.46 4.9m 0.94 9.8m 1.56 20m 7.13 81m 0.34 0.1m 3.14 1.6m 5.51 11m

Table 2: Comparison with state-of-the-art neural solvers. All models are evaluated on the same set
of instances using greedy decoding. For instances with more than 1000 cities, our models use their
best estimated scaling factors. We show both the optimal gap (in %) and the total time required
to solve the instances. BQ-NCO (Drakulic et al., 2023), BQ-NCO + ESF (Xiao et al., 2025a) and
LEHD (Luo et al., 2023) are solvers that do not sparsify the input graph while INViT-2V, INViT-
3V (Fang et al., 2024) and DGL (Xiao et al., 2025b) do sparsify. Sparsification reduces performance
on small instances but improves scalability to large ones. PENS-A, based on ALiBi, achieves state-
of-the-art results on TSP-10 000 without sparsification. Combining ALiBi and RoPE, PENS-AR
attains state-of-the-art performance across nearly all benchmarks.

Gaussian embeddings initialization We assess the impact of initializing city embeddings with
random Gaussian vectors against zero vectors. To this end, we train small versions of PENS-A and
PENS-R on TSP-20 and evaluate them on TSP-20, TSP-50, and TSP-100.

Figure 5: Performance comparison between zero initialization and Gaussian initialization.

Model Uniform TSP
20 50 100

PENS-A
Zero-init 0.096 1.629 4.996
Gaussian-init 0.178 1.649 4.282

PENS-R
Zero-init 0.070 1.600 9.896
Gaussian-init 0.068 1.163 3.459

(a) Final optimality gaps (in %) on TSP-
20/50/100. Gaussian embeddings improves
large-scale performance.

Training Step

Op
tim

al
 G

ap

TSP-20

Training Step

TSP-100

Zero-init
Gaussian-init

(b) Training curves for PENS-R on TSP-20, evaluated on
both TSP-20 and TSP-100. The zero-initialized variant
quickly overfits to the training scale (TSP-20).

The results, summarized in Table 5a, indicate that Gaussian initialization does not affect perfor-
mance on TSP-20, the training problem size. However, it significantly improves generalization to
larger instances, particularly for PENS-R. Figure 5b further illustrates this effect: the zero-initialized
variant quickly overfits to TSP-20, whereas Gaussian embeddings maintain progress across problem
sizes.

We hypothesize that the stochasticity introduced by Gaussian embeddings promote the learning of
simpler heuristics that transfer more effectively to larger instances.

6 CONCLUSION AND FUTURE WORK

We have proposed the use of modern positional encodings to enhance the capacity of neural TSP
solvers and demonstrated the importance of rescaling city coordinates to improve distinguishability
on large-scale instances. Combined, our Positional Encoding-based Neural Solvers (PENS) achieve
state-of-the-art performance across a wide range of problem sizes. Importantly, our solvers operate

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

directly on the raw representation of the problem, avoiding the need for input sparsification, which
risks oversimplifying the problem.

While these solvers are effective, they currently require a full forward pass at each decoding step,
which can limit efficiency. Future work includes exploring ways to cache or reuse intermediate
computations, similar to key-value caching in language models (Kwon et al., 2023), to accelerate
decoding. It would also be interesting to extend ALiBi-based solvers to problems defined solely
by a cost matrix, such as the asymmetric TSP, and to learn ALiBi slopes and RoPE angles in an
end-to-end manner to further improve performance.

Reproducibility statement The code, data and models are fully released at the provided URL
(temporarily as supplementary materials during the review process). Implementation details are
described in Section 5.1 and in Appendix A.3. To ensure reproducibility, the code is distributed with
pinned dependencies, and the README includes the commands to generate data, train models and
run evaluations. We also provide code to reproduce the baseline results from previous works.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

REFERENCES

David Applegate, Robert Bixby, Vasek Chvatal, and William Cook. Concorde TSP Solver, 2006.
URL https://www.math.uwaterloo.ca/tsp/concorde.html.

Tri Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning. In Inter-
national Conference on Learning Representations (ICLR), 2024.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. FlashAttention: Fast and
memory-efficient exact attention with IO-awareness. In Advances in Neural Information Process-
ing Systems (NeurIPS), 2022.

Darko Drakulic, Sofia Michel, Florian Mai, Arnaud Sors, and Jean-Marc Andreoli. Bq-
nco: Bisimulation quotienting for efficient neural combinatorial optimization. In A. Oh,
T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in
Neural Information Processing Systems, volume 36, pp. 77416–77429. Curran Associates,
Inc., 2023. URL https://papers.nips.cc/paper_files/paper/2023/hash/
f445ba15f0f05c26e1d24f908ea78d60-Abstract-Conference.html.

Han Fang, Zhihao Song, Paul Weng, and Yutong Ban. INViT: A generalizable routing problem
solver with invariant nested view transformer. In Ruslan Salakhutdinov, Zico Kolter, Kather-
ine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), Pro-
ceedings of the 41st International Conference on Machine Learning, volume 235 of Proceed-
ings of Machine Learning Research, pp. 12973–12992. PMLR, 21–27 Jul 2024. URL https:
//proceedings.mlr.press/v235/fang24c.html.

Antoine François, Quentin Cappart, and Louis-Martin Rousseau. How to evaluate machine learning
approaches for combinatorial optimization: Application to the travelling salesman problem, 2019.

Zhang-Hua Fu, Kai-Bin Qiu, and Hongyuan Zha. Generalize a small pre-trained model to arbitrarily
large tsp instances. Proceedings of the AAAI Conference on Artificial Intelligence, 35(8):7474–
7482, May 2021. ISSN 2159-5399. doi: 10.1609/aaai.v35i8.16916. URL https://doi.
org/10.1609/aaai.v35i8.16916.

Chengrui Gao, Haopu Shang, Ke Xue, Dong Li, and Chao Qian. Towards generalizable neural
solvers for vehicle routing problems via ensemble with transferrable local policy. In Proceed-
ings of the Thirty-Third International Joint Conference on Artificial Intelligence, IJCAI-2024, pp.
6914–6922. International Joint Conferences on Artificial Intelligence Organization, August 2024.
doi: 10.24963/ijcai.2024/764. URL https://www.ijcai.org/proceedings/2024/
764.

Gemma Team. Gemma: Open models based on gemini research and technology, 2024.

Dobrik Georgiev Georgiev, Danilo Numeroso, Davide Bacciu, and Pietro Lio. Neural algorith-
mic reasoning for combinatorial optimisation. In Soledad Villar and Benjamin Chamberlain
(eds.), Proceedings of the Second Learning on Graphs Conference, volume 231 of Proceed-
ings of Machine Learning Research, pp. 28:1–28:15. PMLR, 27–30 Nov 2024. URL https:
//proceedings.mlr.press/v231/georgiev24a.html.

Jianye Hao, Tianpei Yang, Hongyao Tang, Chenjia Bai, Jinyi Liu, Zhaopeng Meng, Peng Liu, and
Zhen Wang. Exploration in deep reinforcement learning: From single-agent to multiagent do-
main. IEEE Transactions on Neural Networks and Learning Systems, 35(7):8762–8782, July
2024. ISSN 2162-2388. doi: 10.1109/tnnls.2023.3236361. URL https://ieeexplore.
ieee.org/abstract/document/10021988.

Byeongho Heo, Song Park, Dongyoon Han, and Sangdoo Yun. Rotary Position Embedding for
Vision Transformer, pp. 289–305. Springer Nature Switzerland, 11 2024. doi: 10.1007/
978-3-031-72684-2 17.

Yan Jin, Yuandong Ding, Xuanhao Pan, Kun He, Li Zhao, Tao Qin, Lei Song, and Jiang Bian. Point-
erformer: Deep reinforced multi-pointer transformer for the traveling salesman problem. Pro-
ceedings of the AAAI Conference on Artificial Intelligence, 37(7):8132–8140, June 2023. ISSN
2159-5399. doi: 10.1609/aaai.v37i7.25982.

11

https://www.math.uwaterloo.ca/tsp/concorde.html
https://papers.nips.cc/paper_files/paper/2023/hash/f445ba15f0f05c26e1d24f908ea78d60-Abstract-Conference.html
https://papers.nips.cc/paper_files/paper/2023/hash/f445ba15f0f05c26e1d24f908ea78d60-Abstract-Conference.html
https://proceedings.mlr.press/v235/fang24c.html
https://proceedings.mlr.press/v235/fang24c.html
https://doi.org/10.1609/aaai.v35i8.16916
https://doi.org/10.1609/aaai.v35i8.16916
https://www.ijcai.org/proceedings/2024/764
https://www.ijcai.org/proceedings/2024/764
https://proceedings.mlr.press/v231/georgiev24a.html
https://proceedings.mlr.press/v231/georgiev24a.html
https://ieeexplore.ieee.org/abstract/document/10021988
https://ieeexplore.ieee.org/abstract/document/10021988


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Chaitanya K. Joshi, Quentin Cappart, Louis-Martin Rousseau, and Thomas Laurent. Learning the
travelling salesperson problem requires rethinking generalization. Constraints, 27(1–2):70–98,
April 2022. ISSN 1572-9354. doi: 10.1007/s10601-022-09327-y. URL https://link.
springer.com/article/10.1007/s10601-022-09327-y.

Minsu Kim, Junyoung Park, and Jinkyoo Park. Sym-nco: Leveraging symmetricity for neural com-
binatorial optimization. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh
(eds.), Advances in Neural Information Processing Systems, volume 35, pp. 1936–1949. Curran
Associates, Inc., 2022. URL https://papers.nips.cc/paper_files/paper/
2022/hash/0cddb777d3441326544e21b67f41bdc8-Abstract-Conference.
html.

Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems! In
International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=ByxBFsRqYm.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Se-
ungjai Min. Pomo: Policy optimization with multiple optima for reinforcement learn-
ing. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Ad-
vances in Neural Information Processing Systems, volume 33, pp. 21188–21198. Curran As-
sociates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
f231f2107df69eab0a3862d50018a9b2-Abstract.html.

Yeong-Dae Kwon, Jinho Choo, Iljoo Yoon, Minah Park, Duwon Park, and Youngjune Gwon. Ma-
trix encoding networks for neural combinatorial optimization. In A. Beygelzimer, Y. Dauphin,
P. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems,
2021. URL https://openreview.net/forum?id=C__ChZs8WjU.

Teven Le Scao, Thomas Wang, Daniel Hesslow, Stas Bekman, M Saiful Bari, Stella Bider-
man, Hady Elsahar, Niklas Muennighoff, Jason Phang, Ofir Press, Colin Raffel, Victor Sanh,
Sheng Shen, Lintang Sutawika, Jaesung Tae, Zheng Xin Yong, Julien Launay, and Iz Belt-
agy. What language model to train if you have one million GPU hours? In Yoav Gold-
berg, Zornitsa Kozareva, and Yue Zhang (eds.), Findings of the Association for Computational
Linguistics: EMNLP 2022, pp. 765–782, Abu Dhabi, United Arab Emirates, December 2022.
Association for Computational Linguistics. doi: 10.18653/v1/2022.findings-emnlp.54. URL
https://aclanthology.org/2022.findings-emnlp.54/.

Fu Luo, Xi Lin, Fei Liu, Qingfu Zhang, and Zhenkun Wang. Neural combinatorial optimization
with heavy decoder: Toward large scale generalization. In Thirty-seventh Conference on Neu-
ral Information Processing Systems, 2023. URL https://openreview.net/forum?id=
RBI4oAbdpm.

Ken M. Nakanishi. Scalable-softmax is superior for attention, 2025.

Wenbin Ouyang, Yisen Wang, Paul Weng, and Shaochen Han. Generalization in deep rl for tsp
problems via equivariance and local search. SN Computer Science, 5(4), March 2024. ISSN
2661-8907. doi: 10.1007/s42979-024-02689-5. URL https://link.springer.com/
article/10.1007/s42979-024-02689-5.

Wenzheng Pan, Hao Xiong, Jiale Ma, Wentao Zhao, Yang Li, and Junchi Yan. UniCO: On
unified combinatorial optimization via problem reduction to matrix-encoded general TSP. In
The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=yEwakMNIex.

Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and Enrico Shippole. YaRN: Efficient context win-
dow extension of large language models. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=wHBfxhZu1u.

12

https://link.springer.com/article/10.1007/s10601-022-09327-y
https://link.springer.com/article/10.1007/s10601-022-09327-y
https://papers.nips.cc/paper_files/paper/2022/hash/0cddb777d3441326544e21b67f41bdc8-Abstract-Conference.html
https://papers.nips.cc/paper_files/paper/2022/hash/0cddb777d3441326544e21b67f41bdc8-Abstract-Conference.html
https://papers.nips.cc/paper_files/paper/2022/hash/0cddb777d3441326544e21b67f41bdc8-Abstract-Conference.html
https://openreview.net/forum?id=ByxBFsRqYm
https://openreview.net/forum?id=ByxBFsRqYm
https://proceedings.neurips.cc/paper/2020/hash/f231f2107df69eab0a3862d50018a9b2-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/f231f2107df69eab0a3862d50018a9b2-Abstract.html
https://openreview.net/forum?id=C__ChZs8WjU
https://aclanthology.org/2022.findings-emnlp.54/
https://openreview.net/forum?id=RBI4oAbdpm
https://openreview.net/forum?id=RBI4oAbdpm
https://link.springer.com/article/10.1007/s42979-024-02689-5
https://link.springer.com/article/10.1007/s42979-024-02689-5
https://openreview.net/forum?id=yEwakMNIex
https://openreview.net/forum?id=yEwakMNIex
https://openreview.net/forum?id=wHBfxhZu1u


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Ofir Press, Noah Smith, and Mike Lewis. Train short, test long: Attention with linear biases enables
input length extrapolation. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=R8sQPpGCv0.

Ruizhong Qiu, Zhiqing Sun, and Yiming Yang. Dimes: A differentiable meta
solver for combinatorial optimization problems. In S. Koyejo, S. Mohamed,
A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Infor-
mation Processing Systems, volume 35, pp. 25531–25546. Curran Associates, Inc.,
2022. URL https://papers.nips.cc/paper_files/paper/2022/hash/
a3a7387e49f4de290c23beea2dfcdc75-Abstract-Conference.html.

Gerhard Reinelt. Tsplib, 1995. URL http://comopt.ifi.uni-heidelberg.de/
software/TSPLIB95/.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding. Neurocomputing, 568:127063, February
2024. ISSN 0925-2312. doi: 10.1016/j.neucom.2023.127063.

Yutao Sun, Li Dong, Barun Patra, Shuming Ma, Shaohan Huang, Alon Benhaim, Vishrav Chaud-
hary, Xia Song, and Furu Wei. A length-extrapolatable transformer, 2022.

Zhiqing Sun and Yiming Yang. DIFUSCO: Graph-based diffusion solvers for combinatorial opti-
mization. In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL
https://openreview.net/forum?id=JV8Ff0lgVV.

MosaicML NLP Team. Introducing mpt-7b: A new standard for open-source, commercially usable
llms, 2023. URL www.mosaicml.com/blog/mpt-7b.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In Proceedings of the 29th
International Conference on Neural Information Processing Systems - Volume 2, NIPS’15, pp.
2692–2700, Cambridge, MA, USA, 2015. MIT Press.

Yang Wang, Ya-Hui Jia, Wei-Neng Chen, and Yi Mei. Distance-aware attention reshaping for en-
hancing generalization of neural solvers. IEEE Transactions on Neural Networks and Learning
Systems, pp. 1–15, 2025. doi: 10.1109/TNNLS.2025.3588209.

Junrui Wen, Yifei Li, Bart Selman, and Kun He. Localescaper: A weakly-supervised framework
with regional reconstruction for scalable neural tsp solvers, 2025.

Yifan Xia, Xianliang Yang, Zichuan Liu, Zhihao Liu, Lei Song, and Jiang Bian. Position: Re-
thinking post-hoc search-based neural approaches for solving large-scale traveling salesman
problems. In Forty-first International Conference on Machine Learning, 2024. URL https:
//openreview.net/forum?id=cEJ9jNJuJP.

Yubin Xiao, Di Wang, Xuan Wu, Yuesong Wu, Boyang Li, Wei Du, Liupu Wang, and You Zhou.
Improving generalization of neural vehicle routing problem solvers through the lens of model
architecture. Neural Networks, 187:107380, July 2025a. ISSN 0893-6080. doi: 10.1016/j.neunet.
2025.107380.

13

https://openreview.net/forum?id=R8sQPpGCv0
https://papers.nips.cc/paper_files/paper/2022/hash/a3a7387e49f4de290c23beea2dfcdc75-Abstract-Conference.html
https://papers.nips.cc/paper_files/paper/2022/hash/a3a7387e49f4de290c23beea2dfcdc75-Abstract-Conference.html
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
https://openreview.net/forum?id=JV8Ff0lgVV
www.mosaicml.com/blog/mpt-7b
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://openreview.net/forum?id=cEJ9jNJuJP
https://openreview.net/forum?id=cEJ9jNJuJP


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Yubin Xiao, Yuesong Wu, Rui Cao, Di Wang, Zhiguang Cao, Peng Zhao, Yuanshu Li, You Zhou, and
Yuan Jiang. DGL: Dynamic global-local information aggregation for scalable VRP generalization
with self-improvement learning. In Proceedings of International Joint Conference on Artificial
Intelligence, pp. 1–9, 2025b.

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang,
Yanyan Lan, Liwei Wang, and Tie-Yan Liu. On layer normalization in the transformer archi-
tecture. In Proceedings of the 37th International Conference on Machine Learning, ICML’20.
JMLR.org, 2020.

Biao Zhang and Rico Sennrich. Root mean square layer normalization. In H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.,
2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/
file/1e8a19426224ca89e83cef47f1e7f53b-Paper.pdf.

Changliang Zhou, Xi Lin, Zhenkun Wang, and Qingfu Zhang. L2r: Learning to reduce search space
for generalizable neural routing solver, 2025.

14

https://proceedings.neurips.cc/paper_files/paper/2019/file/1e8a19426224ca89e83cef47f1e7f53b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/1e8a19426224ca89e83cef47f1e7f53b-Paper.pdf


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

A APPENDIX

A.1 ATTENTION VISUALIZATION

We explore how models act under different scaling factors. To this end, we fix a single TSP-10 000
instance and visualize the average attention logits of the origin city with respect to all other cities
(Figure 6).

For small scaling factors (below 1.5), all models attend mainly to cities close to the origin and to
the destination. At larger scaling factors, however, only PENS-A (the ALiBi-based solver) main-
tains consistent attention, continuing to focus on both local neighborhoods and the destination. In
contrast, the baseline fails to attend to the destination, while PENS-R exhibits periodic attention
to specific regions of the square, likely caused by rotations of queries and keys that constructively
interfere. Similar periodic patterns have been reported in the NLP domain (Sun et al., 2022; Peng
et al., 2024), where enhancements were proposed to improve context-length generalization.

Figure 6: Attention patterns on a path-TSP-10 000 instance under different scaling factors. Each
panel shows the average attention logits from the origin city (red circle) to all others. The destination
is marked with a red star. The rightmost column uses the best estimated scaling factor of each model.
ALiBi-based solvers remain consistent across scales, concentrating on local neighborhoods and the
destination, while other models deteriorate or show periodic artifacts.

A.2 EVALUATION DETAILS

We report all results in Table 3. Additional details about baselines are provided in Table 4. As
described in Section 5.1, we evaluate all baselines using greedy decoding in order to isolate the
impact of the architecture. For reference, the decoding strategies originally used in the respective
papers are also listed in Table 4. All baselines are evaluated using the official code released by the
authors.

A.3 IMPLEMENTATION DETAILS

Transformer We use a prenorm Transformer (Xiong et al., 2020) with RMSNorm (Zhang & Sen-
nrich, 2019), which is the most common transformer variant in current practice.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Model

Uniform TSP TSPLIB
100 250 500 1000 10 000 1∼100 101∼1000 1001 ∼ 10 000

128 inst. 128 inst. 128 inst. 128 inst. 10 inst. 12 inst. 36 inst. 24 inst.
gap time gap time gap time gap time gap time gap time gap time gap time

BQ-NCO 0.31 0.6m 0.67 1.5m 1.17 3.8m 2.19 13m 19.94 245m 0.48 0.1m 2.80 0.6m 11.31 27m
BQ-NCO + ESF 0.34 0.6m 0.67 1.6m 1.04 4.0m 1.71 14m 15.12 322m 0.50 0.1m 2.76 0.6m 8.49 29m
LEHD 0.49 0.4m 0.95 1.0m 1.63 2.0m 3.06 4m 28.85 53m 0.61 0.1m 3.14 0.4m 12.34 5m
INViT-2V 4.92 0.9m 5.98 2.3m 6.45 4.8m 6.69 10m 7.08 20m 6.04 0.1m 8.63 0.8m 10.88 6m
INViT-3V 4.85 1.0m 5.92 2.8m 6.30 5.9m 6.76 13m 7.05 25m 4.91 0.1m 9.07 0.9m 12.33 7m
DGL 2.19 0.5m 3.37 1.2m 4.72 2.3m 5.74 5m 7.81 4m 2.60 0.1m 7.33 0.4m 9.44 2m

PENS-A 0.34 1.4m 0.75 3.7m 1.22 7.6m 1.86 15m 9.74 69m 0.52 0.1m 3.32 1.3m 8.82 8m
PENS-A (scaled) 0.36 1.4m 0.71 3.7m 1.14 7.6m 1.68 15m 5.46 69m 0.48 0.1m 3.53 1.3m 6.64 8m
PENS-R 0.26 1.8m 0.55 4.6m 0.95 9.3m 1.75 19m 16.73 18m 0.39 0.1m 2.89 1.6m 8.73 8m
PENS-R (scaled) 0.27 1.8m 0.53 4.6m 0.88 9.3m 1.52 19m 11.86 18m 0.43 0.1m 3.04 1.6m 8.14 8m
PENS-AR 0.20 1.9m 0.46 4.9m 0.94 9.8m 1.75 20m 9.51 81m 0.34 0.1m 3.14 1.6m 6.39 11m
PENS-AR (scaled) 0.22 1.9m 0.50 4.9m 0.89 9.8m 1.56 20m 7.13 81m 0.38 0.1m 3.13 1.6m 5.51 11m

Table 3: Results of our models and the baseline solvers. For each PENS variant, we report perfor-
mance with and without input rescaling. For TSPLIB instances, the rescaling factor is estimated by
linear interpolation from uniform TSP results based on instance size. Optimal gaps are shown in %.

Method Graph type # Params Venue Decoding
LEHD (Luo et al., 2023) Complete 1.4M NeurIPS 2023 RRC
BQ-NCO (Drakulic et al., 2023) Complete 3.1M NeurIPS 2023 BS
BQ-NCO+ESF (Xiao et al., 2025a) Complete 3.1M Neural Networks 2025 BS
INViT-2V/3V (Fang et al., 2024) Sparsified 1.7M/2.6M ICML 2024 BS + POMO
DGL (Xiao et al., 2025b) Sparsified 0.8M IJCAI 2025 BS + POMO

PENS (ours) Complete 2.7M - -

Table 4: Overview of the evaluated baselines. RRC denotes Random Re-Construct, which randomly
regenerates partial solutions. BS stands for Beam Search. POMO refers to Kwon et al. (2020),
which augments each instance with multiple starting points, solves them independently, and returns
the best solution.

Scalable Softmax Scalable Softmax (SSMax) (Nakanishi, 2025) was proposed for LLMs to im-
prove long-context capabilities. A related approach, the Entropy-based Scaling Factor (ESF), was
later introduced for neural TSP solvers (Xiao et al., 2025a). The idea is to attenuate irrelevant tokens
in long sequences by increasing the signal-to-noise ratio before the weighted sum. This is achieved
by multiplying the attention logits by a scaling factor s:

Attention(Q,K,V ) = V softmax

(
s
QK⊤
√
d

)
,

where s ∝ log(N) and N is the sequence length. Nakanishi (2025) use a learned scaling factor,
while Xiao et al. (2025a) set it according to the training instance size. In this work, we simply use

s = log(N + 1).

ALiBi slopes We initially experimented with trainable slopes but found them difficult to optimize:
removing weight decay and adding a regularization loss were required to prevent convergence to
zero. Empirically, the learned slopes varied between 0 and 10, which motivated us to fix them as

mh = 10√
2

h ,

inspired by the original ALiBi method (Press et al., 2022).

Flex-attention Our self-attention layer deviates slightly from standard RoPE and ALiBi imple-
mentations, preventing the use of existing flash-attention kernels (Dao et al., 2022; Dao, 2024). We
instead rely on PyTorch’s flex-attention1, which allowed us to implement these layers efficiently.
Flex-attention is still in beta and required workarounds not covered in the documentation. We invite
the reader to consult our released code for details. To manage memory on large instances, we also
employed chunked attention (Kwon et al., 2023).

1See https://pytorch.org/blog/flexattention/.

16

https://pytorch.org/blog/flexattention/

	Introduction
	Related Work
	Background and Motivation
	Traveling Salesman Problem in NCO
	Attention and Positional Encodings

	Method
	Input Perception with ALiBi and RoPE
	Stretching the input space
	Architecture

	Results
	Experimental Setup
	Results

	Conclusion and Future Work
	Appendix
	Attention visualization
	Evaluation details
	Implementation details


