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ABSTRACT

Metric learning is often applied in scenarios where labels are well-defined or
where there is a ground truth for semantic similarity between data points. How-
ever, in expert domains such as medical data, where experts perceive features
and similarities differently on an individual basis, modeling psychological em-
beddings at the individual level can be beneficial. Such embeddings can pre-
dict factors that influence behavior, such as individual uncertainty, and support
personalized learning strategies. Despite this potential, the amount of person-
specific behavioral data that can be collected through similarity behavior sam-
pling is insufficient in most scenarios, making modeling individual cognitive em-
beddings challenging and underexplored. In this study, we proposed integrat-
ing supervised learning on small-scale similarity sampling data with unsupervised
autoencoder-based manifold learning to approximate person-specific psychologi-
cal embeddings with significantly improved similarity inference performance. We
conducted a large-scale experiment with 121 clinical physicians, measured their
cognitive similarities using medical image data, and implemented person-specific
models. Our results demonstrate that even in complex expert domains, such as
medical imaging, where cognitive similarity varies between individuals, person-
specific psychological embeddings can be effectively approximated using limited
behavioral data.

1 INTRODUCTION

Deep machine learning (ML) models can provide abstract-level information regarding the similarity
between data through embedding (Liu et al., |2020b; Bengio et al., [2013} [Mikolov et al., 2013). For
instance, samples positioned close together in the embedding space can be interpreted as semanti-
cally similar, whereas those that are far apart are different. However, the actual similarity between
the samples may not always be reflected in the learned embedding of the model. Metric learning is a
method in which a model learns a function of the actual similarities and differences between samples
and fits this function to low-dimensional embedding. In this context, the ’actual similarity’ refers
to a conventional metric that is defined externally. For example, in labeled datasets, a clear metric
states that data points with the same label should be closer to each other than those with different
labels. Even in the absence of labels, many datasets have commonly accepted metrics, such as the
general perception that dogs are more similar to cats than snakes. Most metric-learning approaches
operate under such conditions; thus, sufficient training data are available.

By contrast, we introduce a specialized metric learning problem that approximates individual-level
psychological (cognitive) embeddings in scenarios where there are significant differences in similar-
ity metrics depending on the individual (Schroff et al.| 2015} [Liu et al.l 2017} |Hosseini et al.| 2018;
Luo et al.l 2003). This issue is particularly relevant in expert-driven fields such as medical data,
where interpretations often differ. For example, while chest X-ray (CXR) images are structurally
simple, their interpretation is highly complex (Delrue et al.l 2011} [Pham et al.l 2021)). Even among
experienced physicians, the cognitive similarities or diagnoses of CXR images can vary widely (see
Section 3.3) (Krupinski, [2010). Moreover, because labels are defined using partial data features,
they may not align with the similarities assessed from a holistic perspective. For example, in CXR
data, it may be necessary to differentiate between ‘Male’ and ‘Female,” while also distinguishing be-
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Figure 1: Illustration of the person-specific cognitive embedding modeling framework. Individual
similarity measurement experiments arrange three images into a scalene triangle based on their
pairwise similarities. This similarity data is then converted into triplets to train a person-specific
embedding model. The resulting model approximates the person’s psychological embeddings.

tween ‘Normal’ and ‘Abnormal’. Therefore, in highly complex datasets, an individual’s perception
of similarity can remain independent of external metrics (labels).

This scenario is important because approximating individual-level cognitive metrics with psycho-
logical embeddings enables the inference of features considered more important by each person.
Personalized learning strategies can be developed by identifying areas with high uncertainty be-
cause similar data points often exhibit similar uncertainties (Liu et al., 2020a; Mukhoti et al.| 2021}
Sanchez et al, [2022). This approach can also improve expert Al by transferring the psychological
representations of superior experts to models.

Therefore, it is important to attempt to approximate cognitive embedding at the individual level;
however, such attempts are rare. The biggest challenge lies in the inherent noise and difficulty
of obtaining sufficient behavioral sampling for individual-level psychological embedding model-
ing (Molenaar & Campbell, [2009). In practical scenarios, modeling individual-level psychological
embeddings requires overcoming the issue of insufficient behavioral sampling. As an alternative,
we demonstrated that by integrating a loss function that learns from behavioral sampling data col-
lected from individuals into an autoencoder-based framework, it is possible to synergistically achieve
person-specific psychological embedding modeling that represents cognitive similarity, even with a
limited amount of training data.

Our objective is not to improve metric learning algorithms or optimize models but to propose and
experimentally validate a practical approach for applying metric learning to individual embedding
learning. Specifically, we conducted a first-ever behavioral sampling experiment to measure the cog-
nitive similarity of actual CXR images with 121 clinical physicians, focusing on realistic scenarios.
After confirming significant variations in the cognitive similarity patterns across individuals, we im-
plemented autoencoder-based models to represent each person’s similarity metric at the embedding
level (Fig. [I). The performance of the model was evaluated using individual behavioral data, and
the robustness of our hypothesis was validated through ablation studies and simulations.

The key contributions of our study are as follows:

1) This is the first expert-based experimental study to model individual-level psychological embed-
dings, demonstrating the applicability of our approach to a realistic scenario using actual clinical
physicians and medical data. 2) We showed that autoencoders can synergistically complement the
limitations of cognitive similarity sampling in individual-level cognitive similarity approximations.
(Proposing a new application scenario for autoencoders) Additionally, we empirically demonstrated
the utility of the variable triplet loss, which was proposed to learn the psychological embeddings in
the bottleneck layer of the autoencoder. 3) The experiment, which involved 121 physicians and med-
ical imaging data, required considerable time and effort. The raw experimental data will contribute
to research in fields such as human—AI collaboration.



Under review as a conference paper at ICLR 2025

2 RELATED WORK

2.1 METRIC LEARNING

This study is closely related to metric learning in ML, which involves training models to learn the
similarity between samples (Weinberger & Saul, [2009; Xing et al., 2002; [Weinberger et al., |2005).
Early algorithms focused on discriminating similar and dissimilar samples or with pre-defined met-
rics (Aherne et all 1998 [Elgammal et al.l 2003). Recent approaches aims to learn the distance
function in the embedding space of the model, representing similar and dissimilar samples as close
and distant, respectively. For instance, selecting a reference image (anchor) among three data points
helps determine which one is closer or farther from the reference, referred to as triplets (Hoffer
& Ailon, 2015; (Wang et al.l 2017; |Le-Khac et al.| 2020; |Ge, 2018; Hoffer & Ailon, 2015; |[Kim
et al.| [2020). Consequently, the triplet loss that reflects the conditions of these triplets in embedding
space can be defined. It increases the distance between negative pairs more than the positive pairs.
From the perspective of metric learning, the goal of our work is not to improve existing algorithms
but rather to apply metric learning to model person-specific psychological metrics, which are not
defined externally. This distinguishes our work from other studies.

2.2  PERSON-SPECIFIC COGNITIVE SIMILARITY MODELING

Human inference operates through cognitive mechanisms that can be conceptualized as a hypo-
thetical representational space, analogous to embeddings in machine learning models. In cognitive
science, this representational framework is referred to as a psychological embedding. According to
the theory of similarity-representation duality, embedding models trained on an individual’s cogni-
tive similarity metrics can concurrently encapsulate their cognitive features (Roads & Love, [2024).
This framework suggests that similarity metrics specific to an individual can uncover the relative
weighting of features involved in their perceptual processing of objects. By harnessing these in-
sights, personalized embedding models have the potential to identify optimal learning domains and
highlight knowledge deficits in experts (Cha & Lee, [2021]).

Previous research in cognitive science has investigated tasks pertinent to the development of indi-
vidualized embeddings. These efforts include systematic evaluations of human perceptual charac-
teristics (Zhang et al.,2018)), fine-tuning neural networks to enhance predictions of human similarity
judgments (Tarigopula et al., 2023)), and integrating neurological signals with cognitive embeddings
(Palazzo et al.||2020). Although substantial progress has been achieved in collecting behavioral data
for psychological embeddings across diverse stimuli (Hebart et al.l 2020; Nosofsky et al., 2018;
Wilber et al., 2014), relatively few studies have addressed the technical challenges associated with
insufficient sampling for individual-level modeling. To address this gap, our study investigates the
potential of leveraging unsupervised learning techniques, specifically autoencoders, to amplify lim-
ited person-specific similarity information.

In contrast to conventional metric learning frameworks that rely on predefined, consensus-based
similarity metrics, person-specific metric learning becomes particularly valuable in contexts such as
expert-driven domains, where cognitive similarity metrics exhibit significant inter-individual varia-
tion. Nevertheless, most prior study in this area has relied on benchmark datasets characterized by
relatively minor differences in individual similarity perceptions (Peterson et al., 2018)). Our work
presents a novel contribution by validating the feasibility of individualized embedding modeling in
real-world, professional datasets such as medical imaging, thereby bridging theoretical cognitive
science and practical expert applications.

2.3 AUTOENCODER AND MANIFOLD LEARNING

Autoencoders learn the latent representations of data points in the bottleneck layer between the
encoder and decoder by minimizing the reconstruction loss of the decoder for the input data (Be-
rahmand et al., 2024} [Tschannen et al., 2018 [Wang et al., 2014). The objective is to learn latent
representations and thereby discover hidden structures in the data. From the perspective of the man-
ifold theory, training an autoencoder is equivalent to determining the parameters of a data manifold
(Lempitsky}, |2019; [Lu et al., 2019). However, manifold structures are not always singular and it is
common for data to belong to multiple manifolds (Hettiarachchi & Peters| [2015). Although the ro-
bustness of autoencoders has been demonstrated in numerous studies, explaining the local structure
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Figure 2: Illustration of the loss structure and its optimization process on a synthetic example.

of the manifolds represented in the embedding space learned by unconstrained autoencoders remains
challenging (T'schannen et al., 2018)). Instead, autoencoders can potentially learn various manifold
structures depending on the initial weights of the model or certain constraints. If we assume that
each individual’s psychological embedding space represents a manifold, autoencoders can offer a
useful guide for modeling person-specific psychological embeddings. However, this approach has
not been explored previously.

3 APPROACH

3.1 COLLECTING SIMILARITY JUDGEMENTS

Sampling behavioral data for person-specific modeling may entail several limitations. First, behav-
ioral data from a subject can typically only be used to train an individual model for that subject.
Considering the laborious nature of behavioral sampling, the collection of triplets can incur high
costs. Consequently, the amount of behavioral data that can be gathered from a single individual
may be limited. Second, although the dimensionality of the embedding space is lower compared
to the stimulus (i.e., raw images) space, it remains high-dimensional, posing challenges in case of
intuitive handling (Roads & Love, [2024). This dimensionality can introduce significant noise when
measuring similarity between data points. We implemented a triangular measurement framework
treating each data point composing a triplet as an independent anchor to collect efficient behavioral
data with minimal sampling and low uncertainty. Considering three data points, the selection of
one of them as the anchor forms a unmeasured triplet 7 = (Xg,X1,X2), wWhere x, denotes the
anchor point, and x; and x5 denote the other points, respectively. When the subject s selects a
data point that is either more similar or dissimilar to x, from x; and x5, the 7 is expressed as the
‘measured triplet’ 7° = (x,, X, Xq), Where X, and x4 denote the close and distant points, respec-
tively, based on the behavioral measurements of the subject s. Therefore, each measured triplet has
two possible labels. Excluding the anchor, the remaining two images in a triplet are labeled as one
close (“close” sample) and one relatively distant (“distant” sample). In our measurement procedure,
three images were presented to the participant without specifying any anchors. Subsequently, the
subject arranged the positions of these images in a scalene triangle shape, reflecting the degree of
closeness or distance between each pair of images. Upon fixing the anchor image, a triplet was
automatically determined with the remaining two images. Therefore, with three images presented
in one instance, three triplets were collected. Thus, considering three data points sampled from the
entire dataset without duplication m times, m measurement experiment instances can be conducted,
thereby yielding 3m triplets. Although the triplets obtained from a single instance may be inter-
dependent, this approach could regularize subject response by reducing the degree of freedom in
representing cognitive distances between data points. Moreover it facilitates the collection of three
sets of behavioral data from a single experiment, thereby enhancing sampling efficiency.

3.2 CONVOLUTIONAL AUTOENCODER WITH VARIABLE TRIPLET LOSS

Cognitive representation may rely on biological parameters such as neurological architecture
(Kriegeskortel, 2015} [Kubilius et al., 2018), suggesting the importance of considering suitable ML
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model architectures and loss functions. However, to the best of our knowledge, a generally applica-
ble ML architecture that can emulating psychological embeddings has not been proposed. Therefore,
we empirically designed the embedding model architecture based on convolutional autoencoder
(Chen et al.| [2017) considering the context of medical image modeling without labels. Its archi-
tecture offers several advantages for our objectives. First, convolutional neural networks (CNN)
are considered viable for modeling visual perception to date (Zeiler & Fergus| [2014). Second, the
collection of sufficient data for training deep CNNs with numerous parameters through individual
behavioral sampling can pose challenges. Autoencoders (unsupervised embedding learning meth-
ods) can partially address the insufficient behavioral data issue by directly extracting a meaningful
feature independent of classes (Yang et al.,[2022; |Psenka et al.,[2024; Bank et al., 2023)).

The proposed autoencoder model comprises an encoder E(-), and decoder ID(-),, each compris-
ing convolution and deconvolution layers, respectively, where ¢ denotes training iteration step (i.e.,
epoch). The fully connected bottleneck layer, serving as the output of the encoder and input of the
decoder, was designed to approximate the region of interest, psychological embeddings. Consider
images {x, --- } and the corresponding embeddings output of the encoder {E(x),, - - -}, where
E(x) € RP denotes the D-dimensional vector. At each training iteration, we randomly sampled a
batch of measured triplets among the training set (Refer to Sec. 3.4). Training aims to prompt an
increase in the Euclidean distance between E(x4); and E(x,); compared to the distance between
E(x.): and E(x,):, while the autoencoder reconstructs the input x,. Thus, we aimed to minimize
the following loss function for each subject s’s model at iteration .

—

Lors(T*)1 = [D(E(Xa + €)1)r — Xall2 + a[E(xa)e — Exe)r1ll2 + BIE(Xa): — E(Xa)i_1]l2,

recontruction loss variable triplet loss

ey
where || - ||2 denotes L2-norm, e is Gaussian random noise, « and 3 are hyperparameters that satisfy
a > (3, and ~ denotes a constant tensor with no gradient flow. Further, E(x.);—1 and E(xg):—1
function as candidate vectors for embedding the subject for x. and x4, respectively, indicating the
convergence target of x, at iteration ¢. However, with training progression, the candidate vectors
for embedding change, rendering the overall convergence target of the loss function variable. A
weakening in the convergence of stochastic gradient descent is anticipated, but with properly se-
lected hyperparameters like learning rate, batch size, «, and 3, optimization primarily depends on
reconstruction loss, minimizing significant convergence issues. Although autoencoders can effec-
tively learn compressed representations, they are prone to overfitting and encounter challenges when
determining feature importance (Meng et al.,[2017). The variable triplet loss can be interpreted as
constraints guiding the training of autoencoders towards the identification of features that are more
specific to the target individual among the candidate features they can explore (Fig. [2).

3.3 PERSON-SPECIFIC SIMILARITY PATTERN QUANTIFICATION

To quantitatively express and compare the cognitive similarities among subjects participating in
experiments for the same dataset, we defined similarity pattern vector (SPV). Assume that we
collected behavioral datasets through multiple instances m times from subject s. This formed a
set T§, comprising 3m triplets. Each element triplet 7.° (Vi € {1,---,3m}) composing T§, can
be transformed into binary labeling. Therefore, assuming each triplet as an independent dimension
determining the similarity pattern of the subject s, the similarity pattern is defined as follows.

SPV(Tg) = [0(T7), O(T5), - -, O(T3,)], 2)

where O(7,2) denotes one of the possible similarity relationships for the n-th 7%, expressed as 1 for
one relation and O for another. Thus, SPV(T$)) is the 3m-dimensional one-hot vector expression,
which indicates the person-specific similarity pattern.

3.4 TRAINING AND EVALUATION OF THE MODEL

The triplet set T¢, was randomly assigned to the training set T, validation set TS,, and evaluation
set TE according to a predetermined ratio. While optimizing Eq. [I{using T%., the optimal model
was determined considering the highest inference accuracy achieved on T5,. Further, to address the
scenario wherein inference accuracy must be treated across various models, we defined a predictive
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evaluation function F for single triplet 7;° as follows.

_ _J1 i [E(xa) — Ej(xa)ll2 > [Ej(xa) — Ej(xc)ll2
F (B (), T7) = {07 otherwise

. 3)

where, E;(x) is output over fed x of the encoder trained using TJ;r and ij, (Xq,Xe, Xq) is T;®.

In case of considerable diversity in cognitive patterns among subjects, (Sec.4.3) a model trained on
Ti. is strongly expected to achieve higher performance on Ti;. Whereas, the performance on Ty,
(for j # 1), should be lower compared to T}:. We defined the performance measured on the eval-
uation set comprising h triplets obtained from the target subject j of the model as Specific Perfor-
mance (SP) : (X, F (E;(x),7%))/h x 100 (i = 1, - - - h). Further, the performance measured on
the test set collected from all g subjects measured with the Tg except the target subject j of the model
was defined as Non-Specific Performance (NSP) : (X{_ %! | F (E(x), 7)) /h(g — 1) x 100
G=1,---hk=1,--- g,k # j). Note that the reliability of NSP improves with a larger experi-
mental group size since NSP depends on the subject group.

3.5 QUALITATIVE ANALYSIS

The performance of the embedding model can be qualitatively evaluated by comparing the loca-
tions of the top n pixels predicted by the model to influence similarity judgments with the n pixels
identified by experienced clinicians. The annotation process of the model begins by selecting a ref-
erence unit with the highest variance among the embedding outputs of a separate reference dataset.
Once the reference unit is determined, uniform noise is iteratively added to each pixel of the test
image, which is then input into the model to compute the variance in the reference unit’s output.
This process is conducted individually for each pixel (Sec. [A.6). Subsequently, the top n pixels that
caused the greatest variance in the reference unit’s output due to the added noise are identified and
compared with the pixels annotated by expert clinicians.

4 EXPERIMENTS

Herein, we describe the human behavioral experiment setup and dataset (Sec. 4.1.-4.2) and present
evidence that the similarity perception patterns of physicians vary on an individual basis (Sec 4.3).
Then we evaluate the predictive performance of embedding models trained on a person-specific basis
(Sec 4.5). We provide evidence that the performance of embedding models can improve with the
scale of behavioral sampling through human surrogate model simulations (Sec. 4.7). Additionally,
we examine the significance of each term of loss function through ablation study (Sec. 4.8).
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Figure 3: Results of group-based similarity pattern analysis for all subjects. (a) 2D t-SNE visual-
ization of similarity pattern vectors (SPVs). The colors represent the results of a separate image
interpretation test conducted with the subjects, where red indicates relatively higher performance.
(b) Variance of components in the SPVs (Decending order).

4.1 DATASETS

CXR images serve as a crucial diagnostic modality in all clinical fields owing to their capability
to contain wide clinical information. Moreover, interpreting CXR images can be challenging even
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Figure 4: Similarity inference performance analysis. (a) Model-specific results (Accuracy: %, bar:
standard deviation). (b) Cross-performance heatmap (X-axis: subject triplets, Y-axis: models).

for experienced clinicians, and they may have diverse similarity perception patterns. This scenario
aligns well with our task objectives. To compensate the limitations of single-domain experiments,
we constructed two different experimental datasets. The CXR-A dataset was formed via random
sampling of images labeled as ‘Normal” or ‘Abnormal’ from the CheXpert 1.0 dataset
2019), whereas the CXR-B dataset comprised images labeled as ‘Edema’ or ‘Pneumonia’ from
the same source. In our experiments, labels were unnecessary; however, we used this approach to
sample the two sub-datasets from different distributions. Each dataset comprised 500 subsets, with
each subset comprising three images (Therefore, resulting 7** comprised 1500 7~ after the subject
similarity measurements). CXR-A images might not clearly show lesions, leading physicians to
focus on overall anatomical outlines, whereas CXR-B images, with more evident lesions, may lead
physicians to focus on pathology (Behzadi-Khormouji et all,[2020; [Homayounieh et all 202T).

4.2 HUMAN EXPERIMENTS FOR SIMILARITY MEASUREMENT

We conducted experiments with 121 government-licensed clinical physicians, recruited from the
official medical association. After randomly selecting 150 subjects, 121 were included, excluding
those who withdrew. Subjects were assigned to Group A (1-62) and Group B (63-121), with each
group using CXR-A and CXR-B, respectively. In the experiment, three unlabeled images (1 subset)
were shown on the monitor, and subjects were asked to drag balls to indicate similarity, with closer
balls representing more similarity. Despite a flexible scale between ball distances, the subjects were
requested to maintain consistent criteria across all instances. The experiment had no time limit, and
breaks were allowed. Group A took an average of 304 minutes to complete 500 experiments, while
Group B took 245 minutes. Subsets were presented in a randomized order.

4.3 SIMILARITY PATTERN COMPARISON

Fig[3] (a) shows the t-SNE (Van der Maaten & Hinton| [2008) dimensionality reduction of the SPV
(Eq.2) from the all subjects over belonging group. Each component of SPV was formed by all 1500
triplets collected from each subject. The similarity patterns among subjects from both groups were
diverse, and did not form clusters. In the multivariate runs test conducted to assess randomness,
SPV demonstrated randomness with p-values of 0.18 and 0.07 for the CXR-A and CXR-B groups,
respectively. Thus, individuality embedding modeling for each person is necessary. Fig. [3] (b)
illustrates the variance of each component of the the SPV across all subjects (descending order).
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Despite the high variance in most components, the presence of components with relatively low
variance suggested the potential of partial similarity patterns generally shared by subjects.

4.4 MODELING DETAIL

The best model architecture designed herein comprised an encoder with four convolutional layers,
and a decoder with four deconvolutional layers (See A.2). All results, except for the comparative
experiment (ablation study) presented in Sec. 4.8, are reported based on the best architecture. The
embedding layer (region of interest), was a one-dimensional tensor with 64 units. Original gray
images of size 1024 x 1024 presented to subjects were reduced to (1x128x128) and employed
as model input data. We employed the PyTorch (Paszke et al) for all experiments. We fixed the
learning rate to 10~* and used the Adam optimizer (Kingma & Bal, 2014) with 32 mini-batch size.
The hyperparameters for training were consistent across all models. « and 3 were set to 1.2 and 1,
respectively; however, they were fine-tuned by the algorithm to reflect the distance scale reported by
the subjects during the experiment.

4.5 PERFORMANCE OF PERSON-SPECIFIC SIMILARITY INFERENCE (MAIN STUDY)

Fig. [] (a) shows the SP and NSP of all individual models. The number of triplets for training,
validation, and evaluation was randomly set to 1410, 60, and 30, respectively. The final perfor-
mance was reported using 3-fold cross-validation with random selection. Our models achieved
significantly higher SP (Group A average 68%, Group B average 68.7%) compared to the chance
level, thereby validating the efficacy of our approach. Considering the diverse similarity patterns
among subjects, models may exhibit lower predictive performance on evaluation triplets of differ-
ent subjects.(Models should achieve specific strong performance for test triplets for corresponding
subject) Notably, across all models, a consistent trend of the NSP being lower than SP as observed.
Fig. [] (b) presents the cross-predictive performance on a heat-map for person-specific models on
the evaluation triplets for all subjects. While displaying distinct predictive tendencies specific to
the target subject’s evaluation data, the models demonstrated random patterns for the data of the
non-corresponding subjects, thereby aligning with the similarity patterns in the group (Sec. [A23).

4.6 RESULTS OF QUALITATIVE ANALYSIS (SUB-STUDY)

Figure [3]illustrates examples of the top 10 image regions where changes in pixel values influenced
similarity, as determined by the procedure described in Section 3.5. The annotations shown on
the left image were performed by experienced clinicians. The regions affecting experts’ similarity
judgments differed between CXR-A and CXR-B. In CXR-A, similarity judgments were primarily
influenced by anatomical structures such as bones and the thorax, whereas in CXR-B, regions around
lung lesions played a key role. These tendencies were also reflected in the annotations generated
by the proposed model. Table [T] summarizes the proportion of pixels, averaged across all subjects,
where the top 10 similarity-determining pixels predicted by the model were within a 2-inch distance
of the 10 pixels identified by experienced clinicians. The proposed model demonstrated patterns
closely aligned with those of the experts, while the comparative model (a conventional autoencoder
described in Section 4.8) exhibited significantly weaker predictive performance.

Our Model Conven tional Autoencor der

(a) Example of CXR-A test image 1 (Subject 2) (b) Example of CXR-B test image 1 (Subject 68)

Figure 5: Annotation of image regions where changes in pixel values impact embedding similarity.
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Table 1: Proportion of top 10 similarity-determining pixels within 2 inches of expert annotations
(CA : Conventional autoencoder).

CXR-A Test Image 1 (n=62) CXR-A Test Image 2 (n=62) CXR-B Test Image 1 (n=59) CXR-B Test Image 2 (n=59)
Our Model (%) CA (%) Our Model (%) CA (%) Our Model (%) CA (%) Our Model (%) CA (%)
49.3+17.1 13.8 £12.7 50.8+10.9 14.84+9.7 51.0+17.2 22.8 £12.3 45.4+14.5 189+11.8
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Figure 6: Inference performance of simulation experiments. (a) Model-specific results (Accuracy:
%, bar: Standard deviation). (b) Effect of amount of triplets in simulation (bar: standard deviation).

4.7 SIMULATION EXPERIMENTS

We showed that the embeddings of the original model could be reconstructed in preserved similarity
even in simulations wherein the subjects were replaced with ML models. We sampled 100 images
each from CheXpert, which were not included in CXR-A or CXR-B. Thereafter, 16 different binary
classification CNN models were trained for each set. We measured the Euclidean distance of output
vectors inner layer immediately before the final layer for each model for the same triplets as in the
human behavioral experiments to collect the similarity relationship. Subsequently, the secondary
embedding model was trained in the same manner of the modeling of human embedding (Fig. [6]
(a)). The performance was slightly higher than that in human behavioral experiments, indicating
that noises may occur in the similarity measurement process for human subjects. Moreover, in the
experiments wherein the number of subsets for CXR-A and CXR-B was increased using additional
data, the performance of the embedding model for simulation exhibited an improvement according
to the number of triplet samples for model training (Fig. [6](b)). Thus, this implies increasing human
behavioral experiment sample sizes could enhance embedding model performance in future.

4.8 ABLATION AND COMPARISON STUDY

This section summarizes the study designed to demonstrate the effects of the proposed modeling
approach components on the loss function. Table [2] shows the inference performance of models
trained by excluding each component (reconstruction and variable triplet losses) while maintaining
the same training settings as in our proposed method. In both the ablated settings, the performance
exceeded the chance level; however, it was lower than that of our proposed setting. An important
finding is that the setup excluding variable triplet loss (i.e., conventional autoencoder) surpasses the
opposite setting. It shows prioritizing reconstruction loss optimization offers advantages for embed-
ding learning over exclusively optimizing triplet loss. This implied the presence of common latent
similarity patterns among subjects that can be learned solely by autoencoders and indicated that the
features that cannot be trained through triplet loss alone owing to sampling limitations were trained
via the optimization of the reconstruction loss of the autoencoder. Moreover, in the ablation set-
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Table 2: Results of ablation study (error: standard deviation).

Group A (n=62) Group B (n=59)
Methods SP (%) NSP (%) SP (%) NSP (%)
Autoencoder with variable triplet loss (Our methods) 68.0+3.2 555+39 68.8+27 57.2+3.8
Variable triplet loss only (Excluding recontruction loss) 53.9£8.0 53.8+3.8 557450  55.0+4.8
Autoencoder only (Excluding variable triplet loss) 57.9+£6.0  56.843.8  623%4.8  59.743.1
Encoder with triplet loss (Excluding decoder) 61.8+3.1 56.3+2.8 60.7+4.5 57.0+4.1

Encoder only (Excluding decoder and variable triplet loss) ~ 62.31+3.4 55.34+3.3 60.94+4.0  56.0+3.5

ting, SP was marginally higher than NSP; however, no significant superiority was observed, thereby
suggesting an incapability to extract person-specific features. Meanwhile, an ablation experiment
was conducted by adding a classifier to the encoder of the autoencoder, utilizing cross-entropy loss
alongside variable triplet loss. In this ablation experiment aimed at validating the utility of the de-
coder, the performance was higher than that of the variable triplet loss-only setting; however, it did
not surpass the performance of our proposed method. In summary, these evidences support our
claim that variable triplet loss guides person-specific feature learning in autoencoders.

5 LIMITATION

While pioneering person-specific similarity-based cognitive embedding, this study faces limitations
inherent to human behavioral experiments, such as uncertainty in similarity judgments and interde-
pendent measurements. Future studies should adopt systematic experimental designs to address this
noise. Additionally, our experiments focused on a limited set of neural network architectures and
did not explore optimal hyperparameter tuning or provide theoretical proof for the hypothesis that
person-specific cognitive similarity can guide autoencoder manifold learning.

6 CONCLUSION

This study proposed an autoencoder-based person-specific embedding modeling framework that ap-
proximated cognitive similarities between subjects in CXR data and conducted a large-scale behav-
ioral experiment with clinical physicians. To the best of our knowledge, this is the first such study
attempt. Specifically, we demonstrated that our approach can be applied in domains where signifi-
cant inter-observer variability in similarity perception exists, such as in the complex interpretation
of CXR images. As our experimental design did not include any domain-specific constraints or as-
sumptions unique to the medical field, we believe that our method can potentially be generalized to
other domains.

We hypothesized that individual psychological embeddings reflect features learned independently
of external metrics (such as labels). According to this hypothesis, information derived from high-
dimensional data that is cognitively interpreted may lie on a lower-dimensional psychological mani-
fold. Autoencoders probabilistically learn the data manifold independent of external metrics. There-
fore, autoencoders may offer a useful framework for approximating human-metric-independent em-
beddings. We further suggest that triplet loss, which captures individual similarity, may have acted
as a perturbation that guided the autoencoder toward learning a specific manifold. However, theoret-
ical proof is beyond the scope of this study and should be explored in future studies. Additionally,
through simulations and ablation studies using person surrogate models, we confirmed the robust-
ness of the proposed method and demonstrated the potential for proportional improvements in the
model inference performance as the scale of behavioral data sampling increases.

Our study, which uses a multidisciplinary approach that integrates cognitive science, machine learn-
ing, and expert knowledge applications, demonstrates the potential of aligning deep neural networks
with human representational mechanisms as a tool for understanding human cognitive representa-
tions. This approach could also potentially contribute to the development of machine-learning algo-
rithms that support personalized learning for experts. Future research will aim to provide theoretical
proof for the hypothesis that variable triplet loss can guide manifold learning in autoencoders and
enhance the scalability of the proposed method by applying various learning algorithms suggested
in the field of metric learning.

10
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7 ETHICS STATEMENT

We review several ethical issues that may arise in this study. This study was approved by the In-
stitutional Review Board (IRB No. removed) to conduct experiments involving human subjects
using medical data. Participants were compensated with an amount exceeding the legally mandated
minimum wage. To address ethical concerns, particularly those arising from involving the general
public in experiments using medical data, we intentionally restricted the participants to qualified
professionals. All participants voluntarily provided informed consent. The detailed statistics of the
participants are summarized in the Appendix. The images used in this study (CXR-A and CXR-B)
were obtained from the publicly available CheXpert dataset and their use was reviewed in advance
by the IRB. We carefully considered the potential ethical issues that could arise during the advance-
ment of this study. Nonetheless, technologies predicting human cognitive characteristics may pose
ethical challenges as they could expose the vulnerabilities of professionals, compromise their judg-
ment through adversarial attacks, or lead to adverse selection by clients. Therefore, as this study
advances, it may be necessary to address ethical considerations simultaneously.
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A APPENDIX

A.1 SUBJECT CHARACTERISTICS

The subjects were randomly assigned to either Group A or Group B. The mean ages of subjects
in Groups A and B were 31 years (SD = 5.9 years) and 36.6 years (SD = 6.4 years), respectively.
The number of female participants in Groups A and B were 3 and 6, respectively. Table [3] provides
information for each participant, however, to protect participant anonymity, gender and specific
clinical backgrounds are not indicated.

* GP1: General physician without clinical training, GP2: General physician with internship traning,
SP1: Specialist in internal medicine, SP2: Specialist in chest X-ray-related disciplines (anesthesi-
ology, thoracic surgery, occupational medicine, family medicine, pediatrics, emergency medicine,
radiology, radiation oncology, nuclear medicine), SP3 : Other specialists (otorhinolaryngology, re-
habilitation medicine, ophthalmology, orthopedic surgery, obstetrics and gynecology, neurology,
dermatology, plastic surgery, neurosurgery)

A.2 MODEL ARCHTECTURE

We implemented our model using Python version 3.8.18 and the PyTorch(Paszke et al.) version
2.2.1 library on the Ubuntu 18.0 environment. Please refer to Fig. /] for the logical structure of
the model. The random seed used for the final model selection and the conda virtual environment
configuration are provided in the attached files.

A.3 COMPUTER RESOURCES

All models were trained using a single RTX 3090 GPU. We were able to train 10 models simulta-
neously on a single GPU. Although our individual models are relatively small in scale, they must be
trained separately for each subject. We utilized 4 GPUs concurrently to perform parallel computa-
tions for multiple models. Training the same model 20 times with different random seeds allowed
us to select the optimal model. The time required to train a single model ranged from approximately
3.5to0 5.5 hours.

14
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Table 3: Key information of the subjects

Group A Group B
SubjectID  Age  Clinical field* SubjectID  Age  Clinical field*
1 45 SP2 63 38 SP4
2 39 SP2 64 44 GP2
3 33 SP2 65 38 SP2
4 34 Sp2 66 36 SP2
5 32 SP2 67 39 SP3
6 34 SP3 68 37 SP1
7 33 SP3 69 39 SP3
8 32 SP3 70 40 SP3
9 33 GP1 71 34 SP3
10 32 SP2 72 36 SP3
11 30 SP2 73 34 SP1
12 31 SP2 74 33 SP3
13 29 SP2 75 43 SP2
14 30 SP2 76 38 SP2
15 32 SP3 77 32 SP1
16 29 Sp2 78 36 SP3
17 33 SP2 79 35 SP1
18 32 GP2 80 36 SpP2
19 29 GP2 81 36 SP3
20 29 GP2 82 41 SP2
21 32 GP1 83 35 SP1
22 30 GP1 84 35 SP1
23 28 GP1 85 32 SP2
24 26 GP2 86 32 GP1
25 31 GP1 87 32 SP3
26 27 GP2 88 31 SP3
27 29 GP2 89 30 GP1
28 27 GP2 90 30 SP1
29 29 SP2 91 32 SP2
30 28 GP1 92 38 GP2
31 28 GP1 93 36 SP2
32 28 GP1 94 35 GP2
33 27 GP2 95 34 SP1
34 29 GP1 96 30 GP1
35 27 GP2 97 30 GP2
36 31 GP1 98 33 GP1
37 26 GP1 99 41 SpP2
38 28 GP2 100 32 GP1
39 27 GP2 101 33 GP2
40 30 GP1 102 32 GP1
41 28 GP1 103 32 GP1
42 28 GP2 104 37 GP2
43 30 GP1 105 26 GP2
44 30 GP1 106 30 SpP2
45 27 GP2 107 27 GP2
46 30 GP1 108 26 GP1
47 26 GP2 109 38 GP2
48 28 GP1 110 26 GP1
49 26 GP2 111 52 SP2
50 26 GP1 112 58 SP2
51 27 GP2 113 47 SP2
52 25 GP1 114 44 SP2
53 27 SP3 115 45 SP2
54 27 GP2 116 46 SP1
55 33 SP3 117 44 SP1
56 26 GP1 118 46 SP1
57 27 GP1 119 44 SP1
58 55 SP1 120 42 SP3
59 48 Sp2 121 40 SP2
60 46 Sp2
61 44 SP2
62 42 SP2

A.4 MAIN EXPERIMENTS (SIMILARITY JUDGEMENTS)

This section describes the main human behavior experiment, focusing on the procedures presented
to the participants. Each instance in the main experiment consists of a triplet, composed of three
images. At the start of each instance(Fig. [8), the three images forming the triplet are displayed on
the left side of the screen (Fig. [9). Each image is matched with a drag ball of a different color. The
order of tasks and the arrangement of images within each task are randomized for each subject. In
the center of the screen, the matched drag balls are initially arranged in an equilateral triangle.

Participants are asked to drag the balls such that the matched images are positioned closer together
as their perceived similarity increases (Fig. [I0). If two images are perceived as identical at embed-
ding level, participants should place the corresponding balls in the same position. After submitting
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Decoder

Embedding
(Region of Interest)

Encoder

Figure 7: Architecture of our neural network model.

their similarity judgments, participants can input their confidence in the similarity between each pair
of drag balls (Fig. [TI). Clicking on the line connecting two drag balls changes its thickness, with
thicker lines indicating higher confidence levels, measured on a 5-point scale. Although the confi-
dence measurements are provided in the attachment files, they were not included in the analysis for
this experiment.

Click here when you are ready to start the next task

Figure 8: Screen image before start each task.
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Move the balls to indicate the similarity between the images

SUBMIT

Figure 9: Initial task image.

Move the balls to indicate the similarity between the images

SUBMIT

Figure 10: Subject’s Ball Movement.
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Click each connection line to adjust the confidence level of the similarity.

Confidence 6

/
Confidence 10

Confidence 2

Figure 11: Input confidence level for each similarity judgements.

A.5 DETAIL RESULTS OF MAIN STUDY (SIMILARITY INFERENCE)

Tables [4] and [5] present the similarity inference performance of models generated in Group A and
Group B, respectively, displaying Specific Performance (SP) and Non-Specific Performance (NSP)
for each model. These tables include inference results for models trained using our proposed stan-
dard approach as well as two ablation settings. SP is reported as the mean and standard deviation
of the performance across multiple models generated through cross-validation. However, it should
be noted that the error presented for NSP is the standard error of the inference performance for all
subjects except the targeted subject for the model. This distinction is made to clearly highlight the
characteristics of the raw performance information used to calculate NSP across different subjects.
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Table 4: Performance of each model for group A (Accuracy and Standard deviation: %)

Our mothods Excluding reconstruction loss ~ Excluding triplet loss
Subject ID SP NSP SP NSP SP NSP

1 67.7£3.3 59.149.6 44.3+£31. 59.4+7.8 60.7t4.1 59.3+8.9
2 65.0+1.4 57.8484 33.3+24. 48.618.2 57.3£10.  62.7+9.9
3 69.74£2.9 51.1+7.1 55.0+£14 45.3+10. 63.0+£0.0 59.7+9.4
4 67.3£1.9 612493 553+4.1 51.5+£9.7 55.0£1.4 53.448.1
5 58.345.6 5454+7.6 55.3+4.1 56.6+10. 543+11.  54.3+9.5
6 66.3+£29 55.14£9.0 50.7£5.6 57.2+8.1 54.0£13. 56.4+8.3
7 68.7£4.2 52.64+9.1 55.3+£12. 54.3+7.5 59.74£2.9  56.31+8.6
8 62.7+4.7 57.1£9.6 51.7£10. 53.946.6 58.34+3.3 53.848.0
9 66.3+£2.9 44.14£8.3 34.0+24. 49.2+9.6 64.0£7.0 523+94
10 64.3+4.2 53.1+£7.8 60.7£6.6 49.3+9.7 54.0+59 5444938
11 71.0+1.4 589494 58.7+84 55.749.1 64.0+£59  60.6+9.5
12 67.7£3.3 557489 57.3£19 49.9+8.7 66.0£8.2 54.7+9.9
13 71.0+1.4 58.0+£8.5 49.7£53 54.6+8.3 553441 62.7+8.7
14 69.742.9 52.3+94 57.3+£10. 49.6+10. 57.74£5.6  52.248.5
15 69.7£2.9 58.04+10. 31.0+24. 56.2+8.3 61.7£12. 56.048.1
16 67.3+1.9 52.54+10. 47.3+6.1 51.04£7.0 58.744.2  51.7+9.9
17 66.0+0.0 52.1+9.1 48.7+6.1 53.248.0 55.0+£7.0 62.7+8.7
18 69.3+4.7 47.64+7.6 35.3£29. 60.7£10. 57.3+4.2 583493
19 64.0+1.4 513485 56.0£8.2 54.949.4 56.7+4.7  51.8£9.5
20 753433  50.3+7.1 52.0+£13. 56.5+8.6 53.04£5.7 64.0+10.
21 72.0+7.0 54.249.1 60.7£3.3 53.54+9.3 59.7+£7.4  56.3+8.9
22 67.3+6.1 58.4+9.8 48.7+£l11. 52.34+9.4 48.744.2 514483
23 62.0+£2.8 58.6+8.6 59.7t7.4 51.1£7.2 61.0£1.4 56.248.5
24 69.7+£2.9 639492 58.7£1.9 51.84+7.8 61.74£8.0 59.249.6
25 72.04+2.8 65.1+£9.1 62.0£2.8 55.448.2 59.74£53 54.948.8
26 74.0+£59 585484 62.0£59 55.1£9.6 66.3£7.4 59.849.1
27 72.0+1.4 549485 57.3£1.9 47.31+8.2 64.3+4.2 53.7+7.8
28 64.3+6.1 61.5+8.5 48.3+5.6 56.3+7.3 50.7+12.  55.3+8.5
29 663129 539489 53.0£5.7 50.6+8.9 58.3+£5.6 551494
30 64.0+59 58449.0 58.7+4.2 56.849.4 54.04+8.3 59.449.7
31 68.7+£1.9 51.0+7.8 51.7+£11. 58.14+8.5 63.0+£7.3 59.948.0
32 64.0+£2.8 55.749.5 55.0+£8.3 51.9+£10. 58.7£4.2  53.3£10.
33 69.7+4.7 494472 47.7£5.6 55.248.3 64.3+4.2 58.4489
34 69.7£7.4 57.0+94 56.3£5.3 55.2+£9.4 59.3£9.4 554494
35 69.7£2.9 53248.8 64.3+4.2 54.6+7.5 58.7£1.9  53.6+9.7
36 68.3+3.3 52.6+£8.9 54.3+£10. 53.0+8.9 60.7+8.8  63.4+9.1
37 66.3£29 56.849.0 55.0£7.0 55.0£8.0 58.7£4.2  60.7+9.0
38 68.7+4.2 52.849.5 55.3£75 56.2+10. 56.3+29 51.7+8.9
39 673142 56.2+7.7 57.7+£13. 57.7+8.6 55.0+£7.0 49.8+10.
40 69.7£2.9 53.7+10. 62.0£2.8 54.6£9.7 57.3+£8.4 60.4%10.
41 68.3+5.6 53.3+7.5 60.7£10. 59.849.2 65.31+8.8 554482
42 68.7£1.9 58.949.5 62.0+£5.9 57.3%10. 58.34+3.3  63.6+9.2
43 74.0£7.0 52549.2 60.7+8.8 57.3£9.8 78.7£6.1 63.3+9.0
44 68.3+3.3 574478 62.0+£14 57.1+9.0 50.7+4.1 544478
45 64.0+£1.4 554494 553+4.1 50.9+£10. 51.7£6.1 62.84+8.7
46 68.3+3.3 53.7+8.5 58.7£6.6 62.619.1 57.3+6.6 56.2+8.4
47 65.0+1.4 60.2+10. 31.0£22. 47.049.7 40.7£5.6  56.5£9.3
48 65.0£1.4 509489 57.7£33 46.0+8.3 58.3+£8.8 549488
49 68.7+4.2  57.7+10. 54.3+4.2 55.3+8.9 53.0+12.  50.3+7.6
50 70.7£3.3  53.6+9.8 49.7+2.9 52.749.1 50.7+4.1 554484
51 67.3£1.9 57.849.0 54.3+6.1 56.3£8.2 57.3£12. 548494
52 66.7+4.7 51.9+10. 68.3+£3.3 59.948.5 54.04+2.8 52.91+7.6
53 62.0+£59 60.5+8.8 54.0£8.3 48.4+8.5 43.0+15. 54.949.6
54 74.0+£59 585484 62.0£59 55.1£9.6 66.3£7.4 59.849.1
55 68.7+4.2  52.6+9.1 55.3+£12. 543475 59.74£2.9 56.31+8.6
56 72.04£59 58.4+10. 56.3£2.9 54.849.3 56.749.4  55.7+8.3
57 67.7£8.8 57.048.6 53.0£12. 52.0£8.5 59.7£4.7 56.248.5
58 72.0+7.0 61.3+8.6 59.7£2.9 54.04+9.7 68.7+10. 60.9+9.4
59 67.7£3.3 55.6+8.6 58.7£6.6 48.5£8.6 51.74£8.0 56.2+8.5
60 66.3+7.4 56.1+£8.6 63.0£7.3 46.1+9.5 473442 54.1+8.6
61 717442 48.7+£7.8 51.0+£14 57.0£10. 58.744.2  59.4+9.3
62 66.7£4.7 59.7+10. 39.7+£28. 54.6£9.5 64.3+£6.1 62.5+8.6
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Table 5: Performance of each model for group B (Accuracy and Standard deviation: %)

Our mothods Excluding reconstruction loss ~ Excluding triplet loss
Subject ID SP NSP SP NSP SP NSP

63 72.0+£8.6 63.0+84 54.0£59 53.9+£8.9 62.0£8.3 58.4+8.9
64 68.3+5.6 59.1+£8.5 59.7+£11. 52.748.2 64.0+2.8 62.849.7
65 71.0+1.4  57.54+7.6 65.3+4.1 58.44+7.9 63.0+£5.7 55.3+£9.0
66 67.7£8.8 57.049.0 54.0+£2.8 42.8+8.6 61.0£83 60.1+8.9
67 68.7+4.2 639489 51.7+4.2 54.7+8.6 65.3+8.8  60.6+8.2
68 71.7£6.1 60.3+9.3 56.7+4.7 59.7+£8.4 67.3£4.2 622492
69 68.7+4.2 57.1+£8.6 55.0£7.0 51.6+8.4 65.0+£7.0 53.6£9.5
70 68.7+4.2 52.1+£79 56.3+94 58.2+10. 64.3+42 529482
71 68.7+£4.2 58.449.1 49.7+£10. 59.1£9.0 62.7£4.7  55.9£10.
72 68.7+6.6 54.7+£82 55.3+£7.5 48.2+10. 50.7+14.  60.0£7.5
73 663129 549+7.1 63.3+4.7 62.248.5 61.744.2  60.9+9.2
74 73.0+£2.4 60.6+8.0 49.7£5.3 54.2+8.6 63.0£9.6 62.54+9.3
75 653433 594469 70.0£8.2 59.848.5 62.7+4.7  61.9£9.5
76 67.3+6.6 58.6+9.1 56.3+4.7 52.6+7.4 58.744.2 544490
77 70.7£4.1 64.848.0 60.7£7.5 58.9+£10. 64.3+42 57.7+7.9
78 65.0+1.4 599485 53.0£7.3 47.248.3 56.3+7.4 61.1+8.1
79 67.74£3.3 57.5+£7.6 51.0£15. 62.24+8.6 58.3+5.6  62.0+9.0
80 68.7£1.9 56.849.0 57.7+£11. 61.7£8.5 65.3+4.1 59.14£8.5
81 67.7£5.6 58.448.7 58.7+£84 56.9+10. 60.0+14. 61.0+8.0
82 69.3+4.7 56.1£8.5 48.7£9.8 58.6£8.6 58.7£6.1 61.6+9.9
83 65.0+1.4 489+7.8 55.0+£94 58.748.2 59.74£2.9  61.0+9.2
84 71.0+1.4  60.5+8.1 56.3+7.4 52.149.7 60.7+6.6  60.51+8.2
85 67.3+£1.9 55947.8 52.7+4.7 47.8+£8.4 59.3+4.7 61.54+9.8
86 64.0+1.4 60.6+8.1 53.0£5.7 52.148.1 64.31+6.1 56.419.0
87 68.3+5.6 559+8.6 59.7£5.3 60.74+9.3 58.749.8  63.2+8.9
88 64.0+£1.4 56.9+10. 58.7£9.8 59.9+£8.0 493147 54.718.8
89 663153 62.0+£9.2 48.7+£l11. 50.549.1 53.0£13.  62.6+94
90 69.74£2.9 49.1+84 56.3+£5.3 52.6+8.4 59.74£2.9  59.0+10.
91 70.7£3.3 59.448.6 49.3+4.7 54.8+£9.8 65.0£9.4 62.84+7.8
92 673142 52.1+94 54.0f16. 60.14+8.3 61.7442 57.5+89
93 73.0+£5.7 55.7£7.8 57.7£3.3 42.7£8.7 65.3+11. 53.5+9.3
94 74.0£7.0 615482 66.3£2.9 59.8£7.9 67.7£5.6 63.11+8.8
95 70.7+4.1 58.248.5 44.0+8.6 59.049.0 72.0+2.8 63.6+8.0
96 68.7£1.9 583+7.1 63.3£4.7 51.3£8.7 66.3+4.7 60.5+9.5
97 663129 50985 56.3+4.7 58.949.9 65.3+4.1 62.2+7.8
98 68.3+5.6  60.7+10. 49.7+2.9 51.7+8.9 67.7+£10.  62.1+8.9
99 65.3+£8.8 57.948.1 60.7£7.5 50.6£9.7 56.7£9.4 59.94+8.9
100 67.3+1.9 59.7494 53.0+24 50.6+7.8 67.3+84 61.0+94
101 73.04£5.7 58.6+8.4 48.7£9.8 57.6+8.6 63.3+4.7 61.0+8.8
102 73.3+4.7 57.849.2 58.3+£10. 55.8+£10. 62.0£59 62.0+9.0
103 73.0+2.4 61.848.2 50.0+£8.2 54.14£8.7 68.31+3.3  52.6+9.2
104 69.749.7 56.7+8.8 55.0+9.4 57.2+10. 75.0+£14  61.7£9.5
105 66.3+53 625494 54.0+8.6 59.1+£9.4 66.0£14. 62.14+9.8
106 74.0+1.4 522494 64.3+8.0 57.447.7 64.0+13.  62.949.2
107 71.0+1.4  58.3+10. 56.3+4.7 56.7+7.3 66.3+4.7 62.7+9.5
108 663129 48.8+£9.1 49.7+£10. 52.1+7.6 65.3+4.1 57.84+7.8
109 68.7£1.9 55.549.1 55.3+5.6 50.5+8.2 58.749.8  55.448.2
110 68.7£4.2 56.7+£8.5 56.3£9.4 55.8+£8.4 54.3£10. 60.5+8.4
111 68.3+3.3 594482 59.7+£74 49.8+7.7 65.31+5.6 60.2+9.6
112 70.7+4.1 524479 56.7+£9.4 57.24+7.7 543%11.  60.0£7.5
113 70.7£3.3 52.449.5 58.3£8.8 49.4+8.9 64.0£2.8 62.84+9.7
114 72.0+1.4  654+7.7 50.7£10. 45.5+8.5 59.74£5.3  58.5%8.1
115 68.7£1.9 559489 62.0+94 55.64+9.7 60.7+5.6  65.5£8.5
116 66.3£2.9 553483 55.3+13. 61.2+10. 60.7£3.3 53.849.8
117 64.31+8.0 56.3+7.6 57.3£9.8 62.61+8.8 60.7+8.8  60.31+8.2
118 717442 544477 50.7+£13. 54.94+8.9 63.0+12. 61.24+8.8
119 67.7£3.3 50.948.5 52.0+£15. 59.248.7 58.3+8.8 59.31+8.6
120 69.74£2.9 522492 59.7+£74 56.3+8.5 58.7+£1.9  62.1+£9.0
121 61.7£4.2 58.7+9.3 56.3£29 55.0£7.7 71.7£4.2 533493
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A.6 PSEUDO-CODE FOR QUALITATIVE ANALYSIS

This pseudo-code summarizes the algorithm for selecting annotation pixels of the model in Section
4.6 of the main text.

Algorithm 1 Identify key pixels based on embedding variance

1: Input: Embedding function E(-), Separated reference dataset D, Test image e, Number of
repetitions N
: Output: Top 10 key pixels

2
3:
4: Step 1: Compute variances for each embedding Dimension
5: for each image d € D do
6: Compute embedding E(d)
7: end for

8: Compute variance for each embedding dimension

9: Determine reference unit as the dimension with the highest variance

11: Step 2: Analyze each pixel in test image e
12: for each pixel (4, j) in e do

13: L : Empty list

14: for k =1to N do

15: E(€noisy : Add random noise to pixel (z,7) in e
16: Compute embedding E(e,,0;sy

17: Append reference unit output to L

18: end for

19: Compute variance of the L

20: end for

21:

22: Step 3: Identify top 10 key pixels
23: Select top 10 pixels with the highest variance in L
24: Return Top 10 key pixels

A.7 HYPERPARAMETER SENSITIVITY ANALYSIS

Hyperparameter Sensitivity Analysis

Figure 12: Sensitivity Analysis of Average Predictive Performance for Hyperparameters o and 3.
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The hyperparameters « and 3, introduced in Section 4.4 of the main text, were determined through
a preliminary sensitivity analysis using data from five subjects. « values were varied discretely
between 1.0 and 2.0, and /3 values between 0.4 and 1.3, generating a total of 100 parameter combi-
nations for testing. Refer to Fig. [T2] As a result, the highest average predictive performance of 0.7
was observed at & = 1.2 and 3 = 1.0, which were selected as the optimal hyperparameters.

A.8 TEST-RETEST ANALYSIS OF SIMILARITY PATTERN VECTORS

2D Projection of SPV using t-SNE (Group A) 2D Projection of SPV using t-SNE (Group B)
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Figure 13: Results of the test-retest analysis for similarity pattern analysis across all subjects with 15
triplets. (a) 2D t-SNE visualization of similarity pattern vectors obtained from the initial sampling.
(b) 2D t-SNE visualization of similarity pattern vectors obtained from the delayed sampling.

The SPVs (Similarity Pattern Vectors) of each subject were measured through behavioral experi-
ments. To validate the reliability of similarity pattern sampling, we compared the SPVs obtained
from re-sampling conducted at different time intervals. Behavioral sampling was performed for
1,500 triplets per subject, with 15 triplets randomly re-sampled during the experiment (Retest) to
assess subject consistency. The SPVs generated for each subject from two samplings of the same 15
triplets were then compared. While some subjects exhibited varying responses to the same triplets,
their SPVs were observed to cluster closely with those of similar subjects during the Retest. This
finding suggests that subjects demonstrated high response consistency even when re-sampling was
conducted after a temporal delay.
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