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Abstract. Offline reinforcement learning (RL) aims to learn an ef-
fective policy from a static dataset, but the achievable performance
is fundamentally limited by the coverage of the dataset. The ac-
tion preference query mechanism leverages expert feedback without
requiring environment interaction, enabling performance improve-
ments during offline training while avoiding the cost and risks associ-
ated with online fine-tuning. However, existing methods still face sig-
nificant challenges, both in designing helpful query strategies and in
efficiently exploiting the collected preferences. Current approaches
typically select queries based solely on the distance between policy
actions and dataset actions, and apply naive constraints that compel
the policy to remain close to the queried preferences. Such strategies
often lead to unstable and inefficient policy updates, and pose chal-
lenges for integration with value regularization methods. To address
these issues, we propose conservative query and adaptive regular-
ization under uncertainty estimation, a novel and lightweight frame-
work that jointly tackles both the challenges of the preference query
and exploitation. Specifically, we first employ the Morse neural net-
work to quantify the uncertainty of the given action relative to the
dataset. To facilitate helpful queries, we introduce the uncertainty-
driven conservative query mechanism that leverages uncertainty es-
timation to selectively query actions near the dataset to preserve the
stability of Bellman updates. For more effective preference exploita-
tion, we propose the uncertainty-aware adaptive regularization to dy-
namically modulates the strength of data-level constraints based on
the uncertainty of policy actions, enabling the policy to benefit from
reliable Bellman updates. We integrate our framework with CQL and
perform extensive experiments on the D4RL benchmark. The results
demonstrate that our method achieves superior or competitive per-
formance across various tasks.

1 Introduction

In reinforcement learning (RL), agents aim to optimize sequential
decision-making by selecting actions that maximize the expected
cumulative reward within a given environment [34]. However, the
need for active interaction with the environment renders online RL
impractical for many real-world applications, particularly in high-
stakes domains such as robotics [32], autonomous driving [18],
and healthcare [35], where online data collection is often costly,
time-consuming, or unsafe. Offline reinforcement learning (offline
RL) addresses this challenge by learning from fixed, pre-collected
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Figure 1. Inaccurate value estimation induced by query shift. (left) The
ground-truth Q-values provided by an oracle. (right) The estimated Q-values
from the trained critic in value regularization methods.

datasets without additional environment interaction, offering a more
practical and scalable alternative [16, 23, 14, 11, 6, 44]. Unfortu-
nately, offline RL faces a fundamental challenge due to the distri-
bution shift between the behavior policy that generated the dataset
and the target policy being learned. This mismatch frequently re-
sults in the selection of out-of-distribution actions, leading to inac-
curate value estimates and compounding error propagation during
training [21, 14]. To address this issue, the prevailing approach in
offline RL constrains the learned policy to remain within the support
of the dataset, mitigating the distribution shift through a pessimistic
learning principle.

Despite significant progress in offline RL, the achievable perfor-
mance of the learned policy remains fundamentally limited by the
data distribution of the fixed dataset. To overcome this limitation,
online fine-tuning that initializes from offline results [24, 5, 36] has
emerged as a promising direction, leveraging limited online interac-
tions to further improve policy performance. However, in high-risk
or cost-sensitive domains, even minimal online interaction could be
infeasible. As an alternative, the mechanism for action preference
query offers a compelling approach to enhance policy performance
without requiring direct interaction with the environment [41]. This
approach leverages expert knowledge or human preference to assess
the relative value of queried action pairs, using the preferred actions
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to guide policy updates. Compared to absolute scoring or full demon-
stration, action preference queries are often easier for humans to pro-
vide, as they rely on relative judgments rather than precise valuations.
This reduces the cognitive load on annotators while still yielding rich
supervision signals. In particular, action preference queries are espe-
cially valuable for identifying potentially high-value actions in re-
gions where the current policy exhibits high uncertainty, enabling
more targeted and efficient policy improvement.

Despite its promising prospects, this direction remains relatively
underexplored. The current method [41] adopts a relatively simplis-
tic strategy, selecting preferred actions solely based on their distance
to the dataset and applying them as direct constraints during pol-
icy updates. Such strategy introduces two critical limitations. First,
queried actions may lie far outside the dataset distribution, a phe-
nomenon we refer to as query shift. This shift can induce significant
policy deviation, thereby compromising the reliability of offline data
for accurate value estimation and limiting the generalizability of such
methods to broader offline RL frameworks, particularly in value reg-
ularization algorithms. As illustrated in Figure 1, when the queried
action lies in out-of-distribution (OOD) region and its ground-truth
Q-value is higher than that of the dataset action, the regularization
term will elevate its Q-value, leading to inaccurate value estimation.
This bias can further drive the policy toward the OOD region, result-
ing in unreliable updates and even catastrophic degradation in policy
performance. Second, the informational potential of queried prefer-
ences is often underutilized, as they are typically treated as static
supervision throughout training. However, as learning process pro-
gresses, the policy becomes more reliable as the distribution of the
learned policy gradually aligns with the dataset distribution. There-
fore, using static constraint terms in later stages of training can hinder
policy learning. In this case, dynamically adjusting the regularization
strength associated with preferred actions can help avoid ineffective
constraints, ensure the effective utilization of preference information,
and ultimately enhance policy performance.

To address the limitations of the existing action preference query
method in offline RL, we propose novel techniques that focus on
both how to query preferences and how to utilize them effectively.
The core of our method lies in mitigating query shift and inefficient
utilization by leveraging uncertainty estimation. Specifically, we em-
ploy the Morse neural network [10, 4, 45, 33] as an uncertainty esti-
mator to quantify the OOD degree between the given actions and the
offline dataset. To query informative and helpful actions, we intro-
duce the uncertainty-driven conservative query, which uses Morse-
based proximity scores to filter and select candidate actions that are
near the dataset distribution. This selective filtering avoids poten-
tially significant policy deviation and value estimation errors and ex-
tends the applicability of the action preference query mechanism be-
yond policy constraint algorithms to broader offline RL paradigms
such as value regularization. To exploit preference information ef-
fectively, we propose the uncertainty-aware adaptive regularization,
which dynamically adjusts the data-level constraints based on the es-
timated uncertainty of the learned policy’s actions. Actions that align
closely with the dataset distribution are subjected to weaker regular-
ization, preserving the potential benefit from Bellman updates, while
stronger penalties are imposed on OOD actions to prevent unreli-
able update. This adaptive approach allows for more precise exploita-
tion of query information and dynamically balances pessimistic con-
straints and optimistic Bellman updates. To validate the effectiveness
of our approach in value regularization frameworks, we integrate it
into CQL, a representative algorithm in this category, and conduct
extensive experiments. Results on the D4RL benchmark demonstrate

that our method achieves competitive performance across a diverse
set of tasks.

In summary, the primary contribution of our proposed approach
can be outlined as follows:

e We introduce the Morse Neural Network as an uncertainty estima-
tor to quantify the OOD degree between the candidate actions and
the offline dataset. Building on this estimator, we propose (i) the
uncertainty-driven conservative query mechanism to query infor-
mative and helpful actions, and (ii) the uncertainty-aware adap-
tive regularization mechanism to adaptively adjust the constraint
on preferred actions throughout training.

e We integrate the proposed lightweight approach into CQL, the
applicability of the action preference query mechanism to value
regularization algorithms. Extensive experiments on the D4RL
benchmark demonstrate the competitive performance of our
method.

2 Preliminaries

In this section, we present the necessary background on offline RL
and the Morse neural network.

Offline RL The environment in RL is typically modeled as a
Markov Decision Process (MDP), defined by tuple (S, A, P,r,v),
where S is the state space, A is the action space, P(s'|s, a) denotes
the transition probability from state s to s’ under action a, (s, a) is
the reward function, and y € [0, 1) is the discount factor. The agent
interacts with the environment by selecting actions to maximize the
expected cumulative reward.

Offline RL, also known as batch RL, is a subfield of RL that fo-
cuses on learning policies solely from pre-collected datasets. To learn
areliable policy under distribution shift, existing methods commonly
adopt the key principle of incorporating pessimism into policy learn-
ing, thereby constraining the learned policy to remain close to the
dataset. In model-free RL, two essential components are the value
function and the policy. To enforce pessimism, existing offline RL
approaches typically fall into two categories: policy constraint meth-
ods and value regularization methods.

Policy constraint methods aim to directly regularize the learned
policy to remain close to the behavior policy. A unified optimization
objective for this family of methods can be formulated as:

argmax B, p qun(.|s) [Q(s,a)] — A - Lpc (7||7g) (1)
s
where 73 denotes the behavior policy, Lpc is a divergence measure
(e.g., KL divergence), and A controls the strength of the constraint.
Value functions in these methods are typically updated in an online
manner.

In contrast, value regularization methods impose conservatism
on the value function. The policy is updated using the learned Q-
function in a standard online manner, while the value function is op-
timized with an additional regularization term. A general form of the
objective for value regularization is:

argmin o - Eswp arp(-|s) [Q(s;a)] + Ltp
Q

$Eonn (Ao -5 6)] @

where « controls the regularization strength, p represents a partic-
ular distribution, and B™Q" (s, a) denotes the experiential Bellman
backup operator with respect to policy 7.

Ltp =
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Morse Neural Network The Morse neural network [10] is a re-
cent technique designed to quantify uncertainty [45, 33]. It can be
used on top of a pre-trained network to bring distance-aware calibra-
tion with respect to the training data. For a given input z, the Morse
network outputs a density score M (x) € [0, 1], where a value of 1
corresponds to the mode submanifolds of the data distribution, and
the score decreases toward O as the input deviates from these high-
density regions.

The threshold of rate decrease is controlled by the Morse Kernel,
a positive definite kernel K defined as: K : Z X Z — [0, 1], where
Z = R” is a latent feature space. Such kernels satisfy K (z1, 22) =
1 if and only if 21 = 22, and typically take the exponential form
K(z1,22) = exp(—D(z1, 22)), where D is a divergence measure.
In this work, we adopt the Radial Basis Function (RBF) kernel as a
specific instance:

)\2
Krer(z1,22) = exp (—7H21 - Z2||2) 3)

where ) is a scale parameter.

A Morse neural network is defined as a function fy : X — 2
combined with a Morse Kernel K(z,t), where ¢ C Z is a target
chosen as a hyperparameter of the model. Consider a dataset D =
{z1, ..., zn } sampled from a data distribution with density p(x). The
Morse neural network is expressed as My (z) = K(f(x),t) and
trained by minimizing the KL divergence D1, (p(x)||My(x)) for
unnormalized densities, as follows:

min Eppa) {log ]\Zfﬁ )} + / Mg(x)dz — / p(x)dz  (4)

which amounts to minimizing w.r.t. ¢ the following quantity:
Eonp(e) [~ log K(fo(2),t)] + Eanvni [K(fo(2), 1))  (5)

It is easy to see that My (z) € [0, 1], and when My(z) = 1, x cor-
responds to a mode that coincides with the level set of the submani-
fold of the Morse neural network. Furthermore, M (z) corresponds
to the certainty of the sample x being from the training dataset, so
1 — My(z) is a measure of the epistemic uncertainty of .

3 Method

As outlined in the introduction, both the design of the querying
mechanism and the effective utilization of queried information re-
main underexplored, especially within value regularization methods.
Given that the query shift problem primarily stems from selecting
OOD actions, we adopt uncertainty estimation as the foundation of
our approach. In Section 3.1, we introduce the Morse neural net-
work as an uncertainty estimator to quantify the proximity between
candidate actions and the dataset distribution. Building on this, Sec-
tion 3.2 presents the uncertainty-driven conservative query mech-
anism, aiming to ensure that the queried actions remain close to
the dataset distribution, thereby preventing potential destabilization
in subsequent learning updates. In Section 3.3, we further present
uncertainty-aware adaptive regularization to exploit preference in-
formation in an adaptive manner. This adaptive strategy modulates
the degree of pessimism based on the estimated OOD degree of the
current policy actions, striking a balance between conservative reg-
ularization and confidence in Bellman updates. Finally, in Section
3.4, we integrate these components into CQL, extending the action
preference query mechanism to value regularization algorithms.

3.1 Pre-trained Uncertainty Estimator

Since querying OOD actions may result in inaccurate value estima-
tion and policy deviation, we propose incorporating uncertainty esti-
mation into the action preference query mechanism. To this end, we
employ the Morse neural network, a recently proposed and effective
method for quantifying uncertainty, as our uncertainty estimator. Our
objective is to assess whether a given action is OOD. Specifically, we
train the Morse neural network on the offline dataset D, treating the
input  as state-action pairs (s,a) and the target ¢ as actions a in
Eq. (5). The corresponding optimization objective is formulated as
follows:

Ly =E,a)~p [ —logK (fs(s,a),a)

+Ea’~M(A)K(f¢ (S, al)7 a/)]

where K denotes the RBF kernel and ¢/(.A) denotes a uniform dis-
tribution over the action space.

After pre-training, the Morse neural network assigns higher scores
to state-action pairs that lie within the dataset distribution and lower
scores to out-of-distribution pairs, thereby effectively quantifying
uncertainty. We refer to the scores My(s,a) = K(fs(s,a),a) as
Morse scores, which represent the certainty that the state-action pairs
originate from the offline dataset. Since this training procedure relies
exclusively on the offline dataset, it does not incur additional compu-
tational overhead during the offline policy training phase and offers
strong reusability across various algorithms or tasks.

6

3.2 Uncertainty-Driven Conservative Query

As mentioned in Section 1, existing methods [41] typically select
queried actions solely based on a Euclidean distance criterion be-
tween actions sampled from the dataset and those generated by the
policy, which can lead to query shift. For value regularization meth-
ods, this shift can propagate through Bellman backups, resulting in
unreliable value estimation. Therefore, it is crucial to avoid selecting
OOD actions during the query process. Leveraging the pre-trained
Morse neural network as an uncertainty estimator, we propose an
uncertainty-driven conservative query mechanism that prioritizes in-
distribution actions to enhance stability and reliability.

During the training of the Morse neural network, significant vari-
ations were observed in the mean and variance of the Morse scores
across different datasets. This variability made it challenging to use a
fixed threshold for OOD detection across different tasks. To address
this issue, we propose a dataset-aware threshold based on the Morse
score distribution of the dataset, defined as 6 = p — no, where p
and o represent the mean and standard deviation of the Morse score
distribution of the dataset, respectively. We use n, referred to as the
conservativeness coefficient, to control the conservativeness of the
query process: a larger n allows the queried actions to deviate further
from the dataset distribution for potential performance gain, while a
smaller n restricts them to remain closer to the distribution for stable
policy learning.

In practice, we follow the approach of prior work [41] by travers-
ing the dataset to generate policy actions and then ranking them
based on the Euclidean distance between each policy action a and
the corresponding dataset action a. The candidate action set is then
constructed by sorting these pairs in descending order of distance. To
ensure that the queried actions are informative yet remain within the
dataset distribution, we leverage the pre-trained Morse neural net-
work to filter candidates using the precomputed threshold 4. Specif-
ically, only actions d; satisfying My(s,d;) > J are retained for
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querying. After the uncertainty-driven conservative selection, we
query preferences from an oracle over the candidate action set. In
our setting, we use the Q-value function of a stronger policy, denoted
as Q*, as the oracle. The preferred action is then determined by:

i = G(s,a,a) = argmax Q*(s,a’) 7
a’€{a,a}

During policy learning, we select [N, actions pairs with the highest
divergence after the filtration by uncertainty at an interval of 7}, steps.
In this work, we use an offline-to-online algorithm [24] to train the
oracle, with details provided in Appendix B.

Building on the uncertainty-driven conservative query mecha-
nism, the queried actions remain close to the dataset distribution,
effectively mitigating the query shift. This helps ensure stable pol-
icy learning, especially in value regularization methods. The near-
distribution preferred actions can be reliably evaluated by the Q-
value function trained on the offline data, reducing the risk of OOD
behaviors and enhancing the effectiveness of Bellman updates.

3.3 Uncertainty-Aware Adaptive Regularization

Previous work directly models the preference between policy actions
and those from the dataset in the manner of semi-supervised learn-
ing, replacing the dataset actions in the regularization term with all
preferred actions [41]. This approach introduces additional compu-
tational cost. Moreover, purely data-driven semi-supervised methods
may struggle to capture complex preference relationships, especially
in continuous spaces. To exploit queried information in a more reli-
able and effective way, we focus on the necessity of regularization
rather than attempting to generalize to potentially unreliable pre-
ferred actions. We propose uncertainty-aware adaptive regularization
to avoid ineffective constraints and benefit from the Bellman updates.
Specifically, we replace the fix regularization with data-level regular-
ization determined by the OOD degree of the policy action, balanc-
ing the confidence in Bellman updates with the pessimism induced
by over-regularization. We implement this mechanism by replacing
the fixed regularization coefficient o with the data-dependent regu-
larization coefficients a(s, a), defined based on the Morse scores as:

a(s,a) = (1 - M¢(s,a)) - Qo (8)

where «p is the pre-defined value representing the maximum regu-
larization strength. When the OOD degree of a policy action is low,
constraints on the preferred action are unnecessary, as the policy ac-
tion already resides in a reliable region. In such cases, the proposed
adaptive regularization enables the policy to fully benefit from Bell-
man updates. Conversely, when the policy action is likely OOD and
thus unreliable, stronger regularization on reliable preferred actions
guides the policy update toward the dataset distribution, promoting
stability and safety in policy learning.

However, we observe that most Morse scores tend to be relatively
high during training, resulting in consistently low « values. This
leads to overly weak regularization and insufficient discriminative
ability. To achieve more discriminative regularization, we incorpo-
rate the mean and standard deviation of the Morse score distribution
of the offline dataset and reformulate the linear relationship in Eq.
(8) into a nonlinear form, as follows:

Ss(s,a) = (1 — My(s,a)) - eMo(s:a)/ (1) )

a(s,a) = Sa(s,a) - ap (10)
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Figure 2. The variation of the nonlinear scaling function in Eq. (9) under
different values of 8

where 3 is the hyperparameter that controls the slope of the coeffi-
cient function. The first term in Eq. (9) preserves the original value
range, while the second term adjusts the regularization strength for
different OOD degrees. As shown in Figure 2, a larger (3 leads to a
stronger constraint when the Morse score falls below © — o, while
a smaller 3 imposes such a constraint only when the Morse score is
significantly small. In all cases, when the Morse score approaches 1,
indicating that the action lies within the dataset distribution, the regu-
larization coefficient approaches 0, effectively avoiding unnecessary
constraints.

Through uncertainty-aware adaptive regularization with nonlin-
ear scaling, we have achieved discriminative constraints on differ-
ent data, avoiding excessive regularization on preferred actions while
leveraging the potential benefits of Bellman updates. Since prefer-
ence queries are conducted at intervals during training, such differ-
entiated constraints are essential. They prevent ineffective constraints
from outdated preferences on the current well-learned policy and en-
able the exploration of better actions by capitalizing on the optimistic
nature of Bellman updates when policy actions fall within the dataset
distribution.

The proposed adaptive regularization mechanism and conservative
querying strategy are inherently complementary. When the policy ac-
tion exhibits a low degree of OOD, meaning that it falls within the
support of the offline dataset, both the regularization strength and the
query probability remain low. In this case, policy updates are pri-
marily guided by Bellman backups, enabling optimistic updates that
approximate online learning. In contrast, when the policy action is
highly OOD, the regularization becomes stronger, and the update is
driven more by the queried preference signal. If the action deviates
significantly from the dataset distribution, it is excluded from the set
of query candidates, and the update is constrained by actions ob-
served in the dataset. When the policy action is moderately OOD,
that is, situated near the boundary of the data distribution, querying
its relative preference acts as a form of localized exploration within
the data manifold, effectively expanding the trusted region for learn-
ing.

3.4 Extend to Value Regularization Methods

Our proposed approach is algorithm-agnostic, enabling seamless in-
tegration with a broad class of offline RL algorithms, particularly
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those based on value regularization. To empirically validate our ap-
proach, we integrate it into Conservative Q-Learning (CQL) [22], a
representative value regularization method. CQL mitigates the over-
estimation of OOD actions by pessimistically pushing down their
estimated Q-values, encouraging the learned policy to remain close
to the dataset distribution. Specifically, CQL introduces an additional
regularization term in the value function objective, which simultane-
ously raises Q-values for the dataset actions while penalizing those
of the current policy. The optimization objective of the value function
in CQL is formulated as follow:

mcgn a-Esup [logZexp(Q(s, a)) —Eanp (Q (s,a))| +

a

%E(s,a)ND |:(Q(& a) - BWQk(& a))2:|
an

To facilitate the computation for the Morse score of the current
policy actions and reduce computational overhead, we integrate the
proposed method into the original version of CQL and name it Con-
servative Query Q-Learning (CQ2L), resulting in the following opti-
mization objective:

m7?‘XEs~’D,a~7'r(~\s) [Q(57 a’) - wlOgﬂ—(a’ls)} (12)

inn]ESN”D,aNWHS) [a(s,a) [Q(s,a) — Q (s,a)]]

A 2 (13)
+%E(s,a)~D [(Q(SMI) — BﬂQk(s,a)) :|

where a denotes the preferred action. In practice, the preferred ac-
tions are initially set as dataset actions, and they are later updated
with the corresponding preferred actions after the preference queries
are conducted. The pseudo code is presented in Algorithm 1, with
components specific to our approach highlighted in red.

Compared to previous work, the advantage of our method lies in its
ability to alleviate query shift through the uncertainty-driven conser-
vative query mechanism, preventing incorrect value overestimation.
Additionally, by employing uncertainty-aware adaptive regulariza-
tion, our method harnesses the potential benefits of Bellman updates,
which is crucial for enhancing the policy performance of value regu-
larization methods.

4 Experiment

In this section, we conducted extensive experiments to validate the
effectiveness of CQ2L on the D4RL[12] benchmark. In Section 4.1,
we introduce the task domains and comparison schemes. Then, in
Section 4.2, we demonstrate the superior performance of our method,
especially against the baseline algorithm CQL and the previous ac-
tion preference query method. Last but not least, to validate the con-
tributions of individual components, we perform ablation studies in
Section 4.3 and provide empirical analysis.

4.1 Experiment Setting

Domains We evaluate our approach on two widely-used task do-
mains from the D4RL [12] benchmark: MuJoCo locomotion and
AntMaze navigation. MuJoCo locomotion domain includes standard
continuous control environments. In this paper, we select HalfChee-
tah, Hopper, and Walker2d, each with three dataset types: medium,

Algorithm 1 Conservative Query Q-Learning (CQ2L)

Input: Offline dataset D, oracle Q*, Morse neural network Mg,
conservativeness coefficient n, query interval Ty, number of
preference queries per query step N, empty replay buffer R

1: Initialize Q-function @, policy 7y with random parameters

2: Initialize preferred actions a with the dataset actions a from D

3: Initialize replay buffer R < {D, a}
# Pre-training Stage

4: Pre-train M, on D by Eq. (6)

5: Compute Morse scores on D to obtain mean g and standard de-
viation o, and set threshold § = u — no
# Offline Training Stage

6: for iteration: = 1,2,... do

7: Sample mini-batch {s,a,r,s’,a} ~ R

8: Update policy my, by Eq. (12)

9: Update Q-function Qg by Eq. (13)

10: if ¢ mod T; = O then

11: Compute Euclidean distances between policy actions
a = 7y (s) and dataset actions a for all s in R

12: Sort action pairs (&, a) by descending distance

13: Select top-N,, pairs with M (s,a) > § for querying

14: Update the corresponding @ in R based on queried results

15: end if

16: end for

medium-replay, and medium-expert. These tasks assess an algo-
rithm’s ability to learn effective policies from offline trajectories
of diverse sub-optimality. The AntMaze navigation domain poses
a much greater challenge due to long-horizon planning, sparse re-
wards, and the need for precise locomotion. It involves guiding an
8-DoF ant-like quadruped robot navigate through a maze and reach
a fixed goal location. There are three Antmaze environments with
increasing complexity: umaze, medium, and large, each with two
variants: play and diverse, introducing additional difficulty through
increased environment complexity and sparse rewards.

Schemes Consider that although our method is applied to offline
training, the action preference query mechanism introduces addi-
tional information. In order to verify the effectiveness of the pro-
posed method, we compared it with the baseline methods of two
schemes: the offline setting and offline-to-online setting. Addition-
ally, we include a comparison with OAP [41] in O20 scheme, the
only existing offline RL method that incorporates the action prefer-
ence query. Since OAP does not provide open-source code, we adopt
the performance results reported in the original paper [41]. For the
remaining methods, we used the official code or implementations
from open-source libraries to report the mean and standard devia-
tion across five random seeds. The offline training is conducted for
1,000,000 steps, and the online fine-tuning is performed for 250,000
steps. In the implementation of OAP, a total of 100,000 action prefer-
ence queries were conducted. For our proposed CQ2L, the total pref-
erence query budget is set to 90,000, which is substantially fewer
than the interactions used in online fine-tuning. Additional imple-
mentation details are provided in Appendix B.

4.2 Performance Comparison

Table 1 presents the comparisons of the average normalized scores on
the D4RL benchmark across nine MuJoCo tasks and Antmaze tasks,
evaluated over 5 random seeds. First, we observe that conventional
offline RL methods, including both policy constraint and value regu-
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Table 1. Offline scheme performance comparison on average normalized D4RL score over the final 10 evaluations and 5 random seed.
Dataset AWAC IQL SPOT Cal-QL TD3+BC CQL CP1 CQ2L
halfcheetah-medium-v2 49.8+0.3 48.1+£0.3 57.6+0.5 47.8+0.2 483+0.3 47.0+0.2 64.4+1.3 67.8 0.6
hopper-medium-v2 68.6+112  66.7+44 71.4+16.0 64.7+34 587+59 653 +33 98.5 +3.0 90.2 +6.1
walker2d-medium-v2 85.1+£0.5 748+ 1.8 69.6 0.6 84.3+09 823+14 81.2+1.4 85.8£0.8 874+1.3
halfcheetah-medium-replay-v2 454 £0.6 445+03 523+1.3 462+0.3 444 +0.6 45205 54.6+1.3 61.5+3.1
hopper-medium-replay-v2 97.8+14 89.6+x119 87.1+142 934+£66 664+£250 924+95 101.7+1.6 101.8+0.6
walker2d-medium-replay-v2 732+84 80.6 £5.8 889+ 1.5 847+ 1.4 81.6+£3.1 809 +2.1 91.8+29 93.0 +1.2
halfcheetah-medium-expert-v2 953 0.9 91.8+2.1 92.7+2.8 527+54 929+4.6 93.7+29 94.7+1.1 954 +2.5
hopper-medium-expert-v2 110613 1063+74 102.1+148 107.6+24 1014+49 983+9.1 106.4+43 111.3+14
walker2d-medium-expert-v2 89.7+394 111910 1103+04 109.0+03 1103+08 109.2+02 1109+04 114.6+3.8
Average MuJoCo 79.28 79.37 81.33 76.71 76.3 79.1 89.9 91.4
antmaze-umaze-v2 63.5+192 748+58 88.8+3.3 748+ 1.8 88.6 £4.6 90.0+4.5 988 +1.1 97415
antmaze-umaze-diverse-v2 57.8 8.0 522+64 415+53 162+20.1 432+188 278+105 88.6+5.7 62.8+9.4
antmaze-medium-play-v2 0.0+0.0 63.8+4.8 63.0+13.9 69.5 +8.0 0.0+0.0 68.5+3.8 824 +£58 83.6 + 6.4
antmaze-medium-diverse-v2 0.0+0.0 61.2+25 67.0+21.5 64.0+5.6 0.0+0.0 64.0+6.7 804+89 722+118
antmaze-large-play-v2 0.0£0.0 37.8+3.8 340+7.1 41.8+45 0.0+£0.0 235+5.1 206+163 65455
antmaze-large-diverse-v2 0.0+0.0 20.8 6.1 36.2+11.6 32.8+9.3 0.0+0.0 225+140 452+6.9 73.2+34
Average Antmaze 20.22 51.77 55.08 49.85 22.0 49.0 69.3 75.8

Table 2. 020 scheme performance comparison on average normalized D4RL score over the final 10 evaluations and 5 random seed. Our method achieves
superior or comparable performance with only 90,000 preference queries, while OAP conducted 100,000 queries and other methods interacted with the environ-
ment by an additional 250,000 steps. The second-best average performance is highlighted with the underline

Dataset AWAC IQL SPOT TD3+BC CQL OAP CQ2L
halfcheetah-medium-v2 56.7+1.4 49.7+0.2 58.6+0.8 52505 48.0+0.2 56.4+4.3 67.8 0.6
hopper-medium-v2 98.7+£3.6 752 +45 99.9 +0.3 63.7+75 63.8+3.6 82.0+6.6 90.2+6.1
walker2d-medium-v2 87.1+0.6 80.8 £6.8 82.5+£1.7 86.6 £0.8 82.8+0.5 85.6+1.2 87413
halfcheetah-medium-replay-v2 ~ 49.3 £0.5 45212 57.6+1.0 493 +2.6 494 +0.1 534+19 61.5+3.1
hopper-medium-replay-v2 1000+£1.0 91.1+129 973 +2.1 97.0+1.2 101.3+£03  985+25 101.8+0.6
walker2d-medium-replay-v2 94.2 +3.8 89.2+6.5 86.4+34 89.9+3.3 879+23 84.3+2.7 93.0+1.2
halfcheetah-medium-expert-v2 ~ 95.1 0.6 92419 919+1.1 932+1.0 95.7 +1.0 83.4+53 95425
hopper-medium-expert-v2 1121£0.7  109.6+4.0 1065+0.5 99.8+132 110.8+02 859%6.6 1113+14
walker2d-medium-expert-v2 113.5+24 115.0+04 1106+04 1158+0.6 109.8+02 111.1+06 114.6+3.8
Average MuJoCo 84.1 83.2 88.1 83.08 82.39 82.3 91.4
antmaze-umaze-v2 922+4.0 83.0+4.1 99.8+04 72.8+238 952+13 904 +5.2 97415
antmaze-umaze-diverse-v2 3.0+4.6 382+£17.6 568+18.8 398+13.0 59.2+284 75.0+19.0 62.8+94
antmaze-medium-play-v2 0.0+0.0 78864 92.5+2.5 0.0+0.0 77.0+44  620+100 83.6+x6.4
antmaze-medium-diverse-v2 0.0+0.0 80.2+53 87.0+7.0 02+04 84.0+3.0 545+233 722+11.8
antmaze-large-play-v2 0.0+0.0 428 +39 60.0 £9.6 0.0+0.0 51.8+12.1 0.0+0.0 65455
antmaze-large-diverse-v2 0.0+0.0 402+79 63.0+£4.2 0.0£0.0 382+ 14.0 94+84 73.2+34
Average Antmaze 15.87 60.5 76.35 18.8 67.56 48.6 75.8

larization approaches, perform significantly worse than our proposed
method. This performance gap highlights the advantage of incor-
porating the action preference query, which purposefully introduces
beneficial prior knowledge (oracle evaluations) during training.

Compared to online fine-tuning methods, our approach remains
highly competitive. As shown in Table 2, it outperforms most base-
lines that undergo 250,000 online interaction steps, using only 90,000
action preference queries. Notably, our method achieves superior or
comparable performance to the fine-tuned baseline CQL across most
tasks. In contrast, OAP yields only marginal gains over its baseline
method TD3+4+BC, and performs noticeably worse on the MuJoCo
tasks. These results highlight the clear advantage of our approach
over OAP. Specifically, our method achieves substantially better per-
formance than OAP on all tasks except antmaze-umaze-diverse-v2,
indicating that the proposed uncertainty-driven conservative query is
more beneficial for policy learning and the uncertainty-aware adap-
tive regularization facilitates more effective exploitation of queried
information and more reliable Bellman updates.

We also applied OAP to value regularization methods built upon
CQL. However, as shown in Appendix A, the performance degrades
substantially, highlighting the limitations of extending OAP in this
context. In contrast, our method successfully integrates the action
preference query mechanism with value regularization, yielding con-
sistently strong results.

4.3 Ablation Study

We conduct ablation studies across four different tasks to assess the
contributions of two key components in our method: Uncertainty-
Driven Conservative Query (denoted as CQ) and Uncertainty-Aware
Adaptive Regularization (denoted as AR).

Figures 3(a) and 3(b) present the ablation results on the MuJoCo
tasks. Owing to the dense reward signals in these environments, the
adaptive regularization mechanism can effectively guide policy up-
dates through more reliable Bellman backups. Furthermore, due to
low-dimensional observations, the offline datasets offer high cover-
age, reducing the influence of whether a conservative strategy is ap-
plied in the action preference queries.

For the more challenging tasks in the Antmaze domain, high-
dimensional observations make it difficult for offline datasets to ad-
equately cover the state and action spaces, while sparse reward sig-
nals hinder the ability to achieve reliable Bellman updates. Therefore,
as shown in Figures 3(c) and 3(d), conservative queries help ensure
that the preferred actions remain close to the dataset distribution,
avoiding the overestimation of infeasible OOD actions. Moreover,
in essence, this resembles intra-distribution exploration, where the
queried preferred actions help bridge previously disconnected states
in the dataset, effectively enabling a form of trajectory stitching. This
mechanism facilitates the exploitation of potentially helpful informa-
tion from suboptimal trajectories, which is particularly beneficial for
long-horizon planning tasks.
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Figure 3. Ablation study across four tasks. figure 3(a) and 3(b) correspond to MuJoCo tasks with dense rewards and low-dimensional observations, while

figure 3(c) and 3(d) correspond to Antmaze tasks with sparse reward and high-dimensional observations, which are much more challenging.

5 Related Work

In this section, we provide an overview of offline RL and preference-
based RL by reviewing relevant literature.

Offline RL  As previously discussed, offline RL addresses the prob-
lem of distributional shift by avoiding extrapolation to unseen actions
that lie outside the support of the dataset. Given an offline dataset
collected by an unknown behavioral policy mg, several methods
[14, 40, 20, 25] directly estimate mg and convert the unconstrained
policy optimization objective into a constrained one [30] by enforc-
ing a distributional constraint, which encourages the learned policy
to match the behavioral policy. However, a key limitation of such
direct policy constraint methods is their dependence on accurate es-
timation of 7g, since the behavior policy can be difficult to accurately
recover. Some works avoid the explicit estimation of 7g and enforce
support-matching constraints [40, 13, 29, 27], also referred to as im-
plicit policy constraints. Value Regularization [22, 26, 20, 19, 43] is
another way to learn the policy without relying on mg. Compared
to policy constraint, value regularization methods do not restrain the
policy directly. Instead, they penalize the values of OOD actions with
regularization terms, and update the value function in a conservative
manner.

Uncertainty estimation in offline RL Some offline RL methods
achieve conservative learning through uncertainty estimation. The
key is to construct an uncertainty estimator. One typical approach
[1, 3, 28] is to train an ensemble of Q-functions, and use the average
or minimum Q-values for conservative estimation. In this way, the
value overestimation is mitigated, and the policy tends to output ac-
tions constrained within the dataset distribution. Another approach is
to train an ensemble of transition models [17, 42, 43] instead of es-
timating Q-function, primarily used in Model-based RL. They quan-
tify the uncertainty by calculating the standard deviation of the pre-
dictions on the next state and add it as the penalty term to the reward
function. By avoiding transitions to uncertain regions, these meth-
ods achieve conservative updates supported by the distribution of the
dataset.

Preference-base RL  Preference-based RL (PBRL) is a promising
approach to alleviate the necessity of precise reward design [7, 2].
According to the query target, PBRL can be classified as the tra-
jectory preference query and the state preference query. The former
[8, 37, 9] queries the better trajectory in the given trajectory pair, and
is the most general form of PBRL, as all preferences can be assigned
to trajectory preferences when we admit trajectories with only a sin-
gle element [39]. The latter paradigm [31, 38, 46] identifies the state
in a given state pair where there exists an action that is better than all
the available actions in another state. Compared with the two typical

paradigms, previous work [15] on the action preference query is lim-
ited, which queries the better action in the given action pair under the
same state. Recently, Yang et al. [41] proposed OAP, introducing this
paradigm to offline RL. OAP queries the preference between the pol-
icy actions and the dataset actions, and replaces the target constraint
actions with the preferred actions based on TD3+BC [13]. In addi-
tion, semi-supervised learning is introduced to generalize preference
detection to uncompared regions, guiding the policy update towards
the potentially beneficial direction and breaking the performance bot-
tleneck induced by the limited distribution of the dataset. However,
a key shortcoming of the query mechanism lies in their neglect for
the update dynamics related to Bellman backups. This omission can
result in unstable Q-function updates when preference actions are di-
rectly integrated into the critic learning process. To address this issue,
our conservative query mechanism achieves stable value updates by
selecting preferred actions near the dataset, and our adaptive regu-
larization enables the effective exploitation of the potential benefits
from more reliable Bellman updates. Furthermore, our method ex-
tends preference queries from policy optimization to value function
learning, offering a novel insight for future research in this area.

6 Conclusion

To further explore the potential of the action preference query mech-
anism and extend its applicability to value regularization methods,
we propose a framework that incorporates conservative querying and
adaptive regularization under uncertainty estimation. Specifically, we
employ a Morse neural network as an uncertainty estimator, pre-
trained on the offline dataset to achieve the ability to quantify the
OOD degree of given state-action pairs. To mitigate the risk of mis-
leading policy updates caused by highly OOD actions, we intro-
duce an uncertainty-driven conservative query mechanism that fil-
ters queried actions via the Morse network, ensuring that the pre-
ferred actions lie close to the data distribution and avoiding erroneous
overestimation of OOD actions. Additionally, to prevent overly pes-
simistic constraints on preferred actions and to balance the influ-
ence of preference supervision with Bellman updates, we propose an
uncertainty-aware adaptive regularization mechanism. This mecha-
nism dynamically adjusts the regularization strength based on the
OOD level of the current policy actions, enabling data-level discrimi-
native constraints and allowing the agent to benefit from the strengths
of Bellman backups. We integrate the proposed components into the
representative value regularization method CQL and conduct exten-
sive evaluations across diverse tasks on the D4RL benchmark. Ex-
perimental results show that our method consistently outperforms
or matches online fine-tuning baselines and achieves significant im-
provements over the previous action preference query approach.
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