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ABSTRACT

With distributed machine learning being a prominent technique for large-scale
machine learning tasks, communication complexity has become a major bottleneck
for speeding up training and scaling up machine numbers. In this paper, we propose
a new technique named Common randOm REconstruction (CORE), which can
be used to compress the information transmitted between machines in order to
reduce communication complexity without other strict conditions. Especially,
our technique CORE projects the vector-valued information to a low-dimensional
one through common random vectors and reconstructs the information with the
same random noises after communication. We apply CORE to two distributed
tasks, respectively convex optimization on linear models and generic non-convex
optimization, and design new distributed algorithms, which achieve provably lower
communication complexities. For example, we show for linear models CORE-
based algorithm can encode the gradient vector to O(1)-bits (against O(d)), with
the convergence rate not worse, preceding the existing results.

1 INTRODUCTION

Distributed machine learning and optimization have become the main technique for solving tasks
with large model and data scales. In simple terms, the distributed optimization problem in machine
learning can be regarded as minimizing an objective function f defined as an average of individual
functions that are respectively accessible by their corresponding local machines. More specifically,
we consider a constrained optimization problem

minimize
x∈Rd

f(x) ≡ 1

n

n∑
i=1

fi(xi)

s.t. x1 = x2 = · · · = xn.

(1)

Here fi represents the individual objective function at the local machine i and the constraint in (1)
guarantees different machines corporately finding the same minimizer of the global objective function
f . Typical examples for fi include regression or classification over linear, graphic, as well as (deep)
neural network models. In these cases, fi shares the form as fi(x) ≡ F (x; ζi), where ζi denotes the
data stored in machine i and F represents the learning model.

One dominating bottleneck for further improving the speed of distributed machine learning is the
communication bandwidth. With the increase of machine numbers and parameter scale, time spent
on communication can not be ignored and even becomes much longer than that on computation.
Such a problem is much more salient when the bandwidth of computing cluster is restricted, such
as mobile devices. Many researchers have noticed that reducing the dimensions of data transmitted
between machines can effectively reduce the communication complexity, and proposed heuristic
techniques, such as quantization (Seide et al., 2014) and sparsity (Aji & Heafield, 2017), to reduce
the communication burden to some degree. Some more complete and theoretically guaranteed
algorithms based on these techniques are proposed soon, However, to the best of our knowledge,
although some researches show how to improve existing compression techniques or propose several
new ones, few results provide concrete and feasible compression techniques that can provably
reduce communication costs and maintain algorithm accuracy under mild conditions. In this paper,
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we propose a new technique named Common randOm REconstruction (CORE) which presents a
provable result on low communication complexity. CORE is a technique that can be used to transmit
a sequence of vector-valued information that follows from well-known ideas from information theory
and communication complexity theory, taking advantage of common random variables. At each
round, the vector-valued information is projected to a low-dimensional vector using Gaussian random
noises by the sender, and after communication reconstructed with the same noises by the receiver.
We show such a procedure generates an unbiased estimator of the original vector-valued information
with a controlled variance. We apply CORE to two distributed tasks, namely convex optimization
on linear models and generic non-convex optimization. Compared with some existing relevant
researches, ours has certain advantages. First, we propose a concrete and feasible compression
technique and algorithms instead of an abstract but potentially not implementable framework to
reduce communication costs. Second, our algorithms provably achieve much lower communication
costs compared with the existing algorithms under realizable conditions.

1.1 RELATED WORK

In this section we briefly introduce the related work about our methods, including gradient com-
pression, random sketching technique, distributed optimization and federated learning, and random
communication complexity. A more detailed introduction can be seen in Appendix A.

Gradient compression. Gradient compression is the main technique to reduce communication
complexity during the process of training. The representative achievements are gradient quantization
(Seide et al., 2014; Tang et al., 2021) and gradient sparsification (Wangni et al., 2018; Shi et al.,
2019; Jiang & Agrawal, 2018). Moreover, some methods (Wen et al., 2017; Alistarh et al., 2017;
Wu et al., 2018; Faghri et al., 2020; Horvóth et al., 2022; Mishchenko et al., 2019; Aji & Heafield,
2017; Lin et al., 2017; Wang et al., 2018; Mishchenko et al., 2020) obtained better results based
on previous works. In addition, some new techniques based on innovative ideas have also been
developed and achieved good results. For example, PowerSGD (Vogels et al., 2019) proposed a new
low-rank gradient compressor. Other techniques (Bernstein et al., 2018; Safaryan & Richtárik, 2019;
Beznosikov et al., 2020; Horváth et al., 2023; Richtárik et al., 2022) were also proposed as innovative
new achievements. However, the second moments of these estimations are often of order d, which
implies a restriction of the total communication costs.

Random sketching. Sketching (Gribonval et al., 2020; Woodruff et al., 2014; Ikonomovska et al.,
2007) is a widely-used technique in machine learning, data mining and optimization, whose core
idea is to reduce the scale by a probabilistic data structure to approximate the data to reduce the
computation costs. It is worth noticing that some researchers have started to use the sketching
technique to reduce communication costs during the process of training. For example, FedAvg
(Konečnỳ et al., 2016) and SKETCHED-SGD (Ivkin et al., 2019), which uses Count Sketch (Charikar
et al., 2004) to compress the gradient. They also presented a theoretical analysis of convergence, but
when d is large, it is much worse than SGD. Hanzely et al. (2018) proved that when adding biased
estimates on the basis of random matrix sketching, their algorithm achieves a faster convergence rate
and can be accelerated. However, they did not come up with a specific sketching method. Moreover,
Lee et al. (2019) and Pilanci et al. (2015) proposed some sketched Hessian-based second-order
optimization algorithms. In this work, we mainly focus on gradient-based communication-efficient
methods.

Distributed optimization. Distributed machine learning and optimization have developed rapidly
in recent years. In the early years, the main achievements were based on the existing optimization
algorithms (Cotter et al., 2011; Lee et al., 2015; Shi et al., 2015; Scaman et al., 2017b). In recent
years, some compressed gradient descent algorithms (Khirirat et al., 2018; Mishchenko et al., 2019;
Gorbunov et al., 2021; Tyurin & Richtárik, 2022; Li & Richtárik, 2021) based on compression
techniques mentioned above were also proposed. But almost all the methods above have the total
communication costs at O(d) level. It is worth noticing that in practice d is often extremely large.
So there is still a lack of a concrete compression technique and corresponding distributed algorithm
that achieves low communication complexity when d is large. Our work fills this gap. In addition,
error feedback technique (Stich & Karimireddy, 2019; Karimireddy et al., 2019; Tang et al., 2019;
Gruntkowska et al., 2022; Richtárik et al., 2021; Fatkhullin et al., 2021) was also widely used in
compressed distributed optimization.
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Federated learning. Federated Learning is another machine learning setting concentrating on
communication costs, where the goal is to train a high-quality centralized model while training
data remains distributed over a large number of clients each with unreliable and relatively slow
network connections. In the early years, some federated learning algorithms (Konečnỳ et al., 2016;
Rothchild et al., 2020; Ivkin et al., 2019; Karimireddy et al., 2020; Mitra et al., 2021) based on the
local gradient have been proposed. However, the approximation of local gradient often results in a
loss of convergence rate. The total communication costs are either worse than or equal to those of
vanilla gradient descent. Recently, some new communication-efficient methods such as Scaffnew
(Mishchenko et al., 2022) and GradSkip (Maranjyan et al., 2022) have been proposed to achieve the
same communication rounds as the lower bound of smooth and strongly-convex objective functions
O(
√
κ), but the total communication costs are still O(d).

Random communication complexity. In theoretical computer science, communication complexity
studies the amount of communication needed to solve a problem when input data is distributed among
several parties. Communication complexity was first proposed in Andrew (1979). Andrew (1979) also
defined randomized protocol and randomized communication complexity. In a randomized protocol,
parties are given a common random string as the input to a deterministic protocol. Random protocols
can determine the answer in high probability with much less amount of information transmitted, so
randomized communication complexity is much lower than deterministic communication complexity
in expectation. Inspired by the advantage of randomized protocols over deterministic ones, we
designed a random compression method for distributed optimization which is faster in expectation.
Newman (1991) proved that any protocol using a common random string can be simulated by a
private random string protocol, with an extra O(log n) bits.

1.2 CONTRIBUTIONS

In this work, we introduce the Common randOm REconstruction (CORE) technique and demonstrate
its application in two distributed tasks. The advantages of utilizing CORE in these tasks are outlined
below.

To the best of our knowledge, CORE is the first concrete and feasible compression method that
achieves a limited bounded variance of the estimate and provably reduce communication complexity
when the eigenvalues of the Hessian matrices of f drop very fast. We have observed that in practice,
the rapid decrease of eigenvalues in the Hessian matrix has long been recognized. For instance,
researchers have introduced concepts like effective rank (e.g., Hsu et al. (2012)) to quantify the
dimensionality of the data’s influence on linear models. Some recent empirical studies (Sagun et al.,
2016) carefully compute the eigenvalue of Hessian curves during training for (deep) neural networks.
(See Figure 4 for an example of eigenvalues of a real dataset and a neural network in Appendix L).

To characterize the strength of CORE in rigor, we introduce the factor

rα = sup
x∈Rd

d∑
i=1

λα
i (∇2f(x)), α > 0 (2)

as the effective dimension for distributed optimization, where λi(·) is the i-th singular value (also
the eigenvalue when ∇2f(x) is semi-definite in convex case). This is inspired by the recent work of
zeroth-order optimization (Yue et al., 2023), Langevin sampling (Freund et al., 2022), and distributed
optimization (Hanzely et al., 2018). We further introduce the Hessian domination assumption, a
concept employed in various studies for theoretical analysis (Hanzely et al., 2018; Safaryan et al.,
2021; Yue et al., 2023). We apply CORE to some gradient-descent-based algorithms and use
the effective dimension rα to characterize their communication costs. By combining CORE with
centralized gradient descent (CGD), we propose the CORE-Gradient Descent (CORE-GD) algorithm
for linear regression and prove that for the standard case where f has L-Lipschitz gradients, CORE-
GD achieves O

(
r1(f)D

2ϵ−1
)

communication costs to obtain an ϵ-optimal solution, where D =

∥x0−x∗∥. Compared with CDG which achievesO
(
dLD2ϵ−1

)
communication costs, CORE-GD has

a significant advantage since r1(f) is much smaller than dL in most cases when eigenvalues decay fast.
In Appendix B, we also study accelerations of CORE-GD using the momentum technique, and propose
a heavy-ball-based accelerated algorithm named CORE-Accelerated Gradient Descent (CORE-
AGD) for linear regression. We prove that CORE-AGD achieves the state-of-the-art Õ

(
r1/2(f)

µ1/2

)
3
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Table 1: The performance of communication-efficient methods
method communication rounds compressor floats sent per round total communication costs

CGD Nesterov (2003) Õ(Lµ ) - Θ(d) Õ(dLµ )

ACGD Nesterov (2003) Õ(L
1/2

µ1/2 ) - Θ(d) Õ(dL
1/2

µ1/2 )

FedLin Mitra et al. (2021) Õ(d
3/2L

k3/2µ
) Top-K1 Θ(k) Õ(d

3/2L
k1/2µ

)

Scaffnew Mishchenko et al. (2022) Õ(L
1/2

µ1/2 ) Skip 2 Θ(d) Õ(dL
1/2

µ1/2 )

GandSkip Maranjyan et al. (2022) Õ(L
1/2

µ1/2 ) Skip 2 Θ(d) Õ(dL
1/2

µ1/2 )

DIANA Mishchenko et al. (2019) Õ( d
K + dL

Knµ )
3 Top-K 1 Θ(K) Õ(d+ dL

nµ )

ADIANA Li et al. (2020) Õ( d
K + dL1/2

Kn1/2µ1/2 )
3 Top-K 1 Θ(K) Õ(d+ dL1/2

n1/2µ1/2 )
4

ASEGA Hanzely et al. (2018) Õ(
∑d

i=1 A
1/2
ii

µ1/2 ) - Θ(1) 5 Õ(
∑d

i=1 A
1/2
ii

µ1/2 )

CORE-GD (this work) Õ(Lµ ) CORE Θ( tr(A)
L ) Õ( tr(A)

µ )

CORE-AGD (this work) Õ(L
1/2

µ1/2 ) CORE Θ(
∑d

i=1 λ
1/2
i

L1/2 ) Õ(
∑d

i=1 λ
1/2
i

µ1/2 )

1 FedLin, DIANA and ADIANA only propose the algorithms using compressor, but do not propose concrete gradient compression technique. They
use Top-K as an example to analyse the communication rounds and costs.

2 Scaffnew and GandSkip use communication skipping instead of gradient compressor. Specifically, they only communicate every O(L
1/2

µ1/2 ) rounds

and the total computation rounds are Õ(L
µ
).

3 The communication rounds of DIANA are Õ(ω+ ωL
nµ

) when ω ≥ n. And similarly, that of ADIANA is Õ(ω+ ωL1/2

n1/2µ1/2 ) when ω ≥ n. Here ω is

compression ratio. For example, when using Top-K compressor, the compression ratio is d
K

, which is much larger than n when the dimension of
data is extremely large. In this setting n can be seen as O(1).

4 The theoretical bound of the total communication costs of this method is Õ(d+ d1/2L1/2

µ1/2 ), and the bound of CORE-AGD is Õ( d
1/2tr(A)1/2

µ1/2 ). In
most cases when tr(A) is bounded and d is much large, CORE-AGD is better.

5 This method is coordinate-descent-based. We show that CORE-AGD is theoretically better. Letting A = U⊤ΣU where U = [uij ] and
Σ = diag{λi}, we have Aii =

∑d
j=1 λju

2
ji ≥ (

∑d
j=1 λ

1/2
j u2

ji)
2 (because the Hessian matrix is positive definite and symmetric). Thus we have∑d

i=1 A
1/2
ii ≥

∑d
i=1 λ

1/2
i .

communication costs which is lower than Õ(d+ dL1/2

n1/2µ1/2 ) in Li et al. (2020) and Õ
(∑d

i=1 M
1/2
ii

µ1/2

)
in Hanzely et al. (2018). More details and comparisons are shown in Table 1. Compared with the
results in Hanzely et al. (2018) , our works present a concrete compression technique. In Section
5, we then examine the efficiency of CORE in generic non-convex optimization when finding an
ϵ-approximated first-order stationary point. We further assume a Hessian-Lipschitz condition and
show that CORE-GD with carefully chosen stepsize can achieve lower communication costs which
reduces upon the communication costs of CGD by a min

{
dL/r1(f), ϵ

−0.5d1/4
}

factor.

In summary, the contribution of the paper is listed below:
(A) We propose a new technique called CORE to efficiently transmit information between

machines. To the best of our knowledge, CORE is the first concrete and feasible compression
technique that is provably more efficient on communication when eigenvalues drop fast and
can be applied to gradient-descent-based algorithms.

(B) We apply CORE to convex optimization on linear models and generic non-convex opti-
mization. We design new optimization algorithms and show a remarkable reduction of
communication complexity under realizable conditions. Compared with the recent dis-
tributed optimization and federated learning algorithms, our CORE-GD and CORE-AGD
achieve the lower bound of iteration rounds the state-of-the-art total communication costs
under the realizable condition.

Finally, we propose a reduction framework that extends CORE to work on decentralized communica-
tion in Appendix E. We show the price is only an additional Õ(√γ) factor, where γ is the eigengap of
the gossip matrix for the network topology. We also show that CORE is equipped with some privacy
guarantee naturally for the use of random vectors, and prove our results in Appendix J. We conduct
empirical studies where we compare CORE with the basic frequently used quantization and sparsity
techniques both on linear models and (deep) neural networks in Appendix K.

1.3 NOTATION

Throughout this paper, we use the convention O (·), Ω (·), and Θ(·) to denote the lower, upper and
lower and upper bound with a global constant, and use Õ(·) to denote the lower bound that hides

4
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a poly-logarithmic factor of the parameters. Let R denote the set of real numbers, and Rd denote a
d-dimensional Euclidean space. We use bold lowercase letters, like x, to represent a vector, and bold
capital letters, like A, to represent a matrix. Specially, we use Id to represent the identity matrix in
d-dimensional Euclidean space, and omit the subscript when d is clear from the context for simplicity.
Let ⟨·, ·⟩ denote the inner product of two vectors in the Euclidean space, ∥x∥ denote the Euclidean
norm of a vector, and ∥A∥ denote the operator norm of a matrix. It is worth noticing that we use
∥x∥A to denote the Mahalanobis (semi) norm where A is a positive semi-definite matrix, which
can be specifically defined as ∥x∥A =

√
x⊤Ax. For all the functions f appearing in this paper, we

simply assume that f ∈ C2, which means that f has a well-defined second-order derivative. We
use ∇f(x) and ∇2f(x) to denote the first-order and second-order derivative of f . Moreover, we
always assume that the objective function f satisfies some basic assumptions in Section 2 and the

minimizer of f exists. We use x∗ to denote the minimizer, i.e. x∗ △
= argminx f(x) and f∗ to denote

its minimum value, i.e. f∗ △
= minx f(x).

2 PRELIMINARY

In this section, we formally present some definitions and assumptions to constrain the objective
function and the optimization problem.
Assumption 2.1 (L-smoothness). We say a function f is L-smooth (or has L-Lipschitz continuous
gradients), if ∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥ for all x,y ∈ Rd.

Consequently, for the function f ∈ C2, we have the following inequality based on the L-smoothness
of f (see Nesterov (2003, Chapter 1)): f(y) ≤ f(x)+ ⟨∇f(x),y−x⟩+ L

2 ∥x−y∥2, ∀x,y ∈ Rd.

Assumption 2.2 (Convexity). We say a function f is convex if f(y) ≥ f(x) + ⟨∇f(x),y − x⟩ +
µ
2 ∥x− y∥2 for all x,y ∈ Rd, where µ ≥ 0. Moreover, if µ > 0, f is said to be µ-strongly convex.

Assumption 2.3 (H-Hessian Lipschitz continuity). We say f ∈ C2 has H-Hessian Lipschitz continu-
ous Hessian matrices if ∥∇2f(x)−∇2f(y)∥ ≤ H∥x− y∥ for all x,y ∈ Rd.

Next we define some frequently-used criteria for an approximate solution. For convex problems, we
aim to find an ϵ-approximate solution satisfying the definition below:
Definition 2.4 (ϵ-approximate solution). We say x is an ϵ-approximate solution of f if f(x)−f∗ ≤ ϵ.

For non-convex problems, finding an ϵ-approximate solution in general is NP-hard (Murty & Kabadi,
1985). Instead we consider finding an ϵ-approximate first-order stationary point satisfying the
definition below:
Definition 2.5 (ϵ-stationary point). We say x is an ϵ-appriximate first-order stationary point of f if
∥∇f(x)∥ ≤ ϵ.

3 COMMON RANDOM RECONSTRUCTION: CORE IDEA

In this section, we present in detail the underlying idea of our Common RandOm REconstruction
(CORE) technique behind the algorithm design. We can see such a technique reduces the quan-
tities of data transmitted during communication to a great extent, which significantly reduces the
communication complexity. It is of great importance in distributed optimization tasks.

In most distributed machine learning tasks, information is transferred from one machine to another one
in vector form, i.e. the gradient of the objective function. Suppose the dimension of the information is
d. When a machine transmits a d-dimensional vector to another machine, the communication cost is d.
However, in most applications, the dimension d is very large. As a result, it is very expensive to send
the whole vector. Inspired by the theory of communication complexity (Andrew, 1979), we propose
a feasible technique which realizes the dimension reduction by randomization. Specifically, we
suppose that all the machines have a common random number generator, which generates a fresh
random Gaussian vector ξ ∼ N(0, Id) at each transmission. We denote the information we want to
transmit by a ∈ Rd. Instead of sending the d-dimension vector a, we send a scalar ⟨a, ξ⟩ which is
the inner production of a and the common random Gaussian vector ξ. Then the receiver reconstructs
a by multiplying ξ with the scalar.

5
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Algorithm 1 CORE: Common Random Reconstruction
Require: An vector a, machines M1 and M2, one-round communication budget m, a common

random number generator
while M1 want to send a to M2 do

Generate fresh i.i.d. random Gaussian vectors ξ1, · · · , ξm ∼ N(0, Id) with the common random
number generator
M1 sends {pi}mi=1 to M2 with pi = ⟨a, ξi⟩
M2 reconstructs a by ã = 1

m

∑m
i=1 pi · ξi

end while

To ensure the training accuracy and convergence rate, we can take m fresh random Gaussian vectors
for dimension reduction, where m is the one-round communication budget. Specifically, We send
m scalars which are the inner products of a with m random Gaussian vectors, and reconstruct ã by
averaging over the reconstructions using all m random Gaussian vectors. We call this compression
and reconstruction scheme Common Random Reconstruction (CORE), and describe it in Algorithm
1. In Algorithm 1, the estimation of a admits:

ã =
1

m

m∑
i=1

⟨a, ξi⟩ · ξi. (3)

The next important question is whether this technique can guarantee the accuracy of the results. In
Lemma 3.1 and Lemma 3.2, we show that ã is an unbiased estimator, and the variance of ã can be
bounded under arbitrary matrix norms.

Lemma 3.1. ã is an unbiased estimator of a:

Eξ1,···ξm
ã = a. (4)

Lemma 3.2. The variance of ã under norm ∥·∥A, where A is a given positive semi-definite symmetric
matrix, can be bounded by 3tr(A)

m ∥a∥2 − 1
m∥a∥

2
A:

Eξ1,··· ,ξm∥ã− a∥2A ≤
3tr(A)

m
∥a∥2 − 1

m
∥a∥2A. (5)

Remark 3.3. Lemmas 3.1 and 3.2 bound the first and second moments of ã, which provide us
theoretical guarantee of the convergence accuracy if we replace a by ã in certain algorithms. First, it
is obvious that ã has a sub-exponential tail distribution given a, so we can provide high probability
results using concentration inequalities. Second, the variance of ã is upper bounded when tr(A) is
smaller, ensuring the convergence accuracy of our technique with a lower communication cost.

In most cases, when eigenvalues decrease rapidly indicating that tr(A) is not large, our technique
demonstrates substantial improvement. Indeed, the CORE technique finds application in a diverse
range of distributed optimization tasks across various settings. These include scenarios involv-
ing gradient-based algorithms, proximal algorithms, as well as both centralized and decentralized
distributed optimization approaches. In this paper, we focus on the gradient-based distributed opti-
mization algorithms on the centralized distributed optimization, by transmitting the reconstruction by
our CORE method, ã, instead of the full gradient vector ã, to reduce the communication cost in each
round.

4 CORE ON LINEAR MODELS

In this section, we delve into the behavior of CORE on linear models. To provide a clear illustration
of the CORE technique, we focus on representative and straightforward cases that encompass the
linear model. This model stands as one of the most crucial applications of convex optimization in
machine learning. We extend our analysis to more general cases in Section 5 and Apendix D.

6
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Algorithm 2 CORE-GD with per-round communication budget m

Require: n machines, a central machine, a common random number generator, m ≤ tr(A)
L , x0,

k = 0, step-size hk = m
4tr(A)

while k < N do
Generate fresh i.i.d. m Gaussian vectors ξ1, · · · , ξm with the common random number generator
Machine i sends pij = ⟨∇fi(xk), ξj⟩ to the central machine
The central machine sends

∑n
i=1 pij back to every machine

Machines reconstruct ∇̃mf(xk) by ∇̃mf(xk) = 1
m

∑n
i=1

∑m
j=1 pijξj

Machines update xk by xk+1 = xk − hk∇̃mf(xk)
k ← k + 1

end while

We start with the general components of CORE. Suppose we have n machines. Based on the analysis
of our core idea, we use Algorithm 1 to compress and reconstruct the gradient vector as below,

∇̃mf(x) =
1

nm

n∑
i=1

m∑
j=1

⟨∇fi(x), ξj⟩ · ξj . (6)

Then from Lemma 3.1 and Lemma 3.2, ∇̃mf(x) is an unbiased stochastic estimation of∇f(x) with
a controlled variance. This implies that if one can design a variety of optimization algorithms using
the stochastic oracle ∇̃mf(x), then these algorithms can be efficiently implemented by CORE. In
this paper, we introduce two typical algorithms based on GD and AGD.

Now we introduce the CORE-GD algorithm, where at each gradient descent step, the gradient∇f(x)
is replaced by estimator ∇̃f(x) using CORE. The whole algorithm is presented in Algorithm 2,
where we let m be the communication budget for a communication round. To show the strength
of CORE, we consider the objective function satisfying a mild assumption: A-Hessian domination
condition, which is defined as follows:
Definition 4.1 (A-Hessian domination). f is said to be A-Hessian dominated if there exists A such
that

∇2f(x) ⪯ A (7)
for every x ∈ Rd.

We aim to characterize the complexity in terms of tr(A). We note that when f is L-smooth, a loose
bound for A is A ⪯ LI . The fact implies that tr(A) will reach dL in the worst case, whereas, tr(A)
can be much smaller than dL in most cases. We will show that the linear models are A-Hessian
dominated. Moreover, when the data is normalized to a constant level, tr(A) is much smaller and
dimension-free. This result suggests only transmitting O(1)-bits information using CORE without
lowering the convergence rate in expectation under suitable conditions. We shall mention that a
similar idea of Hessian domination is also considered by Freund et al. (2022) in the Langevin sampling
algorithm, who instead proposes a squared Hessian domination condition.

We first consider the µ-strongly convex case. Theorem 4.2 below provides a linear convergence
results for Algorithm 2.
Theorem 4.2. Suppose f is µ-strongly convex, L-smooth, and A-Hessian dominated . Let hk =

m
4tr(A) . Then, under the hyper-parameter setting in Algorithm 2, {xk}k∈N satisfy for all k ≥ 0

Ef(xk+1)− f∗ ≤
(
1− 3mµ

16tr(A)

)(
f(xk)− f∗) . (8)

Remark 4.3. According to Theorem 4.2, our total communication costs are O
(

tr(A)
µ log 1

ϵ

)
in

expectation. As we have mentioned, high probability results can also be obtained with additional
logarithmic factors, which we simply omit here.
Remark 4.4. We compare CORE-GD with the vanilla CGD algorithm which has total communication
costs O

(
dL
µ log 1

ϵ

)
. CORE-GD achieves provably lower communication costs since we always have

7
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tr(A) ≤ dL when ignoring constants. CORE-GD is also better than DIANA (Mishchenko et al., 2019)
whose total communication cost isO(d+ dL

nµ ) when d is extremely larger than n. The communication

cost remains unchanged under diffent communication budgets m. When m = Θ
(

tr(A)
L

)
, CORE-GD

achieves the same number of communication rounds (convergence rate) as those of CGD when
ignoring constants. Bigger communication budget cannot accelerate the convergence rate.

Next we present realizable conditions for linear models that ensure tr(A) to be small. We consider
the objective admits the so-called ridge-separable form Freund et al. (2022):

f(x) ≡ 1

N

N∑
i=1

σi(β
⊤
i x) +

α

2
∥x∥2. (9)

Here, we simply consider the ℓ2 norm regularizer. It is possible to generalize our results using
proximal algorithms for other regularizers. In (9), βi is associated with the data, and σi is associated
with the loss function. We make the following assumptions:
Assumption 4.5. The functions σi ∈ C2 has bounded second derivatives: σ′′

i ≤ L0 for all i ∈ [n].
Assumption 4.6. For all i ∈ [N ], then norm of βi is bounded by R: ∥βi∥2 ≤ R.

Note that Assumption 4.6 can be realized by normalizing the data and Assumption 4.5 only requires
that the loss functions have a bounded second derivative. We show that tr(A) is small:
Lemma 4.7. For the objective function in form of (9), under Assumptions 4.5 and 4.6, then f is
A-Hessian dominated and A satisfies

tr(A) ≤ dα+ L0R. (10)

With Lemma 4.7, we show CORE-GD ensures much low communication costs for linear models
under suitable conditions.
Corollary 4.8. For the objective function in form of (9), under Assumptions 4.5 and 4.6, with tr(A)
defined in (10), the total communication costs of CORE-GD are O

((
d+ L0R

α

)
log 1

ϵ

)
.

Remark 4.9. From Corollary 4.8, treated R and L0 as constants, the total communication costs of
CORE-GD are Õ(d+α−1), whereas the vanilla CGD requires Õ(dα−1) communication costs. Here
α−1 can be considered as the condition number of the objective since L can be Θ(1). CORE-GD
greatly reduces the communication costs by the factor of min(d, α−1).

We also consider the acceleration of our algorithm. Specifically, we consider Heavy-ball (Polyak,
1964) acceleration for CORE-GD for quadratic objective functions in Appendix B. From Theorem
B.1, the total communication costs to find an ϵ-approximate solution in linear regression model for

CORE-AGD are Õ
(∑d

i=1 λ
1/2
i

µ1/2

)
, which is better than Õ(d+ dL1/2

µ1/2 ) because
∑d

i=1 λ
1/2
i

µ1/2 ≤ d1/2tr(A)
µ1/2 .

When d is large and the trace of Hessian is bounded, this result is better than Õ(d + dL1/2

µ1/2 ). The

convergenc rate of CORE-AGD is also better than Õ(
∑d

i=1 A
1/2
ii

µ1/2 ) because
∑d

i=1 λ
1/2
i ≤

∑d
i=1 A

1/2
ii

when A is semi-definite. Moreover, when m = Θ

(∑d
i=1 λ

1/2
i

L1/2

)
, CORE-AGD achieves the same

number of communication rounds as those of Centralized AGD with ignoring logarithmic factors.

5 CORE-GD FOR NON-CONVEX OPTIMIZATION

In this section, we study CORE-GD on general non-convex problems. To explore the information on
Hessian matrices, we further assume that f has H-Lipschitz continuous Hessian matrices. We will
characterize the complexities of our algorithm in terms of r1(f), which is often much smaller than
dL (see Figure 4 taken from Sagun et al. (2016) and empirical results in related papers, e.g. Sagun
et al. (2017); Ghorbani et al. (2019); Brock et al. (2018)). For problems where r1/2 is bounded, the
results are shown in Appendix D.

Apart from linear models, a broader range of learning models exhibit a restricted r1(f). We illustrate
it with the two-layer neural network model presented below:
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Proposition 5.1. Define f(W,w) = w⊤σ(Wx), where σ is the activation function. When ∥x∥1 ≤
a1, ∥w∥ ≤ a2 and σ

′′
(x) ≤ α, we have tr(∇2f(W,w) ≤ αa1a2.

Moreover, we notice that for many parameterized models, r1(f) is limited at least when the parameter
is close to its optimal solution. The reason is that under weak regular conditions, the fisher information
I(θ) = −E

[
∂2

∂θ2 log f(X; θ)|θ
]
= E

[(
∂
∂θ log f(X; θ)

)2 |θ]. So when ∂
∂θ log f(X; θ) is bounded,

r1(f) is also bounded. This assurance broadens the scope of applications for our results.

We consider the CORE-Gradient Descent algorithm with some adaptations. The algorithm is shown
in Algorithm 4 in Appendix C. Specifically, we take a careful choice of the step size, and give the
communication costs under two options. Moreover, we add one more comparison step, for example,
xk+1 ← argminx∈{xk,x̃k+1} f(x). The step requires only one more round of communication with
O(1) communication costs. The theoretical results are presented as follows:
Theorem 5.2. Assume that f(x) is L-smooth and has H-Lipschitz continuous Hessian matrix. With
the assumption of tr(∇2f(x)) ≤ r1 for any x ∈ Rd and f(x0) − f∗ ≤ ∆. Then, under the
hyper-parameter setting in Algorithm 4, the following result in expectation

Ef(xk) ≤ f(x0)−
k∑

i=1

E
[
hi

2
∥∇f(xi)∥2

]
(11)

holds for option II, and holds with probability 1− δ for option I.
Remark 5.3. With Theorem 4, we give the convergence rate and total communication costs of
CORE-GD.

• For Option I, CORE-GD needs O
(
max

{
∆r1(f)
mϵ2 , ∆H1/2d3/4

m3/4ϵ3/2

})
rounds to find an ϵ-

stationary point with probability 1 − δ. The total communication costs of CORE-GD
are

O
(
max

{
∆r1(f)

ϵ2
,
∆H1/2d3/4m1/4

ϵ3/2

})
.

• For Option II, CORE-GD needs O
(
max

{
∆r1(f)
mϵ2 , ∆5/4L1/4H1/2d3/4

m3/4ϵ2

})
rounds to find an

ϵ-stationary point in high probability. The total communication costs of CORE-GD are

O
(
max

{
∆r1(f)

ϵ2
,
∆5/4L1/4H1/2d3/4m1/4

ϵ2

})
.

Remark 5.4. Let us compare CORE-GD with Option I with vanilla CGD. The communication
costs of CGD to find an ϵ-stationary point is Õ

(
dL∆ϵ−2

)
. Treated L, H , ∆ as constants, when

the per-round communication budget m = Θ
(

tr(r1(f))
L

)
, CORE-GD achieves the same number of

communication rounds (convergence rate) as those of CGD, CORE-GD with Option I reduces the
communication costs by a factor of min(dL/r1, ϵ

−0.5d1/4) when ignoring logarithmic factors.

6 CONCLUSION

In this paper, we propose the CORE technique to transmit information in distributed optimization
which can dramatically reduce communication costs. We propose our CORE technique based on the
common random variables, which provably reduce the quantities of information transmitted, and
apply CORE to two distributed tasks. We prove that our CORE-based algorithms achieve lower
communication costs. And by choosing the proper communication budget m, our algorithms can
achieve the same number of communication rounds as those of uncompressed algorithms. In a word,
CORE provides new insights and opens the door for designing provably better compression methods
in distributed optimization.
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with compressed gradient differences. arXiv preprint arXiv:1901.09269, 2019.

Konstantin Mishchenko, Filip Hanzely, and Peter Richtárik. 99% of worker-master communication
in distributed optimization is not needed. In Conference on Uncertainty in Artificial Intelligence,
pp. 979–988. PMLR, 2020.

Konstantin Mishchenko, Grigory Malinovsky, Sebastian Stich, and Peter Richtárik. Proxskip: Yes!
local gradient steps provably lead to communication acceleration! finally! International Conference
on Machine Learning, pp. 15750–15769, 2022.

Aritra Mitra, Rayana Jaafar, George J Pappas, and Hamed Hassani. Linear convergence in federated
learning: Tackling client heterogeneity and sparse gradients. Advances in Neural Information
Processing Systems, 34:14606–14619, 2021.

Katta G Murty and Santosh N Kabadi. Some NP-complete problems in quadratic and nonlinear
programming. Technical report, 1985.

Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87. Springer
Science & Business Media, 2003.

Ilan Newman. Private vs. common random bits in communication complexity. Information processing
letters, 39(2):67–71, 1991.

Mert Pilanci, Martin J. Wainwright, A, and A. Newton sketch: A linear-time optimization algorithm
with linear-quadratic convergence. 2015.

Boris T Polyak. Some methods of speeding up the convergence of iteration methods. Ussr computa-
tional mathematics and mathematical physics, 4(5):1–17, 1964.

Peter Richtárik, Igor Sokolov, and Ilyas Fatkhullin. Ef21: A new, simpler, theoretically better,
and practically faster error feedback. Advances in Neural Information Processing Systems, 34:
4384–4396, 2021.

Peter Richtárik, Igor Sokolov, Elnur Gasanov, Ilyas Fatkhullin, Zhize Li, and Eduard Gorbunov. 3pc:
Three point compressors for communication-efficient distributed training and a better theory for
lazy aggregation. In International Conference on Machine Learning, pp. 18596–18648. PMLR,
2022.

Daniel Rothchild, Ashwinee Panda, Enayat Ullah, Nikita Ivkin, Ion Stoica, Vladimir Braverman,
Joseph Gonzalez, and Raman Arora. Fetchsgd: Communication-efficient federated learning with
sketching. International Conference on Machine Learning, pp. 8253–8265, 2020.

Mher Safaryan and Peter Richtárik. On stochastic sign descent methods. 2019.

Mher Safaryan, Filip Hanzely, Peter Richtárik, and A. Smoothness matrices beat smoothness
constants: Better communication compression techniques for distributed optimization. Advances
in Neural Information Processing Systems, 34:25688–25702, 2021.

Levent Sagun, Leon Bottou, Yann LeCun, and A. Eigenvalues of the hessian in deep learning:
Singularity and beyond. arXiv preprint arXiv:1611.07476, 2016.

12



Under review as a conference paper at ICLR 2024

Levent Sagun, Utku Evci, V Ugur Guney, Yann Dauphin, and Leon Bottou. Empirical analysis of the
hessian of over-parametrized neural networks. arXiv preprint arXiv:1706.04454, 2017.

Kevin Scaman, Francis Bach, Sébastien Bubeck, Yin Tat Lee, and Laurent Massoulié. Optimal
algorithms for smooth and strongly convex distributed optimization in networks. In Doina Precup
and Yee Whye Teh (eds.), Proceedings of the 34th International Conference on Machine Learning,
volume 70 of Proceedings of Machine Learning Research, pp. 3027–3036. PMLR, 06–11 Aug
2017a. URL https://proceedings.mlr.press/v70/scaman17a.html.

Kevin Scaman, Francis Bach, Sébastien Bubeck, Yin Tat Lee, and Laurent Massoulié. Optimal
algorithms for smooth and strongly convex distributed optimization in networks. In international
conference on machine learning, pp. 3027–3036. PMLR, 2017b.

Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 1-bit stochastic gradient descent and its
application to data-parallel distributed training of speech dnns. In Fifteenth annual conference of
the international speech communication association, 2014.

Shaohuai Shi, Qiang Wang, Kaiyong Zhao, Zhenheng Tang, Yuxin Wang, Xiang Huang, and Xiaowen
Chu. A distributed synchronous sgd algorithm with global top-k sparsification for low bandwidth
networks. In 2019 IEEE 39th International Conference on Distributed Computing Systems
(ICDCS), pp. 2238–2247. IEEE, 2019.

Wei Shi, Qing Ling, Gang Wu, and Wotao Yin. Extra: An exact first-order algorithm for decentralized
consensus optimization. SIAM Journal on Optimization, 25(2):944–966, 2015.

Sebastian U Stich and Sai Praneeth Karimireddy. The error-feedback framework: Better rates for sgd
with delayed gradients and compressed communication. arXiv preprint arXiv:1909.05350, 2019.

Hanlin Tang, Chen Yu, Xiangru Lian, Tong Zhang, and Ji Liu. Doublesqueeze: Parallel stochastic
gradient descent with double-pass error-compensated compression. In International Conference
on Machine Learning, pp. 6155–6165. PMLR, 2019.

Hanlin Tang, Shaoduo Gan, Ammar Ahmad Awan, Samyam Rajbhandari, Conglong Li, Xiangru Lian,
Ji Liu, Ce Zhang, and Yuxiong He. 1-bit adam: Communication efficient large-scale training with
adam’s convergence speed. In International Conference on Machine Learning, pp. 10118–10129.
PMLR, 2021.

Alexander Tyurin and Peter Richtárik. Dasha: Distributed nonconvex optimization with commu-
nication compression, optimal oracle complexity, and no client synchronization. arXiv preprint
arXiv:2202.01268, 2022.

Shay Vargaftik, Ran Ben-Basat, Amit Portnoy, Gal Mendelson, Yaniv Ben-Itzhak, and Michael
Mitzenmacher. Drive: One-bit distributed mean estimation. Advances in Neural Information
Processing Systems, 34:362–377, 2021.

Thijs Vogels, Sai Praneeth Karimireddy, and Martin Jaggi. Powersgd: Practical low-rank gradient
compression for distributed optimization. Advances in Neural Information Processing Systems, 32,
2019.

Hongyi Wang, Scott Sievert, Shengchao Liu, Zachary Charles, Dimitris Papailiopoulos, and Stephen
Wright. Atomo: Communication-efficient learning via atomic sparsification. Advances in Neural
Information Processing Systems, 31, 2018.

Jianqiao Wangni, Jialei Wang, Ji Liu, and Tong Zhang. Gradient sparsification for communication-
efficient distributed optimization. Advances in Neural Information Processing Systems, 31, 2018.

Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Terngrad:
Ternary gradients to reduce communication in distributed deep learning. Advances in neural
information processing systems, 30, 2017.

David P Woodruff et al. Sketching as a tool for numerical linear algebra. Foundations and Trends®
in Theoretical Computer Science, 10(1–2):1–157, 2014.

13

https://proceedings.mlr.press/v70/scaman17a.html


Under review as a conference paper at ICLR 2024

Jiaxiang Wu, Weidong Huang, Junzhou Huang, and Tong Zhang. Error compensated quantized
sgd and its applications to large-scale distributed optimization. In International Conference on
Machine Learning, pp. 5325–5333. PMLR, 2018.

Pengyun Yue, Long Yang, Cong Fang, and Zhouchen Lin. Zeroth-order optimization with weak
dimension dependency. 2023.

14


	Introduction
	Related Work
	Contributions
	Notation

	Preliminary
	Common Random Reconstruction: Core Idea
	CORE on Linear Models
	CORE-GD for Non-convex Optimization
	Conclusion

