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Abstract

Speculative decoding has emerged as a promising
approach to accelerating large language model
(LLM) generation using a fast drafter while main-
taining alignment with the target model’s distribu-
tion. However, existing approaches face a trade-
off: external drafters offer flexibility but can suf-
fer from slower drafting, while self-speculation
methods use drafters tailored to the target model
but require re-training. In this paper, we intro-
duce novel drafters based on Mamba, a state-of-
the-art state space model (SSM), as a solution
that combines the best aspects of both approaches.
By leveraging the linear structure of SSMs, our
approach avoids the quadratic complexity inher-
ent in traditional Transformer-based methods, en-
abling faster drafting and lower memory usage
while maintaining the flexibility to work across
different target models. We further enhance effi-
ciency with a novel test-time tree search algorithm
for generating high-quality draft candidates. Our
empirical evaluation demonstrates that Mamba-
based drafters not only outperform existing exter-
nal drafting methods but are also comparable to
state-of-the-art self-speculation approaches while
using less memory and maintaining their cross-
model adaptability.

1. Introduction
Recent breakthroughs in large language models (LLMs)
have been largely driven by Transformer architec-
tures (Vaswani et al., 2017), which have enabled exceptional
performance across a wide range of tasks (Achiam et al.,
2023; Singhal et al., 2025; Kim et al., 2024a). However,
their capabilities often come with significant computational
overhead, primarily due to the autoregressive nature of se-
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quential token generation, while the quadratic complexity
of the attention mechanism further exacerbates scalability
challenges. Speculative decoding (SD) (Stern et al., 2018;
Leviathan et al., 2023; Xia et al., 2023; Chen et al., 2023)
has emerged as a promising approach to addressing the inef-
ficiencies of autoregressive models by generating multiple
candidate tokens with an efficient drafter and verifying them
in parallel with the target model, ensuring identical output
with greater efficiency. This approach enables simultaneous
decoding of multiple tokens within a single forward pass.

Existing SD methods are mainly categorized into two types:
(i) using an external drafter (Leviathan et al., 2023) appli-
cable to multiple target models, and (ii) adopting a self-
speculation approach, where a drafter is trained to align
with the target model itself, showing faster drafting speed
compared to external drafters (Cai et al., 2024; Li et al.,
2024c). For instance, self-speculation involves training a
small Transformer head on top of the target model’s large
Transformer block to generate multiple candidate tokens,
which are then used as a draft for the target model (Li et al.,
2024d). While showing a faster drafting speed compared
to using an external drafter, training a separate drafter for
each target model is computationally expensive. More im-
portantly, to handle distribution shift—i.e., to process novel
inputs unseen during training—the drafter should be trained
on a large corpus, which is particularly challenging because
modifying only the last layer, a common practice, still re-
quires forwarding all lower layers of the large target model
during training, leading to significant computational over-
head.

This raises a key question: How can we develop an ex-
ternal drafter to have cross-model adaptability while also
avoiding the limitation of the Transformer’s quadratic com-
putation for fast drafting? This naturally leads us to explore
non-quadratic sequential models such as state-space mod-
els (SSMs) (Gu et al., 2022b), as external drafters. SSMs
leverage a linear recurrence structure with a fixed state size,
ensuring per-token computation and memory complexity re-
main constant during inference, making them more effective
drafters than Transformers. Specifically, we use Mamba (Gu
& Dao, 2023), a state-of-the-art SSM, as a drafter in SD and
make the following key observations:
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(a) Encoding Memory (b) Decoding Time (c) Decoding Memory

Figure 1. Comparison of drafting time & peak memory usage during encoding and decoding. Mamba drafter maintains nearly
constant decoding speed and memory usage, whereas both EAGLE, which employs self-speculation with a single-layer Transformer
within the large target model, and the Mistral-based external drafter, which also utilizes a Transformer, exhibit substantially higher
memory requirements as the context length increases. Here, the target model is Mistral-7B, and we consider a 160M-sized Mistral and a
130M-sized Mamba. Measurements are taken on an NVIDIA H100.

• Mamba is an efficient external drafter, showing compa-
rable results with self-speculation: Mamba’s drafting
latency is comparable to self-speculation, with both
latency and memory usage remaining low even for
significantly longer input contexts, in contrast to alter-
native external drafters.

• A smaller Mamba can often be more effective than a
larger Transformer as an external drafter: Despite
its size, a small Mamba model achieves a comparable
acceptance length to larger Transformers, with higher
overall throughput due to its fast drafting.

To further leverage Mamba’s efficiency, we propose sim-
ple yet effective tree decoding strategies with Mamba
drafters by formulating decoding as a multi-armed bandit
(MAB) (Slivkins et al., 2019) problem. Specifically, we
introduce a test-time tree search algorithm that dynamically
optimizes the draft tree structure based on the input query.
With Mamba’s low latency, we observe that it benefits from
trees of varying widths and lengths (see Table 6). By fram-
ing the selection of the optimal tree structure as an MAB
problem, we enable stable and adaptive adjustments of the
drafting tree to accommodate different query types.

We conduct a comprehensive set of experiments to evaluate
our Mamba-based approach, focusing on practical SD sce-
narios across a wide range of tasks (Narayan et al., 2018;
Zheng et al., 2023; Chen et al., 2021). Our results demon-
strate that Mamba-based drafting can significantly outper-
form traditional Transformer-based approaches. For exam-
ple, our approach surpasses their throughput by 2x while
having similar acceptance length. Furthermore, our ap-
proach achieves throughput comparable to EAGLE-2 (Li
et al., 2024d), a recent single-layer Transformer drafter de-
signed for a specific target model, in long-context scenarios

while consuming up to 20 GB less memory. This is notable
as our target-agnostic Mamba drafter works with an arbi-
trary target model without re-training, whereas EAGLE, a
self-speculation method, requires re-training of the drafter
whenever the target model is updated. Moreover, advances
in SSMs, e.g., Mamba-2 (Dao & Gu, 2024), directly benefit
our approach, further enhancing the advantages of using an
effective, target-agnostic drafter.

2. Why Mamba for Speculative Decoding?
In this section, we demonstrate that Mamba can serve as
powerful external drafters for speculative decoding (SD).
We examine this in terms of both efficiency and effective-
ness. For efficiency, we compare latency and peak memory
usage during drafting, which includes encoding (prefill), ini-
tial forwarding of the given input sequence, and per-token
generation during decoding (in Figure 1). For effectiveness,
we report throughput, the average number of tokens per
unit time, and acceptance length, the average number of
tokens accepted per forward pass of the target model (in
Figure 2a). To evaluate the efficiency of Mamba as the
drafter, we compare it against two baselines: an external
Transformer drafter and (i.e., Mistral) a self-speculation
drafter (i.e., EAGLE). All drafters are trained from scratch,
with additional training details provided in Appendix A.5.
All models are instruction-tuned.

2.1. Efficiency of Mamba as a drafter

As Figure 1a illustrates, Mamba offers significant drafting
efficiency compared to both baselines. For example, as the
input length increases, prefill memory for both Mistral and
EAGLE grow nearly quadratically, while Mamba maintains
memory usage with its efficient selectivity algorithm (Gu &
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Dao, 2023). Furthermore, as in Figure 1b, Mamba exhibits
significantly lower decoding latency than Mistral, which is
of similar size and is even comparable to EAGLE. Lastly,
Figure 1c shows that Mamba’s use of a single state enables
it to maintain constant memory usage independent of the
input length. In contrast, other drafters require the KV cache
for decoding, causing the cache size to grow linearly with
the input length, leading to high memory overhead. These
results demonstrate that Mamba drafters can make SD more
adaptable to varying input lengths more effectively than
Transformer drafters.

2.2. Effectiveness of Mamba as a drafter

We found that smaller Mamba can be a stronger drafter
than larger Mambas, as it shows significant drafting speed,
generating more candidates with only slightly lower accep-
tance rate than larger models (see Figure 2a). Notably, small
Mamba achieves a higher acceptance length than the Trans-
former of similar size. This can be attributed to its better
alignment with the distribution of the larger Transformer
model, as illustrated in Figure 2b. We believe this highlights
the exceptional drafting speed of Mamba, where such a phe-
nomenon is not observed in Transformer-based drafters (see
full results in Table 1).

3. Tree-Structured Drafting with Mamba
In this section, we introduce an effective drafting strategy
for Mamba drafters by using tree-structured decoding, i.e.,
hierarchically expanding multiple candidate nodes at each
step instead of sequentially generating tokens. Specifically,
we suggest an efficient way to implement tree search for
Mamba decoding (in Section 3.1) and introduce a test-time
tree searching algorithm to adaptively optimize draft tree
structure (in Section 3.2).

3.1. Tree-structured drafting with Mamba

To improve the effectiveness of the drafter Mq, previous
approaches (Yang et al., 2024; Li et al., 2024c) sample
multiple candidates from qi at each drafting step i by con-
structing a draft tree. Especially in Transformer drafter, this
process is accelerated by tree attention (Miao et al., 2024),
a specialized attention algorithm that represents the causal
relationships between all tokens in the tree, thereby elim-
inating overlapped token forwarding, e.g., input sequence
xprefix. Here, we suggest an efficient tree-structured drafting
specialized for Mamba.

Efficient tree-structured drafting with batch generation.
We demonstrate that Mamba can perform tree-structured
drafting efficiently by using batch generation. Specifically,
as Mamba only requires the current state to predict the next
token (as it is a recurrent network), generating multiple

nodes from the current node only requires copying the cur-
rent state and then performing sampling. In contrast, Trans-
formers are required to copy the current sequence length
of the KV cache to predict the next token, and this over-
head grows with the sequence length, making it crucial to
eliminate such duplication using tree attention.

Formally, given a tree configuration T = (N1, N2, ..., Nγ),
where γ is the draft length, and Ni can be understood as
the number of new nodes obtained by sampling from each
node at the ith generation, one can view tree-structured
drafting as a batch generation of a total batch size Bi =
N1 ×N2 × · · · ×Ni.

Efficient cache utilization for batch generation. While
efficient, batch generation indeed increases the computation
complexity by a factor of Bi per generation, compared to
sequential drafting, i.e., N1 = ... = Nγ = 1. To alleviate
overheads from the batch size B during tree-structured draft-
ing for Mamba, we propose a batch-wise cache implementa-
tion for Mamba. Specifically, given a tree configuration T ,
we determine the possible batch sizes B1, ...,Bγ for each
drafting positions. Using these calculated sizes, we create
a state cache per each batch size and allocate memory in
advance, preventing the memory re-allocation during du-
plication. Next, we leverage a graph cache (Nguyen et al.,
2021) to accelerate the GPU computation flow for each
batch size. This cache stores the graph structure of interme-
diate computations for each batch size, enabling efficient
reuse of the computational graph across multiple executions.
The reason this is feasible is that Mamba receives a fixed
size of input (B1, 1), (B2, 1), ..., (Bγ , 1), owing to its linear
recurrence structure.

3.2. Test-time dynamic tree search using MAB

We now present a way to systematically allocate the given
budget to find the effective tree configuration T , based on
the observation that Mamba benefits from different tree con-
figurations across tasks (see Appendix C.6 for details). To
this end, we formalize the tree configuration search problem
as a multi-armed bandit (MAB) problem and dynamically
optimize the tree configuration at inference time.

Decoding as multi-armed bandit. Following a previous
work (Kim et al., 2024b), we define each drafting and ver-
ification step as a round in the multi-armed bandit (MAB)
framework. Specifically, in each round t, drafter Mq fol-
lows an policy π that choose kth tree configuration T (t)

k from
the pre-defined tree configuration set S = {T1, T2, ..., TK}.
Then it performs γ generations and obtains a reward r(t),
e.g., the number of accepted tokens. The goal of the MAB
problem is to design an optimal policy π∗ that maximizes
the expected cumulative reward E

[∑T
t=1 r

(t)
]

over a total
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Table 1. Comparison with Transformer-based external drafters and self-speculation. We evaluate SD using pre-trained models with
both greedy decoding (temperature = 0) and sampling (temperature = 1). All drafters leverage tree-structured drafting and our method
additionally uses the proposed tree search algorithm. Throughput is reported along with the acceptance length shown in parentheses. The
best results are shown in bold.

Drafter Greedy (Temp=0) Sampling (Temp=1)

Target Method Size XSum CNN-DM GSM-8k XSum CNN-DM GSM-8k

Pythia-6.9B

No drafter − 53.30 49.29 54.69 52.51 45.33 53.81

Pythia

70M 47.31 46.99 57.36 41.86 45.30 47.96
(1.52) (1.54) (1.68) (1.67) (1.76) (1.77)

160M 50.05 49.53 67.89 46.67 47.17 55.40
(2.23) (2.26) (2.72) (2.28) (2.30) (2.63)

410M 70.53 70.08 75.97 53.50 56.64 63.64
(4.62) (4.73) (4.64) (3.60) (3.80) (4.01)

138.80 131.97 149.46 108.68 105.01 119.67Ours 130M (4.55) (4.38) (4.57) (3.53) (3.53) (3.73)

Mistral-7B

No drafter − 51.15 49.55 50.31 53.49 47.40 52.92

Mistral 160M 61.55 61.04 49.38 53.91 50.50 62.29
(3.13) (3.05) (2.21) (2.74) (2.68) (2.94)

76.71 65.23 77.50 79.18 70.95 82.63Ours 130M (2.39) (2.13) (2.25) (2.73) (2.65) (2.73)

of T rounds, where T is determined by the completion of
generation for a given query.

Optimization. To balance exploration and stable conver-
gence in MAB, we utilize the UCB algorithm (Auer, 2002)
as our policy π. It chooses tree configuration T (t)

k∗ at round
t as follows:

k∗ = argmax
k∈{1,..,K}

r̂
(t)
k + λUCB

√
2 ln t

n
(t)
k

, (1)

where r̂
(t)
k is a cumulative reward mean, i.e.,

∑t
t=1 r

(t)
k and

n
(t)
k is the count numbers of kth configuration is selected up

to round t. For reward r
(t)
k , we define it as follows:

r
(t)
k := −

(
1

Naccept
+ λγ

γ(Tk)

Naccept

)
· I, (2)

where I is an indicator function, which is 1 when the kth

configuration is selected and 0 otherwise, and Naccept is the
number of accepted tokens at round t. Especially, γ(T (t)

k )

represent draft length of selected tree T (t)
k to penalize in-

crease of draft times, as γ is increase. We notice this reward
directly originated from the SD speedup objective (see Ap-
pendix A.6 for more details).

4. Experiments
In this section, we present a comprehensive evaluation of
our proposed Mamba drafter framework. Specifically, we
evaluate the performance of the pre-trained Mamba drafter

across various language modeling tasks. We evaluate dif-
ferent drafter models on XSum (Narayan et al., 2018) and
CNN-DailyMail (Hermann et al., 2015) for general lan-
guage modeling tasks, as well as GSM-8K (Cobbe et al.,
2021) for mathematical language modeling. As summarized
in Table 1, while larger drafters like Pythia-410M achieve
slightly better throughput gains on some datasets due to in-
creased acceptance length, small Transformer drafters (e.g.,
Pythia-70M) show minimal improvement over the vanilla
autoregressive baseline without SD, with only marginal ben-
efits with non-zero temperature. In contrast, Mamba signifi-
cantly improves throughput across datasets and temperature
settings. For instance, in GSM-8K, Mamba achieves nearly
2x the throughput of Pythia-410M on sampling setup. No-
tably, even when the Mamba drafter has a lower acceptance
length than Transformer drafters, it still outperforms them
due to its fast drafting speed.

We provide more extensive evaluations and analysis in Ap-
pendix C, including evaluations on instruction-tuned models,
comparison with self-speculation approaches, long context
evaluations, cross-target model performance, and ablations.

5. Conclusion
In this work, we present Mamba-based drafters as an ef-
fective solution to the challenges of existing speculative
decoding methods. Leveraging the linear structure of state-
space models, Mamba significantly improves drafting speed
and memory efficiency. To further enhance drafting qual-
ity, we introduce a novel tree-based search algorithm. Our
experimental results show that Mamba-based drafters not
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only outperform existing external drafting techniques but
also match the performance of advanced self-speculation
approaches, particularly in long-context scenarios.
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A. Experimental Details
A.1. Datasets

We evaluate six benchmarks: three for pre-trained models and three for instruction-tuned models. These include XSum
(Narayan et al., 2018) and CNN-DailyMail (Hermann et al., 2015) for general language modeling, GSM-8K (Cobbe et al.,
2021) for mathematical reasoning, MT-Bench (Zheng et al., 2023) for multi-turn dialogues, Alpaca (Taori et al., 2023) for
general instruction-following, and HumanEval (Chen et al., 2021) for code generation. Following EAGLE (Li et al., 2024c),
we subsample each dataset to approximately 80 samples.

For evaluating longer-context scenarios, we use six tasks from LongBench (Bai et al., 2023) for document-based question an-
swering: three (NarrativeQA, Qasper, MultifieldQA-en) for Single-Document QA and three (HotpotQA, 2WikiMultihopQA,
MuSiQue) for Multi-Document QA. While LongBench originally includes Chinese-language tasks (MultifieldQA-zh,
DuReader), we observe that the target model produced poor outputs on these tasks and therefore exclude them. For
pre-processing, we first filter out data samples with input lengths exceeding 8k tokens and truncate them to specific input
lengths, such as 1k, 2k, 4k, and 8k.

A.2. Baselines.

We use a wide range of Transformer-based drafters as baselines, applying tree drafting for a fair comparison with our Mamba
drafter. Additionally, we consider EAGLE-2 (Li et al., 2024d), a recent single-layer Transformer drafter that leverages tree
drafting and is directly trained to align with the target model, as a baseline for self-speculation methods.

A.3. Evaluation metrics.

To compare the gains in decoding acceleration from SD across different drafter types, we focus on throughput, which is the
number of tokens generated per second during inference, as a measure of overall inference speed. For a more comprehensive
evaluation of effectiveness, we also report the average acceptance length, which indicates the average number of tokens
accepted per forward pass of the target model.

A.4. Architectures

Pre-train models. For the pre-trained target model, we consider EleutherAI/pythia-6.9b and mistralai/Mistral-7B-v0.1.
For external Transformer drafters, we use smaller models from the same family as the target model, specifically Pythia-70M,
160M, 410M and Mistral-160M. For Mamba drafters, we use two versions of Mamba-130M: Mamba-Pythia-130M and
Mamba-Mistral-130M, which share tokenizers with Pythia and Mistral, respectively. In cases where no official pre-trained
checkpoints are available, e.g., Mistral-160M and Mamba-Mistral, we pre-train them from scratch (see Appendix A.5 for
details).

Instruction-tuned models. For the instruction-tuned target model, we consider allenai/open-instruct-pythia-6.9b-tulu and
mistralai/Mistral-7B-Instruct-v0.1, which are instruction-tuned from EleutherAI/Pythia-6.9b and mistralai/Mistral-7B-v0.1,
respectively. To obtain instruction-tuned drafters, we supervised fine-tune (SFT) the pre-trained drafters on ShareGPT,
following the training dataset used for EAGLE (see Appendix A.5 for details). Additionally, we obtain corresponding
EAGLE for Pythia and Mistral by following their official released training code.

A.5. Training Details.

Following a common pre-training recipe 1, we pre-train Mistral-160M and Mamba-Mistral-130M on FineWeb-Edu (Penedo
et al., 2024) for 5,000 training steps using a batch size of 4,096 and a context limit of 2k. Next, we fine-tune (SFT) the
pre-trained drafters on ShareGPT for 2 epochs with a batch size of 128 and a context limit of 2k, following the standard SFT
procedure 2. For validation, we use HellaSwag (Zellers et al., 2019), ARC-Easy (Clark et al., 2018), and PIQA (Bisk et al.,
2020). We select the best model by testing various learning rates, specifically {2e-3, 2e-4, 2e-5}.

1https://github.com/facebookresearch/lingua
2https://github.com/huggingface/alignment-handbook/blob/main/recipes/zephyr-7b-beta/
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A.6. Implementation

Tree-structured drafting. Following previous work (Yang et al., 2024), we implement tree-structured drafting for the
external Transformer drafter. We use a tree configuration with a depth of 5, i.e., (3,2,2,1,1), to align the draft length with
EAGLE-2. For EAGLE-2, we directly follow its official tree-structured drafting implementation.

Reward modeling for MAB. To obtain the reward function in Equation (2), we directly use the speed up formula from
SD per drafting step. Given a target model and drafter’s decoding time, i.e., per-token generation time, as T target and Tdraft,
the total time of SD T SD

total per drafting step is as follows:

T SD
total = Ttarget(γ) + γ · Tdraft, (3)

where γ is draft length, and Ttarget(γ) is verification time for forwarding γ draft tokens. Then, we compute SD’s decoding

time T SD
Avg by dividing the number of accepted tokens Naccept, i.e., T SD

Avg =
T SD

Total
Naccept

. Finally, the speed up of SD per drafting
step is as follows:

speedup =
Ttarget

T SD
Avg

= Naccept ·
Ttarget

Ttarget(γ) + γ · Tdraft
(4)

Then, the inverse of speedup is as follows:

1

speedup
=

1

Naccept
·
Ttarget(γ)

Ttarget
+

γ

Naccept
· Tdraft

Ttarget
(5)

Generally, we can assume Ttarget(γ)
Ttarget

≃ 1, as γ is not larger value, and Tdraft
Ttarget

≃ λγ as it is constant during drafting. Then, our
reward function r is derived as follows:

r =
1

Naccept
+ λγ ·

γ

Naccept
(6)

This formula originated from the inverse of speed up, so we need to minimize this function.

A.7. Greedy Decoding and Sampling

Algorithm 1 outlines the verification process for draft token acceptance using two decoding strategies:

1. Greedy decoding (red, lines 7, 15, 22): This method selects tokens deterministically by setting the temperature to zero,
effectively forcing the model to choose the most probable token at each step. This is equivalent to using the one-hot
version of the target model, pone-hot.

2. Sampling-based approach (blue, lines 8, 16, 23): In contrast, this method introduces stochasticity by sampling tokens
from the probability distribution given by the target model p. This allows for more diverse outputs.

The verification algorithm works by comparing the probabilities assigned by the target model and the draft model. The
acceptance of a draft token x̃t depends on the ratio of these probabilities. If the draft token is rejected, a new token is
sampled based on either the greedy or sampling-based approach.

A.8. Computational Resources

We conduct most experiments on a single NVIDIA RTX 4090 24GB GPU, except for longer-context experiments in Table 3,
where we use a single NVIDIA H100 80GB GPU to efficiently handle input lengths of up to 8k tokens. For pre-training, we
leverage 8 NVIDIA H200 141GB GPUs, which takes approximately one day. For instruction-tuning of external drafters and
training EAGLE, we use 8 NVIDIA RTX 4090 24GB GPUs, requiring approximately two hours and one day, respectively.
Here, we remark that training EAGLE incurs additional computational cost, as it requires extracting hidden states from the
training data via forward passes through the target model.
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Algorithm 1 Verification Algorithm.

1: Given target model p, one-hot version of target model pone-hot, and draft model q.
2: Given input sequence xprefix, and draft sequence x̃ of length γ.
3: for t = 1 to γ do
4: Sample u from a uniform distribution:
5: u ∼ U [0, 1]
6: Get the probability of each model for the draft token x̃t

7: pt = pone-hot(x̃t|xprefix, x1, . . . , xt−1)
8: pt = p(x̃t|xprefix, x1, . . . , xt−1)
9: qt = q(x̃t|xprefix, x1, . . . , xt−1)

10: if u < min
(
1, pt

qt

)
then

11: Accept the token x̃t:
12: xt ← x̃t.
13: else
14: Reject the draft token x̃t and sample a new one:
15: xt ∼ pone-hot(x|xprefix, x1, . . . , xt−1).
16: xt ∼ (p(x|xprefix, x1, . . . , xt−1)− q(x|xprefix, x1, . . . , xt−1))+.
17: break
18: end if
19: end for
20: if all tokens are accepted then
21: Sample an extra token xγ+1:
22: xγ+1 ∼ pone-hot(x|xprefix, x1, . . . , xγ).
23: xγ+1 ∼ p(x|xprefix, x1, . . . , xγ).
24: end if
25: Output the accepted token sequence x1, . . . , xn, where n is the accepted token length.

9



Accelerating Speculative Decoding with Mamba Drafters

B. Related Works
State-space models (SSMs). State-space models are strong linear models that combine the classical state-space repre-
sentation (Kalman, 1960) with recurrent networks (Elman, 1990). In contrast to models with quadratic scaling, such as
Transformers (Vaswani et al., 2017), which use self-attention and experience increasing computational costs with sequence
length, SSMs leverage linear recurrence (Gu et al., 2022b;a; Mehta et al., 2023), enabling more efficient training and
inference. This efficiency enables SSMs to excel, particularly in processing long sequences (Tay et al., 2021).

Recent advancements, such as Mamba (Gu & Dao, 2023), leverage hardware-aware algorithms and selection mechanisms
to enhance SSMs further. These developments have enabled SSMs to demonstrate effectiveness in complex tasks across
diverse domains, including language, audio, and video (Zhu et al., 2024; Li et al., 2024a;b). Building on this foundation, our
research aims to utilize Mamba’s efficiency for drafting, enabling faster and more effective speculative decoding.

Speculative decoding. Speculative decoding follows a draft-and-verify framework (Stern et al., 2018), where a smaller
drafter generates candidate tokens that are verified by the target model. This method accelerates generation by increasing
parallelism while ensuring alignment with the target model’s distribution. Later advancements extended this approach to
sampling settings (Leviathan et al., 2023; Chen et al., 2023) and incorporated various optimization techniques to improve
efficiency.

Speculative decoding approaches can be broadly categorized into two types. One approach utilizes external drafter models
(Leviathan et al., 2023), which provide high flexibility, allowing a single drafter to be directly used for different target
models. On the other hand, self-speculation (Cai et al., 2024; Li et al., 2024c) takes a different approach by utilizing a
very small model that uses the target model’s internal hidden states for drafting. While being faster, they require expensive
re-training of the drafter for every target model, showing limited flexibility. In this work, we demonstrate that Mamba can
get the best of both worlds, being an external drafter with very fast drafting speed.

To further improve the acceptance probability of the drafts, recent works move from sequential drafting to tree-structured
drafting (Miao et al., 2024; Yang et al., 2024; Li et al., 2024d), which allows verifying multiple draft candidates in parallel.
Additionally, researchers have explored non-Transformer drafters (He et al., 2023; Fu et al., 2024). While Wang et al.
(2024) introduced hardware optimizations for applying SSMs to speculative decoding, we explored the effectiveness on
Transformer-based target models (which is a de facto architecture) and developed an efficient inference scheme (i.e.,
tree-drafting) for Mamba. Furthermore, we present a more thorough comparison and analysis across different drafter models.

C. Additional Results
C.1. Effectiveness of Mamba as a drafter

(a) Comparison of draft efficiency on GSM-8K. (b) Comparison of draft model calibration.

Figure 2. Effectiveness of Mamba drafters. (Left) Mamba drafters achieve substantially higher throughput than a Transformer drafter
due to their faster drafting speed and favorable acceptance length. SD is run with a temperature of 1.0 and a draft length of 5. (Right)
Reliability diagrams show that a small Mamba drafter aligns better with the target model, Pythia-6.9B, than the Transformer drafter,
Pythia-160M, achieving a lower expected calibration error (ECE) on the XSum dataset.
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For effective SD, there is an important trade-off between the drafter’s speed and size, i.e., a larger drafter may achieve a
higher acceptance length than smaller models by generating candidate tokens that are better aligned with the target model’s
distribution but increase the latency due to the larger size. In this context, we observe that a small Mamba model can be a
more effective drafter than a Transformer and, depending on the task, even larger Mamba models. As shown in Figure 2a,
the smallest Mamba achieves the highest throughput among all drafters due to its fast drafting and reasonable acceptance
length. Notably, the small Mamba achieves a higher acceptance length than the Transformer of similar size. This can be
attributed to its better alignment with the distribution of the larger Transformer model, as illustrated in Figure 2b.

C.2. Comparison on instruction-tuned models

Table 2. Comparison with Transformer-based external drafters and self-speculation. We evaluate SD using instruction-tuned models
with both greedy decoding (temperature = 0) and sampling (temperature = 1). All drafters leverage tree-structured drafting and our method
additionally uses the proposed tree search algorithm. Throughput is reported along with the acceptance length shown in parentheses. The
best results are shown in bold.

Drafter Greedy (Temp=0) Sampling (Temp=1)

Target Method External? MT-bench Alpaca Human-Eval MT-bench Alpaca Human-Eval

Pythia-6.9B

No drafter − 54.51 55.28 54.76 53.89 54.72 54.21

Pythia ✓
70.71 60.77 109.51 65.73 62.07 109.52
(3.10) (2.65) (4.68) (3.03) (2.82) (4.25)

EAGLE-2 ✗
125.61 117.17 122.44 87.01 78.58 83.05
(3.85) (3.53) (4.71) (2.67) (2.40) (2.97)

128.21 114.08 172.38 110.20 108.54 143.55Ours ✓ (3.91) (3.41) (5.41) (3.65) (3.51) (4.82)

Mistral-7B

No drafter − 52.97 53.58 52.30 52.39 53.02 52.34

Mistral ✓
67.47 61.40 100.23 57.19 51.05 80.94
(3.04) (2.73) (4.53) (2.84) (2.40) (3.92)

EAGLE-2 ✗
107.16 94.03 132.69 94.03 86.60 122.11
(3.22) (2.79) (3.98) (2.90) (2.63) (3.78)

102.48 96.83 118.04 88.68 82.75 87.81Ours ✓ (3.16) (2.96) (3.69) (2.95) (2.71) (2.94)

Here, we evaluate the Mamba drafter in instruction-following scenarios using MT-bench (Zheng et al., 2023) for multi-
turn dialogues, Alpaca (Taori et al., 2023) for general instruction-following tasks, and HumanEval (Chen et al., 2021)
for code generation. As shown in Table 2, the Mamba drafter outperforms Transformer drafters across all instruction-
following datasets. For example, in HumanEval, while Pythia and Mistral drafters improve throughput over the vanilla
autoregressive baseline by 54.75 and 47.93 for their respective target models, Mamba achieves even more significant gains
of 117.62 and 65.74 for these models. These results highlight Mamba’s flexibility and superior generalization to diverse
instruction-following tasks compared to Transformer drafters.

C.3. Comparison with self-speculation

We demonstrate that the Mamba drafter, which is an external drafter, can achieve competitive throughput even against
recent approaches that train drafters with direct access to target models. Specifically, we consider EAGLE-2, which uses a
single-layer Transformer drafter trained to generate tokens from the target model’s last hidden states for better alignment with
the target model. Table 2 reports the results on instruction-following tasks, where our Mamba drafter achieves throughput
gains comparable to EAGLE-2 across the datasets and target models. Notably, on MT-bench, the Mamba drafter achieves a
throughput of 125.61, which is comparable to EAGLE-2’s 128.21 for Pythia-6.9B. These results highlight not only Mamba’s
fast drafting speed (see Figure 1b), but also its effectiveness in achieving comparable acceptance length without requiring
access to target models.
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Table 3. Comparisons on LongBench. Throughput (tokens/s) is the primary metric, with acceptance length shown in parentheses. We
also report peak memory, calculated by summing the memory consumption of both the target and drafter models during the prefill phase.
Bold indicates the best result, while the runner-up is underlined.

Single-Document QA Multi-Document QA Peak Memory (GB)

Method External? 1k 2k 4k 8k 1k 2k 4k 8k 1k 2k 4k 8k

No drafter - 31.02 27.89 24.35 19.30 28.17 24.22 19.01 14.83 15 16 20 36

Mistral ✓
25.30 23.28 19.48 15.23 24.64 21.06 16.49 12.18 31 33 38 59(2.43) (2.37) (2.24) (2.21) (2.53) (2.48) (2.44) (2.39)

EAGLE-2 ✗
53.13 47.00 37.27 26.12 42.48 35.38 25.10 17.36 32 34 42 72(2.73) (2.81) (2.76) (2.71) (2.60) (2.61) (2.68) (2.64)

55.09 45.65 36.32 24.92 47.91 36.40 26.27 17.77Ours ✓ (2.91) (2.77) (2.77) (2.80) (2.94) (2.86) (2.88) (2.87) 31 32 36 52

C.4. Long-context scenarios

To evaluate Mamba’s scalability in long-context scenarios, we conduct SD experiments on LongBench (Bai et al., 2023)
using input lengths ranging from 1k to 8k, with all drafters trained with the same context limit.3 Additionally, we apply
YaRN (Peng et al., 2023) to extend the context limit for both Transformer drafters and EAGLE-2. As shown in Table 3,
which presents the results on LongBench, Mamba maintains a higher acceptance length on longer inputs compared to both
Transformer drafters and EAGLE-2, even when the latter utilizes YaRN to extend the context length. In the Single-Document
QA task, as the input length increases from 1k to 8k, Mistral’s acceptance length decreases from 2.43 to 2.21, while Mamba
remains more stable, changing from 2.91 to 2.80. This stability reflects Mamba’s ability to extrapolate effectively via
recurrence (Gu & Dao, 2023). Moreover, Mamba generalizes well to unseen complex distributions. In the Multi-Document
QA task (which is a complex problem compared to single-document QA as the answer is located across multiple documents),
Mamba consistently achieves throughput gains comparable to EAGLE-2. Here, we notice that the gains are obtainable more
efficiently: when applying to 8k, Mamba only consumes memory up to 52GB, compared to EAGLE-2, which reaches up to
72GB (with both including the memory needed for drafter and target verification).

C.5. Cross-target model performance

Table 4. Cross-target model performance on MT-bench. Experiments are run with a temperature of 0 and sequential drafting with a
length of 5.

Method Setup Accept length Throughput

EAGLE-2 Pythia → Pythia 2.59 94.75
Mistral → Pythia N/A N/A

Pythia → Pythia 3.08 112.69Ours Mistral → Pythia 2.45 93.20

Using an external drafter enables plug-and-play integration with new target models without the need to re-train the drafter for
each specific model. To evaluate Mamba’s performance as an external drafter, we use the Mamba drafter with a target model
that the drafter has not been explicitly trained to align with. Specifically, we use the instruction-tuned variant of Pythia-6.9B
as the target model and Mamba trained with the Mistral-7B tokenizer. As shown in Table 4, even without explicit training,
Mamba achieves throughput comparable to EAGLE-2, which is specifically trained for the target model. This highlights
Mamba’s flexibility as an external drafter, enabling efficient deployment without the need for costly re-training.

C.6. Ablations and analysis

We further evaluate the contributions of individual components in our framework to the gains in decoding acceleration. Here
we mainly consider throughput (tokens/sec) as the performance metric.

3Following EAGLE-2, we fine-tune pre-trained Mamba and Mistral on ShareGPT with a context limit of 2k.

12



Accelerating Speculative Decoding with Mamba Drafters

Tree-structured drafting. In Table 5, we show the impact of tree-structured drafting on performance. Our approach
improves acceptance length with minimal drafting latency overhead, resulting in higher throughput gains. This effect
is similar to the tree-attention mechanism used in Transformer-based drafters. These results demonstrate that our batch
generation enables Mamba to benefit from tree-structured drafting, which has not been explored in the field to the best of
our knowledge.

Table 5. Tree-structured drafting on MT-bench. Experiments are run with a temperature of 0 and a fixed tree configuration of
(3, 2, 2, 1, 1). Tree drafting yields notable improvements in all performance metrics.

Tree? Accept length Latency Throughput

✗ 3.08 6.62 112.69
✓ 3.91 8.30 127.37

Tree configurations. Table 6 shows that Mamba maintains stable throughput across diverse configurations, whereas
Transformer drafters exhibit a decline as tree length increases. This is due to Mamba’s very fast drafting, which effectively
mitigates the overhead of using longer trees.

Table 6. Throughput by tree configuration. Throughput (tokens/s) for different tree configurations given as (N1, ..., Nγ), where Ni

indicates the number of samples at ith generation in drafting step.

Method (3,3,2,1) (3,2,2,1,1) (2,2,2,1,1,1)

Pythia 75.38 70.71 63.75
Ours 124.99 127.37 124.37

Test-time tree search. We further analyze the impact of the test-time tree search algorithm. Specifically, we use as tree
candidates (3, 3, 2, 1), (3, 2, 2, 1, 1), and (2, 2, 2, 1, 1, 1) and compare them with naive tree-structured drafting that utilizes
a fixed tree configuration, i.e., (3, 2, 2, 1). As shown in Table 7, our multi-armed bandit (MAB)-based algorithm often
improves throughput significantly on several datasets (e.g., HumanEval) compared to the naive approach.

Table 7. Effects of test-time tree search on throughput. Experiments are run with a temperature of 0.

Search? MT-bench Alpaca HumanEval Avg.

✗ 124.99 116.12 149.15 130.09
✓ 128.21 114.08 172.38 138.22
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