

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 COMPHY: COMPOSING PHYSICAL MODELS WITH END-TO-END ALIGNMENT

Anonymous authors

Paper under double-blind review

ABSTRACT

Real-world phenomena typically involve multiple, interwoven dynamics that can be elegantly captured by systems of Partial Differential Equations (PDEs). However, accurately solving such systems remains a challenge. In this paper, we introduce ComPhy (CP), a novel modular framework designed to leverage the inherent physical structure of the problem to solve systems of PDEs. CP assigns each PDE to a dedicated learning module, each capable of incorporating state-of-the-art methodologies such as Physics-Informed Neural Networks or Neural Conservation Laws. Crucially, CP introduces an end-to-end alignment mechanism, explicitly designed around the physical interplay of shared variables, enabling knowledge transfer between modules, and promoting solutions that are the result of the collective effort of all modules. CP is the first approach specifically designed to tackle systems of PDEs, and our results show that it outperforms state-of-the-art approaches where a single model is trained on all PDEs at once.

1 INTRODUCTION

Machine Learning is rapidly developing as a new tool to solve dynamical and physical systems, particularly for Partial Differential Equations (PDEs). These methodologies have applications in real-world problems, including weather prediction (Pathak et al., 2022), fluid modeling (Zhang et al., 2024), quantum mechanics (Mo et al., 2022), and molecular dynamics (Behler & Parrinello, 2007). While standard supervised methods require a classical solver or real sensors to gather data and train the model, unsupervised approaches can solve systems of PDEs solely from their definition. Physics-Informed Neural Networks (PINNs, Raissi et al. (2019)) are considered one of the most promising approaches for physical and scientific applications. Neural Conservation Laws (NCL, (Richter-Powell et al., 2022)) represent an alternative approach that guarantees a solution with zero divergence with respect to the inputs. We formally introduce PINN and NCL in Section 2.2.

When considering *systems* of PDEs, current approaches add a loss term for each PDE. However, this approach can be unstable and produce unwanted results. For example, PINNs often fail to converge (Krishnapriyan et al., 2021; Wang et al., 2022) or to capture the turbulent effects that characterize fluids (Sun et al., 2020; Xiang et al., 2022). Some workarounds require reweighting the loss at each epoch (Wang et al., 2021; Xiang et al., 2022; McClenney & Braga-Neto, 2023), enforcing boundary conditions (Sun et al., 2020), or dividing the spatial and temporal domains into subdomains (Jagtap et al., 2020; Kharazmi et al., 2021; Meng et al., 2020; Krishnapriyan et al., 2021). However, most of these approaches are not specifically designed for systems of PDEs, or only focus on a specific one.

In this work, we introduce ComPhy (CP), a multi-module approach to solve systems of PDEs by i) allocating one learning module for each PDE and ii) leveraging the physical structure of the problem to *align* modules that learn the same physical variable(s). CP can be applied to any system of PDEs, and the learning modules can be chosen among any of the existing approaches (we experimented with PINNs and NCL). Intuitively, each CP module solves a simpler problem than the overall system, while our end-to-end alignment process integrates the knowledge from all modules to devise a collective solution. Practically, the alignment encourages the outputs of different modules representing the same physical quantity to be similar. We propose several alignment losses, highlighting the role played by the derivatives in transferring physical knowledge between models (Trenta et al., 2025).

While the training phase involves all learning modules, during inference CP uses the minimum number of modules needed to predict all relevant variables. Most of the time, one module is sufficient.

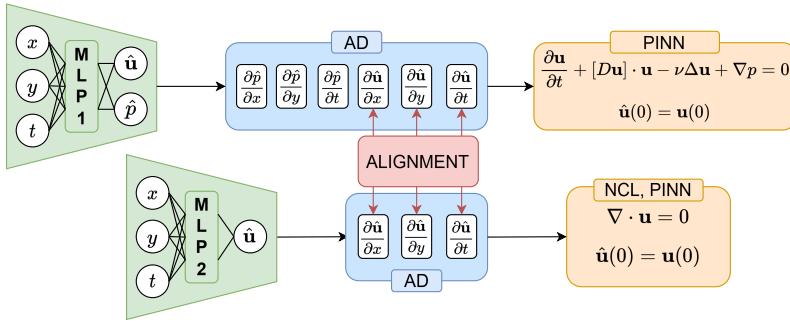


Figure 1: Visual representation of ComPhy for the Navier-Stokes equations. Each module (in this case, PINN or NCL) learns one PDE. The derivatives of each module, computed with Automatic Differentiation (AD) (Baydin et al., 2018), are used to optimize each PDE and to align the other module. CP only uses the first module for inference as it predicts all the variables of the system.

We show that CP achieves state-of-the-art performance, outperforming alternatives where a single learning module is trained on all the equations of the system.

Our contributions are: (i) ComPhy, a new methodology to solve systems of PDEs by allocating one module for each equation while aligning modules that learn the same physical information. (ii) We introduce and evaluate three different alignment approaches. (iii) We evaluate several CP configurations on case studies involving systems of two and three PDEs. We achieve state-of-the-art results in all cases. We analyze the backpropagated gradients through the modules, showing why CP trains better than PINNs. (iv) We evaluate CP on two challenging real-world physical systems with 3 and 5 equations, achieving state-of-the-art results.

2 COMPHY

We introduce ComPhy, our end-to-end and modular approach for solving systems of PDEs. Our approach involves: (i) learning each PDE with a single module while (ii) constraining and refining the learning process of each module through shared knowledge and exchange of physical information. In particular, the second point is implemented via an alignment loss between the modules.

2.1 METHODOLOGY

To set the stage, let us consider points \mathbf{x} sampled from a spatial domain $\Omega \subseteq \mathbb{R}^n$ with time in the interval $[0, T]$. We call $\partial\Omega$ the boundary of the domain Ω . We define a system of N PDEs by

$$\begin{cases} \mathcal{F}_i[\mathbf{u}] = 0, & (\text{PDE } i) \text{ for } i = 1, \dots, N \\ \mathcal{B}[\mathbf{u}] = b(t, \mathbf{x}), & (\text{BC}) \\ \mathbf{u}(0, \mathbf{x}) = g(\mathbf{x}), & (\text{IC}) \end{cases} \quad (1)$$

where $\mathbf{u}(t, \mathbf{x})$ is the solution to the system of N PDEs. A necessary condition for the existence and uniqueness of a solution (Evans, 2022) is to provide the initial condition (IC) $\mathbf{u}(0, \mathbf{x}) = g(\mathbf{x})$, as well as the boundary condition (BC) $\mathcal{B}[\mathbf{u}] = b(t, \mathbf{x})$. The PDEs must be satisfied for every $(t, \mathbf{x}) \in [0, T] \times \Omega$, the IC for every $\mathbf{x} \in \Omega$, while the BC for every $(t, \mathbf{x}) \in [0, T] \times \partial\Omega$.

State-of-the-art models like PINNs may suffer from optimization problems when multiple PDEs are involved (Sun et al., 2020; Wang et al., 2022), due to the ill-conditioning and the complex loss landscape of PDE residual terms (Krishnapriyan et al., 2021), which can lead to strong imbalances in the gradient norms of the different loss terms (Wang et al., 2022). ComPhy avoids this issue by using different modules to optimize the different PDEs of the system separately. This makes each optimization problem simpler than solving the whole system, while cross-PDE information is acquired through alignment. In the CP modular architecture, each network takes as input the same coordinates (t, \mathbf{x}) and predicts the relevant variables in its equation. Modules can sometimes solve more than one equation, but no module solves the whole system. Each module learns the IC, BC, and

108 the PDE(s) of interest through the weighted sum of the respective loss terms:
 109

$$\begin{aligned} 110 \quad \mathcal{L}_{\text{module } i} &= \lambda_{\text{BC}} \mathcal{L}_{\text{BC}} + \lambda_{\text{IC}} \mathcal{L}_{\text{IC}} + \lambda_{\text{PDE } i} \mathcal{L}_{\text{PDE } i} \\ 111 \quad &= \lambda_{\text{BC}} \|\hat{u}(t, \mathbf{x}) - b(t, \mathbf{x})\|_{L^2([0, T] \times \partial\Omega)}^2 + \lambda_{\text{IC}} \|\hat{u}(0, \mathbf{x}) - g(\mathbf{x})\|_{L^2(\Omega)}^2 + \lambda_{\text{PDE } i} \mathcal{L}_{\text{PDE } i}. \end{aligned} \quad (2)$$

112 The loss term $\mathcal{L}_{\text{PDE } i}$ depends on the particular choice of the learning module (Section 2.2). Figure 1
 113 shows the CP architecture for the Navier-Stokes PDEs, which we discuss in Section 2.3.
 114

115 **Alignment.** If the PDEs in the system are not all satisfied at once, the solution to the system might
 116 not be unique (Evans, 2022). Hence, we need to provide each module with information about the
 117 state of the others, at least on the parts with the same physical information. This is the role of our
 118 *alignment process*.
 119

120 Let \mathbf{v} be the subset of shared variables predicted by two different modules. The alignment loss fosters
 121 consistency between the predicted $v \in \mathbf{v}$ by both models. We focus on 2 alignment losses acting on
 122 the prediction of \mathbf{v} made by module i ($\hat{\mathbf{v}}_i$), and by module j ($\hat{\mathbf{v}}_j$):
 123

$$\begin{aligned} 124 \quad \text{SOB: } \mathcal{L}_{\text{align } i,j} &= \|\hat{\mathbf{v}}_i - \hat{\mathbf{v}}_j\|_2^2 + \|\mathbf{J}\hat{\mathbf{v}}_i - \mathbf{J}\hat{\mathbf{v}}_j\|_2^2, \\ 125 \quad \text{DERL: } \mathcal{L}_{\text{align } i,j} &= \|\mathbf{J}\hat{\mathbf{v}}_i - \mathbf{J}\hat{\mathbf{v}}_j\|_2^2, \end{aligned} \quad (3)$$

126 where $\mathbf{J}\hat{\mathbf{v}}_i$ is the Jacobian of the predictions for \mathbf{v} of module i with respect to all its inputs.
 127 SOB aligns the Sobolev norm W^2 (Maz'ya, 2011) while DERL aligns the L^2 norm on the derivatives
 128 only. Incorporating derivative information improves the convergence (Czarnecki et al., 2017) and
 129 imposes a stricter resemblance between the models' outputs. In physical systems, derivatives describe
 130 the system's dynamics and provide sufficient information to determine its evolution. Furthermore,
 131 they are the most effective target for transferring and distilling physical information between models
 132 (Trenta et al., 2025). To substantiate the claim, we also consider the OUTL alignment loss $\|\hat{\mathbf{v}}_i - \hat{\mathbf{v}}_j\|_2^2$
 133 as well, which is based only on the L^2 distance of the outputs. Given our discussion, we expect this
 134 to perform much worse than the others. See Appendix B.2 for more details on the alignment losses.
 135 The complete loss of the CP model can be expressed as

$$136 \quad \mathcal{L}_{\text{CP}} = \lambda_{\text{align}} \sum_{i,j} \mathcal{L}_{\text{align } i,j} + \sum_{i=1}^N \mathcal{L}_{\text{module } i}, \quad (4)$$

139 where the sum on i, j spans each pair of modules sharing at least one variable. All L^2 losses are
 140 implemented using the empirical version, that is, the mean squared error on collocation points. In
 141 reality, we see that it is sufficient to consider a simplified version of this loss, which includes only the
 142 alignment terms between the inference module and the others. For more details, see Appendix C.1.

143 **Inference.** CP trains all the modules end-to-end. During inference, CP uses only one or a subset
 144 of the modules. In particular, it is sufficient to include the minimum number of modules required to
 145 predict all the variables present in the solution. This often saves a considerable amount of inference
 146 time, as even a single module is often sufficient to predict the output.

147 2.2 LEARNING MODULES

149 We now introduce the learning modules we adopted for our experiments with CP. We consider
 150 existing state-of-the-art models that are widely used to learn physical systems. As we demonstrate
 151 in our experimental sections, Sections 3 and 4, optimizing all equations within a single module
 152 is suboptimal for learning challenging systems of PDEs due to the different scales and competing
 153 objectives of the losses. Our model, based on aligning specialized modules, overcomes these issues
 154 and outperforms all baselines.
 155

156 **Physics Informed Neural Networks (PINNs).** PINNs (Raissi et al., 2019) are among the best-
 157 performing and most used models for learning solutions to PDEs. They can be constructed upon
 158 any differentiable architecture. As commonly done in the literature (Raissi et al., 2019; Lau et al.,
 159 2024), we consider multi-layer perceptrons (MLPs). PINNs take as input the coordinates of a point
 160 (t, \mathbf{x}) and output the prediction of the solution $\hat{u}(t, \mathbf{x})$ to the PDE. To solve the problem, PINNs try
 161 to impose the PDE as a soft target for the MLP itself. Partial derivatives of the MLP $\frac{\partial \hat{u}}{\partial \mathbf{x}}, \frac{\partial \hat{u}}{\partial t}, \dots$
 162 are calculated via Automatic Differentiation (AD, Baydin et al. (2018)). Then, the residual on the

162 PDE is calculated using these derivatives $\mathcal{F}[\hat{\mathbf{u}}]$. Finally, the L^2 loss is used to minimize this residual,
 163 together with the IC and BC, obtaining the full loss:

$$164 \quad \mathcal{L}_{\text{PINN}} = \|\hat{\mathbf{u}}(t, \mathbf{x}) - b(t, \mathbf{x})\|_2^2 + \|\hat{\mathbf{u}}(0, \mathbf{x}) - g(\mathbf{x})\|_2^2 + \|\mathcal{F}[\hat{\mathbf{u}}]\|_2^2. \quad (5)$$

166 **Neural Conservation Laws (NCL).** Being able to output a conservative field by design is the
 167 key feature of NCL (Richter-Powell et al. (2022)). To achieve this, the MLP does not directly
 168 output the field \mathbf{u} , but parametrizes an antisymmetric matrix \mathbf{A} . Then, the divergence operator
 169 $\text{div}(\mathbf{f}) = \sum_{i=1}^d \frac{\partial f_i}{\partial x_i}$ is applied row-wise, obtaining the final vector \mathbf{u} with items $\mathbf{u}_i = \text{div}(\mathbf{A}_{i \cdot})$.
 170 This parameterization ensures that $\nabla \cdot \mathbf{u} = \text{div}(\mathbf{u}) = 0$, so the field is divergence-free by design.
 171 Richter-Powell et al. (2022) consider all input and output variables in this process, calculating the
 172 divergence with respect to the entire input vector (t, \mathbf{x}) . In our case, we generalized their approach to
 173 produce divergence-free fields with respect to any subset of the input and output variables, as long as
 174 they are of the same size. See Appendix B.1 for more details and examples.
 175

176 2.3 A PRACTICAL EXAMPLE: NAVIER-STOKES EQUATIONS

178 Having introduced all the components of CP, we now go through a practical example of its application.
 179 We consider the 2D Navier-Stokes equations:

$$180 \quad \begin{cases} \frac{\partial \mathbf{u}}{\partial t} + [\mathbf{D}_{\mathbf{x}} \mathbf{u}] \cdot \mathbf{u} - \Delta \mathbf{u} + \nabla p = 0, & \text{momentum eqn.} \\ \nabla \cdot \mathbf{u} = 0. & \text{incompressibility eqn.} \end{cases} \quad (6)$$

183 To solve this system with CP, we consider two modules. The first one is a PINN and learns the
 184 momentum equation in 6, predicting $(\hat{\mathbf{u}}_1, \hat{p}_1)$. Its specific loss components in equation 2 are
 185

$$186 \quad \begin{aligned} \mathcal{L}_{\text{BC } 1} &= \|\hat{\mathbf{u}}_1 - \mathbf{u}\|_2^2 + \|\hat{p}_1 - p\|_2^2 \\ 187 \quad \mathcal{L}_{\text{IC } 1} &= \|\hat{\mathbf{u}}_1(0, \mathbf{x}) - \mathbf{u}(0, \mathbf{x})\|_2^2 + \|p_1(0, \mathbf{x}) - p(0, \mathbf{x})\|_2^2 \\ 188 \quad \mathcal{L}_{\text{PDE } 1} &= \left\| \frac{\partial \hat{\mathbf{u}}_1}{\partial t} + [\mathbf{D}_{\mathbf{x}} \hat{\mathbf{u}}_1] \cdot \hat{\mathbf{u}}_1 - \Delta \hat{\mathbf{u}}_1 + \nabla \hat{p}_1 \right\|_2^2. \end{aligned} \quad (7)$$

191 The second module, which is either a PINN or an NCL, is related to the incompressibility equation in
 192 6, and predicts only \mathbf{u} . If the module is a PINN, the loss components are
 193

$$194 \quad \mathcal{L}_{\text{BC } 2} = \|\hat{\mathbf{u}}_2 - \mathbf{u}\|_2^2, \quad \mathcal{L}_{\text{IC } 2} = \|\hat{\mathbf{u}}_2(0, \mathbf{x}) - \mathbf{u}(0, \mathbf{x})\|_2^2, \quad \mathcal{L}_{\text{PDE } 2} = \|\nabla \cdot \hat{\mathbf{u}}_2\|_2^2, \quad (8)$$

195 while $\mathcal{L}_{\text{PDE } 2}$ is omitted if this module is instead an NCL, as it is satisfied by design. To define the
 196 alignment loss, we identify the common variables of the two modules, that is \mathbf{u} . Hence, this loss is
 197 defined as $\mathcal{L}_{\text{align}} = \|\hat{\mathbf{u}}_1 - \hat{\mathbf{u}}_2\|_2^2$. During evaluation, we need to predict all variables that define the
 198 problem: \mathbf{u} and p . Since the first module predicts both, it is the only module required to evaluate CP.
 199

200 2.4 THEORETICAL CONSIDERATIONS

202 Theoretical results on the convergence of physical models (like PINN and NCL) to the true solution
 203 remain an open problem. Some insights exist only on a limited class of single PDEs (Yeonjong Shin
 204 et al., 2020). Systems of PDEs represent a harder problem, as PINNs often fail to learn the underlying
 205 solution. This is especially true for the Navier-Stokes equation, where the turbulent behavior of fluids
 206 represents an issue for these models (Sun et al., 2020; Xiang et al., 2022).

207 Since the Sobolev distance is a widely used tool for the convergence, existence, or uniqueness of
 208 solutions to PDEs (Evans, 2022), we expect our derivative-based alignment (SOB and DERL) to
 209 outperform the OUTL alignment.

210 Intuitively, if the SOB/DERL alignment loss were always zero, the aligned modules would predict
 211 the same solution. This would make our modular CP equivalent to a single learning model that has
 212 access to the overall system. However, in this case CP would enjoy a simpler optimization problem,
 213 as each module would only focus on one equation. Furthermore, with the simplified alignment loss,
 214 each module optimizes the IC, BC, one PDE loss, and one term of the alignment loss on average,
 215 for a total of 4. Instead, a model optimized on the full system of n PDEs involves $n + 2$ loss terms.
 Hence, from 3 PDEs onwards, CP has this further advantage. In Section 3.4, we analyze how the
 different loss terms backpropagate through the different layers of the modules, showing that those of

216 Table 1: Summary of the tasks we consider in the experiments. **The last column indicates the different**
 217 **CP configurations, in terms of the modules, tested in the specific experiment.**

Experiment	Equation	Description	CP Modules
Navier-Stokes Taylor-Green vortex	(TG.M) $\frac{\partial \mathbf{u}}{\partial t} + [\mathbf{D}_x \mathbf{u}] \cdot \mathbf{u} - \Delta \mathbf{u} + \nabla p = 0$ (TG.I) $\nabla \cdot \mathbf{u} = 0$	Time dependent 2 PDEs	2 PINNs (2xPINN) PINN+NCL
Navier-Stokes Kovasznay flow	(K.F.M) $[\mathbf{D}_x \mathbf{u}] \cdot \mathbf{u} - \Delta \mathbf{u} + \nabla p = 0$ (K.F.I) $\nabla \cdot \mathbf{u} = 0$	Time independent 2 PDEs	2 PINNs (2xPINN) PINN+NCL
Acoustics equations	(A.P) $\frac{\partial p}{\partial t} + K \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) = 0$, (A.Vx) $\frac{\partial u}{\partial t} + \frac{1}{\rho} \frac{\partial p}{\partial x} = 0$, (A.Vy) $\frac{\partial v}{\partial t} + \frac{1}{\rho} \frac{\partial p}{\partial y} = 0$	Time dependent 3 PDEs	3 PINNs (3xPINN) 3 NCLs (3xNCL)
	(EG.C) $\frac{\partial p}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0$ (EG.I) $\nabla \cdot \mathbf{u} = 0$ (EG.M) $\frac{\partial \mathbf{u}}{\partial t} + [\mathbf{D}_x \mathbf{u}] \mathbf{u} + \frac{\nabla p}{\rho} = 0$		
Navier Stokes Euler (NS-Euler) Gas equations	(MHD.C) $\frac{\partial p}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0$ (MHD.G) $\nabla \cdot \mathbf{B} = 0$ (MHD.M) $\rho \left(\frac{\partial \mathbf{u}}{\partial t} + [\mathbf{D}_x \mathbf{u}] \mathbf{u} \right) = (\nabla \times \mathbf{B}) \times \mathbf{B} - \nabla p$	Time dependent 3 PDEs	2 PINNs (2xPINN) PINN+NCL 2 NCLs (2xNCL) 3 PINNs (3xPINN)
	(MHD.I) $\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{u} \times \mathbf{B})$ (MHD.S) $\frac{d}{dt} \left(\frac{p}{\rho^\gamma} \right) = 0$		
MagnetoHydroDynamics (MHD)		Time dependent five PDEs	2 PINNs (2xPINN) 2xPINN+NCL 3 PINNs (3xPINN) 4 PINNs (4xPINN)

235 CP have much more similar scales than those of PINNs, improving the quality of training steps. **In**
 236 **Appendix G, we provide further intuitions on the differences between alignment and PDE residual**
 237 **losses, as well as providing a more explicit example on the transfer of physical constraints between**
 238 **modules.**

3 EXPERIMENTS: CASE STUDIES

243 We empirically validate the effectiveness of CP on several physical systems of PDEs. We work with
 244 systems of 2, 3 and 5 PDEs. Table 1 provides a summary of the tasks and the related CP configuration.
 245 In this Section, we focus on the Navier-Stokes and Acoustic equations as the first case studies. At the
 246 end, we also provide an empirical explanation of why CP outperforms state-of-the-art approaches
 247 by analyzing the gradients backpropagated through CP modules. Section 4 evaluates CP on two
 248 challenging real-world systems: NS-Euler Gas and MagnetoHydroDynamics (MHD) equations.

249 We compare CP with four main approaches: PINN (Raissi et al., 2019), PINN with gradient based
 250 reweighting (PINN+Grad, Wang et al. (2023)), PINN with RAR point resampling (PINN+RAR,
 251 Wu et al. (2023)), and NCL (Richter-Powell et al., 2022). Further details are available in Appendix
 252 B. These models are implemented as a single model that accesses the information about all PDEs.
 253 This is done by replacing the last term in Equation 5 with $\sum_{i=1}^N \|\mathcal{F}_{\text{PDE } i}[\hat{\mathbf{u}}]\|_2^2$. We remark that NCL
 254 satisfies divergence-free equations by design, without requiring any loss term. We remark that NCL
 255 is a generalization of the original approach of Raissi et al. (2019) for divergence-free fields. For
 256 completeness, we also test CP with gradient-based reweighting.

257 Following Wang et al. (2023), we train all models for 100,000 steps with batches of 1000 points
 258 randomly sampled in the domain. We use the Adam optimizer (Kingma, 2014) with an initial learning
 259 rate of 0.001, decaying every 2000 steps by a factor of 0.9. Model architectures are in Appendix C.3.

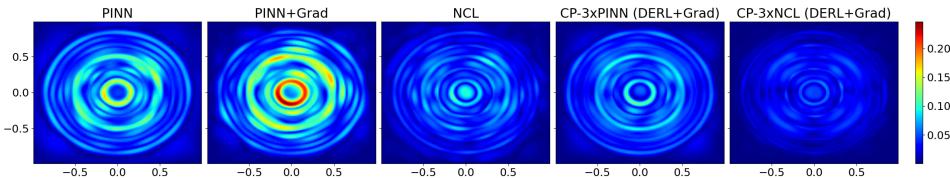
260 To measure the accuracy of the predictions, we evaluate all approaches with two metrics: (i) $\|\mathbf{u} - \hat{\mathbf{u}}\|_2$
 261 (L^2 -err), which measures the L^2 distance between the true solution \mathbf{u} and the estimate $\hat{\mathbf{u}}$. (ii)
 262 $\max_{(t, \mathbf{x})} |\hat{\mathbf{u}} - \mathbf{u}|$ (max-err), which measures the maximum absolute error in the domain.

3.1 TAYLOR-GREEN VORTEX

266 Our first experiment involves the 2D time-dependent incompressible Navier-Stokes equations, namely
 267 the momentum (TG.M) and incompressibility (TG.I) Equations in Table 1. We work in the domain
 268 $[0, \pi] \times [0, \pi]$ with time $t \in [0, 10]$ and a viscosity coefficient of $\nu = 0.1$. The analytic solution of the
 269 Taylor-Green vortex (Chorin, 1968), used to calculate the reference solution, is given in Appendix
 D.1. The inference module for CP is the one learning equation (TG.M), as it predicts all the variables.

270
271 Table 2: Results for the Taylor-Green vortex, Kovasznay flow, and Acoustics experiments. L^2 errors
272 of the model predictions with respect to the ground truth, and the maximum errors in the domain.
273

		Taylor-Green Vortex		Kovasznay Flow				Acoustics	
Model	Alignment	L^2 -err. $\times 10^{-5}$	max err. $\times 10^{-3}$	L^2 -err. $\times 10^{-6}$	max err. $\times 10^{-3}$	Model	Alignment	L^2 -err. $\times 10^{-5}$	max_err. $\times 10^{-1}$
PINN		3.677	9.374	10.83	5.203	PINN		8.016	2.277
PINN+RAR		5.235	6.160	11.48	8.062	PINN+RAR		120.6	20.05
PINN+Grad		4.245	9.719	7.471	4.264	PINN+Grad		10.05	3.391
NCL		2.830	5.947	3.014	1.398	NCL		5.243	1.552
CP-2xPINN	OUTL	6.028	9.945	20.47	4.972	CP-3xPINN	OUTL	11.43	8.437
CP-2xPINN	SOB	5.222	8.027	8.641	6.195	CP-3xPINN	SOB	7.611	2.148
— +Grad		4.687	6.250	7.695	4.207	— +Grad		5.726	1.685
CP-2xPINN	DERL	3.619	6.378	7.221	4.996	CP-3xPINN	DERL	7.449	2.171
— +Grad		4.311	6.250	5.370	4.107	— +Grad		5.718	1.737
CP-PINN+NCL	OUTL	6.024	11.55	13.30	4.515	CP-3xNCL	OUTL	6.008	4.549
CP-PINN+NCL	SOB	4.764	9.215	6.867	3.619	CP-3xNCL	SOB	5.172	1.521
— +Grad		4.386	8.418	3.663	1.277	— +Grad		2.727	1.090
CP-PINN+NCL	DERL	3.247	7.996	5.422	3.468	CP-3xNCL	DERL	5.165	1.547
— +Grad		2.795	6.468	4.325	1.513	— +Grad		2.718	1.121



293 Figure 2: Acoustics equation: errors for PINN, PINN+Grad, NCL, and the best CP models (one for
294 architecture) at $t = 0.16$. The lowest errors are in blue.
295
296

297 Table 2 shows the numerical results for this experiment, while Appendix D.1 shows the prediction
298 error for different values of t . We see that CP models aligned with DERL outperform all variations
299 of PINNs. CP-PINN+NCL with DERL alignment and Grad reweighting performs best in the L^2
300 metric, even when compared to NCL. This is remarkable, since NCL has the built-in advantage of
301 bypassing the divergence-free equation, while CP has to transfer it across modules. Additional results
302 are available in Appendix D.1.
303
304

3.2 KOVASZNAY FLOW

305 We consider the 2D time-independent Navier-Stokes equations made of the momentum (K.F.M) and
306 incompressibility (K.F.I) equations in Table 1. We work in the domain $[-1, 1] \times [-0.5, 1.5]$ with a
307 viscosity coefficient of $\nu = \frac{1}{50}$. The analytic solution of the Kovasznay flow (Drazin & Riley, 2009),
308 which represents the flow behind a two-dimensional grid, is given in Appendix D.2. The evaluation
309 model for CP is always the one for equation (K.F.M), as it predicts all the variables. Numerical results
310 are provided in Table 2. The complete set of results and figures is available in Appendix D.2. None
311 of the PINN variants matches the performance of the CP models aligned with either DERL or SOB.
312 Interestingly, OUTL alignment delivers worse results, supporting our hypothesis that derivative-based
313 alignments are more effective. Due to its implicit advantage of modeling divergence-free fields,
314 NCL shows a competitive performance. However, CP with gradient-based reweighting obtains the
315 best performance possible, between 2 and 3 times better than PINN variants. We conclude that
316 within these Navier-Stokes case studies, ComPhy alleviates PINN optimisation issues and performs
317 comparably to, if not better than, NCL. However, CP is far more general than NCL, and can be
318 directly applied to systems without divergence-free components. As OUTL consistently showed
319 worse results, for the remaining experiments we only work with derivative-based alignment.
320
321

3.3 ACOUSTIC EQUATIONS

322 We now consider a set of three equations, namely equations (A.P), (A.Vx), and (A.Vy) in Table 1,
323 solved using CP model with three aligned modules. As we can see, all three equations are in the
divergence-free form (see Appendix B.1), respectively for t, x, y for the first equation, t, x and t, y for

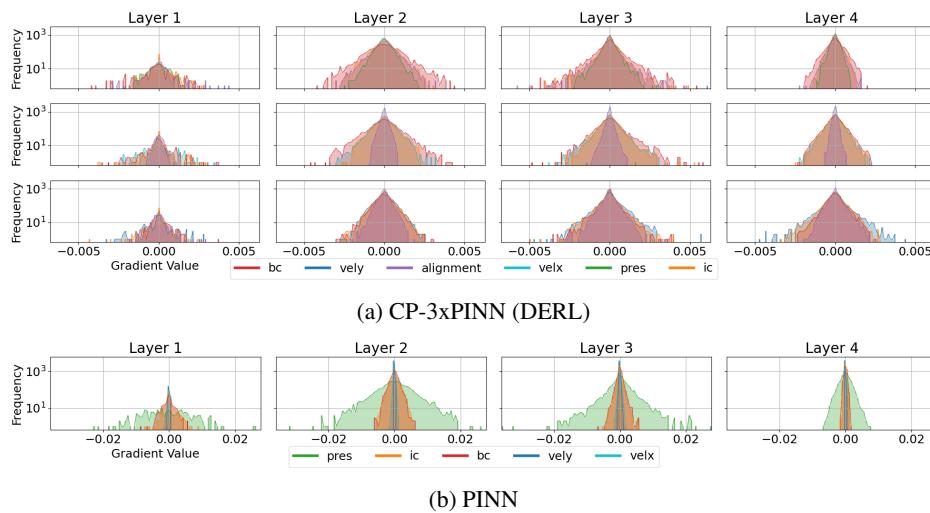


Figure 3: Acoustics experiment gradient histograms. Each plot contains the histograms for the distribution of the gradients propagated at each layer of the CP-3xPINN and PINN models at the beginning of training, similarly to Wang et al. (2021). Different colors are for different losses.

the second and third. Hence, we can employ an CP model with three NCL modules. Since equation (A.P) contains all relevant variables, the first module is the one used for evaluation.

We work in the spacetime domain of $(t, x, y) \in [0, 0.24] \times [-1, 1]^2$, with density $\rho \equiv 1$ and bulk coefficient $K \equiv 1$. Appendix D.3 provides the initial conditions, while boundary conditions are null everywhere. The reference solution is calculated using the Clawpack software package (Clawpack Development Team, 2024; Mandli et al., 2016). Further details can be found in Appendix D.3.

We report the numerical results in Table 2, while Figure 2 shows the prediction error in the domain at $t = 0.16$. For additional Figures, see Appendix D.3. Even when using 3 different modules, CP is clearly the best approach for both our metrics. In particular, CP with 3 NCL modules performs best. None of the PINN variants fall close to our best model, not even when adding resampling or adaptive weights. CP, instead, benefits from gradient-based reweighting, showing a 2x/3x improvement with respect to PINNs and NCL. This experiment suggests that CP and derivative-based alignment scales well to a larger number of modules. Section 4 scales CP to even larger systems.

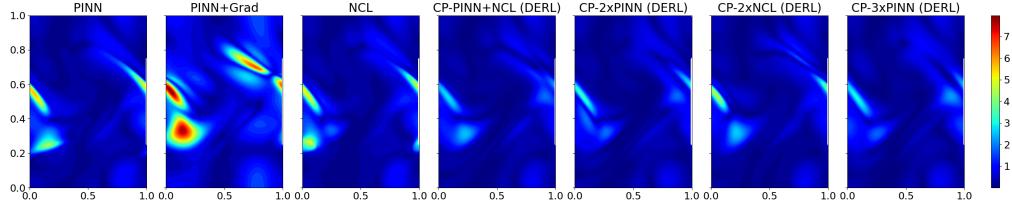
3.4 GRADIENT ANALYSIS

To get a better understanding of why CP outperforms PINNs, we conduct an empirical analysis on the distribution of the backpropagated gradients at different layers of the CP modules. Given w_j the set of weights in layer j , for each loss term \mathcal{L}_{BC} , \mathcal{L}_{IC} , \mathcal{L}_{PDE_i} of equation 2, we collect the gradients $\frac{\partial \mathcal{L}}{\partial w_j}$ and we plot the corresponding histogram grouped by layer (Figure 3). A similar analysis for PINNs is discussed in Wang et al. (2021). **The authors show that when PINNs are optimized correctly, the gradients of the different losses tend to be evenly distributed within each layer.** However, if the distributions differ significantly, it implies that one loss function is dominating, which negatively affects the model’s performance.

We replicate this study for CP on the Acoustics experiment of Section 3.3, which involves 3 equations and 3 modules. Figures 3a and 3b show the distributions of propagated gradients for CP 3xPINN and PINN, respectively. The plots clearly highlight that combining three modules makes the gradient distribution more aligned across layers. As we have seen in Section 3.3, this also entails a better performance. We provide the same analysis on the Kovasznay flow experiment in Appendix D.2. Both studies support the fact that the modular approach of ComPhy results in an easier optimization problem when compared to a single PINN trained on the entire system of PDEs.

378
 379 Table 3: Numerical results for the Euler gas and MHD equation experiments. We report L^2 errors of
 380 the model predictions with respect to the ground truth, and the maximum errors in the domain.
 381

(a) Euler gas equation experiment.				(b) MagnetoHydroDynamics experiment.			
Model	Alignment	L^2 -err $\times 10^{-3}$	max_err $\times 10^0$	Model	Alignment	L^2 -err. $\times 10^{-4}$	max_err $\times 10^{-1}$
PINN	—	1.712	5.364	PINN	—	1.967	12.74
PINN+Grad	—	3.319	7.127	PINN+Grad	—	1.657	9.164
NCL	—	1.690	4.912	NCL	—	1.975	12.59
CP-2xPINN	SOB	1.296	3.082	CP-2xPINN	SOB	1.599	9.324
CP-2xPINN	DERL	1.401	3.149	CP-2xPINN	DERL	1.608	9.280
CP-PINN+NCL	SOB	1.487	2.721	CP-3xPINN	SOB	1.535	8.528
CP-PINN+NCL	DERL	1.468	2.673	CP-3xPINN	DERL	1.535	8.548
CP-2xNCL	SOB	2.029	4.311	CP-2xPINN+NCL	SOB	1.601	8.913
CP-2xNCL	DERL	1.396	4.183	CP-2xPINN+NCL	DERL	1.607	8.934
CP-3xPINN	SOB	1.382	3.021	CP-4xPINN	SOB	1.560	8.764
CP-3xPINN	DERL	1.462	2.899	CP-4xPINN	DERL	1.567	8.771



403 Figure 4: NS-Euler gas equations experiment: prediction error in the domain at $t = 0.3$ for the PINN,
 404 NCL, and the CP model (best for each architecture).
 405
 406

4 EXPERIMENTS: REAL-WORLD SYSTEMS

4.1 NS-EULER EQUATIONS

412 We now challenge CP with two real-world systems: the NS-Euler and the MagnetoHydroDynamics
 413 equations. The NS-Euler equations for an incompressible gas are given by the conservation (EG.C),
 414 incompressibility (EG.I), and momentum (EG.M) equations in Table 1, where ρ is the density, \mathbf{u}
 415 the velocity and p the pressure. Our setup is the same as the one in Richter-Powell et al. (2022): we
 416 consider the 2D torus and work with the spacetime domain $(t, x, y) \in [0, \frac{1}{3}] \times [0, 1]^2$. Appendix D.4
 417 provides the initial conditions and further details. The reference solution is available and collected
 418 from Richter-Powell et al. (2022), and was calculated via the Finite Element Method (Anderson
 419 et al., 2020). All models are trained for 600,000 steps with batches of 1000 random points at each
 420 step. The optimal hyperparameters and architectures are taken from Richter-Powell et al. (2022). On
 421 the NS-Euler equations we test 4 CP configurations: **CP-2xPINN**, **CP-PINN+NCL**, **CP-2xNCL**,
 422 and **CP-3xPINN**. For the first three, the first module (either a PINN or NCL) learns both equations
 423 (EG.C) and (EG.M), while the second learns only (EG.I). Since all relevant variables are in equation
 (EG.M), only the first module is used for evaluation.

424 Numerical results are provided in Table 3a, while Figure 4 shows the prediction error at $t = 0.3$.
 425 Appendix D.4 shows the model errors for different values of $t \in [0, \frac{1}{3}]$. While Richter-Powell et al.
 426 (2022) claim that the PINN fails to converge to the true solution, we did not encounter the same issue.
 427 Our PINN can solve the system to some extent. CP achieves state-of-the-art results when using both
 428 DERL and SOB, with the latter struggling only when 2 NCL modules are employed. This highlights
 429 the role played by the outputs’ derivatives in the alignment: a loss computed only from outputs’
 430 derivatives (DERL) is much more effective than a loss computed also from the output (SOB).
 431 We conclude that CP can learn a challenging real-world system of PDEs effectively, using different
 432 combinations of NCL and PINN models.

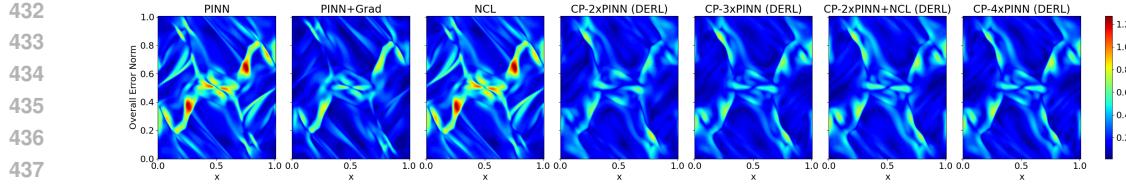


Figure 5: MHD experiment: prediction error in the domain at $t = 0.5$ for the PINN, NCL, and the CP model (best for each architecture).

4.2 MAGNETOHYDRODYNAMICS

Finally, we scale our model to a system of 5 equations, the MHD equations in Table 1, which represent the motion of plasma with a combination of the compressible Navier-Stokes equations for fluids with the Maxwell equations of Magnetism (Gruber & Rappaz, 1985). These are composed of the continuity (MHD.C), momentum (MHD.M), state (MHD.S), induction (MHD.I), and Gauss (MHD.G) equations. We consider a similar setting to Gopakumar et al. (2025), with domain $[0, 1]^2$ and time in $t \in [0, 0.5]$. The reference solution is calculated with the finite volume method (Ferziger & Peric, 2001). Since we are interested in pure scaling, we consider combinations of 2, 3 and 4 PINNs for our CP models, as well as 2xPINN+NCL. We compare to a PINN, PINN+Grad, and an NCL with equation (MHD.G) satisfied by design. Architectures are available in Appendix C.3. Models are trained for 100,000 steps with the Adam optimizer, and batches of 1024 randomly sampled points.

We report the results in Table 3b, with Figure 5 showing the prediction error at $t = 0.5$. Even with 5 equations, CP outperforms PINN and NCL by a large margin with any of the tested combinations of modules, including that with 4 modules. We report additional results and Figures in Appendix D.5.

4.3 DISCUSSION AND FURTHER EXPERIMENTAL ANALYSIS

On the choice of the CP modules. Apart from the MHD equations, where we tested the scaling capabilities of CP to a higher number of PDEs, we experimented with every possible combination of modules, keeping in mind that the NCL module requires a divergence-free equation to be applied. Our results support the fact that, when possible, a combination of modules that includes NCL is always beneficial. Similarly, since most physical systems present 2 or 3 equations, the most common and effective choice is to use 2 or 3 modules, respectively.

On the strength of the alignment process. In Section 2.4 and Appendix G, we provided theoretical understandings on why the alignment mechanism allows for effective transfer of physical constraints between modules. When the alignment loss converges to zero, the corresponding modules behave as the same function in the Sobolev space $W^{1,2}$ (Trenta et al., 2025). To empirically validate these claims, we plot the curves of the alignment loss, the prediction loss, and the PDE residuals that are not actively trained on the inference module. We also empirically measure the distance and relative discrepancy between the predictions of different modules. The results, available in Appendix E, confirm our theoretical claims and the strength of the alignment mechanism: modules predict very similar functions, while prediction and PDE losses are correlated with the alignment loss.

Ablations. To test the robustness of ComPhy in different setups and conditions, we performed ablation studies available in Appendix F. (i) We tried different values for the alignment coefficient λ_{align} , showing that the naive choice of $\lambda_{\text{align}} = 1$ works well on average, with possible improvements with highly specialised tuning of this parameter. We remark that the Gradient-based reweighting scheme used in Section 3 alleviates the burden of hyperparameter selection. (ii) We incremented the number of units in the MLPs of the PINN and NCL baselines to match the parameter budget of CP during training. This leads to fewer parameters used by CP during inference, as it employs only one module at that state. Even so, CP performs better, showing the importance of modularization for these applications. (iii) We run the same experiment multiple times with different seeds to test the robustness to initializations and stochastic gradient descent. The results remain strong, as the CP models have the best mean results by far, and a lower standard deviation.

486 5 RELATED WORKS

488 PINNs (Raissi et al., 2019) are widely used to solve physical problems such as fluid dynamics (Sun
 489 et al., 2020). However, PINNs suffer from optimization problems, such as imbalances in the gradients
 490 of the different loss terms (Wang et al., 2022) or the ill-conditioning and complex loss landscape
 491 of PDE residual terms (Krishnapriyan et al., 2021). PINNs can also fail to reach a minimum of the
 492 loss (Sun et al., 2020). Recent approaches try to alleviate these problems with resampling strategies
 493 that explore regions with higher PDE residuals while retaining enough points in well-optimized
 494 regions (Daw et al., 2023), or by using a variational formulation of the PDE residual term in small
 495 regions around collocation points (Wu et al., 2024). Other works adopt strategies to align the
 496 gradients at different gradient descent steps using second-order corrections (Wang et al., 2025), which
 497 can be computationally demanding, or to align the autoregressive updates to the underlying true
 498 dynamics (Zhu et al., 2025) for data-driven models. Instead, we work in an unsupervised setting, and
 499 our alignment imposes on the different modules to share information on their respective physical
 500 constraints. Even though many other solutions, such as resampling or reweighting schemes, have
 501 been proposed (Sun et al., 2020; Wang et al., 2021; Xiang et al., 2022; McClenney & Braga-Neto,
 502 2023; Zhao, 2021; Lau et al., 2024), none of them is tailored to tackle systems of PDEs.

502 Ad-hoc architectures solve the optimization issues by satisfying physical properties by design. NCL
 503 (Richter-Powell et al., 2022) ensures that the output of the model is divergence-free, while Torres
 504 et al. (2024) proposes a divergence-free normalizing flow. However, such solutions only work for a
 505 given physical property and still require enforcing additional ones with alternative approaches, like
 506 PINN. Finally, our CP is the first attempt at solving systems of PDEs with a modular, end-to-end
 507 approach where modules are aligned to transfer physical constraints with each other.

508 Neural Operators (Kovachki et al., 2023) are deep models that learn mappings between functional
 509 spaces. DeepONets (Lu et al., 2021) try to learn representations of the input function and combine
 510 them on the output function inference points. Graph Neural Operators (Li et al., 2020), instead,
 511 transform functions via local convolutions with parametrized kernels, which are learned during
 512 training. Finally, Fourier Neural Operators (Li et al., 2021) use Fourier transforms to simplify and
 513 speed up the calculation of such convolutions while acting on the function globally. While these
 514 methods are powerful for supervised learning tasks and generalization to different initial conditions
 515 or parameters, they are more computationally demanding and serve a different task, as they learn
 516 mappings between functions. Furthermore, they need simulated data, and they are *not* suitable for the
 517 unsupervised setting of PINNs.

518 6 CONCLUSION

520 We introduced CP, a modular approach for solving systems of PDEs where the final predicted solution
 521 is the result of the collective effort of the modules. The modules communicate with each other
 522 during training via alignment, a process that encourages the predictions of the same variable made by
 523 different modules to be similar. In particular, we consider a derivative-based alignment and we show
 524 that it provides state-of-the-art results on several systems of PDEs, including challenging real-world
 525 tasks. We further analyzed why CP optimizes the physics-informed losses better than PINNs, finding
 526 that their propagated gradients have more similar scales. While NCL is competitive in the case
 527 studies, the advantage of having one equation less to be optimized fades away in real-world systems
 528 of three or more equations, where CP scales much better.

529 Future works could consider different optimization protocols, such as alternating module optimization
 530 steps with alignment steps, as well as aligning higher-order derivatives to capture richer dynamics
 531 of the physical system. CP represents an initial step toward developing modular architectures for
 532 scalable learning of physical systems. Progress in this direction could lead to dynamic models capable
 533 of adapting to new initial conditions, as well as incorporating or removing modules over time to
 534 accommodate changing environments.

535 ETHICS STATEMENT

536 The research conducted in this work completely adheres to the ICLR Code of Ethics. This work does
 537 not involve human subjects, nor does it provide harmful insights, discrimination/bias concerns, or
 538 any other potential ethics concerns.

540 REPRODUCIBILITY STATEMENT
541

542 We provide all the necessary information to reproduce the results in the paper in the main text and
543 in the Appendix. The methodology is described in Section 2, while experimental settings, along
544 with training steps, optimizers, and model architectures, are described in Section 3 and Section 4.
545 Further implementation details are available in Appendix C. We additionally provide all the code
546 necessary to reproduce the experiments, from data generation to model definition and training, as
547 well as evaluation, as Supplementary Material.

548
549 REFERENCES
550

551 Dale Anderson, John C Tannehill, Richard H Pletcher, Ramakanth Munipalli, and Vijaya Shankar.
552 *Computational fluid mechanics and heat transfer*. CRC Press, Boca Raton, FL, 4 edition, December
553 2020.

554 Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark Siskind.
555 Automatic differentiation in machine learning: a survey. *Journal of Machine Learning Research*,
556 18(153):1–43, 2018. URL <http://jmlr.org/papers/v18/17-468.html>.

557 Jörg Behler and Michele Parrinello. Generalized neural-network representation of high-dimensional
558 potential-energy surfaces. *Phys. Rev. Lett.*, 98:146401, Apr 2007. doi: 10.1103/PhysRevLett.98.
559 146401. URL <https://link.aps.org/doi/10.1103/PhysRevLett.98.146401>.

560 Alexandre Joel Chorin. Numerical solution of the navier-stokes equations. *Mathematics of Computation*,
561 22(104):745–762, 1968. ISSN 00255718, 10886842. URL <http://www.jstor.org/stable/2004575>.

562 Clawpack Development Team. Clawpack software, 2024. URL <http://www.clawpack.org>.
563 Version 5.11.0.

564 Wojciech M. Czarnecki, Simon Osindero, Max Jaderberg, Grzegorz Swirszcz, and Razvan
565 Pascanu. Sobolev training for neural networks. In I. Guyon, U. Von Luxburg,
566 S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 30. Curran Associates, Inc.,
567 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/758a06618c69880a6cee5314ee42d52f-Paper.pdf.

568 Arka Daw, Jie Bu, Sifan Wang, Paris Perdikaris, and Anuj Karpatne. Mitigating propagation failures
569 in physics-informed neural networks using retain-resample-release (r3) sampling, 2023. URL
570 <https://arxiv.org/abs/2207.02338>.

571 P G Drazin and N Riley. *London mathematical society lecture note series: The Navier-stokes
572 equations: A classification of flows and exact solutions series number 334*. Cambridge University
573 Press, Cambridge, England, November 2009.

574 Lawrence C Evans. *Partial differential equations*. American Mathematical Society, Providence, RI,
575 March 2022.

576 Joel H Ferziger and Milovan Peric. *Computational methods for fluid dynamics*. Springer, Berlin,
577 Germany, 3 edition, November 2001.

578 Vignesh Gopakumar, Ander Gray, Lorenzo Zanisi, Timothy Nunn, Daniel Giles, Matt Kusner,
579 Stanislas Pamela, and Marc Peter Deisenroth. Calibrated physics-informed uncertainty
580 quantification. In *Forty-second International Conference on Machine Learning*, 2025. URL
581 <https://openreview.net/forum?id=Z2uLBck2X>.

582 Ralf Gruber and Jacques Rappaz. *The Ideal MHD Model*, pp. 34–41. Springer Berlin Heidelberg,
583 Berlin, Heidelberg, 1985. ISBN 978-3-642-86708-8. doi: 10.1007/978-3-642-86708-8_3. URL
584 https://doi.org/10.1007/978-3-642-86708-8_3.

585 Ameya D Jagtap, Ehsan Kharazmi, and George Em Karniadakis. Conservative physics-informed
586 neural networks on discrete domains for conservation laws: Applications to forward and inverse
587 problems. *Comput. Methods Appl. Mech. Eng.*, 365(113028):113028, June 2020.

594 Ehsan Kharazmi, Zhongqiang Zhang, and George E M Karniadakis. hp-VPINNs: Variational physics-
 595 informed neural networks with domain decomposition. *Comput. Methods Appl. Mech. Eng.*, 374
 596 (113547):113547, February 2021.

597 Diederik P Kingma. Adam: A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*,
 598 2014.

600 Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew
 601 Stuart, and Anima Anandkumar. Neural operator: Learning maps between function spaces
 602 with applications to pdes. *Journal of Machine Learning Research*, 24(89):1–97, 2023. URL
 603 <http://jmlr.org/papers/v24/21-1524.html>.

604 Aditi Krishnapriyan, Amir Gholami, Shandian Zhe, Robert Kirby, and Michael W Mahoney.
 605 Characterizing possible failure modes in physics-informed neural networks. In M. Ran-
 606 zato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), *Advances
 607 in Neural Information Processing Systems*, volume 34, pp. 26548–26560. Curran Asso-
 608 ciates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/df438e5206f31600e6ae4af72f2725f1-Paper.pdf.

609

610 Gregory Kang Ruey Lau, Apivich Hemachandra, See-Kiong Ng, and Bryan Kian Hsiang Low. PIN-
 611 NACLE: PINN adaptive collocation and experimental points selection. In *The Twelfth International
 612 Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=GzNaCp6Vcg>.

613

614 Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew
 615 Stuart, and Anima Anandkumar. Neural operator: Graph kernel network for partial differential
 616 equations, 2020. URL <https://arxiv.org/abs/2003.03485>.

617

618 Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhat-
 619 tacharya, Andrew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial
 620 differential equations. In *International Conference on Learning Representations*, 2021. URL
 621 <https://openreview.net/forum?id=c8P9NQVtmno>.

622

623 Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
 624 nonlinear operators via deeponet based on the universal approximation theorem of operators.
 625 *Nature Machine Intelligence*, 3(3):218–229, March 2021. ISSN 2522-5839. doi: 10.1038/
 626 s42256-021-00302-5. URL <http://dx.doi.org/10.1038/s42256-021-00302-5>.

627

628 Kyle T Mandli, Aron J Ahmadia, Marsha Berger, Donna Calhoun, David L George, Yiannis Had-
 629 jimichael, David I Ketcheson, Grady I Lemoine, and Randall J LeVeque. Clawpack: building an
 630 open source ecosystem for solving hyperbolic pdes. *PeerJ Computer Science*, 2:e68, 2016. doi:
 631 10.7717/peerj-cs.68.

632

633 Vladimir Maz’ya. *Sobolev spaces*. Grundlehren der mathematischen Wissenschaften. Springer,
 Berlin, Germany, 2 edition, February 2011.

634

635 Levi D McClenney and Ulisses M Braga-Neto. Self-adaptive physics-informed neural networks.
 636 *Journal of Computational Physics*, 474(111722):111722, February 2023.

637

638 Xuhui Meng, Zhen Li, Dongkun Zhang, and George Em Karniadakis. PPINN: Parareal physics-
 639 informed neural network for time-dependent PDEs. *Comput. Methods Appl. Mech. Eng.*, 370
 (113250):113250, October 2020.

640

641 Yifan Mo, Liming Ling, and Delu Zeng. Data-driven vector soliton solutions of coupled nonlinear
 642 schrödinger equation using a deep learning algorithm. *Phys. Lett. A*, 421(127739):127739, January
 643 2022.

644

645 Jaideep Pathak, Shashank Subramanian, Peter Harrington, Sanjeev Raja, Ashesh Chattopadhyay,
 646 Morteza Mardani, Thorsten Kurth, David Hall, Zongyi Li, Kamyar Azizzadenesheli, Pedram
 647 Hassanzadeh, Karthik Kashinath, and Animashree Anandkumar. Fourcastnet: A global data-
 648 driven high-resolution weather model using adaptive fourier neural operators, 2022. URL <https://arxiv.org/abs/2202.11214>.

648 Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
 649 deep learning framework for solving forward and inverse problems involving nonlinear partial
 650 differential equations. *Journal of Computational Physics*, 378:686–707, 2019.

651

652 Jack Richter-Powell, Yaron Lipman, and Ricky T. Q. Chen. Neural conservation laws: A divergence-
 653 free perspective. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.),
 654 *Advances in Neural Information Processing Systems*, volume 35, pp. 38075–38088. Curran Asso-
 655 ciates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/f8d39584f87944e5dbe46ec76f19e20a-Paper-Conference.pdf.

656

657 Luning Sun, Han Gao, Shaowu Pan, and Jian-Xun Wang. Surrogate modeling for fluid flows based
 658 on physics-constrained deep learning without simulation data. *Computer Methods in Applied
 659 Mechanics and Engineering*, 361:112732, 2020. ISSN 0045-7825. doi: <https://doi.org/10.1016/j.cma.2019.112732>. URL <https://www.sciencedirect.com/science/article/pii/S004578251930622X>.

660

661

662 Fabricio Arend Torres, Marcello Massimo Negri, Marco Inversi, Jonathan Aellen, and Volker Roth.
 663 Lagrangian flow networks for conservation laws. In *The Twelfth International Conference on Learn-
 664 ing Representations*, 2024. URL <https://openreview.net/forum?id=Nshk5YpdWE>.

665

666 Alessandro Trenta, Andrea Cossu, and Davide Bacci. Learning and Transferring Physical Models
 667 through Derivatives. *arXiv*, 2025. doi: 10.48550/arXiv.2505.01391.

668

669 Sifan Wang, Yujun Teng, and Paris Perdikaris. Understanding and mitigating gradient flow pathologies
 670 in physics-informed neural networks. *SIAM J. Sci. Comput.*, 43(5):A3055–A3081, January 2021.

671

672 Sifan Wang, Xinling Yu, and Paris Perdikaris. When and why PINNs fail to train: A neural tangent
 673 kernel perspective. *J. Comput. Phys.*, 449(110768):110768, January 2022.

674

675 Sifan Wang, Shyam Sankaran, Hanwen Wang, and Paris Perdikaris. An expert’s guide to training
 676 physics-informed neural networks, 2023. URL <https://arxiv.org/abs/2308.08468>.

677

678 Sifan Wang, Ananyae Kumar Bhartari, Bowen Li, and Paris Perdikaris. Gradient alignment in
 679 physics-informed neural networks: A second-order optimization perspective, 2025. URL <https://arxiv.org/abs/2502.00604>.

680

681 Chenxi Wu, Min Zhu, Qinyang Tan, Yadhu Kartha, and Lu Lu. A comprehensive study of non-
 682 adaptive and residual-based adaptive sampling for physics-informed neural networks. *Computer
 683 Methods in Applied Mechanics and Engineering*, 403:115671, 2023. ISSN 0045-7825. doi:
 684 <https://doi.org/10.1016/j.cma.2022.115671>. URL <https://www.sciencedirect.com/science/article/pii/S0045782522006260>.

685

686 Haixu Wu, Huakun Luo, Yuezhou Ma, Jianmin Wang, and Mingsheng Long. Ropinn: Re-
 687 gion optimized physics-informed neural networks. In A. Globerson, L. Mackey, D. Belgrave,
 688 A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), *Advances in Neural Information Process-
 689 ing Systems*, volume 37, pp. 110494–110532. Curran Associates, Inc., 2024. doi: 10.52202/079017-3508. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/c745bfa5b50544882938ff4f89ff26ac-Paper-Conference.pdf.

690

691 Zixue Xiang, Wei Peng, Xu Liu, and Wen Yao. Self-adaptive loss balanced physics-informed neural
 692 networks. *Neurocomput.*, 496(C):11–34, July 2022. ISSN 0925-2312. doi: 10.1016/j.neucom.
 693 2022.05.015. URL <https://doi.org/10.1016/j.neucom.2022.05.015>.

694

695 Yeonjong Shin Yeonjong Shin, Jérôme Darbon Jérôme Darbon, and George Em Karniadakis George
 696 Em Karniadakis. On the convergence of physics informed neural networks for linear second-order
 697 elliptic and parabolic type PDEs. *Commun. Comput. Phys.*, 28(5):2042–2074, January 2020.

698

699 Xuan Zhang, Jacob Helwig, Yuchao Lin, Yaochen Xie, Cong Fu, Stephan Wojtowytsh, and Shuiwang
 700 Ji. Sinenet: Learning temporal dynamics in time-dependent partial differential equations. In
 701 *The Twelfth International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=LSYhE2hLWG>.

702

703 Colby L Wight & Jia Zhao. Solving Allen-Cahn and Cahn-Hilliard equations using the adaptive
 704 physics informed neural networks. *Commun. Comput. Phys.*, 29(3):930–954, June 2021.

702 Congcong Zhu, Xiaoyan Xu, Jiayue Han, and Jingrun Chen. Physics-informed temporal alignment
703 for auto-regressive PDE foundation models. In *Forty-second International Conference on Machine*
704 *Learning*, 2025. URL <https://openreview.net/forum?id=OKDN1Hg3im>.
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

756 **A LLM USAGE**
757758 Large Language Models (LLMs) were used to polish and check the grammar of the paper, with very
759 limited usage to rewrite some phrases for improved readability. No LLM was used to write entire
760 parts of the text or for any other non-specified purposes. Every output of the LLMs was carefully
761 checked to ensure its correctness and validity, adhering to the LLM policy and Code of Ethics.
762763 **B MODEL DESCRIPTION**
764765 This Section provides further information on CP models and their components, as well as the
766 employed baselines.
767768 **B.1 PARTICULAR NCL APPLICATIONS**
769770 While PINNs have a straightforward implementation, NCL models require performing a final trans-
771 formation on the network’s output. In particular, the MLP parametrizes an antisymmetric matrix \mathbf{A} ,
772 which depends on *all* the input coordinates (t, x, y) . As described in Section 2, a row-wise divergence
773 is performed to obtain a vector that has zero divergence with respect to *all* the inputs. To obtain a
774 vector field that is divergence-free with respect to *only a subset* of the input coordinates, it is sufficient
775 to consider a smaller matrix \mathbf{A} and apply the above procedure only for the interested coordinates. We
776 provide some examples here.
777In the case of the 2D time-dependent Navier-Stokes equation, the incompressibility equation is given
by

779
$$\nabla \cdot \mathbf{u} = \text{div}_{(x,y)}(\mathbf{u}) = \frac{\partial u_x}{\partial x} + \frac{\partial u_y}{\partial y} = 0, \quad (9)$$

780

781 where the field \mathbf{u} depends on the three inputs (t, x, y) . Here, the MLP parametrizes \mathbf{A} as a 2×2
782 antisymmetric matrix depending on (t, x, y) . The row-wise divergence is taken only with respect to
783 (x, y) , so that the final output is divergence-free in just those variables while depending freely on t .
784 In the case of the NS-Euler equations, the mass conservation for the density ρ is given by
785

786
$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = \text{div}_{(t,x,y)}(\rho, \rho \mathbf{u}) = 0. \quad (10)$$

787

788 To achieve this, the MLP parametrizes \mathbf{A} as a 3×3 antisymmetric matrix and the row-wise divergence
789 is taken with respect to all three variables (t, x, y) . While a divergence-free equation is guaranteed,
790 other constraints can be added via losses similar to those of the PINN model. Finally, we consider the
791 non-trivial case of the NCL model for the y -velocity equation in the Acoustics equations experiment
in Section 3.3, which reads
792

793
$$\frac{\partial v}{\partial t} + \frac{\partial p}{\partial y} = 0. \quad (11)$$

794

To achieve this, it is sufficient for the MLP to output a 2×2 antisymmetric matrix (which is
795 parametrized by only one output). Then, v and p can be calculated as
796

797
$$v = \text{div}_{(t,y)}(\mathbf{A}_{0.}) = \frac{\partial A_{00}}{\partial t} + \frac{\partial A_{01}}{\partial y},$$

798
$$p = \text{div}_{(t,y)}(\mathbf{A}_{1.}) = \frac{\partial A_{10}}{\partial t} + \frac{\partial A_{11}}{\partial y}. \quad (12)$$

799
800

801 This way, the vector field (v, p) predicted by the NCL depends on all three variables (t, x, y) , but is
802 divergence-free with respect to only (t, y) . While this example is still simple to write and involves 2
803 variables, the above process can be generalized to any number and type of coordinates and for every
804 possible subset of them.
805806 **B.2 SOBOLEV NORMS AND ALIGNMENT MODULES**
807808 In the mathematics literature, Sobolev spaces (Maz’ya, 2011) are the common choice to study and
809 prove the existence and uniqueness of solutions to PDE problems (Evans, 2022). From a theoretical
point of view, it is not enough to measure distances in the L^2 , especially for convergence results. In

addition, not all PDE problems admit smooth solutions, and a notion of weak derivative is needed; hence, the necessity to consider a more restrictive space, that is, the Sobolev space $W^{p,m}(\Omega)$ of functions $u(\mathbf{x})$ with bounded norm

$$\|u(\mathbf{x})\|_{W^{p,m}(\Omega)} = \|u(\mathbf{x})\|_{L^2(\Omega)} + \sum_{\ell=1}^m \|\mathrm{D}^\ell u(\mathbf{x})\|_{L^2(\Omega)}, \quad (13)$$

where $\mathrm{D}^\ell u(\mathbf{x})$ is the ℓ -th order differential of u . Weak derivatives of a function u are defined such that they resemble integration by parts for every possible test function $v \in C_c^\infty(\Omega)$ with compact support in Ω , that is

$$\int_{\Omega} \frac{\partial^{\alpha_1 + \alpha_2 + \dots + \alpha_h} u}{\partial x_1^{\alpha_1} \partial x_2^{\alpha_2} \partial \dots \partial x_h^{\alpha_h}} \cdot v \, dx^n = (-1)^{\alpha_1 + \dots + \alpha_h} \int_{\Omega} u \cdot \frac{\partial^{\alpha_1 + \alpha_2 + \dots + \alpha_h} v}{\partial x_1^{\alpha_1} \partial x_2^{\alpha_2} \partial \dots \partial x_h^{\alpha_h}} \, dx^n \quad (14)$$

Furthermore, while the derivatives and the boundary and initial conditions completely determine a function u , and are therefore sufficient to learn u (Trenta et al., 2025), information on u is not sufficient to determine its derivatives, which are fundamental for the dynamics and evolution of a system. In practice, using the Sobolev norm to train a neural network has been shown to improve the performance, especially with low data availability (Czarnecki et al., 2017). In the context of physical systems, the derivatives are fundamental to ensure the physical system is learned and also to ensure the correct transfer of physical information between models (Trenta et al., 2025). For these reasons, the alignment module must contain the derivatives of the networks to ensure that the dynamics of the system, predicted by the two networks, are coherent. This explains why the alignment module with only u (OUTL) performs so poorly compared to DERL and SOB.

B.3 PDE RESIDUALS AND PINNS

In this Section, we provide more details on PDEs and their residuals. A PDE of order d is, in general, an expression that involves one or more partial derivatives, up to order d of a function u :

$$\mathcal{F}[u] = F(u, \mathrm{D}u, \mathrm{D}^2u, \dots, \mathrm{D}^du) = 0. \quad (15)$$

In the linear case, for example, it can be written as

$$\mathcal{F}[u](\mathbf{x}) = f(\mathbf{x}) + a_0(\mathbf{x})u(\mathbf{x}) + \sum_{i=1}^n a_i(\mathbf{x}) \frac{\partial u}{\partial x_i}(\mathbf{x}) + \sum_{i=1}^n \sum_{j=1}^n a_{ij}(\mathbf{x}) \frac{\partial^2 u}{\partial x_i \partial x_j}(\mathbf{x}) + \dots \quad (16)$$

PINNs implement the PDE itself as a soft target in the loss. To do so, the PDE operator \mathcal{F} , which takes as input a function and outputs another function, which we aim to be null, is calculated on the MLP itself. Derivatives of the MLP $\hat{u}, \mathrm{D}\hat{u}, \dots$ are calculated using Automatic Differentiation (Baydin et al., 2018), and the function F is calculated with them, obtaining the current PDE residual of the MLP itself

$$\mathcal{F}[\hat{u}] = F(\hat{u}, \mathrm{D}\hat{u}, \mathrm{D}^2\hat{u}, \dots, \mathrm{D}^d\hat{u}). \quad (17)$$

The norm of this residual is calculated and used to optimize the network. Ideally, if this loss term is 0 or close to it, the model itself should satisfy the PDE. This is also why we analyze it in Section 3.4, to see how well a model is consistent with the underlying equation. Coupled with the loss for the initial and boundary conditions, this is the main component of a Physics-Informed Neural Network (Raissi et al., 2019).

B.4 GRADIENT-BASED REWEIGHTING

Gradient-based reweighting is a technique that automatically selects hyperparameters for the different loss terms based on the current gradient norm. We consider the approach described in Wang et al. (2023), where a model has parameters θ and loss function

$$\mathcal{L}_{\text{tot}}(\theta) = \lambda_{\text{IC}}\mathcal{L}_{\text{IC}}(\theta) + \lambda_{\text{BC}}\mathcal{L}_{\text{BC}}(\theta) + \lambda_{\text{PDE}}\mathcal{L}_{\text{PDE}}(\theta). \quad (18)$$

864 Then, the optimal weights are calculated as
 865

$$\begin{aligned}\hat{\lambda}_{\text{IC}} &= \frac{\|\nabla_{\theta} \mathcal{L}_{\text{IC}}\| + \|\nabla_{\theta} \mathcal{L}_{\text{BC}}\| + \|\nabla_{\theta} \mathcal{L}_{\text{PDE}}\|}{\|\nabla_{\theta} \mathcal{L}_{\text{IC}}\|}, \\ \hat{\lambda}_{\text{BC}} &= \frac{\|\nabla_{\theta} \mathcal{L}_{\text{IC}}\| + \|\nabla_{\theta} \mathcal{L}_{\text{BC}}\| + \|\nabla_{\theta} \mathcal{L}_{\text{PDE}}\|}{\|\nabla_{\theta} \mathcal{L}_{\text{BC}}\|}, \\ \hat{\lambda}_{\text{PDE}} &= \frac{\|\nabla_{\theta} \mathcal{L}_{\text{IC}}\| + \|\nabla_{\theta} \mathcal{L}_{\text{BC}}\| + \|\nabla_{\theta} \mathcal{L}_{\text{PDE}}\|}{\|\nabla_{\theta} \mathcal{L}_{\text{PDE}}\|}.\end{aligned}\quad (19)$$

873 This formulation generalizes easily to multiple PDE terms and the alignment term.
 874

875 B.5 ADAPTIVE POINT RESAMPLING (RAR) 876

877 For our adaptive point resampling, we consider RAR (Wu et al., 2023). After a certain number of
 878 iterations, the PDE residuals of the system are calculated on a grid of points. For each PDE, the k
 879 points with the highest residual are collected and added to the training data.
 880

881 C IMPLEMENTATION DETAILS 882

883 In this section, we provide details on the practical implementation of the CP model, from the
 884 discretization of the losses to the computational times and the tuning process.
 885

886 C.1 LOSS DISCRETIZATION 887

888 Since it is not possible to calculate the true L^2 losses and distances for the models, we discretize
 889 them as is usually done in the literature. In general, we assume to have 4 datasets:
 890

- 891 • The first one contains N_D points in the interior of the spatio-temporal domain $[0, T] \times \Omega$
 892 with no given supervised targets:

$$\mathcal{D}_D = \{(t_i, \mathbf{x}_i), t_i \in [0, T], \mathbf{x}_i \in \Omega, i = 1, \dots, N_D\}. \quad (20)$$

893 Points in this dataset are often called *collocation points* in literature and are used in the PDE
 894 and alignment loss. The intuition is that, if these losses are close to zero, the model satisfies
 895 the PDE (or the networks are aligned) for sufficient points in the interior of the domain. The
 896 PDE residual loss is then approximated as
 897

$$\|\mathcal{F}[\hat{u}]\|_{L^2([0,T] \times \Omega)}^2 \approx \frac{1}{N_D} \sum_{i=1}^{N_D} \|\mathcal{F}[\hat{u}](t_i, \mathbf{x}_i)\|^2, \quad (21)$$

902 while the alignment loss components are discretized in a similar way
 903

$$\|\hat{u}_1 - \hat{u}_2\|_{L^2([0,T] \times \Omega)}^2 \approx \frac{1}{N_D} \sum_{i=1}^{N_D} \|\hat{u}_1(t_i, \mathbf{x}_i) - \hat{u}_2(t_i, \mathbf{x}_i)\|^2, \quad (22)$$

$$\|\mathbf{D}^\ell \hat{u}_1 - \mathbf{D}^\ell \hat{u}_2\|_{L^2([0,T] \times \Omega)}^2 \approx \frac{1}{N_D} \sum_{i=1}^{N_D} \|\mathbf{D}^\ell \hat{u}_1(t_i, \mathbf{x}_i) - \mathbf{D}^\ell \hat{u}_2(t_i, \mathbf{x}_i)\|^2.$$

- 910 • The second one contains N_I points in the domain Ω at time $t = 0$ and is used to enforce the
 911 initial condition $u(0, \mathbf{x}) = g(\mathbf{x})$:

$$\mathcal{D}_I = \{(0, \mathbf{x}_i), g(\mathbf{x}_i)), \mathbf{x}_i \in \Omega, g(\mathbf{x}_i) \in \mathbb{R}^n, i = 1, \dots, N_I\}. \quad (23)$$

915 The IC loss is then discretized as
 916

$$\|\hat{u} - g\|_{L^2(\Omega)}^2 \approx \frac{1}{N_I} \sum_{i=1}^{N_I} \|\hat{u}(0, \mathbf{x}_i) - g(\mathbf{x}_i)\|^2 \quad (24)$$

918
919
Table 4: Time in seconds required for one step of training.
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Model	Taylor-Green vortex	Kovasznay flow	Acoustics	Euler gas	MaghetoHydroDynamics
PINN	0.0420	0.0480	0.0210	0.2097	0.1093
NCL	0.1807	0.1174	0.0618	0.6889	0.2553
2xPINN (OUTL)	0.1034	0.0840	/	0.2884	/
2xPINN (SOB)	0.1069	0.0947	/	0.3281	0.1657
2xPINN (DERL)	0.1039	0.0933	/	0.3101	0.1611
PI+NCL (OUTL)	0.1431	0.1562	/	0.5795	/
PI+NCL (SOB)	0.1483	0.1543	/	0.6584	/
PI+NCL (DERL)	0.1413	0.1626	/	0.6563	/
2xNCL (SOB)	/	/	/	0.6896	/
2xNCL (DERL)	/	/	/	0.6858	/
3xPINN (OUTL)	/	/	0.0854	0.4366	/
3xPINN (SOB)	/	/	0.0898	0.4366	0.2025
3xPINN (DERL)	/	/	0.0888	0.4120	0.2002
3xNCL (OUTL)	/	/	0.1222	/	/
3xNCL (SOB)	/	/	0.0621	/	/
3xNCL (DERL)	/	/	0.0699	/	/
4xPINN (SOB)	/	/	/	/	0.2341
4xPINN (DERL)	/	/	/	/	0.2207

- The third one contains N_B points on the boundary $\partial\Omega$ and for different times in $[0, T]$. It is used to enforce the boundary conditions $\mathcal{B}[u](t, \mathbf{x}) = b(t, \mathbf{x})$:

$$\mathcal{D}_I = \{((t_i, \mathbf{x}_i), b(t_i, \mathbf{x}_i)), t_i \in [0, T], \mathbf{x}_i \in \Omega, b(t_i, \mathbf{x}_i) \in \mathbb{R}^n, i = 1, \dots, N_B\}. \quad (25)$$

Boundary conditions can be of many forms, such as Dirichlet BC, which impose $u(t, \mathbf{x}) = b(t, \mathbf{x})$, or Neumann BC, which impose a condition on the derivative $(\nabla u \cdot \hat{\mathbf{n}})(t, \mathbf{x}) = b(t, \mathbf{x})$, where $\hat{\mathbf{n}}$ is the normal vector at the boundary. The loss, in this example for Dirichlet conditions, is then discretized as

$$\|\mathcal{B}[\hat{u}] - b\|_{L^2([0, T] \times \partial\Omega)}^2 \approx \frac{1}{N_B} \sum_{i=1}^{N_B} \|\hat{u}(t_i, \mathbf{x}_i) - b(t_i, \mathbf{x}_i)\|^2 \quad (26)$$

- The last one, used only at evaluation, contains a set of points in the spacetime domain (t_i, \mathbf{x}_i) and the corresponding true solution of the system $u(t_i, \mathbf{x}_i)$:

$$\mathcal{D}_S = \{((t_i, \mathbf{x}_i), u(t_i, \mathbf{x}_i)), t_i \in [0, T], \mathbf{x}_i \in \Omega, u(t_i, \mathbf{x}_i) \in \mathbb{R}^n, i = 1, \dots, N_S\}. \quad (27)$$

This dataset is used to compare the final solution of the models against a true target, never seen during training. In this case, the loss is discretized as usual with

$$\|u - \hat{u}\|_{L^2([0, T] \times \Omega)}^2 \approx \frac{1}{N_S} \sum_{i=1}^{N_S} \|u(t_i, \mathbf{x}_i) - \hat{u}(t_i, \mathbf{x}_i)\|^2 \quad (28)$$

C.2 COMPUTATIONAL TIME AND RESOURCES

In Table 4, we provide a comparison of the computational times of the different methods on all experiments. We reported the time to perform one epoch of training for each experiment. All models were trained on a single NVIDIA H100 GPU with 80GB of memory.

C.3 MODEL ARCHITECTURES

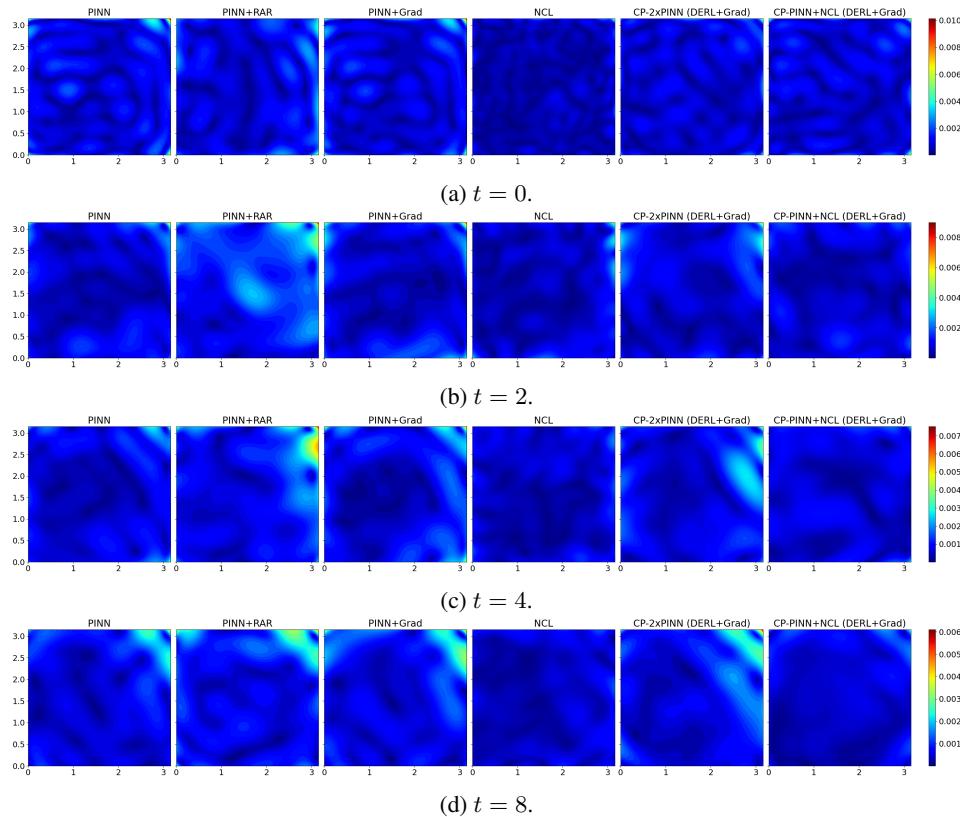
We report the architectures of the models employed in Table 5.

D ADDITIONAL RESULTS

In this Appendix, we provide further experimental details and results for the experiments in Sections 3 and 4.

Table 5: MLP architectures used in the experiment.

Model	Taylor-Green vortex	Kovasznay flow	Acoustics	Euler gas	MaghetoHydroDynamics
PINN					
Layers and units	2x64	4x64	4x64	8x512	8x256
Activation	Tanh	Tanh	Tanh	Tanh	Tanh
NCL					
Layers and units	2x64	4x64	4x64	8x512	8x256
Activation	SoftMax	SoftMax	SoftMax	SoftMax	SoftMax
CP-PINN modules					
Layers and units	2x64	4x64	4x64	8x256	8x256
Activation	Tanh	Tanh	Tanh	Tanh	Tanh
CP-NCL modules					
Layers and units	2x64	4x64	4x64	8x256	8x256
Activation	SoftMax	SoftMax	SoftMax	SoftMax	SoftMax

Figure 6: Taylor-Green vortex. Model pointwise error for the solution (\mathbf{u}, p) . Only the best alignment for each module choice is shown.

D.1 TAYLOR-GREEN VORTEX

The analytical solution of the Taylor-Green vortex (Chorin, 1968) used in our experiment is given by

$$\mathbf{u}(x, y, t) = [\sin x \cos y, -\cos x \sin y]^\top e^{-2\nu t}, \quad p(x, y, t) = \frac{1}{4}(\cos(2x) + \cos(2y))e^{-4\nu t}. \quad (29)$$

Figure 6 shows the model errors at different times.

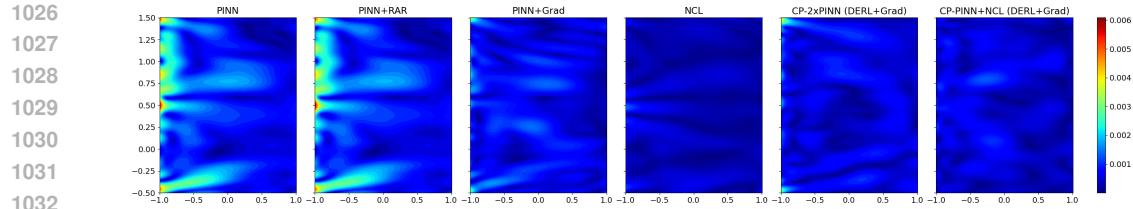


Figure 7: Kovasznay flow experiment. Prediction errors for PINN (and its variations), NCL, and CP models (one for each combination of modules). The lowest errors are in blue.

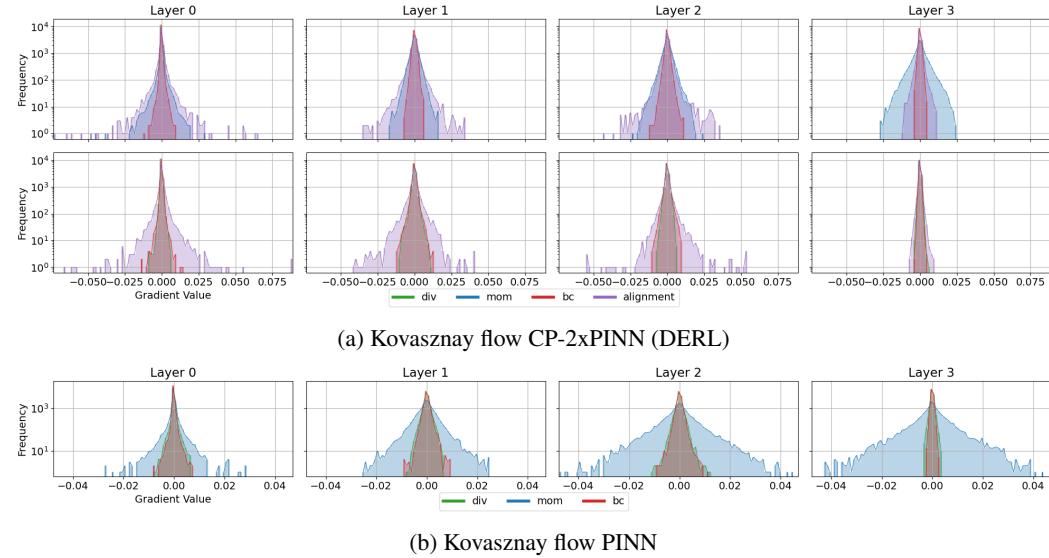


Figure 8: Gradient histograms. Each plot contains the histograms for the distribution of the gradients propagated at each layer of CP and PINN at the beginning of training, similarly to Wang et al. (2021).

D.2 KOVASZNAY FLOW

The analytical solution to the Kovasznay flow (Drazin & Riley, 2009) is given by

$$\mathbf{u}(x, y) = \left[1 - e^{\lambda x} \cos(2\pi y), \frac{\lambda}{2\pi} e^{\lambda x} \sin(2\pi y) \right]^\top, \quad p(x, y) = \frac{1}{2} (1 - e^{2\lambda x}), \quad (30)$$

where $\lambda = \frac{1}{2\nu} - \sqrt{\frac{1}{4\nu^2} + 4\pi^2}$. In this case, the vorticity is given by $\omega = \frac{\lambda}{\nu} e^{\lambda x} \frac{\sin(2\pi y)}{2\pi}$. Figure 7 shows the errors of the employed models in the domain.

Gradient Analysis. Here, we provide a similar analysis to the one in Section 3.4 for the Kovasznay flow experiment, comprising 2 equations and 2 modules. Figures 8a and 8b show the distribution of the propagated gradients in a training step at the different layers of the MLP, respectively for the CP-2xPINN (each row is a module) and PINN models. The gradients for each loss term are represented with a different color. We clearly see the effect of learning the system in a compositional manner: the distribution histograms of the gradients of the loss terms are much more aligned than in the PINN model. This means that each loss can be learned more effectively without additional regularization (Wang et al., 2021).

D.3 ACOUSTICS EQUATIONS

The initial condition of the Acoustics experiment in Section 3.3 is given by

$$p(0, x, y) = 1 + \cos \left(\frac{\pi}{0.2} (\sqrt{x^2 + y^2} - 0.5) \right), \quad |\sqrt{x^2 + y^2} - 0.5| < 2, \quad (31)$$

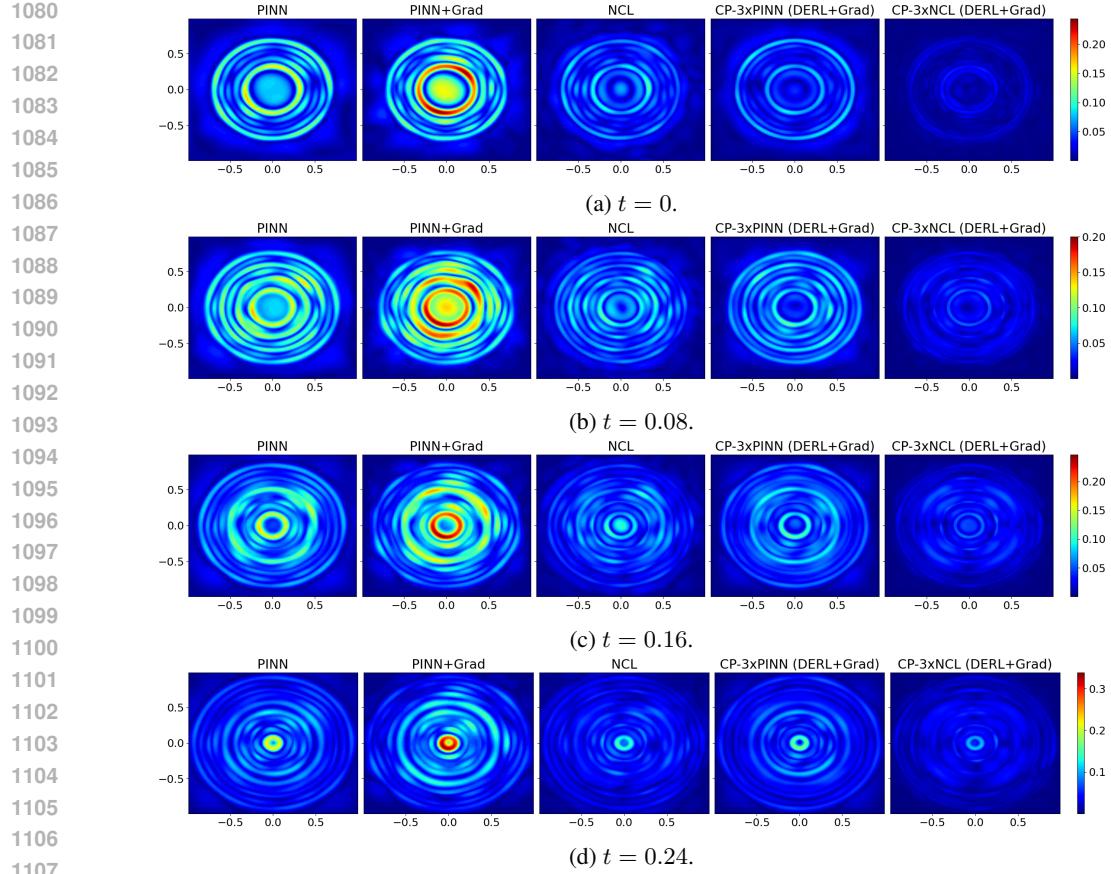


Figure 9: Acoustics equations. Model pointwise error for the solution (p, u, f) . Only the best alignment for each module choice is shown.

and null velocities in the whole square. Figure 9 shows the model errors at different times.

D.4 NS-EULER GAS EQUATIONS

We provide further details on the setup of the experiment in Section 4.1. The initial conditions are given by

$$\rho_0(x, y) = (\sin(2\pi x) + \sin(2\pi y))^2 + 1, \quad \mathbf{u}_0(x, y) = \left[e^{\sin(2\pi y)}, e^{\sin(2\pi x)}/2 \right]^\top, \quad (32)$$

To embed points from the 2D unit square $[0, 1]^2$ to the two-dimensional torus \mathbb{T} , the following function is used:

$$i : [0, 1]^2 \rightarrow \mathbb{T}^2, \quad i(x, y) = (\cos(2\pi x), \sin(2\pi x), \cos(2\pi y), \sin(2\pi y)), \quad (33)$$

which also automatically imposes periodic boundary conditions on the square.

Figure 10 shows the model errors at different times. We can see that the PINN and NCL models suffer in certain regions of the domain, while our models do not. In this case, Gradient-based reweighting worsens the performance of PINNs.

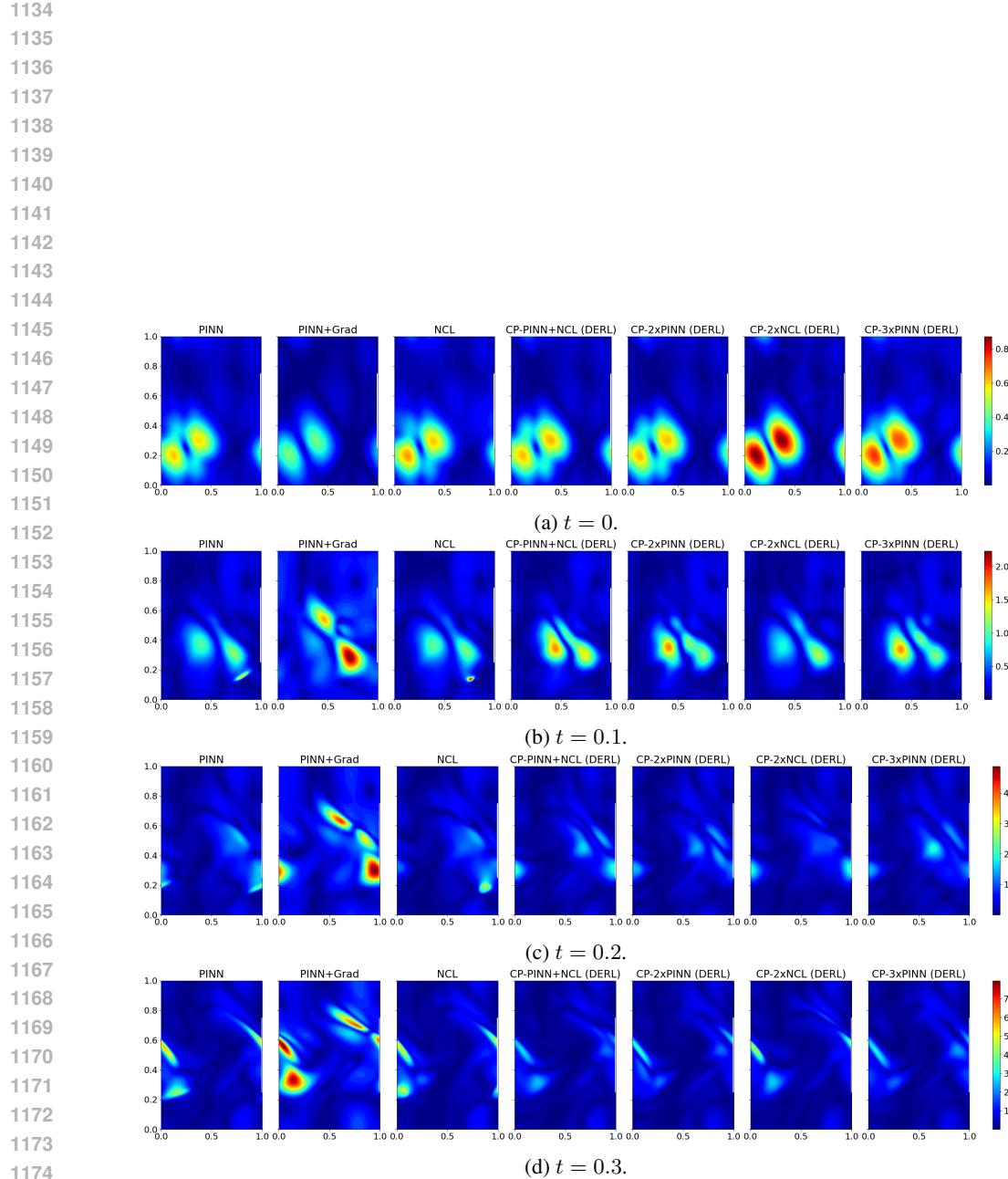


Figure 10: NS-Euler gas equations. Model pointwise error for the solution (ρ, \mathbf{u}, p) . Only the best alignment for each module choice is shown.

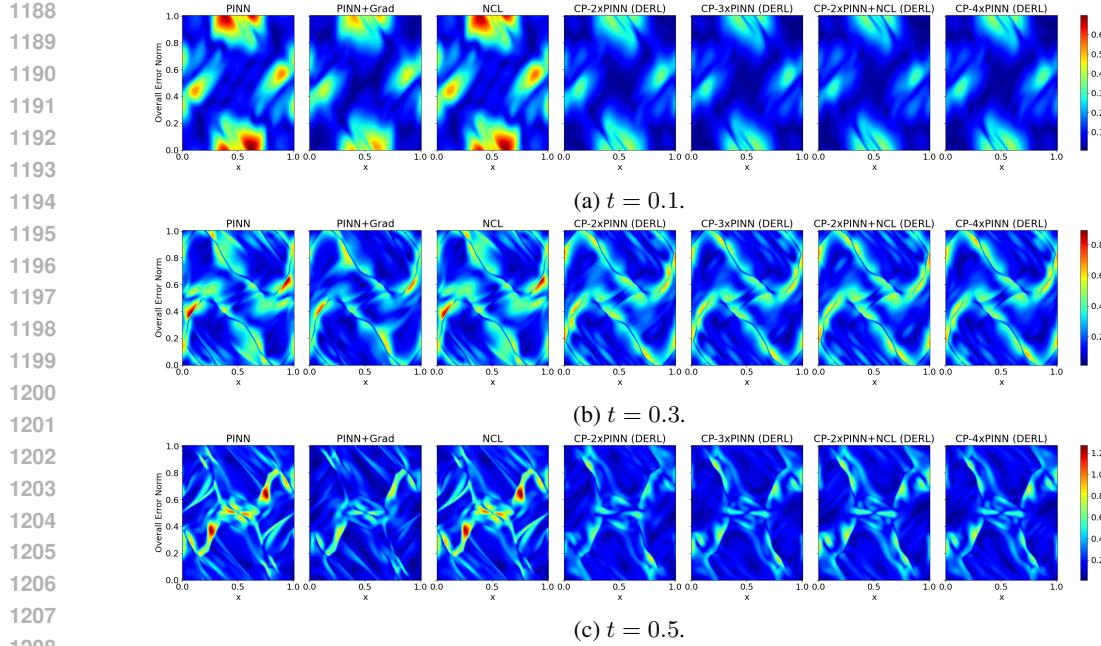


Figure 11: MHD equations. Model pointwise error for the solution.

D.5 MAGNETOHYDRODYNAMICS

Here, we provide additional details on the experiment in Section 4.2. The initial condition is given by

$$\begin{aligned}
 \rho(0, x, y) &= \frac{\gamma^2}{4\pi} \\
 \mathbf{u}(0, x, y) &= [-\sin(2\pi y), \sin(2\pi x)] \\
 P(0, x, y) &= \frac{\gamma}{4\pi} \\
 A(0, x, y) &= \frac{\cos(4\pi x)}{4\pi\sqrt{4\pi}} + \frac{\cos(2\pi y)}{2\pi\sqrt{4\pi}} \\
 \mathbf{B}(0, x, y) &= \nabla \times A
 \end{aligned} \tag{34}$$

where $A(t, x, y)$ is the magnetic potential (Gruber & Rappaz, 1985). Similar to the NS-Euler experiment in Section 4.1, to satisfy the periodic boundary condition, we embed the square domain $[0, 1] \times [0, 1]$ in the two-dimensional torus \mathbb{T} with equation 33 from Appendix D.4. The data generation is done as in Gopakumar et al. (2025).

Figure 11 shows the prediction errors of the models in the domain at different times in $[0, 0.5]$.

E FURTHER ANALYSIS ON THE ALIGNMENT MECHANISM

Loss curves. We start by showing how the alignment loss, the prediction error, and the PDE residuals for transferred constraints are related to each other in practical examples. Figure 12 reports smoothed loss curves for the CP models on the Acoustic equation experiment of Section 3.3. These losses are calculated on the inference module, which learns equation (A.P) in table 1, but never learns equations (A.Vx) and (A.Vy) directly. These PDEs are learned by the other two modules. The inference module learns to satisfy these constraints only by aligning with the other two modules. Figure 13 shows smoothed loss curves for the CP models on the Kovasznay flow experiment in a similar manner.

We now investigate how well the modules are aligned during training by keeping track of their prediction errors for the common variables during the whole training process. This shows us how

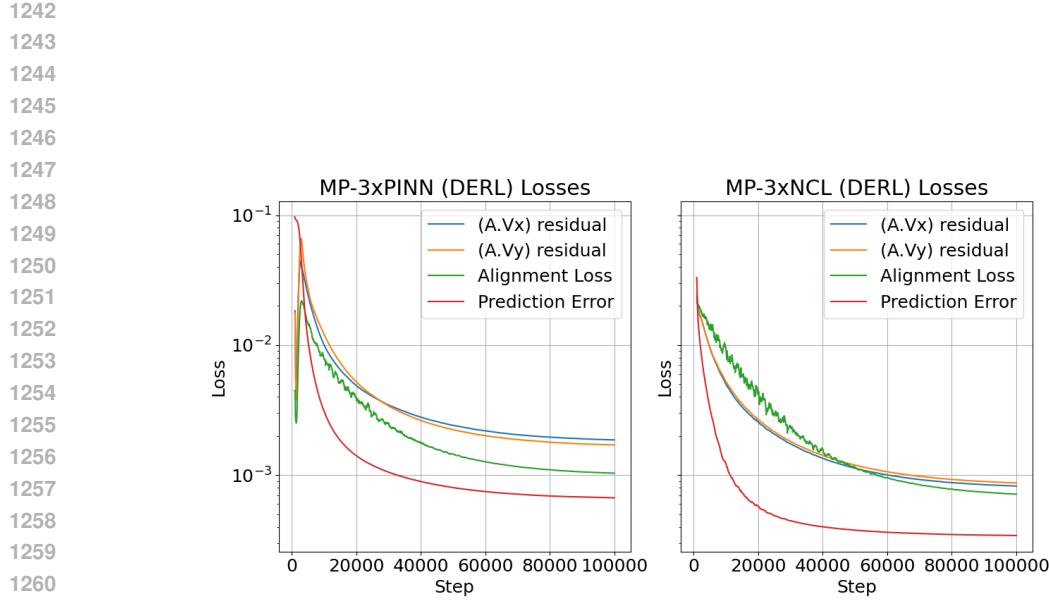


Figure 12: Smoothed loss curves of CP models on the Acoustic equation experiments. Losses are calculated on the inference module, which never learns equations (A.Vx) and (A.Vy) directly.

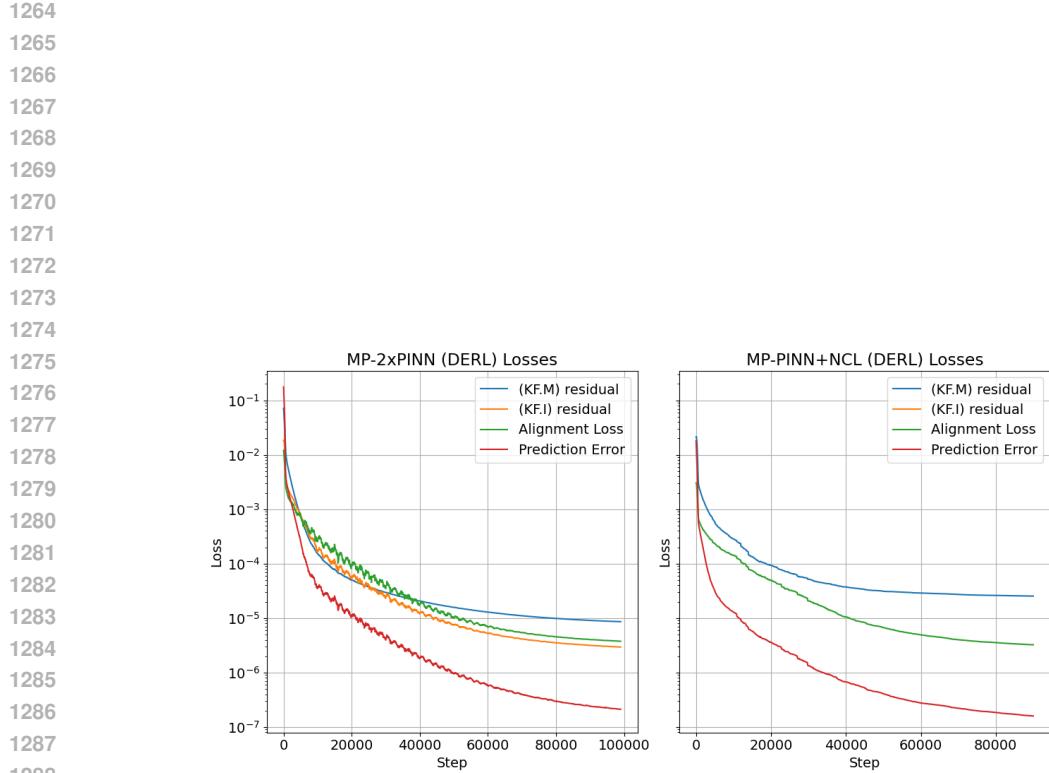
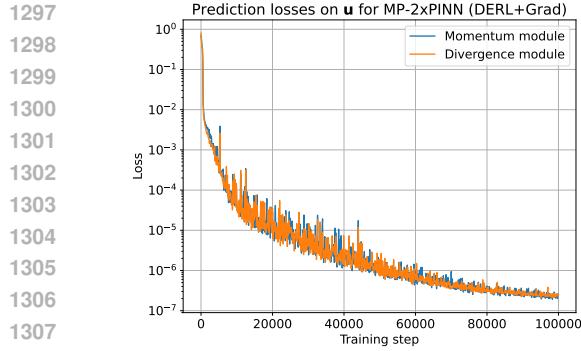
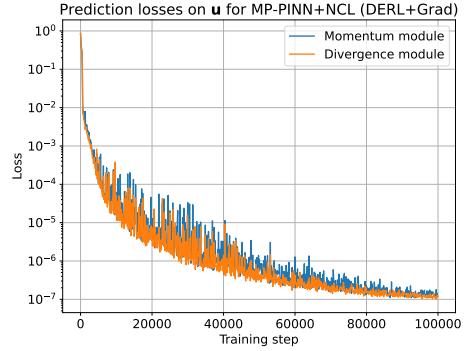


Figure 13: Smoothed loss curves of CP models on the Kovasznay flow experiment. Losses are calculated on the inference module, which never learns equation (KF.I) directly.

1296



(a) CP-2xPINN



(b) CP-PINN+NCL

Figure 14: Prediction errors on the shared variables for the CP modules on the Kovasznay flow experiment

well their predictions are aligned during the whole process. If the alignment mechanism is working as desired, the loss curves should be very similar, meaning that the two modules are working as one and learning together. For the Kovasznay flow experiment, we report the errors for \mathbf{u} for the Momentum and divergence modules in Figure 14, for both the CP-2xPINN and CP-PINN+NCL models with DERL alignment and gradient-based reweighting. For the Acoustic equations experiment, we have that the pressure and velocity x modules share the variables (p, u) , while the pressure and velocity y modules share (p, v) . Hence, we have three plots: one shows the prediction errors for all three modules on p , one shows the prediction errors for the first and second module on (p, u) , and the third shows the precision errors for the first and third module on (p, v) . These results are available in Figure 15 for both the CP-3xPINN and CP-3xNCL models with DERL alignment and gradient-based reweighting.

These plots clearly indicate that the losses are very similar throughout the whole training process, indicating that the alignment mechanism is making the modules collaborate closely to obtain the final solution.

Measuring discrepancies. We now show from a numerical point of view how close the functions predicted by different modules are in practical terms. We perform an additional test on the Kovasznay Flow and Taylor-Green experiments from Section 3. At the end of training, we predict the solution for the variable \mathbf{u} , which is a vector containing the x and y components of the fluid velocity, shared among the two modules of the CP models. We measure the following quantities:

- The L^2 distance between the two modules, normalized with respect to the true solution norm $\frac{\|\mathbf{u}_{\text{module 1}} - \mathbf{u}_{\text{module 2}}\|_2}{\|\mathbf{u}_{\text{true}}\|_2}$: this indicates how different are the two predicted solutions, scaled to the magnitude of the true function.
- For a point-wise comparison, we consider the symmetrized Percentage Error: for each point in the domain, we calculate $\frac{2\|\mathbf{u}_{\text{module 1}}(t, x) - \mathbf{u}_{\text{module 2}}(t, x)\|}{\|\mathbf{u}_{\text{module 1}}(t, x)\| + \|\mathbf{u}_{\text{module 2}}(t, x)\|}$ which measures how far are the two predictions compared to each other. We then calculate the mean and maximum value.

We perform this test for both the CP-2xPINN and CP-PINN+NCL models. Results are available in Table 6. From the scale of the metrics, we conclude that the difference between the two modules is negligible compared to the scale of the solution or with respect to each other. We have not observed any cases where the modules disagree with each other, as they are practically the same function when it comes to predicting the solution.

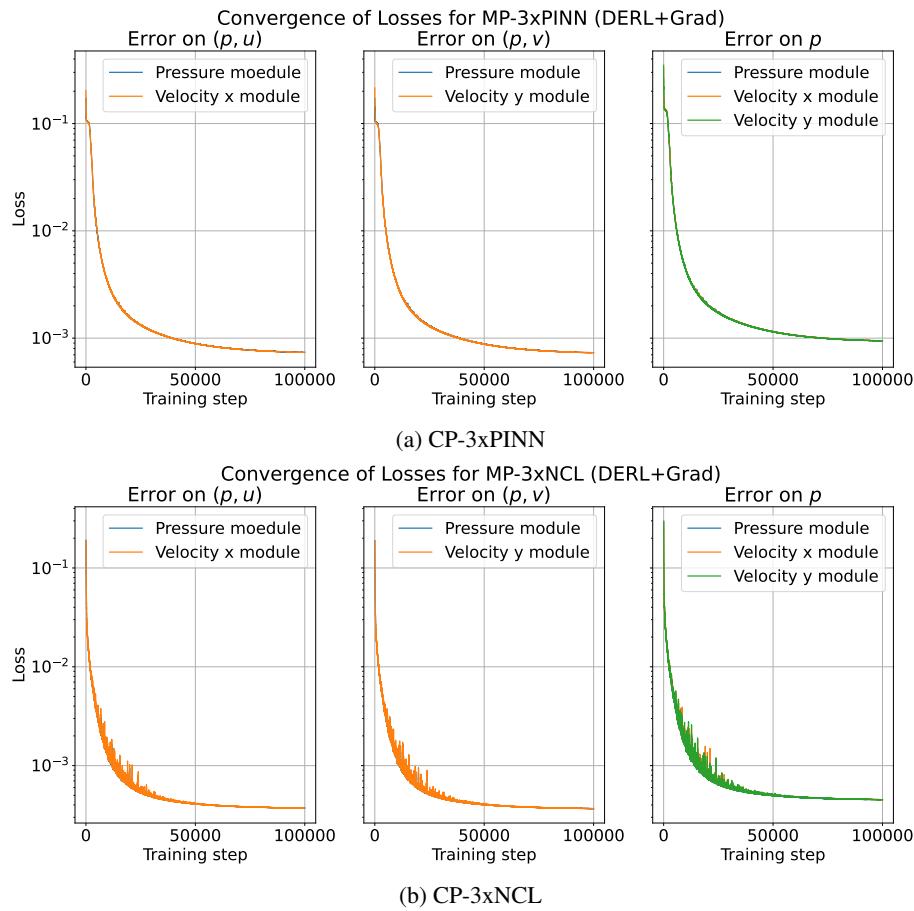


Figure 15: Prediction errors on the shared variables for the CP modules on the Acoustic equation experiment

Table 6: Normalized L^2 distance and symmetrized Percentage Error metrics for the modules on predicting u in the Kovasznay flow and Taylor Green vortex experiments.

Kovasznay Flow Experiment			
Model	Normalized L^2 distance	Mean sPE	Max sPE
CP-2xPINN (DERL+Grad)	$\times 10^{-4}$	$\times 10^{-7}$	$\times 10^{-6}$
CP-PINN+NCL (DERL+Grad)	2.758	6.095	2.954
Taylor-Green vortex Experiment			
Model	Normalized L^2 distance	Mean sPE	Max sPE
CP-2xPINN (DERL+Grad)	$\times 10^{-4}$	$\times 10^{-7}$	$\times 10^{-6}$
CP-PINN+NCL(DERL+Grad)	8.910	2.762	2.102
	10.47	3.187	4.693

1404 Table 7: Results for different values of λ_{align} on two CP models.
1405

1406 Acoustic equations		
1407 CP-3xNCL (DERL)	1408 <i>L</i> ² error $\times 10^{-5}$	1409 max error $\times 10^{-1}$
1410 $\lambda_{\text{align}} = 1$	5.165	1.547
1411 $\lambda_{\text{align}} = 0.1$	3.164	1.257
1412 $\lambda_{\text{align}} = 0.01$	2.460	1.089
1413 $\lambda_{\text{align}} = 10.$	12.46	4.388

1414 Table 8: Results for the Acoustic equation experiment where NCL and PINN have the same parameter
1415 budget of CP during training. In these cases, PINN and NCL have 3 times the number of parameters
1416 of CP during inference.
1417

1418 Acoustic equations		
1419 Model	1420 <i>L</i> ² error $\times 10^{-5}$	1421 max_err $\times 10^{-1}$
1422 PINN	5.671	1.462
1423 NCL	2.940	1.169
1424 CP-3xNCL (DERL+Grad)	2.718	1.121

1425

F ABLATIONS

1426

Alignment coefficient λ_{align} . We experimented with different values of λ_{align} to analyze the sensitivity of CP with respect to this hyperparameter. We test values of λ_{align} between 0.01 and 10. Results for the Acoustics experiment (CP-3xNCL model with DERL alignment) are available in table 7

1427

1428 As we can see, λ_{align} regulates the importance of the alignment between models. While its influence depends on the specific task and modules, the $\lambda_{\text{align}} = 1$ works well on average in all benchmarks. Highly specialised tuning of the hyperparameter can lead to modest improvement, as in the acoustic equation case above.

1429

Number of parameters in the baselines. Since the CP model employs more than one MLP during training, the total number of parameters during this phase is increased. At inference, where the models can be used indefinitely, CP uses a single module, and hence will have the same number of parameters and expressiveness as an NCL or PINN module. In this ablation, we increase the number of units in the NCL and PINN layers to match the parameter budget of the CP model during training. We experimented with the Acoustics equations and the CP model with 3 NCL modules. We remark that, during inference, this means that PINN and NCL will use 3 times the parameters of CP. Results are available in Table 8. As we can see, our models perform better even though they use fewer parameters during inference, further showing the importance of modularization in these applications.

1430

Statistical Significance. To show robustness with respect to different initialization and stochasticity in optimization, we perform additional runs with different seeds on the Acoustic equations experiment. We experiment with the PINN and NCL baselines as well as the CP-3xNCL model DERL alignment and Gradient based reweighting. Results averaged over three seeds are available in Table 9.

1431

1432 As we can see, the results clearly indicate that the our CP model with 3 NCL modules is still the best model by far, with lower L^2 and maximum errors in the domain. Furthermore, the standard deviations are smaller, indicating more robustness to different initializations.

1433

G FURTHER THEORETICAL DISCUSSION

1434

1435 In this Section, we provide additional theoretical understandings and intuitive insights on why our modular approach is easier to optimize compared to a PINN model.

1458 Table 9: Results for the Acoustic equation experiments with different seeds. Results are averaged
 1459 over 3 runs. We report mean and standard deviations.

Acoustic equations		
Model	L^2 error	max_err
	$\times 10^{-5}$	$\times 10^{-1}$
PINN	5.090 ± 0.859	2.247 ± 0.413
NCL	3.540 ± 0.431	1.610 ± 0.082
CP-3xNCL (DERL)	1.723 ± 0.173	1.091 ± 0.088

1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470 **On the difference between PDE residual terms and alignment losses** A PDE residual term
 1471 imposes constraints that link together the partial derivatives of an MLP. For example, a PDE such
 1472 as $\frac{\partial u}{\partial t} - \lambda \cdot \nabla u = 0$ imposes that the time derivative of the network must be equal to a linear
 1473 combination of the spatial ones. As observed in Krishnapriyan et al. (2021), this type of constraint is
 1474 often ill-conditioned and can lead to numerical instabilities. The same work also shows that these
 1475 PDE terms can produce a very complex and non-smooth loss landscape. Hence, our idea is to avoid
 1476 as much as possible to combine multiple PDE losses in a single MLP. ComPhy tackles subproblems
 1477 (simpler than the whole system) in each model, and then transfers information across models through
 1478 alignment.

1479 The alignment loss, on the other hand, does not link together the partial derivatives or the outputs
 1480 of an MLP. Instead, it uses the derivatives or outputs of one module as a target for those of another
 1481 module in a supervised manner (to be precise, this is similar to a distillation between the two models).
 1482 Hence, we expect this type of loss to reduce the complexity of the problem and to simplify the
 1483 optimization process.

1484 **Physical constraints and properly aligned modules.** When two models are properly aligned,
 1485 that is, when the SOB or DERL alignment loss is close to zero, the functions predicted by the modules
 1486 are very close in the Sobolev $W^{1,2}$ space (Trenta et al., 2025). As an example, we use the one in
 1487 Section 2.3 on the Navier-Stokes equations. After training, module 1 has learned the momentum
 1488 equation, while module 2 has learned the divergence equation. Since $\mathbf{u}_{\text{module 1}} \approx \mathbf{u}_{\text{module 2}}$ and
 1489 $D\mathbf{u}_{\text{module 1}} \approx D\mathbf{u}_{\text{module 2}}$, if we calculate the divergence of module 1, we can say that $\nabla \cdot \mathbf{u}_{\text{module 1}} \approx$
 1490 $\nabla \cdot \mathbf{u}_{\text{module 2}} \approx 0$. This means that a correct alignment allows module 1 to satisfy the divergence
 1491 equation because module 2 does so. This intuitively provides a reason why module 1 is still capable
 1492 of learning the system while seeing only one equation. We experimentally validated this claim in
 1493 Appendix E.

1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511