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ABSTRACT

Real-world phenomena typically involve multiple, interwoven dynamics that can be
elegantly captured by systems of Partial Differential Equations (PDEs). However,
accurately solving such systems remains a challenge. In this paper, we introduce
ComPhy (CP), a novel modular framework designed to leverage the inherent physi-
cal structure of the problem to solve systems of PDEs. CP assigns each PDE to a
dedicated learning module, each capable of incorporating state-of-the-art method-
ologies such as Physics-Informed Neural Networks or Neural Conservation Laws.
Crucially, CP introduces an end-to-end alignment mechanism, explicitly designed
around the physical interplay of shared variables, enabling knowledge transfer
between modules, and promoting solutions that are the result of the collective effort
of all modules. CP is the first approach specifically designed to tackle systems of
PDEs, and our results show that it outperforms state-of-the-art approaches where a
single model is trained on all PDEs at once.

1 INTRODUCTION

Machine Learning is rapidly developing as a new tool to solve dynamical and physical systems,
particularly for Partial Differential Equations (PDEs). These methodologies have applications in
real-world problems, including weather prediction (Pathak et al., 2022), fluid modeling (Zhang
et al., 2024), quantum mechanics (Mo et al., 2022), and molecular dynamics (Behler & Parrinello,
2007). While standard supervised methods require a classical solver or real sensors to gather data
and train the model, unsupervised approaches can solve systems of PDEs solely from their definition.
Physics-Informed Neural Networks (PINNs, Raissi et al. (2019)) are considered one of the most
promising approaches for physical and scientific applications. Neural Conservation Laws (NCL,
(Richter-Powell et al., 2022)) represent an alternative approach that guarantees a solution with zero
divergence with respect to the inputs. We formally introduce PINN and NCL in Section 2.2.

When considering systems of PDEs, current approaches add a loss term for each PDE. However, this
approach can be unstable and produce unwanted results. For example, PINNs often fail to converge
(Krishnapriyan et al., 2021; Wang et al., 2022) or to capture the turbulent effects that characterize
fluids (Sun et al., 2020; Xiang et al., 2022). Some workarounds require reweighting the loss at each
epoch (Wang et al., 2021; Xiang et al., 2022; McClenny & Braga-Neto, 2023), enforcing boundary
conditions (Sun et al., 2020), or dividing the spatial and temporal domains into subdomains (Jagtap
et al., 2020; Kharazmi et al., 2021; Meng et al., 2020; Krishnapriyan et al., 2021). However, most of
these approaches are not specifically designed for systems of PDEs, or only focus on a specific one.

In this work, we introduce ComPhy (CP), a multi-module approach to solve systems of PDEs by i)
allocating one learning module for each PDE and ii) leveraging the physical structure of the problem
to align modules that learn the same physical variable(s). CP can be applied to any system of PDEs,
and the learning modules can be chosen among any of the existing approaches (we experimented with
PINNs and NCL). Intuitively, each CP module solves a simpler problem than the overall system, while
our end-to-end alignment process integrates the knowledge from all modules to devise a collective
solution. Practically, the alignment encourages the outputs of different modules representing the same
physical quantity to be similar. We propose several alignment losses, highlighting the role played by
the derivatives in transferring physical knowledge between models (Trenta et al., 2025).

While the training phase involves all learning modules, during inference CP uses the minimum
number of modules needed to predict all relevant variables. Most of the time, one module is sufficient.
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Figure 1: Visual representation of ComPhy for the Navier-Stokes equations. Each module (in this
case, PINN or NCL) learns one PDE. The derivatives of each module, computed with Automatic
Differentiation (AD) (Baydin et al., 2018), are used to optimize each PDE and to align the other
module. CP only uses the first module for inference as it predicts all the variables of the system.

We show that CP achieves state-of-the-art performance, outperforming alternatives where a single
learning module is trained on all the equations of the system.

Our contributions are: (i) ComPhy, a new methodology to solve systems of PDEs by allocating
one module for each equation while aligning modules that learn the same physical information.
(ii) We introduce and evaluate three different alignment approaches. (iii) We evaluate several CP
configurations on case studies involving systems of two and three PDEs. We achieve state-of-the-art
results in all cases. We analyze the backpropagated gradients through the modules, showing why CP
trains better than PINNs. (iv) We evaluate CP on two challenging real-world physical systems with 3
and 5 equations, achieving state-of-the-art results.

2 COMPHY

We introduce ComPhy, our end-to-end and modular approach for solving systems of PDEs. Our
approach involves: (i) learning each PDE with a single module while (ii) constraining and refining
the learning process of each module through shared knowledge and exchange of physical information.
In particular, the second point is implemented via an alignment loss between the modules.

2.1 METHODOLOGY

To set the stage, let us consider points x sampled from a spatial domain Ω ⊆ Rn with time in the
interval [0, T ]. We call ∂Ω the boundary of the domain Ω. We define a system of N PDEs by

Fi[u] = 0, (PDE i) for i = 1, . . . , N

B[u] = b(t,x), (BC)
u(0,x) = g(x), (IC)

(1)

where u(t,x) is the solution to the system of N PDEs. A necessary condition for the existence
and uniqueness of a solution (Evans, 2022) is to provide the initial condition (IC) u(0,x) = g(x),
as well as the boundary condition (BC) B[u] = b(t,x). The PDEs must be satisfied for every
(t,x) ∈ [0, T ]× Ω, the IC for every x ∈ Ω, while the BC for every (t,x) ∈ [0, T ]× ∂Ω.

State-of-the-art models like PINNs may suffer from optimization problems when multiple PDEs
are involved (Sun et al., 2020; Wang et al., 2022), due to the ill-conditioning and the complex loss
landscape of PDE residual terms (Krishnapriyan et al., 2021), which can lead to strong imbalances
in the gradient norms of the different loss terms (Wang et al., 2022). ComPhy avoids this issue
by using different modules to optimize the different PDEs of the system separately. This makes
each optimization problem simpler than solving the whole system, while cross-PDE information is
acquired through alignment. In the CP modular architecture, each network takes as input the same
coordinates (t,x) and predicts the relevant variables in its equation. Modules can sometimes solve
more than one equation, but no module solves the whole system. Each module learns the IC, BC, and

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

the PDE(s) of interest through the weighted sum of the respective loss terms:

Lmodule i =λBCLBC + λICLIC + λPDE iLPDE i

=λBC∥û(t,x)− b(t,x)∥2L2([0,T ]×∂Ω) + λIC∥û(0,x)− g(x)∥2L2(Ω) + λPDE iLPDE i.
(2)

The loss term LPDE i depends on the particular choice of the learning module (Section 2.2). Figure 1
shows the CP architecture for the Navier-Stokes PDEs, which we discuss in Section 2.3.

Alignment. If the PDEs in the system are not all satisfied at once, the solution to the system might
not be unique (Evans, 2022). Hence, we need to provide each module with information about the
state of the others, at least on the parts with the same physical information. This is the role of our
alignment process.

Let v be the subset of shared variables predicted by two different modules. The alignment loss fosters
consistency between the predicted v ∈ v by both models. We focus on 2 alignment losses acting on
the prediction of v made by module i (v̂i), and by module j (v̂j):

SOB: Lalign i,j = ∥v̂i − v̂j∥22 + ∥Jv̂i − Jv̂j∥22,
DERL: Lalign i,j = ∥Jv̂i − Jv̂j∥22,

(3)

where Jv̂i is the Jacobian of the predictions for v of module i with respect to all its inputs.
SOB aligns the Sobolev norm W 2 (Maz’ya, 2011) while DERL aligns the L2 norm on the derivatives
only. Incorporating derivative information improves the convergence (Czarnecki et al., 2017) and
imposes a stricter resemblance between the models’ outputs. In physical systems, derivatives describe
the system’s dynamics and provide sufficient information to determine its evolution. Furthermore,
they are the most effective target for transferring and distilling physical information between models
(Trenta et al., 2025). To substantiate the claim, we also consider the OUTL alignment loss ∥v̂i− v̂j∥22
as well, which is based only on the L2 distance of the outputs. Given our discussion, we expect this
to perform much worse than the others. See Appendix B.2 for more details on the alignment losses.
The complete loss of the CP model can be expressed as

LCP = λalign

∑
i,j

Lalign i,j +

N∑
i=1

Lmodule i, (4)

where the sum on i, j spans each pair of modules sharing at least one variable. All L2 losses are
implemented using the empirical version, that is, the mean squared error on collocation points. In
reality, we see that it is sufficient to consider a simplified version of this loss, which includes only the
alignment terms between the inference module and the others. For more details, see Appendix C.1.
Inference. CP trains all the modules end-to-end. During inference, CP uses only one or a subset
of the modules. In particular, it is sufficient to include the minimum number of modules required to
predict all the variables present in the solution. This often saves a considerable amount of inference
time, as even a single module is often sufficient to predict the output.

2.2 LEARNING MODULES

We now introduce the learning modules we adopted for our experiments with CP. We consider
existing state-of-the-art models that are widely used to learn physical systems. As we demonstrate
in our experimental sections, Sections 3 and 4, optimizing all equations within a single module
is suboptimal for learning challenging systems of PDEs due to the different scales and competing
objectives of the losses. Our model, based on aligning specialized modules, overcomes these issues
and outperforms all baselines.

Physics Informed Neural Networks (PINNs). PINNs (Raissi et al., 2019) are among the best-
performing and most used models for learning solutions to PDEs. They can be constructed upon
any differentiable architecture. As commonly done in the literature (Raissi et al., 2019; Lau et al.,
2024), we consider multi-layer perceptrons (MLPs). PINNs take as input the coordinates of a point
(t,x) and output the prediction of the solution û(t,x) to the PDE. To solve the problem, PINNs try
to impose the PDE as a soft target for the MLP itself. Partial derivatives of the MLP ∂û

∂x ,
∂û
∂t , . . .

are calculated via Automatic Differentiation (AD, Baydin et al. (2018)). Then, the residual on the

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

PDE is calculated using these derivatives F [û]. Finally, the L2 loss is used to minimize this residual,
together with the IC and BC, obtaining the full loss:

LPINN = ∥û(t,x)− b(t,x)∥22 + ∥û(0,x)− g(x)∥22 + ∥F [û]∥22. (5)

Neural Conservation Laws (NCL). Being able to output a conservative field by design is the
key feature of NCL (Richter-Powell et al. (2022)). To achieve this, the MLP does not directly
output the field u, but parametrizes an antisymmetric matrix A. Then, the divergence operator
div(f) =

∑d
i=1

∂f
∂xi

is applied row-wise, obtaining the final vector u with items ui = div(Ai·).
This parameterization ensures that ∇ · u = div(u) = 0, so the field is divergence-free by design.
Richter-Powell et al. (2022) consider all input and output variables in this process, calculating the
divergence with respect to the entire input vector (t,x). In our case, we generalized their approach to
produce divergence-free fields with respect to any subset of the input and output variables, as long as
they are of the same size. See Appendix B.1 for more details and examples.

2.3 A PRACTICAL EXAMPLE: NAVIER-STOKES EQUATIONS

Having introduced all the components of CP, we now go through a practical example of its application.
We consider the 2D Navier-Stokes equations:{

∂u
∂t + [Dxu] · u−∆u+∇p = 0, momentum eqn.
∇ · u = 0. incompressibility eqn.

(6)

To solve this system with CP, we consider two modules. The first one is a PINN and learns the
momentum equation in 6, predicting (û1, p̂1). Its specific loss components in equation 2 are

LBC 1 = ∥û1 − u∥22 + ∥p̂1 − p∥22
LIC 1 = ∥û1(0,x)− u(0,x)∥22 + ∥p1(0,x)− p(0,x)∥22

LPDE 1 =

∥∥∥∥∂û1

∂t
+ [Dxû1] · û1 −∆û1 +∇p̂1

∥∥∥∥2
2

.

(7)

The second module, which is either a PINN or an NCL, is related to the incompressibility equation in
6, and predicts only u. If the module is a PINN, the loss components are

LBC 2 = ∥û2 − u∥22, LIC 2 = ∥û2(0,x)− u(0,x)∥22, LPDE 2 = ∥∇ · û2∥22 , (8)

while LPDE 2 is omitted if this module is instead an NCL, as it is satisfied by design. To define the
alignment loss, we identify the common variables of the two modules, that is u. Hence, this loss is
defined as Lalign = ∥û1 − û2∥22. During evaluation, we need to predict all variables that define the
problem: u and p. Since the first module predicts both, it is the only module required to evaluate CP.

2.4 THEORETICAL CONSIDERATIONS

Theoretical results on the convergence of physical models (like PINN and NCL) to the true solution
remain an open problem. Some insights exist only on a limited class of single PDEs (Yeonjong Shin
et al., 2020). Systems of PDEs represent a harder problem, as PINNs often fail to learn the underlying
solution. This is especially true for the Navier-Stokes equation, where the turbulent behavior of fluids
represents an issue for these models (Sun et al., 2020; Xiang et al., 2022).
Since the Sobolev distance is a widely used tool for the convergence, existence, or uniqueness of
solutions to PDEs (Evans, 2022), we expect our derivative-based alignment (SOB and DERL) to
outperform the OUTL alignment.
Intuitively, if the SOB/DERL alignment loss were always zero, the aligned modules would predict
the same solution. This would make our modular CP equivalent to a single learning model that has
access to the overall system. However, in this case CP would enjoy a simpler optimization problem,
as each module would only focus on one equation. Furthermore, with the simplified alignment loss,
each module optimizes the IC, BC, one PDE loss, and one term of the alignment loss on average,
for a total of 4. Instead, a model optimized on the full system of n PDEs involves n+ 2 loss terms.
Hence, from 3 PDEs onwards, CP has this further advantage. In Section 3.4, we analyze how the
different loss terms backpropagate through the different layers of the modules, showing that those of
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Table 1: Summary of the tasks we consider in the experiments. The last column indicates the different
CP configurations, in terms of the modules, tested in the specific experiment.

Experiment Equation Description CP Modules

Navier-Stokes
Taylor-Green vortex

(TG.M)
∂u

∂t
+ [Dxu] · u−∆u+∇p = 0

(TG.I)∇ · u = 0

Time dependent
2 PDEs

2 PINNs (2xPINN)
PINN+NCL

Navier-Stokes
Kovasznay flow

(KF.M) [Dxu] · u−∆u+∇p = 0

(KF.I)∇ · u = 0

Time independent
2 PDEs

2 PINNs (2xPINN)
PINN+NCL

Acoustics equations
(A.P)

∂p

∂t
+K

(
∂u

∂x
+

∂v

∂y

)
= 0,

(A.Vx)
∂u

∂t
+

1

ρ

∂p

∂x
= 0, (A.Vy)

∂v

∂t
+

1

ρ

∂p

∂y
= 0

Time dependent
3 PDEs

3 PINNs (3xPINN)
3 NCLs (3xNCL)

Navier Stokes Euler (NS-Euler)
Gas equations

(EG.C)
∂ρ

∂t
+∇ · (ρu) = 0 (EG.I) ∇ · u = 0

(EG.M)
∂u

∂t
+ [Dxu]u+

∇p

ρ
= 0

Time dependent
3 PDEs

2 PINNs (2xPINN)
PINN+NCL

2 NCLs (2xNCL)
3 PINNs (3xPINN)

MagnetoHydroDynamics (MHD)

(MHD.C)
∂ρ

∂t
+∇ · (ρu) = 0 (MHD.G) ∇ ·B = 0

(MHD.M) ρ

(
∂u

∂t
+ [Dxu]u

)
= (∇×B)×B −∇p

(MHD.I)
∂B

∂t
= ∇× (u×B) (MHD.S)

d

dt

(
p

ργ

)
= 0

Time dependent
five PDEs

2 PINNs (2xPINN)
2xPINN+NCL

3 PINNs (3xPINN)
4 PINNs (4xPINN)

CP have much more similar scales than those of PINNs, improving the quality of training steps. In
Appendix G, we provide further intuitions on the differences between alignment and PDE residual
losses, as well as providing a more explicit example on the transfer of physical constraints between
modules.

3 EXPERIMENTS: CASE STUDIES

We empirically validate the effectiveness of CP on several physical systems of PDEs.We work with
systems of 2, 3 and 5 PDEs. Table 1 provides a summary of the tasks and the related CP configuration.
In this Section, we focus on the Navier-Stokes and Acoustic equations as the first case studies. At the
end, we also provide an empirical explanation of why CP outperforms state-of-the-art approaches
by analyzing the gradients backpropagated through CP modules. Section 4 evaluates CP on two
challenging real-world systems: NS-Euler Gas and MagnetoHydroDynamics (MHD) equations.

We compare CP with four main approaches: PINN (Raissi et al., 2019), PINN with gradient based
reweighting (PINN+Grad, Wang et al. (2023)), PINN with RAR point resampling (PINN+RAR,
Wu et al. (2023)), and NCL (Richter-Powell et al., 2022). Further details are available in Appendix
B. These models are implemented as a single model that accesses the information about all PDEs.
This is done by replacing the last term in Equation 5 with

∑N
i=1 ∥FPDE i[û]∥22. We remark that NCL

satisfies divergence-free equations by design, without requiring any loss term. We remark that NCL
is a generalization of the original approach of Raissi et al. (2019) for divergence-free fields. For
completeness, we also test CP with gradient-based reweighting.

Following Wang et al. (2023), we train all models for 100, 000 steps with batches of 1000 points
randomly sampled in the domain. We use the Adam optimizer (Kingma, 2014) with an initial learning
rate of 0.001, decaying every 2000 steps by a factor of 0.9. Model architectures are in Appendix C.3.

To measure the accuracy of the predictions, we evaluate all approaches with two metrics: (i) ∥u− û∥2
(L2-err), which measures the L2 distance between the true solution u and the estimate û. (ii)
max(t,x) |û− u| (max-err), which measures the maximum absolute error in the domain.

3.1 TAYLOR-GREEN VORTEX

Our first experiment involves the 2D time-dependent incompressible Navier-Stokes equations, namely
the momentum (TG.M) and incompressibility (TG.I) Equations in Table 1. We work in the domain
[0, π]× [0, π] with time t ∈ [0, 10] and a viscosity coefficient of ν = 0.1. The analytic solution of the
Taylor-Green vortex (Chorin, 1968), used to calculate the reference solution, is given in Appendix
D.1. The inference module for CP is the one learning equation (TG.M), as it predicts all the variables.
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Table 2: Results for the Taylor-Green vortex, Kovasznay flow, and Acoustics experiments. L2 errors
of the model predictions with respect to the ground truth, and the maximum errors in the domain.

Taylor-Green Vortex Kovasznay Flow

Model Alignment L2-err. max err. L2-err. max err.
×10−5 ×10−3 ×10−6 ×10−3

PINN 3.677 9.374 10.83 5.203
PINN+RAR 5.235 6.160 11.48 8.062
PINN+Grad 4.245 9.719 7.471 4.264
NCL 2.830 5.947 3.014 1.398

CP-2xPINN OUTL 6.028 9.945 20.47 4.972
CP-2xPINN SOB 5.222 8.027 8.641 6.195
— +Grad 4.687 6.250 7.695 4.207
CP-2xPINN DERL 3.619 6.378 7.221 4.996
— +Grad 4.311 6.250 5.370 4.107

CP-PINN+NCL OUTL 6.024 11.55 13.30 4.515
CP-PINN+NCL SOB 4.764 9.215 6.867 3.619
— +Grad 4.386 8.418 3.663 1.277
CP-PINN+NCL DERL 3.247 7.996 5.422 3.468
— +Grad 2.795 6.468 4.325 1.513

Acoustics

Model Alignment L2-err. max err
×10−5 ×10−1

PINN — 8.016 2.277
PINN+RAR — 120.6 20.05
PINN+Grad — 10.05 3.391
NCL — 5.243 1.552

CP-3xPINN OUTL 11.43 8.437
CP-3xPINN SOB 7.611 2.148
— +Grad 5.726 1.685
CP-3xPINN DERL 7.449 2.171
— +Grad 5.718 1.737

CP-3xNCL OUTL 6.008 4.549
CP-3xNCL SOB 5.172 1.521
— +Grad 2.727 1.090
CP-3xNCL DERL 5.165 1.547
— +Grad 2.718 1.121

Figure 2: Acoustics equation: errors for PINN, PINN+Grad, NCL, and the best CP models (one for
architecture) at t = 0.16. The lowest errors are in blue.

Table 2 shows the numerical results for this experiment, while Appendix D.1 shows the prediction
error for different values of t. We see that CP models aligned with DERL outperform all variations
of PINNs. CP-PINN+NCL with DERL alignment and Grad reweighting performs best in the L2

metric, even when compared to NCL. This is remarkable, since NCL has the built-in advantage of
bypassing the divergence-free equation, while CP has to transfer it across modules. Additional results
are available in Appendix D.1.

3.2 KOVASZNAY FLOW

We consider the 2D time-independent Navier-Stokes equations made of the momentum (KF.M) and
incompressibility (KF.I) equations in Table 1. We work in the domain [−1, 1]× [−0.5, 1.5] with a
viscosity coefficient of ν = 1

50 . The analytic solution of the Kovasznay flow (Drazin & Riley, 2009),
which represents the flow behind a two-dimensional grid, is given in Appendix D.2. The evaluation
model for CP is always the one for equation (KF.M), as it predicts all the variables. Numerical results
are provided in Table 2. The complete set of results and figures is available in Appendix D.2. None
of the PINN variants matches the performance of the CP models aligned with either DERL or SOB.
Interestingly, OUTL alignment delivers worse results, supporting our hypothesis that derivative-based
alignments are more effective. Due to its implicit advantage of modeling divergence-free fields,
NCL shows a competitive performance. However, CP with gradient-based reweighting obtains the
best performance possible, between 2 and 3 times better than PINN variants. We conclude that
within these Navier-Stokes case studies, ComPhy alleviates PINN optimisation issues and performs
comparably to, if not better than, NCL. However, CP is far more general than NCL, and can be
directly applied to systems without divergence-free components. As OUTL consistently showed
worse results, for the remaining experiments we only work with derivative-based alignment.

3.3 ACOUSTIC EQUATIONS

We now consider a set of three equations, namely equations (A.P), (A.Vx), and (A.Vy) in Table 1,
solved using CP model with three aligned modules. As we can see, all three equations are in the
divergence-free form (see Appendix B.1), respectively for t, x, y for the first equation, t, x and t, y for
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(a) CP-3xPINN (DERL)

(b) PINN

Figure 3: Acoustics experiment gradient histograms. Each plot contains the histograms for the
distribution of the gradients propagated at each layer of the CP-3xPINN and PINN models at the
beginning of training, similarly to Wang et al. (2021). Different colors are for different losses.

the second and third. Hence, we can employ an CP model with three NCL modules. Since equation
(A.P) contains all relevant variables, the first module is the one used for evaluation.
We work in the spacetime domain of (t, x, y) ∈ [0, 0.24] × [−1, 1]2, with density ρ ≡ 1 and bulk
coefficient K ≡ 1. Appendix D.3 provides the initial conditions, while boundary conditions are null
everywhere. The reference solution is calculated using the Clawpack software package (Clawpack
Development Team, 2024; Mandli et al., 2016). Further details can be found in Appendix D.3.

We report the numerical results in Table 2, while Figure 2 shows the prediction error in the domain at
t = 0.16. For additional Figures, see Appendix D.3. Even when using 3 different modules, CP is
clearly the best approach for both our metrics. In particular, CP with 3 NCL modules performs best.
None of the PINN variants fall close to our best model, not even wen adding resampling or adaptive
weights. CP, instead, benefits from gradient-based reweighting, showing a 2x/3x improvement with
respect to PINNs and NCL. This experiment suggests that CP and derivative-based alignment scales
well to a larger number of modules. Section 4 scales CP to even larger systems.

3.4 GRADIENT ANALYSIS

To get a better understanding of why CP outperforms PINNs, we conduct an empirical analysis on
the distribution of the backpropagated gradients at different layers of the CP modules. Given wj the
set of weights in layer j, for each loss term LBC,LIC,LPDE i of equation 2, we collect the gradients
∂L
∂wj

and we plot the corresponding histogram grouped by layer (Figure 3). A similar analysis for
PINNs is discussed in Wang et al. (2021). The authors show that when PINNs are optimized correctly,
the gradients of the different losses tend to be evenly distributed within each layer. However, if the
distributions differ significantly, it implies that one loss function is dominating, which negatively
affects the model’s performance.

We replicate this study for CP on the Acoustics experiment of Section 3.3, which involves 3 equations
and 3 modules. Figures 3a and 3b show the distributions of propagated gradients for CP 3xPINN
and PINN, respectively. The plots clearly highlight that combining three modules makes the gradient
distribution more aligned across layers. As we have seen in Section 3.3, this also entails a better
performance. We provide the same analysis on the Kovasznay flow experiment in Appendix D.2.
Both studies support the fact that the modular approach of ComPhy results in an easier optimization
problem when compared to a single PINN trained on the entire system of PDEs.
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Table 3: Numerical results for the Euler gas and MHD equation experiments. We report L2 errors of
the model predictions with respect to the ground truth, and the maximum errors in the domain.

(a) Euler gas equation experiment.

Model Alignment L2-err max err
×10−3 ×100

PINN — 1.712 5.364
PINN+Grad — 3.319 7.127
NCL — 1.690 4.912

CP-2xPINN SOB 1.296 3.082
CP-2xPINN DERL 1.401 3.149

CP-PINN+NCL SOB 1.487 2.721
CP-PINN+NCL DERL 1.468 2.673
CP-2xNCL SOB 2.029 4.311
CP-2xNCL DERL 1.396 4.183

CP-3xPINN SOB 1.382 3.021
CP-3xPINN DERL 1.462 2.899

(b) MagnetoHydroDynamics experiment.

Model Alignment L2-err. max err
×10−4 ×10−1

PINN — 1.967 12.74
PINN+Grad — 1.657 9.164
NCL — 1.975 12.59

CP-2xPINN SOB 1.599 9.324
CP-2xPINN DERL 1.608 9.280

CP-3xPINN SOB 1.535 8.528
CP-3xPINN DERL 1.535 8.548
CP-2xPINN+NCL SOB 1.601 8.913
CP-2xPINN+NCL DERL 1.607 8.934

CP-4xPINN SOB 1.560 8.764
CP-4xPINN DERL 1.567 8.771

Figure 4: NS-Euler gas equations experiment: prediction error in the domain at t = 0.3 for the PINN,
NCL, and the CP model (best for each architecture).

4 EXPERIMENTS: REAL-WORLD SYSTEMS

4.1 NS-EULER EQUATIONS

We now challenge CP with two real-world systems: the NS-Euler and the MagnetoHydroDynamics
equations. The NS-Euler equations for an incompressible gas are given by the conservation (EG.C),
incompressibility (EG.I), and momentum (EG.M) equations in Table 1, where ρ is the density, u
the velocity and p the pressure. Our setup is the same as the one in Richter-Powell et al. (2022): we
consider the 2D torus and work with the spacetime domain (t, x, y) ∈

[
0, 1

3

]
× [0, 1]2. Appendix D.4

provides the initial conditions and further details. The reference solution is available and collected
from Richter-Powell et al. (2022), and was calculated via the Finite Element Method (Anderson
et al., 2020)All models are trained for 600, 000 steps with batches of 1000 random points at each
step. The optimal hyperparameters and architectures are taken from Richter-Powell et al. (2022). On
the NS-Euler equations we test 4 CP configurations: CP-2xPINN, CP-PINN+NCL, CP-2xNCL,
and CP-3xPINN. For the first three, the first module (either a PINN or NCL) learns both equations
(EG.C) and (EG.M), while the second learns only (EG.I). Since all relevant variables are in equation
(EG.M), only the first module is used for evaluation.

Numerical results are provided in Table 3a, while Figure 4 shows the prediction error at t = 0.3.
Appendix D.4 shows the model errors for different values of t ∈ [0, 1

3 ]. While Richter-Powell et al.
(2022) claim that the PINN fails to converge to the true solution, we did not encounter the same issue.
Our PINN can solve the system to some extent. CP achieves state-of-the-art results when using both
DERL and SOB, with the latter struggling only when 2 NCL modules are employed. This highlights
the role played by the outputs’ derivatives in the alignment: a loss computed only from outputs’
derivatives (DERL) is much more effective than a loss computed also from the output (SOB).
We conclude that CP can learn a challenging real-world system of PDEs effectively, using different
combinations of NCL and PINN models.
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Figure 5: MHD experiment: prediction error in the domain at t = 0.5 for the PINN, NCL, and the
CP model (best for each architecture).

4.2 MAGNETOHYDRODYNAMICS

Finally, we scale our model to a system of 5 equations, the MHD equations in Table 1, which
represent the motion of plasma with a combination of the compressible Navier-Stokes equations for
fluids with the Maxwell equations of Magnetism (Gruber & Rappaz, 1985). These are composed
of the continuity (MHD.C), momentum (MHD.M), state (MHD.S), induction (MHD.I), and Gauss
(MHD.G) equations. We consider a similar setting to Gopakumar et al. (2025), with domain [0, 1]2

and time in t ∈ [0, 0.5]. The reference solution is calculated with the finite volume method (Ferziger
& Peric, 2001). Since we are interested in pure scaling, we consider combinations of 2, 3 and 4 PINNs
for our CP models, as well as 2xPINN+NCL. We compare to a PINN, PINN+Grad, and an NCL with
equation (MHD.G) satisfied by design. Architectures are available in Appendix C.3. Models are
trained for 100, 000 steps with the Adam optimizer, and batches of 1024 randomly sampled points.

We report the results in Table 3b, with Figure 5 showing the prediction error at t = 0.5. Even with 5
equations, CP outperforms PINN and NCL by a large margin with any of the tested combinations of
modules, including that with 4 modules. We report additional results and Figures in Appendix D.5.

4.3 DISCUSSION AND FURTHER EXPERIMENTAL ANALYSIS

On the choice of the CP modules. Apart from the MHD equations, where we tested the scaling
capabilities of CP to a higher number of PDEs, we experimented with every possible combination of
modules, keeping in mind that the NCL module requires a divergence-free equation to be applied.
Our results support the fact that, when possible, a combination of modules that includes NCL is
always beneficial. Similarly, since most physical systems present 2 or 3 equations, the most common
and effective choice is to use 2 or 3 modules, respectively.

On the strength of the alignment process. In Section 2.4 and Appendix G, we provided theoretical
understandings on why the alignment mechanism allows for effective transfer of physical constraints
between modules. When the alignment loss converges to zero, the corresponding modules behave
as the same function in the Sobolev space W 1,2 (Trenta et al., 2025). To empirically validate these
claims, we plot the curves of the alignment loss, the prediction loss, and the PDE residuals that are
not actively trained on the inference module. We also empirically measure the distance and relative
discrepancy between the predictions of different modules. The results, available in Appendix E,
confirm our theoretical claims and the strength of the alignment mechanism: modules predict very
similar functions, while prediction and PDE losses are correlated with the alignment loss.

Ablations. To test the robustness of ComPhy in different setups and conditions, we performed
ablation studies available in Appendix F. (i) We tried different values for the alignment coefficient
λalign, showing that the naive choice of λalign = 1 works well on average, with possible improvements
with highly specialised tuning of this parameter. We remark that the Gradient-based reweighting
scheme used in Section 3 alleviates the burden of hyperparameter selection. (ii) We incremented
the number of units in the MLPs of the PINN and NCL baselines to match the parameter budget of
CP during training. This leads to fewer parameters used by CP during inference, as it employs only
one module at that state. Even so, CP performs better, showing the importance of modularization
for these applications. (iii) We run the same experiment multiple times with different seeds to test
the robustness to initializations and stochastic gradient descent. The results remain strong, as the CP
models have the best mean results by far, and a lower standard deviation.
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5 RELATED WORKS

PINNs (Raissi et al., 2019) are widely used to solve physical problems such as fluid dynamics (Sun
et al., 2020). However, PINNs suffer from optimization problems, such as imbalances in the gradients
of the different loss terms (Wang et al., 2022) or the ill-conditioning and complex loss landscape
of PDE residual terms (Krishnapriyan et al., 2021). PINNs can also fail to reach a minimum of the
loss (Sun et al., 2020). Recent approaches try to alleviate these problems with resampling strategies
that explore regions with higher PDE residuals while retaining enough points in well-optimized
regions (Daw et al., 2023), or by using a variational formulation of the PDE residual term in small
regions around collocation points (Wu et al., 2024). Other works adopt strategies to align the
gradients at different gradient descent steps using second-order corrections (Wang et al., 2025), which
can be computationally demanding, or to align the autoregressive updates to the underlying true
dynamics (Zhu et al., 2025) for data-driven models. Instead, we work in an unsupervised setting, and
our alignment imposes on the different modules to share information on their respective physical
constraints. Even though many other solutions, such as resampling or reweighting schemes, have
been proposed (Sun et al., 2020; Wang et al., 2021; Xiang et al., 2022; McClenny & Braga-Neto,
2023; Zhao, 2021; Lau et al., 2024), none of them is tailored to tackle systems of PDEs.
Ad-hoc architectures solve the optimization issues by satisfying physical properties by design. NCL
(Richter-Powell et al., 2022) ensures that the output of the model is divergence-free, while Torres
et al. (2024) proposes a divergence-free normalizing flow. However, such solutions only work for a
given physical property and still require enforcing additional ones with alternative approaches, like
PINN. Finally, our CP is the first attempt at solving systems of PDEs with a modular, end-to-end
approach where modules are aligned to transfer physical constraints with each other.

Neural Operators (Kovachki et al., 2023) are deep models that learn mappings between functional
spaces. DeepONets (Lu et al., 2021) try to learn representations of the input function and combine
them on the output function inference points. Graph Neural Operators (Li et al., 2020), instead,
transform functions via local convolutions with parametrized kernels, which are learned during
training. Finally, Fourier Neural Operators (Li et al., 2021) use Fourier transforms to simplify and
speed up the calculation of such convolutions while acting on the function globally. While these
methods are powerful for supervised learning tasks and generalization to different initial conditions
or parameters, they are more computationally demanding and serve a different task, as they learn
mappings between functions. Furthermore, they need simulated data, and they are not suitable for the
unsupervised setting of PINNs.

6 CONCLUSION

We introduced CP, a modular approach for solving systems of PDEs where the final predicted solution
is the result of the collective effort of the modules. The modules communicate with each other
during training via alignment, a process that encourages the predictions of the same variable made by
different modules to be similar. In particular, we consider a derivative-based alignment and we show
that it provides state-of-the-art results on several systems of PDEs, including challenging real-world
tasks. We further analyzed why CP optimizes the physics-informed losses better than PINNs, finding
that their propagated gradients have more similar scales. While NCL is competitive in the case
studies, the advantage of having one equation less to be optimized fades away in real-world systems
of three or more equations, where CP scales much better.
Future works could consider different optimization protocols, such as alternating module optimization
steps with alignment steps, as well as aligning higher-order derivatives to capture richer dynamics
of the physical system. CP represents an initial step toward developing modular architectures for
scalable learning of physical systems. Progress in this direction could lead to dynamic models capable
of adapting to new initial conditions, as well as incorporating or removing modules over time to
accommodate changing environments.

ETHICS STATEMENT

The research conducted in this work completely adheres to the ICLR Code of Ethics. This work does
not involve human subjects, nor does it provide harmful insights, discrimination/bias concerns, or
any other potential ethics concerns.
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REPRODUCIBILITY STATEMENT

We provide all the necessary information to reproduce the results in the paper in the main text and
in the Appendix. The methodology is described in Section 2, while experimental settings, along
with training steps, optimizers, and model architectures, are described in Section 3 and Section 4.
Further implementation details are available in Appendix C. We additionally provide all the code
necessary to reproduce the experiments, from data generation to model definition and training, as
well as evaluation, as Supplementary Material.
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A LLM USAGE

Large Language Models (LLMs) were used to polish and check the grammar of the paper, with very
limited usage to rewrite some phrases for improved readability. No LLM was used to write entire
parts of the text or for any other non-specified purposes. Every output of the LLMs was carefully
checked to ensure its correctness and validity, adhering to the LLM policy and Code of Ethics.

B MODEL DESCRIPTION

This Section provides further information on CP models and their components, as well as the
employed baselines.

B.1 PARTICULAR NCL APPLICATIONS

While PINNs have a straightforward implementation, NCL models require performing a final trans-
formation on the network’s output. In particular, the MLP parametrizes an antisymmetric matrix A,
which depends on all the input coordinates (t, x, y). As described in Section 2, a row-wise divergence
is performed to obtain a vector that has zero divergence with respect to all the inputs. To obtain a
vector field that is divergence-free with respect to only a subset of the input coordinates, it is sufficient
to consider a smaller matrix A and apply the above procedure only for the interested coordinates. We
provide some examples here.

In the case of the 2D time-dependent Navier-Stokes equation, the incompressibility equation is given
by

∇ · u = div(x,y)(u) =
∂ux

∂x
+

∂uy

∂y
= 0, (9)

where the field u depends on the three inputs (t, x, y). Here, the MLP parametrizes A as a 2 × 2
antisymmetric matrix depending on (t, x, y). The row-wise divergence is taken only with respect to
(x, y), so that the final output is divergence-free in just those variables while depending freely on t.
In the case of the NS-Euler equations, the mass conservation for the density ρ is given by

∂ρ

∂t
+∇ · (ρu) = div(t,x,y)(ρ, ρu) = 0. (10)

To achieve this, the MLP parametrizes A as a 3×3 antisymmetric matrix and the row-wise divergence
is taken with respect to all three variables (t, x, y). While a divergence-free equation is guaranteed,
other constraints can be added via losses similar to those of the PINN model. Finally, we consider the
non-trivial case of the NCL model for the y-velocity equation in the Acoustics equations experiment
in Section 3.3, which reads

∂v

∂t
+

∂p

∂y
= 0. (11)

To achieve this, it is sufficient for the MLP to output a 2 × 2 antisymmetric matrix (which is
parametrized by only one output). Then, v and p can be calculated as

v = div(t,y) (A0·) =
∂A00

∂t
+

∂A01

∂y
,

p = div(t,y) (A1·) =
∂A10

∂t
+

∂A11

∂y
.

(12)

This way, the vector field (v, p) predicted by the NCL depends on all three variables (t, x, y), but is
divergence-free with respect to only (t, y). While this example is still simple to write and involves 2
variables, the above process can be generalized to any number and type of coordinates and for every
possible subset of them.

B.2 SOBOLEV NORMS AND ALIGNMENT MODULES

In the mathematics literature, Sobolev spaces (Maz’ya, 2011) are the common choice to study and
prove the existence and uniqueness of solutions to PDE problems (Evans, 2022). From a theoretical
point of view, it is not enough to measure distances in the L2, especially for convergence results. In

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

addition, not all PDE problems admit smooth solutions, and a notion of weak derivative is needed;
hence, the necessity to consider a more restrictive space, that is, the Sobolev space W p,m(Ω) of
functions u(x) with bounded norm

∥u(x)∥Wp,m(Ω) = ∥u(x)∥L2(Ω) +

m∑
ℓ=1

∥∥Dℓu(x)
∥∥
L2(Ω)

, (13)

where Dℓu(x) is the l-th order differential of u. Weak derivatives of a function u are defined such
that they resemble integration by parts for every possible test function v ∈ C∞

c (Ω) with compact
support in Ω, that is∫

Ω

∂α1+α2+αh+...u

∂xα1
1 ∂xα2

2 ∂ . . .... ∂xαh

h

· v dxn = (−1)α1+...+αh

∫
Ω

u · ∂α1+α2+αh+...v

∂xα1
1 ∂xα2

2 ∂ . . .... ∂xαh

h

dxn (14)

Furthermore, while the derivatives and the boundary and initial conditions completely determine
a function u, and are therefore sufficient to learn u (Trenta et al., 2025), information on u is not
sufficient to determine its derivatives, which are fundamental for the dynamics and evolution of a
system. In practice, using the Sobolev norm to train a neural network has been shown to improve the
performance, especially with low data availability (Czarnecki et al., 2017). In the context of physical
systems, the derivatives are fundamental to ensure the physical system is learned and also to ensure
the correct transfer of physical information between models (Trenta et al., 2025). For these reasons,
the alignment module must contain the derivatives of the networks to ensure that the dynamics of the
system, predicted by the two networks, are coherent. This explains why the alignment module with
only u (OUTL) performs so poorly compared to DERL and SOB.

B.3 PDE RESIDUALS AND PINNS

In this Section, we provide more details on PDEs and their residuals. A PDE of order d is, in general,
an expression that involves one or more partial derivatives, up to order d of a function u:

F [u] = F
(
u,Du,D2u, . . . ,Ddu

)
= 0. (15)

In the linear case, for example, it can be written as

F [u](x) = f(x) + a0(x)u(x) +

n∑
i=1

ai(x)
∂u

∂xi
(x) +

n∑
i=1

n∑
j=1

aij(x)
∂2u

∂xi ∂xj
(x) + . . . (16)

PINNs implement the PDE itself as a soft target in the loss. To do so, the PDE operator F , which
takes as input a function and outputs another function, which we aim to be null, is calculated on
the MLP itself. Derivatives of the MLP û,Dû, . . . are calculated using Automatic Differentiation
(Baydin et al., 2018), and the function F is calculated with them, obtaining the current PDE residual
of the MLP itself

F [û] = F
(
û,Dû,D2û, . . . ,Ddû

)
. (17)

The norm of this residual is calculated and used to optimize the network. Ideally, if this loss term is 0
or close to it, the model itself should satisfy the PDE. This is also why we analyze it in Section 3.4,
to see how well a model is consistent with the underlying equation. Coupled with the loss for the
initial and boundary conditions, this is the main component of a Physics-Informed Neural Network
(Raissi et al., 2019).

B.4 GRADIENT-BASED REWEIGHTING

Gradient-based reweighting is a technique that automatically selects hyperparameters for the different
loss terms based on the current gradient norm. We consider the approach described in Wang et al.
(2023), where a model has parameters θ and loss function

Ltot(θ) = λICLIC(θ) + λBCLBC(θ) + λPDELPDE(θ). (18)
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Then, the optimal weights are calculated as

λ̂IC =
∥∇θLIC∥+ ∥∇θLBC∥+ ∥∇θLPDE∥

∥∇θLIC∥
,

λ̂BC =
∥∇θLIC∥+ ∥∇θLBC∥+ ∥∇θLPDE∥

∥∇θLBC∥
,

λ̂PDE =
∥∇θLIC∥+ ∥∇θLBC∥+ ∥∇θLPDE∥

∥∇θLPDE∥
.

(19)

This formulation generalizes easily to multiple PDE terms and the alignment term.

B.5 ADAPTIVE POINT RESAMPLING (RAR)

For our adaptive point resampling, we consider RAR (Wu et al., 2023). After a certain number of
iterations, the PDE residuals of the system are calculated on a grid of points. For each PDE, the k
points with the highest residual are collected and added to the training data.

C IMPLEMENTATION DETAILS

In this section, we provide details on the practical implementation of the CP model, from the
discretization of the losses to the computational times and the tuning process.

C.1 LOSS DISCRETIZATION

Since it is not possible to calculate the true L2 losses and distances for the models, we discretize
them as is usually done in the literature. In general, we assume to have 4 datasets:

• The first one contains ND points in the interior of the spatio-temporal domain [0, T ]× Ω
with no given supervised targets:

DD = {( ti,xi), ti ∈ [0, T ],xi ∈ Ω, i = 1, . . . , ND}. (20)

Points in this dataset are often called collocation points in literature and are used in the PDE
and alignment loss. The intuition is that, if these losses are close to zero, the model satisfies
the PDE (or the networks are aligned) for sufficient points in the interior of the domain. The
PDE residual loss is then approximated as

∥F [û]∥2L2([0,T ]×Ω) ≈
1

ND

ND∑
i=1

∥F [û](ti,xi)∥2, (21)

while the alignment loss components are discretized in a similar way

∥û1 − û2∥2L2([0,T ]×Ω) ≈
1

ND

ND∑
i=1

∥û1(ti,xi)− û2(ti,xi)∥2,

∥Dℓû1 − Dℓû2∥2L2([0,T ]×Ω) ≈
1

ND

ND∑
i=1

∥Dℓû1(ti,xi)− Dℓû2(ti,xi)∥2.

(22)

• The second one contains NI points in the domain Ω at time t = 0 and is used to enforce the
initial condition u(0,x) = g(x):

DI = {( (0,xi), g(xi)),xi ∈ Ω, g(xi) ∈ Rn, i = 1, . . . , NI}. (23)

The IC loss is then discretized as

∥û− g∥2L2(Ω) ≈
1

NI

NI∑
i=1

∥û(0,xi)− g(xi))∥2 (24)
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Table 4: Time in seconds required for one step of training.

Model Taylor-Green vortex Kovasznay flow Acoustics Euler gas MaghetoHydroDynamics

PINN 0.0420 0.0480 0.0210 0.2097 0.1093
NCL 0.1807 0.1174 0.0618 0.6889 0.2553

2xPINN (OUTL) 0.1034 0.0840 / 0.2884 /
2xPINN (SOB) 0.1069 0.0947 / 0.3281 0.1657
2xPINN (DERL) 0.1039 0.0933 / 0.3101 0.1611

PI+NCL (OUTL) 0.1431 0.1562 / 0.5795 /
PI+NCL (SOB) 0.1483 0.1543 / 0.6584 /
PI+NCL (DERL) 0.1413 0.1626 / 0.6563 /

2xNCL (SOB) / / / 0.6896 /
2xNCL (DERL) / / / 0.6858 /

3xPINN (OUTL) / / 0.0854 0.4366 /
3xPINN (SOB) / / 0.0898 0.4366 0.2025
3xPINN (DERL) / / 0.0888 0.4120 0.2002

3xNCL (OUTL) / / 0.1222 / /
3xNCL (SOB) / / 0.0621 / /
3xNCL (DERL) / / 0.0699 / /

4xPINN (SOB) / / / / 0.2341
4xPINN (DERL) / / / / 0.2207

• The third one contains NB points on the boundary ∂Ω and for different times in [0, T ]. It is
used to enforce the boundary conditions B[u](t,x) = b(t,x):

DI = {( (ti,xi), b(ti,xi)), ti ∈ [0, T ],xi ∈ Ω, b(tixi) ∈ Rn, i = 1, . . . , NB}. (25)

Boundary conditions can be of many forms, such as Dirichlet BC, which impose u(t,x) =
b(t,x), or Neumann BC, which impose a condition on the derivative (∇u·n̂)(t,x) = b(t,x),
where n̂ is the normal vector at the boundary. The loss, in this example for Dirichlet
conditions, is then discretized as

∥B[û]− b∥2L2([0,T ]×∂Ω) ≈
1

NB

NB∑
i=1

∥û(ti,xi)− b(ti,xi))∥2 (26)

• The last one, used only at evaluation, contains a set of points in the spacetime domain (ti,xi)
and the corresponding true solution of the system u(ti,xi):

DS = {( (ti,xi), u(ti,xi)), ti ∈ [0, T ],xi ∈ Ω, u(tixi) ∈ Rn, i = 1, . . . , NS}. (27)

This dataset is used to compare the final solution of the models against a true target, never
seen during training. In this case, the loss is discretized as usual with

∥u− û∥2L2([0,T ]×Ω) ≈
1

NS

NS∑
i=1

∥u(ti,xi)− û(ti,xi)∥2 (28)

C.2 COMPUTATIONAL TIME AND RESOURCES

In Table 4, we provide a comparison of the computational times of the different methods on all
experiments. We reported the time to perform one epoch of training for each experiment. All models
were trained on a single NVIDIA H100 GPU with 80GB of memory.

C.3 MODEL ARCHITECTURES

We report the architectures of the models employed in Table 5.

D ADDITIONAL RESULTS

In this Appendix, we provide further experimental details and results for the experiments in Sections
3 and 4.
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Table 5: MLP architectures used in the experiment.

Model Taylor-Green vortex Kovasznay flow Acoustics Euler gas MaghetoHydroDynamics

PINN
Layers and units 2x64 4x64 4x64 8x512 8x256
Activation Tanh Tanh Tanh Tanh Tanh

NCL
Layers and units 2x64 4x64 4x64 8x512 8x256
Activation SoftMax SoftMax SoftMax SoftMax SoftMax

CP-PINN modules
Layers and units 2x64 4x64 4x64 8x256 8x256
Activation Tanh Tanh Tanh Tanh Tanh

CP-NCL modules
Layers and units 2x64 4x64 4x64 8x256 8x256
Activation SoftMax SoftMax SoftMax SoftMax SoftMax

(a) t = 0.

(b) t = 2.

(c) t = 4.

(d) t = 8.

Figure 6: Taylor-Green vortex. Model pointwise error for the solution (u, p). Only the best alignment
for each module choice is shown.

D.1 TAYLOR-GREEN VORTEX

The analytical solution of the Taylor-Green vortex (Chorin, 1968) used in our experiment is given by

u(x, y, t) = [sinx cos y,− cosx sin y]⊤e−2νt, p(x, y, t) =
1

4
(cos(2x) + cos(2y))e−4νt. (29)

Figure 6 shows the model errors at different times.
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Figure 7: Kovasznay flow experiment. Prediction errors for PINN (and its variations), NCL, and CP
models (one for each combination of modules). The lowest errors are in blue.

(a) Kovasznay flow CP-2xPINN (DERL)

(b) Kovasznay flow PINN

Figure 8: Gradient histograms. Each plot contains the histograms for the distribution of the gradients
propagated at each layer of CP and PINN at the beginning of training, similarly to Wang et al. (2021).

D.2 KOVASZNAY FLOW

The analytical solution to the Kovasznay flow (Drazin & Riley, 2009) is given by

u(x, y) =

[
1− eλx cos(2πy),

λ

2π
eλx sin(2πy)

]⊤
, p(x, y) =

1

2

(
1− e2λx

)
, (30)

where λ = 1
2ν −

√
1

4ν2 + 4π2. In this case, the vorticity is given by ω = λ
ν e

λx sin(2πy)
2π . Figure 7

shows the errors of the employed models in the domain.

Gradient Analysis. Here, we provide a similar analysis to the one in Section 3.4 for the Kovasznay
flow experiment, comprising 2 equations and 2 modules. Figures 8a and 8b show the distribution
of the propagated gradients in a training step at the different layers of the MLP, respectively for
the CP-2xPINN (each row is a module) and PINN models. The gradients for each loss term are
represented with a different color. We clearly see the effect of learning the system in a compositional
manner: the distribution histograms of the gradients of the loss terms are much more aligned than
in the PINN model. This means that each loss can be learned more effectively without additional
regularization (Wang et al., 2021).

D.3 ACOUSTICS EQUATIONS

The initial condition of the Acoustics experiment in Section 3.3 is given by

p(0, x, y) = 1 + cos
( π

0.2
(
√
x2 + y2 − 0.5)

)
, |

√
x2 + y2 − 0.5| < 2, (31)
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(a) t = 0.

(b) t = 0.08.

(c) t = 0.16.

(d) t = 0.24.

Figure 9: Acoustics equations. Model pointwise error for the solution (p, u, f). Only the best
alignment for each module choice is shown.

and null velocities in the whole square. Figure 9 shows the model errors at different times.

D.4 NS-EULER GAS EQUATIONS

We provide further details on the setup of the experiment in Section 4.1. The initial conditions are
given by

ρ0(x, y) = (sin(2πx) + sin(2πy))2 + 1, u0(x, y) =
[
esin(2πy), esin(2πx)/2

]⊤
, (32)

To embed points from the 2D unit square [0, 1]2 to the two-dimensional torus T, the following
function is used:

i : [0, 1]2 → T2, i(x, y) = (cos(2πx), sin(2πx), cos(2πy), sin(2πy)), (33)

which also automatically imposes periodic boundary conditions on the square.

Figure 10 shows the model errors at different times. We can see that the PINN and NCL models suffer
in certain regions of the domain, while our models do not. In this case, Gradient-based reweighting
worsens the performance of PINNs.
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(a) t = 0.

(b) t = 0.1.

(c) t = 0.2.

(d) t = 0.3.

Figure 10: NS-Euler gas equations. Model pointwise error for the solution (ρ,u, p). Only the best
alignment for each module choice is shown.
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(a) t = 0.1.

(b) t = 0.3.

(c) t = 0.5.

Figure 11: MHD equations. Model pointwise error for the solution.

D.5 MAGNETOHYDRODYNAMICS

Here, we provide additional details on the experiment in Section 4.2. The initial condition is given by

ρ(0, x, y) =
γ2

4π
u(0, x, y) = [− sin(2πy), sin(2πx)]

P (0, x, y) =
γ

4π

A(0, x, y) =
cos(4πx)

4π
√
4π

+
cos(2πy)

2π
√
4π

B(0, x, y) = ∇×A

(34)

where A(t, x, y) is the magnetic potential (Gruber & Rappaz, 1985). Similar to the NS-Euler
experiment in Section 4.1, to satisfy the periodic boundary condition, we embed the square domain
[0, 1]×[0, 1] in the two-dimensional torus T with equation 33 from Appendix D.4. The data generation
is done as in Gopakumar et al. (2025).

Figure 11 shows the prediction errors of the models in the domain at different times in [0, 0.5].

E FURTHER ANALYSIS ON THE ALIGNMENT MECHANISM

Loss curves. We start by showing how the alignment loss, the prediction error, and the PDE
residuals for transferred constraints are related to each other in practical examples. Figure 12 reports
smoothed loss curves for the CP models on the Acoustic equation experiment of Section 3.3. These
losses are calculated on the inference module, which learns equation (A.P) in table 1, but never
learns equations (A.Vx) and (A.Vy) directly. These PDEs are learned by the other two modules. The
inference module learns to satisfy these constraints only by aligning with the other two modules.
Figure 13 shows smoothed loss curves for the CP models on the Kovasznay flow experiment in a
similar manner.

We now investigate how well the modules are aligned during training by keeping track of their
prediction errors for the common variables during the whole training process. This shows us how
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Figure 12: Smoothed loss curves of CP models on the Acoustic equation experiments. Losses are
calculated on the inference module, which never learns equations (A.Vx) and (A.Vy) directly.

Figure 13: Smoothed loss curves of CP models on the Kovasznay flow experiment. Losses are
calculated on the inference module, which never learns equation (KF.I) directly.
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Figure 14: Prediction errors on the shared variables for the CP modules on the Kovasznay flow
experiment

well their predictions are aligned during the whole process. If the alignment mechanism is working as
desired, the loss curves should be very similar, meaning that the two modules are working as one and
learning together. For the Kovasznay flow experiment, we report the errors for u for the Momentum
and divergence modules in Figure 14, for both the CP-2xPINN and CP-PINN+NCL models with
DERL alignment and gradient-based reweighting. For the Acoustic equations experiment, we have
that the pressure and velocity x modules share the variables (p, u), while the pressure and velocity
y modules share (p, v). Hence, we have three plots: one shows the prediction errors for all three
modules on p, one shows the prediction errors for the first and second module on (p, u), and the
third shows the precision errors for the first and third module on (p, v). These results are available in
Figure 15 for both the CP-3xPINN and CP-3xNCL models with DERL alignment and gradient-based
reweighting.

These plots clearly indicate that the losses are very similar throughout the whole training process,
indicating that the alignment mechanism is making the modules collaborate closely to obtain the final
solution.

Measuring discrepancies. We now show from a numerical point of view how close the functions
predicted by different modules are in practical terms. We perform an additional test on the Kovasznay
Flow and Taylor-Green experiments from Section 3. At the end of training, we predict the solution
for the variable u, which is a vector containing the x and y components of the fluid velocity, shared
among the two modules of the CP models. We measure the following quantities:

• The L2 distance between the two modules, normalized with respect to the true solution norm
∥umodule 1−umodule 2∥2

∥utrue∥2
: this indicates how different are the two predicted solutions, scaled to the

magnitude of the true function.

• For a point-wise comparison, we consider the symmetrized Percentage Error: for each point
in the domain, we calculate 2∥umodule 1(t,x)−umodule 2(t,x)∥

∥umodule 1(t,x)∥+∥umodule 2(t,x)∥ which measures how far are the two
predictions compared to each other. We then calculate the mean and maximum value.

We perform this test for both the CP-2xPINN and CP-PINN+NCL models. Results are available in
Table 6. From the scale of the metrics, we conclude that the difference between the two modules is
negligible compared to the scale of the solution or with respect to each other. We have not observed
any cases where the modules disagree with each other, as they are practically the same function when
it comes to predicting the solution.
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Figure 15: Prediction errors on the shared variables for the CP modules on the Acoustic equation
experiment

Table 6: Normalized L2 distance and symmetrized Percentage Error metrics for the modules on
predicting u in the Kovasznay flow and Taylor Green vortex experiments.

Kovasznay Flow Experiment

Model Normalized L2 distance Mean sPE Max sPE

×10−4 ×10−7 ×10−6

CP-2xPINN (DERL+Grad) 2.758 6.095 2.954
CP-PINN+NCL (DERL+Grad) 2.210 4.874 1.729

Taylor-Green vortex Experiment

Model Normalized L2 distance Mean sPE Max sPE

×10−4 ×10−7 ×10−6

CP-2xPINN (DERL+Grad) 8.910 2.762 2.102
CP-PINN+NCL(DERL+Grad) 10.47 3.187 4.693
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Table 7: Results for different values of λalign on two CP models.

Acoustic equations

CP-3xNCL (DERL) L2 error max error
×10−5 ×10−1

λalign = 1 5.165 1.547
λalign = 0.1 3.164 1.257
λalign = 0.01 2.460 1.089
λalign = 10. 12.46 4.388

Table 8: Results for the Acoustic equation experiment where NCL and PINN have the same parameter
budget of CP during training. In these cases, PINN and NCL have 3 times the number of parameters
of CP during inference.

Acoustic equations

Model L2 error max err

×10−5 ×10−1

PINN 5.671 1.462
NCL 2.940 1.169
CP-3xNCL (DERL+Grad) 2.718 1.121

F ABLATIONS

Alignment coefficient λalign. We experimented with different values of λalign to analyze the sensi-
tivity of CP with respect to this hyperparameter. We test values of λalign between 0.01 and 10. Results
for the Acoustics experiment (CP-3xNCL model with DERL alignment) are available in table 7

As we can see, λalign regulates the importance of the alignment between models. While its influence
depends on the specific task and modules, the λalign = 1 works well on average in all benchmarks.
Highly specialised tuning of the hyperparameter can lead to modest improvement, as in the acoustic
equation case above.

Number of parameters in the baselines. Since the CP model employs more than one MLP during
training, the total number of parameters during this phase is increased. At inference, where the
models can be used indefinitely, CP uses a single module, and hence will have the same number
of parameters and expressiveness as an NCL or PINN module. In this ablation, we increase the
number of units in the NCL and PINN layers to match the parameter budget of the CP model during
training. We experimented with the Acoustics equations and the CP model with 3 NCL modules. We
remark that, during inference, this means that PINN and NCL will use 3 times the parameters of CP.
Results are available in Table 8. As we can see, our models perform better even though they use fewer
parameters during inference, further showing the importance of modularization in these applications.

Statistical Significance. To show robustness with respect to different initialization and stochasticity
in optimization, we perform additional runs with different seeds on the Acoustic equations experiment.
We experiment with the PINN and NCL baselines as well as the CP-3xNCL model DERL alignment
and Gradient based reweighting. Results averaged over three seeds are available in Table 9.

As we can see, the results clearly indicate that the our CP model with 3 NCL modules is still the
best model by far, with lower L2 and maximum errors in the domain. Furthermore, the standard
deviations are smaller, indicating more robustness to different initializations.

G FURTHER THEORETICAL DISCUSSION

In this Section, we provide additional theoretical understandings and intuitive insights on why our
modular approach is easier to optimize compared to a PINN model.
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Table 9: Results for the Acoustic equation experiments with different seeds. Results are averaged
over 3 runs. We report mean and standard deviations.

Acoustic equations

Model L2 error max err

×10−5 ×10−1

PINN 5.090±0.859 2.247±0.413

NCL 3.540±0.431 1.610±0.082

CP-3xNCL (DERL) 1.723±0.173 1.091±0.088

On the difference between PDE residual terms and alignment losses A PDE residual term
imposes constraints that link together the partial derivatives of an MLP. For example, a PDE such
as ∂u

∂t − λ · ∇u = 0 imposes that the time derivative of the network must be equal to a linear
combination of the spatial ones. As observed in Krishnapriyan et al. (2021), this type of constraint is
often ill-conditioned and can lead to numerical instabilities. The same work also shows that these
PDE terms can produce a very complex and non-smooth loss landscape. Hence, our idea is to avoid
as much as possible to combine multiple PDE losses in a single MLP. ComPhy tackles subproblems
(simpler than the whole system) in each model, and then transfers information across models through
alignment.

The alignment loss, on the other hand, does not link together the partial derivatives or the outputs
of an MLP. Instead, it uses the derivatives or outputs of one module as a target for those of another
module in a supervised manner (to be precise, this is similar to a distillation between the two models).
Hence, we expect this type of loss to reduce the complexity of the problem and to simplify the
optimization process.

Physical constraints and properly aligned modules. When two models are properly alignment,
that is, when the SOB or DERL alignment loss is close to zero, the functions predicted by the modules
are very close in the Sobolev W 1,2 space (Trenta et al., 2025). As an example, we use the one in
Section 2.3 on the Navier-Stokes equations. After training, module 1 has learned the momentum
equation, while module 2 has learned the divergence equation. Since umodule 1 ≈ umodule 2 and
Dumodule 1 ≈ Dumodule 2, if we calculate the divergence of module 1, we can say that ∇ · umodule 1 ≈
∇ · umodule 2 ≈ 0. This means that a correct alignment allows module 1 to satisfy the divergence
equation because module 2 does so. This intuitively provides a reason why module 1 is still capable
of learning the system while seeing only one equation. We experimentally validated this claim in
Appendix E.
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