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ABSTRACT

The rise of large language models (LLMs) has driven the adoption of Model-as-
a-Service (MaaS). However, transmitting raw text to servers raises critical privacy
concerns. Existing approaches employ deep neural networks (DNNs) or differ-
ential privacy (DP) to perturb inputs. Yet, these approaches suffer notable lim-
itations: DNN-based methods often require task-specific pre-training, and con-
ventional DP techniques, though privacy-preserving, suffer from noise amplifi-
cation as perturbed inputs propagate through the deep transformer layer, lead-
ing to significant degradation in downstream task performance. To alleviate this,
we propose HiddenEcho, an end-to-end framework with client noise correc-
tion, where hidden states are sent from the server to the client and refined by
a lightweight module using both embeddings and intermediate representations.
HiddenEcho suppresses inter-layer noise amplification without pretraining, ef-
fectively preserving task-relevant signals under DP constraints. To further reduce
communication, HiddenEcho incorporates gradient-based hidden layer selec-
tion and information bottleneck compression, reducing communication cost while
preserving essential task information. Experiments across text classification and
generation tasks demonstrate that HiddenEcho achieves up to 46.89% perfor-
mance improvement over DP baselines, over 85% communication reduction, and
up to 72.52% faster training compared to existing denoising approaches, estab-
lishing a new privacy-utility trade-off for privatized LLMs. Codes are available at
https://anonymous.4open.science/r/hidden-echo.

1 INTRODUCTION

The advancement of large language models (LLMs) has profoundly transformed scientific re-
search Kulmanov et al. (2024); VM et al. (2024); Li et al. (2023b); Yang et al. (2024b). The
substantial computational costs associated with the growing number of parameters in LLMs have
driven the emergence of the Model-as-a-Service (MaaS) paradigm. MaaS offers a platform for users
without access to high-performance computing resources, enabling them to leverage LLMs for var-
ious purposes, including inference, fine-tuning, and the development of customized agents (David
et al., 2014). Nevertheless, MaaS also raises significant security concerns. Specifically, sensitive in-
formation, such as personally identifiable information (PII), including names, phone numbers, email
addresses, and financial details, may be exposed when users upload data to LLM vendors.

Privacy protection for LLMs in the MaaS framework mainly relies on cryptography-based and
perturbation-based methods. While cryptographic techniques like secure multiparty computa-
tion (Hou et al., 2024) and homomorphic encryption (Liu & Liu, 2023) provide strong security,
their high computational overhead makes them impractical for resource-constrained clients.

In contrast, perturbation-based methods have gained attention because of their flexibility to add
perturbations to the data as a privacy-preserving mechanism. For instance, deep neural network
(DNN)-based perturbation methods leverage learned data distributions to generate perturbed data
that can deceive adversaries. However, these approaches typically require pretraining phases for the
whole training, limiting their practicality. Differential privacy (DP) as a perturbation-based method
with lower computational overhead, has emerged as an alternative. It introduces noise of a specified
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Figure 1: Mean squared error (MSE) between clean hidden states and noisy hidden states under
different privacy budgets based on Qwen2-1.5B (Yang et al., 2024a) with 27 hidden layers retaining
on the server side on the MRPC dataset (Wang et al., 2018).

intensity to the input on the client side before transmitting it to the server. For example, Qu et al. (Qu
et al., 2021) proposed adding dχ-DP noise (based on χ2 distance to prevent reconstruction of the
original data) to text embeddings, achieving enhanced privacy protection at the cost of reduced accu-
racy. However, when such noise is left unprocessed, it leads to significant performance degradation
in downstream tasks when applied to LLM. Mai et al. (Mai et al., 2024) improve this issue with their
SnD framework, which involves pretraining a denoising module on the server and deploying it on
the client. This approach filters out a part of noises and enhances model performance.

Nevertheless, Experiments show that differential privacy noise in text embeddings is progressively
amplified through LLM transformer blocks, leading to increasing MSE and significant performance
degradation, as seen in the ”LDP(dχ) (η=100)” curve in Fig 1. Existing denoising methods, relying
on pretraining and disconnected from LLM dynamics, fail to mitigate inter-layer noise effectively.

Based on this, we propose an end-to-end framework HiddenEcho that integrates noise correction
in the MaaS to protect data privacy in LLMs. Unlike existing denoising approaches: (1) it eliminates
the need for pretraining, enabling effective denoising of inter-layer noise from the server; (2) it fully
leverages the internal hidden layer information of LLMs, optimizing their performance; and (3) Con-
sidering the communication overhead between the client and server, we introduce a gradient-based
hidden layer filter to identify and select critical hidden layers, alongside an information bottleneck-
based dimension reducer to retain essential information from the hidden states. This design enables
near-complete noise correction with minimal data transmission, striking an effective balance be-
tween communication efficiency and model performance. As illustrated by the ”HiddenEcho ”
curves in Fig 1, in the final hidden layer, HiddenEcho (η=100) reduces noise (14.69→ 8.31) by
43.43% compared to LDP(dχ) (η=100).

In summary, our contributions are: ❶ We identify and analyze the critical issue of noise amplification
in LLMs under differential privacy, where injected noise grows progressively through hidden layers,
severely degrading model performance. ❷ We propose HiddenEcho, an end-to-end framework
that enables pretraining-free, progressive noise correction via client-side denoising guided by hidden
states from server, which is applicable to both inference and fine-tuning with balanced privacy,
utility, and communication cost. ❸ We evaluate HiddenEcho in MaaS scenarios, showing up to
46.89% performance gain in text classification over baselines, over 85% communication reduction
with HiddenEcho, and 72.52% faster denoising compared to existing methods.

2 RELATED WORKS

Privacy Preservation for LLMs Privacy preservation in LLMs has become critical with
widespread deployment (Miranda et al., 2024). Existing approaches fall into cryptographic and
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perturbation-based methods. Cryptographic techniques, such as secure multi-party computa-
tion (Hou et al., 2024) and homomorphic encryption (Hao et al., 2022; Liu & Liu, 2023), offer
strong privacy guarantees but incur high computational costs and are limited to defending against
external adversaries, making them impractical for resource-constrained clients. Perturbation-based
methods provide a more flexible trade-off between privacy and utility. While some approaches per-
turb model outputs (Liu et al., 2019) or use adversarial training (Coavoux et al., 2018a), differential
privacy has emerged as a popular choice in the MaaS paradigm due to its lightweight noise injection
into embeddings (Lyu et al., 2020; Qu et al., 2021; Shen et al., 2023; Li et al., 2023a). However,
DP noise is amplified through transformer layers, degrading model performance. SnD (Mai et al.,
2024) introduces a client-side denoising module to mitigate this effect, but fails to fully address
noise propagation across deep transformer blocks—a challenge our work aims to resolve.

3 PRELIMINARIES

3.1 THREAT MODELS

For language models, attackers typically aim to extract sensitive information from the original user
data. We consider a split MaaS deployment in which the client hosts the embedding layer and the
server hosts the remaining model Shen et al. (2023). They follow the protocol but may attempt
to infer additional information from observed artifacts. An attacker may be either (i) a malicious
service provider), or (ii) an eavesdropper possessing any subset of the following: ❶ Perturbed
embeddings: the attacker observes perturbed token embeddings Ψ(x) = E(x)) + δ submitted by
the client. ❷ Embedding layer parameters: the attacker observes the embedding matrix Wemb

used to map tokens to vectors. As highlighted in (Song & Raghunathan, 2020; Shen et al., 2023),
Embedding Inversion Attacks (EIA) and Attribute Inference Attacks (AIA) represent significant
privacy threats in machine learning:

Definition 1 (Embedding Inversion Attack (EIA)) Given perturbed embeddings Ψ(x) ∈ Rl×d
and the embedding matrix Wemb, the goal is to reconstruct each token t is recovered by

v̂t = argmin
v∈V
∥Wemb[v]−Ψ(x)∥2.

Definition 2 (Attribute Inference Attack (AIA)) Let a ∈ A be a sensitive attribute. Given auxil-
iary labeled samples S = {(x̃i, ãi)}, the attacker trains

fw : Rl×d → A
on (Ψ(x̃i), ãi) and predicts â = fw(Ψ(x)) for target x.

3.2 PROBLEM DEFINITION

Based on threat models, we focus on the privacy concerns associated with data transfer between
the client and server when utilizing LLMs in the MaaS. In this scenario, the client holds a private
dataset X = {x1, x2, · · · , xn}. Following a split learning framework Gupta & Raskar (2018);
Zhang et al. (2023b), we mitigate the client’s resource constraints by deploying the word embedding
layer E of the LLM on the client, while the remaining layers are hosted on the server. To ensure
privacy, perturbations based on differential privacy, denoted as δ, are applied to the embeddings
on the client. The optimization of the global LLM after incorporating these perturbations can be
formalized as follows:

θ∗ = argmin
θ

1

|X|
∑
xi∈X

L(θ,Ψ(E(xi) + δ)). (1)

Here, θ are the model parameters to be optimized, and Ψ denotes a denoising module. To enhance
the feedback received by the client from the server, the design of an effective Ψ for mitigating the
impact of added noise on the model’s outputs is crucial.

4 METHODOLOGY

HiddenEcho leverages a hidden layer correction to address noise amplification in LLMs. Under
the split learning framework, HiddenEcho reduces transmission significantly with only a minor
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Figure 2: Framework of HiddenEcho. The denoise module is deployed on the client side, and
the operations related to LLM’s hidden layer of the Down-sampling, Layer Filter, and Dimension
Reducer are deployed on the server side.

performance trade-off. Fig. 2 and Algorithm 1 provide detailed descriptions. The complexity anal-
ysis, theoretical justification, and comparison with DP are presented in Appendix D, F, G.

4.1 FULL NOISE CORRECTION

In HiddenEcho, server-side hidden layer states are transmitted back to the client for correction.
This process is designed to be integrated with the fine-tuning of the LLM.

Perturbation Tokenized texts are converted to embeddings E = E(xi) ∈ Rn×d on the client,
where n is the sequence length and d is the hidden size of the server-side LLM. To ensure privacy,
noise is added to embeddings, yeilding E′ = E + δ, which are then transmitted to the server.

Server-side Forward Propagation The server inputs the noisy embeddings E′ into the LLM B.
During forward propagation, intermediate hidden states H = B(E′) = {H0, · · · , HL−1} are col-
lected from all L layers. However, injected noise progressively distorts the hidden states’ feature
space, which prevents LLM from effectively learning the task information. Consequently, a denois-
ing mechanism is crucial to correct these hidden states for effective task learning.

Denoising The client-side denoising module refines the hidden states received from the server.
Drawing inspiration from the LST method (Sung et al., 2022), which uses a dimension-reduced LLM
as a side network for downstream task learning, the denoising module takes the initial noise-free
embedding and the hidden states of the LLM on the server side as input. By utilizing the information
contained in the initial embedding, it generates optimized hidden states: Hdenoised = D(E,H),
where D is the denoise module.

The denoise module has a hidden size of d′ = d/r, where r is the reduction factor, and has L layers.
Each layer i contains a transformer Ti and a gate vector gi. To integrate the server-side hidden states,
the input to layer i is a combination of Hi and the previous layer’s output Ai−1, with the gate vector
gi controlling the proportion of this mixture. The proportion is computed by µi = sigmoid(gi).
Thus, the input to the transformer Ti is

Zi = µiAi−1 + (1− µi)H
dn
i , (2)

where Hdn
i ∈ Rn×d′ is the downsampled Hi. Specifically, for the first layer Ai−1 = Edn, Edn

also represents the downsampled E. The gating mechanism adjusts the influence of the server-side
hidden states on the denoising process, ensuring that the refined hidden state optimally balances the
client-side and server-side information.

4
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To further enhance the learning ability of the denoise module, residual connections are introduced,
which propagate the information of the initial embeddings to the deeper layers, preserving the in-
tegrity of the original signals during denoising. The output of layer i is recursively defined as:

Ai = Ai−1 + Ti(Zi). (3)

The downsampling process, along with the subsequent upsampling, is learned by linear layers on
the server side to reduce communication cost:

Hdn
i =Wdn

i (Hi), (4)

Edn =Wdn
Emb(E). (5)

The final output AL−1 of the denoising module is then upsampled back to the original dimension d
to create the denoised hidden state:

Hdenoised =Wup(AL−1). (6)

Optimization The denoised hidden state is fed into a task-specific head to generate predictions,
and the corresponding loss is computed for model optimization. For classification tasks, the head
outputs logits, and cross-entropy loss is applied:

ŷ = W task(Hdenoised), (7)

L(ŷ, y) = −
∑
i

yi log(ŷi), (8)

where y represents the vector of ground-truth labels. Both the denoising module and the task-specific
parameters are optimized to minimize this loss, improving classification accuracy and denoising
effectiveness. This ensures denoised hidden states effectively contribute to the task performance.

4.2 COMMUNICATION OVERHEAD REDUCTION

While leveraging all intermediate hidden states yields strong denoising performance, the resulting
communication overhead limits practicality. To address this, HiddenEcho incorporates a hidden
layer filter and a dimension reducer, effectively balancing model performance with communication
efficiency and reducing transmission costs without notable performance loss.

Hidden Layer Filter Transmitting all intermediate hidden states between server and client incurs
prohibitive communication costs. We observe that not all layers contribute equally to the final output,
suggesting that selectively transmitting only the most informative layers could maintain performance
while reducing overhead.

To quantify the contribution of each hidden layer to the final output, a gradient-based filter is de-
signed. For a given layer i(i < L− 1), we gradually vary the value of its hidden state from 0 to Hi

and observe the corresponding changes in the output of the last layer. Denoting T Si as layer i of the
server-side LLM, we have:

ĤL−1 = T SL−1 ◦ ... ◦ T Si (Ĥi), (9)

where Ĥi is the current value of layer i, and ĤL−1 is the output of the last layer corresponding to
the hidden state Ĥi. ◦ signifies the sequential application of layers, with each layer’s output feeding
into the next layer in the sequence.

The layer’s contribution Ci is defined by the cumulative gradient of these output changes:

Ci = Hi

∫ Hi

0

∂ĤL−1

∂Ĥi

dĤi. (10)

However, in practice, calculating the continuous integral is computationally challenging. Follow-
ing (Dai et al., 2022), we approximate the integral using Riemann summation with m steps:

Ci =
Hi

m

m∑
j=1

∂ĤL−1

∂Ĥi

∣∣∣∣∣
Ĥi=(j/m)Hi

. (11)
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This calculation is performed before fine-tuning. A small subset is sampled from the training dataset.
Each sample undergoes standard preprocessing: tokenization, embedding, and perturbation, but not
denoising. The server computes the layer contributions for each sample using Eq. (11) and averages
these contributions across all samples.

Layers with the highest k contributions are selected to minimize communication overhead while
maintaining performance, where k is a small hyperparameter. During each forward pass, only these
layers’ hidden states are transmitted, significantly reducing communication costs. Upon receiving
these hidden states, the client’s denoising module correspondingly skips unselected layers, acceler-
ating computation and lowering resource requirements.

Dimension Reducer While layer selection reduces the number of transmitted states, each hidden
state remains high-dimensional. Projecting the hidden states of the server-side LLM using linear
layers is often effective, but it may fail to learn optimal representations due to the lack of explicit
optimization objectives. We address this by applying the information bottleneck technique (Alemi
et al., 2017) to compress hidden states while preserving task-relevant information.

In HiddenEcho, we formulate dimension reduction as an information bottleneck problem: min-
imize the mutual information (MI) between the noisy embedding E′ and the downsampled hidden
states Hdn

i , while maximizing the MI between the denoised output Hdenoised and the downsampled
hidden states Hdn

i . The corresponding loss function is:

LIB =
1

n

n−1∑
i=0

I(E′;Hdn
i )− βI(Hdenoised;Hdn

i ). (12)

Consequently, the overall model optimization loss is a combination of the task loss and the informa-
tion bottleneck loss, weighted by α, β:

L = L(ŷ, y) + αLIB. (13)

Although exact MI computation for high-dimensional variables is inherently challenging (Belghazi
et al., 2018), an exact value is often unnecessary for optimization. Based on this, MINE (Belghazi
et al., 2018), a neural network-based approach, is employed to estimate MI effectively. MINE uses
a statistics network to learn a function fθ that maximizes the difference between its expectation over
the joint distribution P (X,Y ), and the exponential expectation over the product of the marginal dis-
tributions P (X)P (Y ). The estimated MI is then approximated by the supremum of this difference.
Mathematically, this can be expressed as

max
θ

(
EP (X,Y )[fθ(X,Y )] − exp(EP (X)[EP (Y )[fθ(X,Y )]])

)
. (14)

I(X;Y ) ≈ sup
θ

(
EP (X,Y )[fθ(X,Y )] − exp(EP (X)[EP (Y )[fθ(X,Y )]])

)
. (15)

This neural network-based estimator allows for an efficient computation of MI in scenarios where
traditional methods are computationally prohibitive.

Specially, we prepare two statistics networks for each hidden state Hdn
i : one to estimate the MI

I(E′;Hdn
i ), and the other to estimate I(Hdenoised;Hdn

i ). After calculating the task loss at each
step, these statistics networks are optimized for several steps according to Eq. equation 14. Once the
optimization process is finished, the networks are used to compute the MI estimates. The informa-
tion bottleneck loss is computed based on these estimates, as described in Eq. equation 12.

5 EXPERIMENTS

We evaluate perturbation methods on text classification and generation tasks using Qwen2-1.5B and
Llama3-1B (1.54B and 1.23B parameters) for classification, and T5-Large (0.75B parameters) for
generation. Datasets include Financial Phrasebank, MRPC, BBC News, and Tweet Annotation for
classification; IWSLT2014, CNN/DailyMail, and Samsum for generation. Details are provided in
Appendix J.2. We employ LoRA fine-tuning via Transformers (Wolf et al., 2020) and PEFT (Man-
grulkar et al., 2022), with AdamW and a linear scheduler (initial lr = 1.5e-4). Performance is mea-
sured using AUC and Empirical Privacy (Definition 4) for classification (Li et al., 2023a), and BLEU
for generation (Papineni et al., 2002). All experiments run on an NVIDIA RTX 3090 GPU.
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Attacks Following prior studies (Song & Raghunathan, 2020), we evaluate the privacy protection
effectiveness of HiddenEcho and baseline methods under simulated attacks within the split fed-
erated learning framework (Shen et al., 2023). In our experiments, a white-box attack setting is
assumed, where attackers have access to user-submitted text embeddings and the parameters of the
embedding model. As described in 3.1, the Embedding Inversion Attack (EIA) and Attribute In-
ference Attack (AIA) models are used to evaluate the effectiveness of privacy preservation methods.

Table 1: Performance of different perturbation methods on text classification tasks based on Qwen2-
1.5B.

Dataset MRPC Financial BBC News

Privacy Budget η 100 1000 5000 6000 100 1000 5000 6000 100 1000 5000 6000

GAN-DP AUC 0.497 0.532 0.597 0.612 0.501 0.524 0.618 0.629 0.606 0.620 0.684 0.720
EP 1.000 0.999 0.999 0.998 1.000 0.999 0.997 0.992 0.995 0.991 0.971 0.962

LDP AUC 0.551 0.557 0.553 0.599 0.596 0.595 0.629 0.617 0.648 0.646 0.736 0.803
EP1 0.988 0.987 0.956 0.867 0.988 0.987 0.967 0.886 0.973 0.972 0.914 0.820

SnD AUC 0.513 0.513 0.526 0.533 0.558 0.565 0.595 0.630 0.627 0.628 0.629 0.637

HiddenEcho-Full AUC 0.646 0.657 0.661 0.667 0.875 0.874 0.883 0.889 0.685 0.803 0.839 0.960
HiddenEcho AUC 0.660 0.655 0.666 0.668 0.857 0.855 0.860 0.866 0.732 0.747 0.805 0.951

AUC Improve % 19.78 15.22 11.56 9.15 46.81 46.89 40.38 41.11 12.96 24.30 13.99 19.55
1 The EP of SnD and HiddenEcho is consistent with that of LDP, while GAN-DP differs from the other methods. Subsequent tables

follow this format in reporting EP.

5.1 RESULTS OF EMBEDDING INVERSION ATTACK

We evaluate various methods against embedding inversion attacks in text classification using
Qwen2-1.5B under Metric-DP, which is based on dχ-privacy budgets η = 100, 1000, 5000 (defini-
tion in Appendix B)); results on Llama3-1B are in Appendix J.3). We describe the baseline methods
in Appendix J.1. Our proposed approach has two variants: HiddenEcho-Full uses all hidden lay-
ers for denoising, while HiddenEcho selectively transmits high-impact layers via gradient-based
filtering to achieve significantly reduced communication. For comparison, we also evaluate SnD,
which relies on a fixed pre-trained denoising model.

As shown in Table 1, HiddenEcho-Full achieves higher AUC scores, confirming its effectiveness
in mitigating noise amplification and delivering the best performance on several datasets, with AUC
improvements of up to 46.89% (Financial Phrasebank) and 24.30% (BBC News). Interestingly, the
more efficient HiddenEcho variant can even outperform HiddenEcho-Full on MRPC (+19.78%)
and BBC News (+12.96%), suggesting that not all layers contribute positively to denoising. In con-
trast, SnD underperforms because its fixed model fails to adapt to the shifting hidden distributions
during fine-tuning, leading to ineffective noise removal. See Appendix J.6 for visualization of the
baselines’ classification. Additional EIA evaluation on text generation is provided in Appendix J.4.

5.2 ABLATION STUDY

We conduct ablation studies on HiddenEcho, which subsumes all components. We evaluate three
variants: removing residual connections (−Res), replacing the Hidden Layer Filter with fixed skip
layers (−HLF ), and substituting the Dimension Reducer with a linear layer (−DR). As shown

Table 2: Ablation study of HiddenEcho on text classification tasks based on Qwen2-1.5B.

Dataset MRPC Financial BBC News

Privacy Budget η 100 1000 5000 100 1000 5000 100 1000 5000

HiddenEcho 0.660 0.655 0.666 0.857 0.855 0.860 0.732 0.747 0.805
HiddenEcho−Res 0.646 0.648 0.658 0.814 0.815 0.819 0.659 0.661 0.729
HiddenEcho−HLF 0.637 0.640 0.641 0.773 0.773 0.774 0.629 0.630 0.719
HiddenEcho−DR 0.632 0.649 0.644 0.789 0.799 0.801 0.630 0.663 0.789
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in Table 2, the complete HiddenEcho consistently achieves the highest AUC across datasets and
privacy budgets. Removing residual connections degrades performance by 1.1%–11.51%, with the
largest drop on BBC News (9.4%–11.51%). Replacing the HLF causes the most significant de-
cline—up to 14.1% (e.g., 0.732→0.629 on BBC News at η=100)—demonstrating the importance
of dynamic layer selection in noise suppression. The −DR variant reduces AUC by 0.9%–13.9%,
with greater impact on complex tasks (e.g., 6.5%–7.9% drop on Financial).

These results confirm that residual connections stabilize training, the HLF enhances communication
and noise control, and the dimension reducer improves feature robustness, collectively ensuring
architectural efficacy under DP perturbations.

5.3 RESULTS OF ATTRIBUTE INFERENCE ATTACK
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Figure 3: AIA performance on Tweet Annotation
Sensitivity 2 (Kern et al., 2023) with Qwen2-1.5B.

Compared to other text classification datasets,
the Tweet Annotation dataset includes critical
attributes such as the author’s age and educa-
tion, making it well-suited for attribute infer-
ence attacks. Following the approach in (Song
& Raghunathan, 2020), we train an MLP model
to predict related information for each tweet.
For detailed architecture, refer to Appendix J.5.
Specifically, we evaluate the model’s robust-
ness using RMSE for age prediction and Em-
pirical Privacy (EP) for education inference,
where higher values indicate stronger resistance
to attacks. As depicted in Fig 3, the red dashed
line represents the privacy protection capabil-
ity without perturbation. Both HiddenEcho and standard LDP exhibit performance degrada-
tion as privacy protection increases. However, except in scenarios with high privacy budgets (e.g.,
η = 100), where both methods show nearly comparable, HiddenEcho consistently outperforms
LDP in terms of privacy protection under other conditions.

5.4 OPTIMIZATION

0 5 10 15
Epoch

1.0

1.2

1.4

1.6

1.8

2.0

Lo
ss

0.55

0.60

0.65

0.70

0.75

0.80

AU
C

Train Loss
Eval Loss
Eval AUC

(a) HiddenEcho-Full
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(b) HiddenEcho k=4
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(c) HiddenEcho k=8
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(d) HiddenEcho k=16

Figure 4: Optmization performance of HiddenEcho-Full and HiddenEchowith different hidden
layers on BBC News based on Qwen2-1.5B.

We report the optimization process of the HiddenEcho, with results on the BBC News dataset
using Qwen2-1.5B visualized in Fig 4. Specifically, we compare the optimization trajectories of
two configurations: HiddenEcho-Full, which utilizes full hidden layer states, and HiddenEcho,
which employs filtered k hidden layers. The evaluation metrics encompass training loss, evaluation
loss, and evaluation AUC, providing a comprehensive view of model convergence and classification
performance. During optimization, HiddenEcho-Full shows stable decline in evaluate loss in
the early period, while overfitting starting at the 14th epoch, with increased evaluation loss and
performance degradation, likely due to the use of full hidden layers for correction. In contrast,
we observe the optimization trajectories of HiddenEcho with 4, 8, and 16 hidden layers. The
4-layer configuration achieves an AUC above 75% by the 12th epoch. The hidden layer filter in
HiddenEcho enables more focused corrections, reducing overfitting. These findings suggest that
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Table 3: Training time cost overhead of different methods for one epoch (left) and communication
cost of HiddenEcho-Full (HE-Full) and HiddenEcho (HE) for one batch (right).

Training time cost (Second) Communication cost (MiB)

Approaches LDP GAN-DP SnD HE-Full HE Approaches HE-Full HE Saved

MRPC
Q

125 118 248 196 166 MRPC
Q

2.63 0.38 85.55%
Financial 74 76 184 115 92 Financial 1.97 0.28 85.79%

BBC News 95 97 393 118 108 BBC News 10.50 1.50 85.71%

IWSLT
T

25 26 - 51 37 IWSLT
T

6.00 2.25 62.50%
CNNDM 35 37 - 64 46 CNNDM 8.25 3.09 62.55%
Samsum 32 33 - 62 40 Samsum 3.05 1.14 62.62%

using fewer hidden layers in HiddenEcho can lead to faster convergence and lower communication
overhead without sacrificing performance.

5.5 TIME COST

We compare the time overhead of different methods for perturbing embeddings by recording the
training time for one epoch for each method. Statistics are shown in the left side of Table 3, where
Q and T denotes Qwen2-1.5B and T5-Large, respectively. Since SnD is not applicable to text gen-
eration, we do not report statistics for it in this context. The HiddenEcho framework, which
builds upon LDP, incurs higher computational overhead compared to LDP alone. However, when
compared to SnD, which also includes a denoising module, HiddenEcho-Full demonstrates faster
training speeds, with time costs reduced by up to 72.52% on the BBC News dataset. Although
HiddenEcho incorporates additional steps such as a hidden layer filter and dimension reduction, it
still achieves faster training speeds due to the use of fewer hidden layers. Notably, while the GAN-
DP method based on DNN shows advantages in a single training epoch, it requires a pre-training
process for the GAN, which adds to its overall time cost.

5.6 COMMUNICATION COST

This section analyzes the communication overhead of HiddenEcho. HiddenEcho requires trans-
mitting hidden layer states between the server and client to enable correction. The full hidden
states are transmitted in HiddenEcho-Full, resulting in large data volumes and high real-time
transmission demands during LLM fine-tuning. In contrast, HiddenEcho compresses communi-
cation by selecting key hidden layers for transmission. The communication costs per data batch
for both HiddenEcho variants are shown in the right side of Table 3. The results indicate that
HiddenEcho reduces communication overhead by over 60% compared to HiddenEcho-Full.
Specifically, for text classification tasks, it achieves a remarkable space saving of over 85%. For text
generation tasks, which require HiddenEcho to filter more hidden layers to achieve optimal per-
formance, the space saving is approximately 62%. Under typical network bandwidth, client-server
communication using HiddenEcho remains unaffected. A detailed communication conservation
analysis is provided in Appendix E.

6 CONCLUSION

Large language models (LLMs) in the Model-as-a-Service paradigm enable convenient customiza-
tion but raise privacy concerns. While differential privacy (DP) mitigates these risks, it degrades
model performance, especially as injected noise is amplified through multi-layer transformer blocks.
To address this, we propose HiddenEcho, a split learning-based framework that integrates with
hidden layers and supports both fine-tuning and inference. Experiments show that HiddenEcho
achieves a superior privacy-utility trade-off and significantly improves downstream task perfor-
mance under DP constraints, offering a novel solution to noise mitigation in privatized LLMs.
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A THE USE OF LARGE LANGUAGE MODELS

The language of this paper was polished using large language models (LLMs) to enhance clarity and
readability. The final content and academic integrity remain the responsibility of the authors.

B dχ PRIVACY

Differential Privacy (DP) is a perturbation-based privacy-preserving mechanism that provides a rig-
orous framework for safeguarding data confidentiality. By introducing carefully calibrated noise
during the training or fine-tuning of LLMs, DP makes it significantly harder to extract sensitive
information from the perturbed data (Behnia et al., 2022).

In particular, the dχ-based Metric-DP method is more suitable for text structural embed-
dings (Feyisetan et al., 2020). Based on the differential privacy, we define the dχ-Privacy.

Definition 3 (dχ-Privacy) Let X be the input domain, Y be the output domain, and dχ be a distance
metric over X . A randomized mechanism M : X → Y satisfies ηdχ-privacy if for any two inputs
x, x′ ∈ X and any subset S ⊆ Y , the following inequality holds:

Pr[M(x) ∈ S]

Pr[M(x′) ∈ S]
≤ eηdχ(x,x

′), (16)

where η ≥ 0 represents the privacy budget, controlling the trade-off between privacy and utility.
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HiddenEcho offers a novel solution to mitigate LLM performance degradation caused by noise-
based differential privacy mechanisms.

C PRIVACY DEFINITION

Building on prior research (Coavoux et al., 2018b), which defines privacy as the adversary’s inability
to infer information about the input from its latent representations, we adopt a similar perspective in
our work.

Definition 4 (Empirical Privacy) Empirical Privacy (EP ) quantifies the adversary’s inability to
reconstruct the original input or infer sensitive attributes from perturbed text. The degree of privacy
protection increases as it becomes more challenging for an attacker to recover the original text or
extract sensitive information.

EP = 1−
∑
xi∈X I(f(Φ(xi)), xi)

|X|
, (17)

where Φ(xi) represents the embedding layer of the LLM, f denotes a general inversion process, and
I indicates the correct predictions.

D TIME AND SPACE COMPLEXITY

D.1 HIDDENECHO-FULL

The computational cost of HiddenEcho-Full is primarily driven by its denoising module. For the
time complexity:

1. Transformer Layers: Each Transformer layer processes hidden states with a complexity of
O(n2d′ + nd′2), where d′ = d/r (reduced hidden size), n is the sequence length, and L is
the number of layers. The total complexity for all layers is:

O(L(n2d/r + nd2/r2)).

2. Down/Upsampling: The linear transformations for downsampling and upsampling the em-
beddings have a complexity of O(Lndd′).

3. Computing gate vectors and performing mixing operations incurs a complexity of
O(Lnd′).

Combining these, the total time complexity is:

O(L(n2d/r + nd2/r2 + nd2/r)).

For the space complexity:

1. Parameter storage: The Transformer layers and linear transformations require O(Ld′2 +
Ldd′) for storing parameters.

2. Intermediate Representations: The hidden states and gate vectors contribute O(Lnd′+Ld′)
to memory usage.

Thus, the total space complexity is:

O(L(d2/r2 + nd/r + d2/r)).

D.2 HIDDENECHO

To address the high communication overhead, HiddenEcho compresses the hidden layer states
using selective filtering and dimensionality reduction. For the time complexity:
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1. Hidden Layer Filter: Estimating the gradient ∂ĤL−1

∂Ĥi
for each approximation step involves

backpropagation through the layers following Hi. This incurs a complexity of O(mn2d)
per layer, where m denotes the number of approximation steps. Summing across L layers,
the total cost is:

O(mLn2d).

2. Dimension Reducer: Downsampling and upsampling hidden states incur O(ndd′), where
d′ = d/r is the reduced dimension, and r is the reduction factor. MINE operations over
nH selected layers require O(knnHd′), where k is the optimization steps for MINE.

The total time complexity is:

O(mLn2d+ knnHd/r + nd2/r).

For the space complexity:

1. Hidden Layer Filter: Requires O(Lnd) for storing gradients and contributions.

2. Dimension Reducer: MINE statistics networks require O(nHd′2). Downsam-
pled/upsampled states add O(nnHd′).

The total space complexity is:

O(Lnd+ nHd2/r2 + nnHd/r).

E COMMUNICATION ANALYSIS

In the HiddenEcho-Full, all L hidden states of the server-side LLM are transmitted. Each hidden
state has dimensions of n · d, where n represents the sequence length and d′ = d/r denotes the
reduced hidden dimension achieved via dimensionality reduction by a factor r. The total communi-
cation volume can be expressed as:

VHiddenEcho-Full = L · n · d′.

In contrast, the HiddenEcho configuration transmits only nH selected hidden layers, resulting in
a total communication volume of:

VHiddenEcho = nH · n · d′.

To quantify the reduction in transmission, the ratio of communication volumes between the two
configurations is given by:

VHiddenEcho
VHiddenEcho-Full

=
nH · n · d′

L · n · d′
=

nH
L

.

The percentage of transmission volume saved is therefore:

Savings (%) =
(
1− nH

L

)
· 100.

Example Case: When nH ≪ L, significant communication savings can be achieved. For instance,
consider nH = 4 and L = 28. The percentage savings in transmission volume is calculated as:

Savings (%) =
(
1− 4

28

)
· 100 ≈ 87.50%.
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F PROOF OF NOISE MITIGATION IN HIDDENECHO

We provide proof demonstrating how the HiddenEcho-Full framework mitigates interlayer noise
amplification by analyzing noise propagation through transformer layers and the corrective effects
of the denoising module.

F.1 NOISE AMPLIFICATION IN TRANSFORMER LAYERS

Let the hidden state at the i-th layer be Hi, and the corresponding noise be δi. The hidden state at
the (i+ 1)-th layer can be expressed as:

Hi+1 = Ti+1(Hi + δi),

where Ti+1 represents the transformer operation. Due to the nonlinear nature of Ti+1, noise δi
propagates and is amplified. The noise at the (i+ 1)-th layer can be approximated as:

δi+1 = f(δi),

where f(·) denotes the transformation applied by the layer. The magnitude of δi+1 is bounded by
the Jacobian norm of the transformation:

∥δi+1∥ ≤ ∥Jf (Hi)∥ · ∥δi∥,

where ∥Jf (Hi)∥ is the Jacobian norm. Defining the noise amplification factor as αi = E[∥Jf (Hi)∥],
we obtain:

∥δi+1∥ ≤ αi∥δi∥, where αi > 1.

Over L layers, the noise at the final layer is amplified as:

∥δL∥ ≤
L∏
i=1

αi∥δ0∥,

where δ0 denotes the initial noise introduced by the privacy-preserving mechanism.

F.2 NOISE DECOMPOSITION AND DENOISING

The hidden state Hi can be decomposed into two components:

Hi = Si + δi,

where:

• Si: Signal component containing task-relevant information.
• δi: Noise component introduced for privacy preservation.

The HiddenEcho module D utilizes the noise-free initial embedding E and the set of server-side
hidden states H = {H0, H1, . . . ,HL−1} to produce a denoised hidden state:

Hdenoised
i = D(E,H).

The denoised hidden state can be expressed as:

Hdenoised
i = Si + δdenoised

i ,

where δdenoised
i represents the residual noise after applying the denoising module.

F.3 DYNAMIC MIXING AND RESIDUAL CONNECTIONS

The HiddenEchomodule incorporates dynamic mixing and residual connections to enhance signal
retention and suppress noise. The input to the i-th layer of the module is given by:

Zi = µiAi−1 + (1− µi)H
dn
i ,

where:
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• Ai−1: Output from the previous layer with reduced noise.
• Hdn

i = Wdn(Hi): Compressed version of the hidden state, containing both signal and
noise.

The gate parameter µi ∈ (0, 1) dynamically adjusts the contributions of Ai−1 and Hdn
i . Expanding

Zi in terms of its components:

Zi = µi(SAi−1 + δAi−1) + (1− µi)(SHi + δHi).

The contributions of signal and noise can be written as

SZi = µiSAi−1 + (1− µi)SHi , δZi = µiδAi−1 + (1− µi)δHi .

Using the triangle inequality, the noise magnitude satisfies:

∥δZi∥ ≤ µi∥δAi−1∥+ (1− µi)∥δHi∥.
This demonstrates the effectiveness of dynamic mixing and residual connections in amplifying the
signal while suppressing sparse noise. Generally, it ensures that ∥D(δ, E,H)∥ > 0.

F.4 NOISE REDUCTION AT THE FINAL LAYER

The residual noise after denoising is given by:

∥δdenoised∥ = ∥δ∥ ·
(
1− ∥D(δ, E,H)∥

∥δ∥

)
.

We have ∥D(δ, E,H)∥ > 0, ensuring:

0 < 1− ∥D(δ, E,H)∥
∥δ∥

< 1,

which implies:
∥δdenoised∥ < ∥δ∥.

Let 0 < β = ∥δdenoised∥
∥δ∥ < 1. The corrected noise at the i-th layer satisfies:

∥δdenoised
i ∥ ≤ βi∥δi∥.

At the (i+ 1)-th layer, the noise satisfies:

∥δdenoised
i+1 ∥ ≤ βi+1αi∥δdenoised

i ∥.

By recursively applying this relationship across L layers, the noise at the final layer satisfies:

∥δdenoised
L ∥ ≤

(
L∏
i=1

βiαi

)
∥δ0∥ <

L∏
i=1

αi∥δ0∥ = ∥δL∥.

G COMPARING WITH DP

G.1 PRIVACY GUARANTEE UNDER EMBEDDING-BASED INVERSION

We first analyze the privacy strength of HiddenEcho compared with the standard DP mechanism
under Embedding-based Inversion. Let the clean embedding be E and the added DP noise be δ,
such that the privatized embedding is

E′ = E + δ.

Since the randomization is fully applied at the client side, the transmitted E′ already satisfies the DP
constraint with privacy budget η. By the post-processing property of differential privacy, any further
mapping of E′ (e.g., the server computing hidden states H = B(E′) and returning them to the
client) does not weaken the privacy guarantee. Therefore, the overall mechanism of HiddenEcho
satisfies the same η-DP guarantee as the baseline DP approach:

DP budgetHiddenEcho = DP budgetDP = η.

16

Administrator
高亮

Administrator
高亮



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

G.2 MODEL ACCURACY AND NOISE AMPLIFICATION

Next, we compare robustness to noise amplification across transformer layers. Denote by αi the
amplification factor of the i-th layer. For the baseline DP mechanism, the accumulated noise at the
final layer L is bounded by

∥δL∥ ≤
( L∏
i=1

αi

)
∥δ0∥,

where δ0 is the initial DP noise at the embedding layer. In HiddenEcho, a lightweight client-side
correction is applied at each layer with suppression factor βi ∈ (0, 1), yielding

∥δden
L ∥ ≤

( L∏
i=1

βiαi

)
∥δ0∥.

Since βi < 1, we have
∥δden
L ∥ < ∥δL∥,

which shows that HiddenEcho effectively suppresses inter-layer noise amplification and preserves
task-relevant signals under the same DP budget.

G.3 COMMUNICATION COST

Finally, we compare the communication overhead. For the baseline DP mechanism, transmitting
only embeddings requires

VDP = n · d,
where n is the sequence length and d the embedding dimension. For HiddenEcho-Full, all L
hidden layers are downsampled to dimension d′ = d/r, resulting in

VHiddenEcho−full = L · n · d′.

In the communication-efficient variant HiddenEcho, only nH critical layers are transmitted, giv-
ing

VHiddenEcho = nH · n · d′.
The relative saving ratio is

Savings = 1− VHiddenEcho
VHiddenEcho−Full

= 1− nH
L

.

For example, if L = 28 and nH = 4, the saving is 87.5%, which aligns with our experimental
results showing more than 85% reduction in classification tasks.

H POTENTIAL PRIVACY RISKS

HiddenEcho’s denoising procedure builds on a one-shot Local Differential Privacy (LDP) pertur-
bation of client-side embeddings. Consequently, against embedding-based inversion attacks, Hid-
denEcho inherits the formal privacy guarantees of LDP: since the server receives only the perturbed
embedding (E’ = E + δ), all subsequent processing is protected by DP post-processing invariance.

A different situation arises under gradient-based reconstruction attacks, because HiddenEcho re-
quires returning certain gradient signals from the client-side denoiser to the server during training.
Under our threat model, an eavesdropping adversary may intercept these gradients. In such cases,
HiddenEcho no longer benefits from a provable DP guarantee, since the gradient may, in principle,
encode additional information about the client input.

However, mainstream gradient inversion techniques (e.g., Deep Leakage from Gradients (Zhu et al.,
2019) and follow-up work) rely fundamentally on a white-box optimization pipeline: they itera-
tively search for a ”virtual input” whose gradients are computed using the known model architecture
and parameters and match the intercepted gradients. White-box access (or a surrogate with high
structural fidelity) is crucial for high-quality recovery.

17

Administrator
高亮



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Under HiddenEcho’s deployment setting, the adversary does not have access to the server-side LLM
parameters or weights. They observe only (i) perturbed embeddings and (ii) a small subset of gra-
dient signals from the denoiser. As summarized in the recent survey of Zhang et al. (2023a), when
model parameters are unavailable, gradient inversion becomes dramatically harder: attackers require
additional priors, surrogate models, or complex meta-optimization, and recovery quality degrades
substantially. Black-box/gray-box scenarios are far less effective than white-box settings.

Thus, while HiddenEcho does not offer a formal DP guarantee under gradient interception, the
practical feasibility of such reconstruction attacks is significantly constrained by the absence of
model parameters.

I WORKFLOW OF HIDDENECHO

Algorithm 1 outlines the training process for HiddenEcho.

Algorithm 1 Workflow of a Training Step of HiddenEcho
Require: Input tokens x, grouth truth y
Ensure: Loss

Client Phase
1: Embed tokens: E ← E(x);
2: Inject sampled noise to E: E′ ← E + δ;
3: Send E′ to server;

Server Phase
4: Compute hidden states: H ← B(E′);
5: Filter the hidden states according to the precomputed layer contributions to create a subset S;
6: Downsample the hidden states in S by Eq. equation 4;
7: Return the downsampled S to client;

Client Phase
8: Compute downsampled embeddings Edn by Eq. equation 5;
9: Denoising: Hdenoised ← D(Edn,S);

10: Compute task loss Ltask by Eq. equation 7 and Eq. equation 8;
11: Optimize the MI estimators by Eq. equation 14;
12: Compute information bottleneck loss LIB by Eq. equation 12;
13: Compute total loss L by Eq. equation 13;
14: return Loss L;

J EXPERIMENTAL SUPPLEMENTS

J.1 BASELINES

We evaluate HiddenEcho against several strong baselines within the segmented framework, en-
compassing standard DP algorithms, DP-based denoising methods, and DNN-based perturbation
approaches. The baselines include:

• Local Differential Privacy (LDP): Embeddings fed into the LLM’s word embedding layer
are perturbed with dχ-noise (Qu et al., 2021), then transmitted to the server.
In the standard LDP framework for language model inference, the client first maps each
input token x to its corresponding dense embedding e = Embed(x) ∈ Rd. To satisfy ϵ-
local differential privacy under the metric dχ(e, e

′) = ∥e− e′∥2, the client adds calibrated
noise η drawn from the multivariate Laplace mechanism:

ẽ = e+ η, where p(η) =
ϵd

CdBd
exp

(
−ϵ∥η∥2

B

)
, (18)

with B = supx∼x′ ∥Embed(x) − Embed(x′)∥2 denoting the L2 sensitivity of the embed-
ding function, and Cd = 2d/2πd/2Γ(d/2) being the surface area of the unit sphere in Rd.
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This distribution ensures that for any neighboring inputs x and x′, the resulting perturbed
embeddings satisfy

p(ẽ | x)
p(ẽ | x′)

≤ exp(ϵ), (19)

which is the formal guarantee of ϵ-dχ-privacy. The privatized embedding ẽ is then trans-
mitted to the server, which performs downstream inference using the standard LLM archi-
tecture without any modification.

• GAN-DP: A GAN-based noise addition method designed to perturb embeddings by intro-
ducing dχ-based noise of varying magnitudes to generate perturbed vectors.
In the GAN-DP, a generative adversarial network synthesizes privacy-preserving noise
adapted to the geometry of the embedding space under the dχ-privacy notion, where
dχ(e, e

′) = ∥e − e′∥2. The generator Gϕ learns to produce adaptive noise vectors con-
ditioned on the clean embedding e and a target privacy budget ϵ, while the discriminator
Dψ distinguishes between natural (unperturbed) and perturbed embeddings to preserve se-
mantic utility. Given an input token embedding e = Embed(x) ∈ Rd, the client samples a
latent vector z ∼ N (0, I) and generates privacy-aware noise as

η = Gϕ(e, z; ϵ), (20)

which is added to the original embedding to yield the privatized representation

ẽ = e+ η. (21)

During training, the generator is optimized such that the induced distribution over ẽ ap-
proximates the exponential mechanism required for ϵ-dχ-privacy:

p(ẽ | e) ∝ exp
(
− ϵ · ∥ẽ− e∥2/B

)
,

where B = supx∼x′ ∥Embed(x)−Embed(x′)∥2 denotes the L2 sensitivity. The adversarial
objective further encourages ẽ to remain close to the manifold of real embeddings, balanc-
ing privacy and utility. Once trained, only the generator Gϕ is deployed on the client side,
enabling efficient, on-device generation of privacy-compliant embeddings without server
interaction during inference.

• SnD (Mai et al., 2024): A DP-based denoising approach where the denoising module is
pre-trained on the server and then downloaded to the client for noise correction.
In the SnD framework, the client first computes a token embedding e = Embed(x) from
the private input x, then perturbs it with calibrated noise to satisfy ϵ-dχ-privacy under the
L2 metric, yielding the privatized embedding

ẽ = e+ η, with p(η) ∝ exp

(
−ϵ∥η∥2

B

)
, (22)

where B is the L2 sensitivity of the embedding function. The client sends ẽ to the server,
which performs the main LLM inference:

y = LLMserver(ẽ). (23)

The server returns y to the client, who then applies a pre-trained denoising module
Dθ—downloaded from the server and trained on public data with synthetic dχ-compliant
noise—to refine the result using knowledge of the original input x and the privacy param-
eters (ϵ, B):

ŷ = Dθ(y;x, ϵ, B). (24)

This client-side denoising step mitigates utility degradation caused by privacy-preserving
perturbation while preserving the formal ϵ-dχ-privacy guarantee of the initial encoding.

• HiddenEcho-Full: Our end-to-end client-side denoising method transmits the full LLM
hidden states for processing.

• HiddenEcho: Featuring gradient-based hidden layer filtering and dimensionality reduc-
tion via information bottleneck theory to lower communication overhead while preserving
performance.
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Table 4: Performance of different perturbation methods on text classification tasks based on Llama3-
1B.

Dataset MRPC Financial BBC News

Privacy Budget η 1000 4000 5000 1000 4000 5000 1000 4000 5000

GAN-DP AUC 0.506 0.502 0.513 0.540 0.550 0.576 0.619 0.647 0.664
EP 0.999 0.998 0.998 0.999 0.999 0.997 0.999 0.989 0.986

LDP AUC 0.489 0.529 0.494 0.561 0.567 0.559 0.619 0.627 0.641
EP 0.951 0.889 0.809 0.952 0.897 0.848 0.903 0.803 0.700

SnD AUC 0.509 0.504 0.507 0.558 0.553 0.572 0.632 0.633 0.633

HiddenEcho-Full AUC 0.654 0.659 0.663 0.894 0.906 0.905 0.978 0.978 0.978
HiddenEcho AUC 0.645 0.653 0.655 0.828 0.824 0.829 0.971 0.972 0.974

AUC Improve % 28.48 24.57 29.24 59.36 59.79 57.12 54.75 51.16 47.29

Table 5: Statistics of datasets.

Dataset Task #Train #Dev #Test

FP sentiment analysis 1,811 226 227
MRPC semantic equivalence judgment 3,301 1,725 1,725

BBC News news topic classification 1225 500 500
Tweet offensive speech detection 1500 500 500

IWSLT machine translation 1,044 130 131
CNNDM summarization 1,322 50 47
Samsum summarization 2,916 171 150

J.2 DATASET DETAILS AND BASE PERFORMANCE

For the text classification task, we utilize:

• Financial Phrasebank (Malo et al., 2014): A sentiment classification dataset with 4,840
financial news sentences, categorized by annotator agreement rates.

• Microsoft Research Paraphrase Corpus (Wang et al., 2018): A sentence pairs dataset col-
lected from news articles, each labeled by human annotators to indicate whether the pairs
are paraphrases.

• BBC News (Greene & Cunningham, 2006): Consists of articles published on the BBC
News between 2004 and 2005, with each article categorized into one of five topics: busi-
ness, entertainment, politics, sports, or technology.

• Tweet Annotation (Kern et al., 2023): A dataset comprises annotated tweet data for hate
speech and offensive language under five experimental conditions, which are utilized for
attribute inference attacks.

For the text generation task, we utilize:

• IWSLT2014 (IWSLT) (201, 2014): A dataset for English-to-French machine translation,
focusing on spoken language.

• CNN DailyMail Short (CNNDM) (Nallapati et al., 2016): A concise version of CNN Dai-
lyMail news summaries, paired with fill-in-the-blank questions.

• Samsum Short (Samsum): A shortened version from (Gliwa et al., 2019), comprising
messenger-style dialogues with corresponding summaries.

More dataset statistics are reported in Table 5. For reference, the ground truth performance of each
large model across various datasets is provided in Table 6.
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Table 6: Performances of centralized fine-tuning on six datasets for each LLMs.

Text Classification

Base Model Metric MRPC Financial BBC News
Qwen2-1.5B AUC 0.920 0.976 0.998
Llama3-1B AUC 0.928 0.980 0.999

Text Generation

Base Model Metric IWSLT CNNDM Samsum
T5-large BLEU 34.047 17.738 24.371

Table 7: Performance of different perturbation methods on text generation tasks based on T5-Large.

Dataset IWSLT CNNDM Samsum

Privacy Budget η 20 30 40 20 30 40 20 30 40

GAN-DP BLEU 0.109 10.309 29.816 5.461 13.572 12.697 4.120 4.964 5.509
EP 0.883 0.821 0.799 0.460 0.372 0.348 0.503 0.461 0.449

LDP BLEU 0.035 15.553 24.576 0.764 7.974 12.107 2.403 14.602 20.235
EP 0.994 0.970 0.914 0.987 0.916 0.764 0.989 0.931 0.806

HiddenEcho-Full BLEU 1.092 20.080 26.366 2.915 11.617 12.323 4.618 20.636 21.851
HiddenEcho BLEU 0.824 22.403 25.654 0.971 10.925 12.718 4.323 18.192 20.867

J.3 EIA AGAINST FOR TEXT CLASSIFICATION BASED ON LLAMA3-1B

Furthermore, we extend to evaluate the performance of baselines against EIA in text classification
tasks using Llama3-1B. Given the significant differences in embedding layer parameter scales across
different LLMs, privacy budgets of 1000, 4000, and 5000 are selected for this experiment. All other
experimental settings are consistent with those outlined in 5.1. The detailed results are presented in
Table 4.

In contrast to Qwen2-1.5B, HiddenEcho-Full exhibits clear superiority when applied to Llama3,
achieving significantly higher improvements over baselines, with a maximum performance gain of
59.79%. Although HiddenEcho typically performs slightly below HiddenEcho-Full, it remains
a more advantageous choice in bandwidth-constrained scenarios.

J.4 EIA AGAINST FOR TEXT GENERATION BASED ON T5-LARGE

We evaluate machine translation on the IWSLT dataset and text summarization on the CNN Dai-
lyMail Short and Samsum Short datasets, using T5-Large as the base model. The BLEU scores of
HiddenEcho and other baseline methods are assessed against EIA at varying η. Note that SnD’s
noise reduction model, which processes classification vectors, is unsuitable for text generation tasks.

As shown in Table 7, HiddenEcho-Full consistently demonstrates near-optimal performance. On
the IWSLT dataset, HiddenEcho-Full achieves the highest BLEU scores at η = 20 (1.092) and
η = 40 (26.366), while HiddenEcho outperforms at η = 30 (22.403). A similar trend is observed
on the CNNDM dataset, although HiddenEcho-Full performs suboptimally at lower privacy bud-
gets.

The Samsum dataset further confirms HiddenEcho-Full’s effectiveness, with HiddenEcho-Full
consistently delivering the highest BLEU scores across all privacy budgets (4.618 at η = 20, 20.636
at η = 30, and 21.851 at η = 40). HiddenEcho-Full significantly outperforms GAN-DP and LDP,
particularly at lower privacy budgets.
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HiddenEcho-Full strikes a better balance between privacy and utility in text generation, maintain-
ing competitive EP values while achieving significantly higher generation quality, particularly in
summarization tasks.

J.5 AIA MODEL ARCHITECTURE

The architecture of the attacker model for attribute inference attacks is detailed in Table 8. The
model’s output size is set to 4 for education inference and 1 for age prediction.

Table 8: Attacker Model Architecture

Layer Shape

Input Batch size× 1536
FC 1536× 768

ReLU -
FC 768× Output size

(a) LDP (b) SnD (c) GAN-DP (d) HiddenEcho

Figure 5: Comparison of visualization of t-SNE between baselines and HiddenEcho on the Fi-
nancial Phrasebank with Qwen2-1.5B.

J.6 VISUALIZATION

Additionally, we extract the output of the final layer of the server-side LLM after training conver-
gence and employ t-SNE (Van der Maaten & Hinton, 2008) to project the embeddings into a 2D
space, maintaining consistent settings across all methods. This visualization enables a comparative
analysis of the effects of different perturbation techniques on the feature space. Each perturbation
algorithm is evaluated under the same privacy budget ϵ.

We conduct experiments using four perturbation baselines on the Financial Phrasebank dataset with
the Qwen2-1.5B model and ϵ of 5000. The results are visualized in Fig 5.

The visualization of HiddenEcho reveals a triangular spatial distribution of clusters, with points
from the same category forming compact groups. This clustering pattern is especially evident in the
orange and green categories, highlighting effective feature separation. In contrast, other methods
fail to form distinct clusters, with nodes exhibiting dispersed and overlapping distributions. The
lack of clear intra-class cohesion and inter-class separation in the embedding space leads to their
suboptimal performance.

K REBUTTAL SECTION

K.1 ADDITIONAL COMMUNICATION COST

To further demonstrate the practical efficiency of HiddenEcho, we also measured its inference-time
communication overhead on three representative generation benchmarks: IWSLT (machine transla-
tion), CNNDM (abstractive summarization), and SamSum (dialogue summarization). As shown in
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Table 9, the reported values represent the per-sample autoregressive communication cost (normal-
ized relative to full activation transmission), where Avg denotes the mean across all samples in the
dataset, and Min/Max indicate the smallest and largest costs observed for any single sample.

Notably, even on long-output tasks like CNNDM, the average overhead remains below 0.75×, with
many samples (e.g., in SamSum) requiring as little as 0.17×. This confirms that HiddenEcho effec-
tively reduces communication during decoding, especially by leveraging incremental updates and
state caching between Prefill and Decode stages

Table 9: Inference communication cost overhead of HiddenEcho for one epoch.
Dataset Avg Min Max
IWSLT 0.27MiB 0.12MiB 0.92MiB

CNNDM 0.73MiB 0.30MiB 1.09MiB
Samsum 0.28MiB 0.17MiB 0.44MiB

K.2 COMPARISON WITH FEDERATED LEARNING METHOD

Table 10: Performances of POPri on different tasks based on Qwen2-1.5B.
Task Metric Task Metric

Classification AUC Generation BLEU
Financial 0.615 IWSLT 30.604
MRPC 0.596 CNNDM 10.570

BBC News 0.727 Samsum 8.231

To enable a more comprehensive comparison with state-of-the-art federated learning approaches,
we report the performances of POPri Hou et al. (2025) on different tasks in Table 10. It is important
to note that direct alignment of privacy settings between our method and POPri is not feasible, as
their privacy-preserving mechanism fundamentally differs from ours. POPri leverages synthetic data
generation optimized via client DP feedback, while our approach relies on split learning with client-
side noise injection. To ensure fair comparison, we adopt the original privacy parameters reported
in POPri’s experiments without modification.

The results show that POPri generally underperforms on text classification tasks. It achieves rela-
tively better performance only on the IWSLT translation task in terms of BLEU score, but still lags
behind our method on most other benchmarks.

K.3 ADAPTABILITY OF LARGE-SCALE LLMS

To further evaluate the scalability of HiddenEcho to larger models, we extended our experiments to
Qwen2-7B on the FP text classification dataset, with results presented in Table 11. The results show
that our method consistently outperforms the LDP baseline, demonstrating its effectiveness even at
the 7B-parameter scale.

Table 11: Performance (AUC) of HiddenEcho on text classification tasks based on Qwen2-7B.
Privacy Budget 100 1000 5000 6000
HiddenEcho-Full 0.812 0.813 0.831 0.837

HiddenEcho 0.799 0.805 0.823 0.826

K.4 PARAMETER SENSITIVITY OF INFORMATION BOTTLENECK

Our experiments on the Financial dataset (Table 12) show that the hyperparameter β critically bal-
ances privacy and utility: at β = 0.1, AUC is only 0.779 due to insufficient task-relevant signal
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retention; performance peaks at β = 0.5 (AUC = 0.826) and β = 1 (AUC = 0.823); but rises sharply
to 0.612 when β = 5. This is because β governs a trade-off, which targets on minimizing mutual
information between noisy embeddings and compressed states (for privacy) while preserving mu-
tual information between denoised outputs and compressed states (for utility). Values of β ∈ [0.5, 1]
achieve the optimal balance between these competing objectives.

Table 12: Sensitivity of β on Finantial dataset based on Qwen2-7B.
β 0.1 0.5 1 5

AUC 0.779 0.826 0.823 0.612

K.5 ADDITIONAL ABLATION RESULTS

Table 13: Additional Ablation Study of HiddenEcho on Financial dataset based on Qwen2-7B.
Privacy Budget 100 1000 5000 6000

A 0.573 0.571 0.576 0.577
B 0.567 0.569 0.565 0.569

We added two comparison schemes for the ablation studies: Scheme A uses the original denoising
module structure, with inputs limited to dimension-reduced clean embeddings and the final-layer
hidden state (in the split learning architecture, the server only feeds back the final hidden layer to
the client to complete the task prediction loop, which is an inherent constraint of data interaction
under this paradigm, so the last hidden layer must serve as the fixed input benchmark); Scheme
B takes noisy embeddings and intermediate hidden states as denoising module inputs. Scheme A
isolates the independent contribution of clean embeddings in denoising, while Scheme B highlights
the role of the server’s intermediate hidden layers in noise correction.

Experiments on the FP dataset and Qwen2-1.5B model show both schemes performed poorly. This
confirms dimensionality-reduced clean embeddings and server-side noisy hidden states are comple-
mentary and indispensable. The former provides the basic noise correction signal, while the latter
delivers task-related deep features. Only their combination supports effective task learning.
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