

000 001 002 003 004 005 006 007 008 009 010 011 012 HIDDENECHO: MITIGATING NOISE AMPLIFICATION IN DIFFERENTIALLY PRIVATE LLMs WITH HIDDEN- STATE CORRECTION

013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
Anonymous authors
045
046
047
048
049
050
051
052
053
Paper under double-blind review

ABSTRACT

The rise of large language models (LLMs) has driven the adoption of Model-as-a-Service (MaaS). However, transmitting raw text to servers raises critical privacy concerns. Existing approaches employ deep neural networks (DNNs) or differential privacy (DP) to perturb inputs. Yet, these approaches suffer notable limitations: DNN-based methods often require task-specific pre-training, and conventional DP techniques, though privacy-preserving, suffer from noise amplification as perturbed inputs propagate through the deep transformer layer, leading to significant degradation in downstream task performance. To alleviate this, we propose HiddenEcho, an end-to-end framework with client noise correction, where hidden states are sent from the server to the client and refined by a lightweight module using both embeddings and intermediate representations. HiddenEcho suppresses inter-layer noise amplification without pretraining, effectively preserving task-relevant signals under DP constraints. To further reduce communication, HiddenEcho incorporates gradient-based hidden layer selection and information bottleneck compression, reducing communication cost while preserving essential task information. Experiments across text classification and generation tasks demonstrate that HiddenEcho achieves up to 46.89% performance improvement over DP baselines, over 85% communication reduction, and up to 72.52% faster training compared to existing denoising approaches, establishing a new privacy-utility trade-off for privatized LLMs. Codes are available at <https://anonymous.4open.science/r/hidden-echo>.

1 INTRODUCTION

The advancement of large language models (LLMs) has profoundly transformed scientific research Kulmanov et al. (2024); VM et al. (2024); Li et al. (2023b); Yang et al. (2024b). The substantial computational costs associated with the growing number of parameters in LLMs have driven the emergence of the Model-as-a-Service (MaaS) paradigm. MaaS offers a platform for users without access to high-performance computing resources, enabling them to leverage LLMs for various purposes, including inference, fine-tuning, and the development of customized agents (David et al., 2014). Nevertheless, MaaS also raises significant security concerns. Specifically, sensitive information, such as personally identifiable information (PII), including names, phone numbers, email addresses, and financial details, may be exposed when users upload data to LLM vendors.

Privacy protection for LLMs in the MaaS framework mainly relies on cryptography-based and perturbation-based methods. While cryptographic techniques like secure multiparty computation (Hou et al., 2024) and homomorphic encryption (Liu & Liu, 2023) provide strong security, their high computational overhead makes them impractical for resource-constrained clients.

In contrast, perturbation-based methods have gained attention because of their flexibility to add perturbations to the data as a privacy-preserving mechanism. For instance, deep neural network (DNN)-based perturbation methods leverage learned data distributions to generate perturbed data that can deceive adversaries. However, these approaches typically require pretraining phases for the whole training, limiting their practicality. Differential privacy (DP) as a perturbation-based method with lower computational overhead, has emerged as an alternative. It introduces noise of a specified

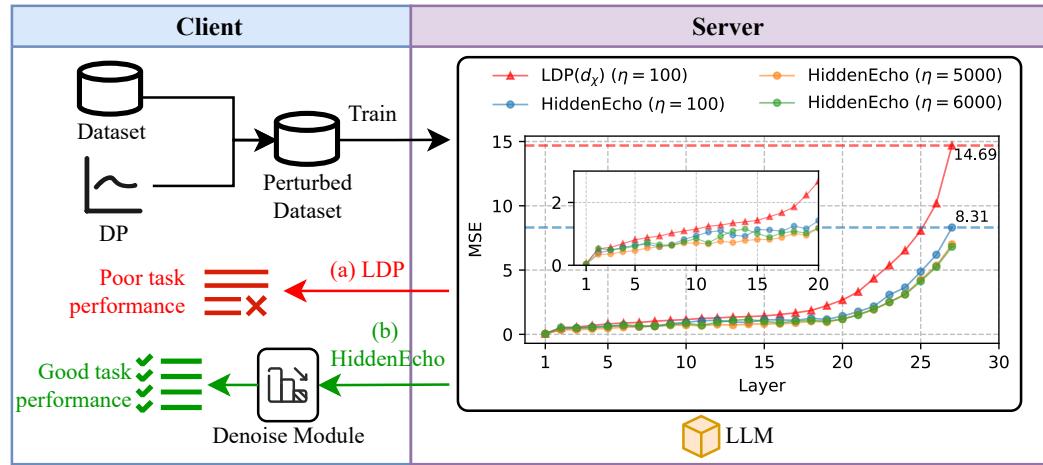


Figure 1: Mean squared error (MSE) between clean hidden states and noisy hidden states under different privacy budgets based on Qwen2-1.5B (Yang et al., 2024a) with 27 hidden layers retaining on the server side on the MRPC dataset (Wang et al., 2018).

intensity to the input on the client side before transmitting it to the server. For example, Qu *et al.* (Qu et al., 2021) proposed adding d_χ -DP noise (based on χ^2 distance to prevent reconstruction of the original data) to text embeddings, achieving enhanced privacy protection at the cost of reduced accuracy. However, when such noise is left unprocessed, it leads to significant performance degradation in downstream tasks when applied to LLM. Mai *et al.* (Mai et al., 2024) improve this issue with their SnD framework, which involves pretraining a denoising module on the server and deploying it on the client. This approach filters out a part of noises and enhances model performance.

Nevertheless, Experiments show that differential privacy noise in text embeddings is progressively amplified through LLM transformer blocks, leading to increasing MSE and significant performance degradation, as seen in the "LDP(d_χ) ($\eta=100$)" curve in Fig 1. Existing denoising methods, relying on pretraining and disconnected from LLM dynamics, fail to mitigate inter-layer noise effectively.

Based on this, we propose an end-to-end framework **HiddenEcho** that integrates noise correction in the MaaS to protect data privacy in LLMs. Unlike existing denoising approaches: (1) it eliminates the need for pretraining, enabling effective denoising of inter-layer noise from the server; (2) it fully leverages the internal hidden layer information of LLMs, optimizing their performance; and (3) Considering the communication overhead between the client and server, we introduce a gradient-based hidden layer filter to identify and select critical hidden layers, alongside an information bottleneck-based dimension reducer to retain essential information from the hidden states. This design enables near-complete noise correction with minimal data transmission, striking an effective balance between communication efficiency and model performance. As illustrated by the "HiddenEcho" curves in Fig 1, in the final hidden layer, HiddenEcho ($\eta=100$) reduces noise ($14.69 \rightarrow 8.31$) by 43.43% compared to LDP(d_χ) ($\eta=100$).

In summary, our contributions are: ① We identify and analyze the critical issue of noise amplification in LLMs under differential privacy, where injected noise grows progressively through hidden layers, severely degrading model performance. ② We propose **HiddenEcho**, an end-to-end framework that enables pretraining-free, progressive noise correction via client-side denoising guided by hidden states from server, which is applicable to both inference and fine-tuning with balanced privacy, utility, and communication cost. ③ We evaluate **HiddenEcho** in MaaS scenarios, showing up to 46.89% performance gain in text classification over baselines, over 85% communication reduction with **HiddenEcho**, and 72.52% faster denoising compared to existing methods.

2 RELATED WORKS

Privacy Preservation for LLMs Privacy preservation in LLMs has become critical with widespread deployment (Miranda et al., 2024). Existing approaches fall into cryptographic and

108 perturbation-based methods. Cryptographic techniques, such as secure multi-party computation
 109 (Hou et al., 2024) and homomorphic encryption (Hao et al., 2022; Liu & Liu, 2023), offer
 110 strong privacy guarantees but incur high computational costs and are limited to defending against
 111 external adversaries, making them impractical for resource-constrained clients. Perturbation-based
 112 methods provide a more flexible trade-off between privacy and utility. While some approaches per-
 113 turb model outputs (Liu et al., 2019) or use adversarial training (Coavoux et al., 2018a), differential
 114 privacy has emerged as a popular choice in the MaaS paradigm due to its lightweight noise injection
 115 into embeddings (Lyu et al., 2020; Qu et al., 2021; Shen et al., 2023; Li et al., 2023a). However,
 116 DP noise is amplified through transformer layers, degrading model performance. SnD (Mai et al.,
 117 2024) introduces a client-side denoising module to mitigate this effect, but fails to fully address
 118 noise propagation across deep transformer blocks—a challenge our work aims to resolve.
 119

120 3 PRELIMINARIES

121 3.1 THREAT MODELS

123 For language models, attackers typically aim to extract sensitive information from the original user
 124 data. We consider a split MaaS deployment in which the client hosts the embedding layer and the
 125 server hosts the remaining model Shen et al. (2023). They follow the protocol but may attempt
 126 to infer additional information from observed artifacts. An attacker may be either (i) a malicious
 127 service provider, or (ii) an eavesdropper possessing any subset of the following: **1 Perturbed**
 128 **embeddings:** the attacker observes perturbed token embeddings $\Psi(x) = \mathcal{E}(x) + \delta$ submitted by
 129 the client. **2 Embedding layer parameters:** the attacker observes the embedding matrix W_{emb}
 130 used to map tokens to vectors. As highlighted in (Song & Raghunathan, 2020; Shen et al., 2023),
 131 Embedding Inversion Attacks (EIA) and Attribute Inference Attacks (AIA) represent significant
 132 privacy threats in machine learning:

133 **Definition 1 (Embedding Inversion Attack (EIA))** *Given perturbed embeddings $\Psi(x) \in \mathbb{R}^{l \times d}$
 134 and the embedding matrix W_{emb} , the goal is to reconstruct each token t is recovered by*

$$135 \hat{v}_t = \arg \min_{v \in \mathcal{V}} \|W_{emb}[v] - \Psi(x)\|_2.$$

137 **Definition 2 (Attribute Inference Attack (AIA))** *Let $a \in \mathcal{A}$ be a sensitive attribute. Given auxil-
 138 iary labeled samples $\mathcal{S} = \{(\tilde{x}_i, \tilde{a}_i)\}$, the attacker trains*

$$139 f_w : \mathbb{R}^{l \times d} \rightarrow \mathcal{A}$$

140 *on $(\Psi(\tilde{x}_i), \tilde{a}_i)$ and predicts $\hat{a} = f_w(\Psi(x))$ for target x .*

143 3.2 PROBLEM DEFINITION

145 Based on threat models, we focus on the privacy concerns associated with data transfer between
 146 the client and server when utilizing LLMs in the MaaS. In this scenario, the client holds a private
 147 dataset $X = \{x_1, x_2, \dots, x_n\}$. Following a split learning framework Gupta & Raskar (2018);
 148 Zhang et al. (2023b), we mitigate the client’s resource constraints by deploying the word embedding
 149 layer \mathcal{E} of the LLM on the client, while the remaining layers are hosted on the server. To ensure
 150 privacy, perturbations based on differential privacy, denoted as δ , are applied to the embeddings
 151 on the client. The optimization of the global LLM after incorporating these perturbations can be
 152 formalized as follows:

$$153 \theta^* = \arg \min_{\theta} \frac{1}{|X|} \sum_{x_i \in X} \mathcal{L}(\theta, \Psi(\mathcal{E}(x_i) + \delta)). \quad (1)$$

155 Here, θ are the model parameters to be optimized, and Ψ denotes a denoising module. To enhance
 156 the feedback received by the client from the server, the design of an effective Ψ for mitigating the
 157 impact of added noise on the model’s outputs is crucial.

158 4 METHODOLOGY

161 HiddenEcho leverages a hidden layer correction to address noise amplification in LLMs. Under
 the split learning framework, HiddenEcho reduces transmission significantly with only a minor

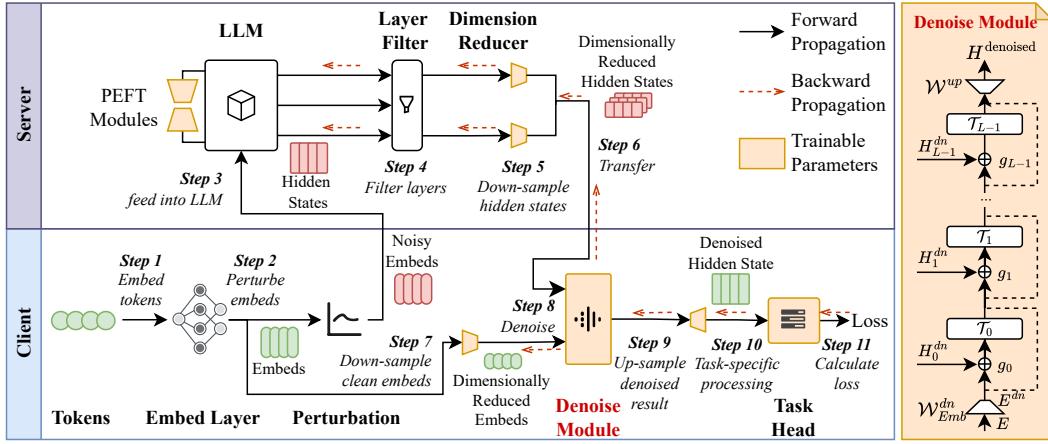


Figure 2: Framework of HiddenEcho. The denoise module is deployed on the client side, and the operations related to LLM’s hidden layer of the Down-sampling, Layer Filter, and Dimension Reducer are deployed on the server side.

performance trade-off. Fig. 2 and Algorithm 1 provide detailed descriptions. The complexity analysis, theoretical justification, and comparison with DP are presented in Appendix D, F, G.

4.1 FULL NOISE CORRECTION

In HiddenEcho, server-side hidden layer states are transmitted back to the client for correction. This process is designed to be integrated with the fine-tuning of the LLM.

Perturbation Tokenized texts are converted to embeddings $E = \mathcal{E}(x_i) \in \mathbb{R}^{n \times d}$ on the client, where n is the sequence length and d is the hidden size of the server-side LLM. To ensure privacy, noise is added to embeddings, yeilding $E' = E + \delta$, which are then transmitted to the server.

Server-side Forward Propagation The server inputs the noisy embeddings E' into the LLM \mathcal{B} . During forward propagation, intermediate hidden states $\mathbf{H} = \mathcal{B}(E') = \{H_0, \dots, H_{L-1}\}$ are collected from all L layers. However, injected noise progressively distorts the hidden states’ feature space, which prevents LLM from effectively learning the task information. Consequently, a denoising mechanism is crucial to correct these hidden states for effective task learning.

Denoising The client-side denoising module refines the hidden states received from the server. Drawing inspiration from the LST method (Sung et al., 2022), which uses a dimension-reduced LLM as a side network for downstream task learning, the denoising module takes the initial noise-free embedding and the hidden states of the LLM on the server side as input. By utilizing the information contained in the initial embedding, it generates optimized hidden states: $H^{\text{denoised}} = \mathcal{D}(E, \mathbf{H})$, where \mathcal{D} is the denoise module.

The denoise module has a hidden size of $d' = d/r$, where r is the reduction factor, and has L layers. Each layer i contains a transformer \mathcal{T}_i and a gate vector \mathbf{g}_i . To integrate the server-side hidden states, the input to layer i is a combination of H_i and the previous layer’s output A_{i-1} , with the gate vector \mathbf{g}_i controlling the proportion of this mixture. The proportion is computed by $\mu_i = \text{sigmoid}(\mathbf{g}_i)$. Thus, the input to the transformer \mathcal{T}_i is

$$Z_i = \mu_i A_{i-1} + (1 - \mu_i) H_i^{\text{dn}}, \quad (2)$$

where $H_i^{\text{dn}} \in \mathbb{R}^{n \times d'}$ is the downsampled H_i . Specifically, for the first layer $A_{i-1} = E^{\text{dn}}$, E^{dn} also represents the downsampled E . The gating mechanism adjusts the influence of the server-side hidden states on the denoising process, ensuring that the refined hidden state optimally balances the client-side and server-side information.

To further enhance the learning ability of the denoise module, residual connections are introduced, which propagate the information of the initial embeddings to the deeper layers, preserving the integrity of the original signals during denoising. The output of layer i is recursively defined as:

$$A_i = A_{i-1} + \mathcal{T}_i(Z_i). \quad (3)$$

The downsampling process, along with the subsequent upsampling, is learned by linear layers on the server side to reduce communication cost:

$$H_i^{\text{dn}} = \mathcal{W}_i^{\text{dn}}(H_i), \quad (4)$$

$$E^{\text{dn}} = \mathcal{W}_{\text{Emb}}^{\text{dn}}(E). \quad (5)$$

The final output A_{L-1} of the denoising module is then upsampled back to the original dimension d to create the denoised hidden state:

$$H^{\text{denoised}} = \mathcal{W}^{\text{up}}(A_{L-1}). \quad (6)$$

Optimization The denoised hidden state is fed into a task-specific head to generate predictions, and the corresponding loss is computed for model optimization. For classification tasks, the head outputs logits, and cross-entropy loss is applied:

$$\hat{y} = W^{\text{task}}(H^{\text{denoised}}), \quad (7)$$

$$\mathcal{L}(\hat{y}, y) = - \sum_i y_i \log(\hat{y}_i), \quad (8)$$

where y represents the vector of ground-truth labels. Both the denoising module and the task-specific parameters are optimized to minimize this loss, improving classification accuracy and denoising effectiveness. This ensures denoised hidden states effectively contribute to the task performance.

4.2 COMMUNICATION OVERHEAD REDUCTION

While leveraging all intermediate hidden states yields strong denoising performance, the resulting communication overhead limits practicality. To address this, HiddenEcho incorporates a hidden layer filter and a dimension reducer, effectively balancing model performance with communication efficiency and reducing transmission costs without notable performance loss.

Hidden Layer Filter Transmitting all intermediate hidden states between server and client incurs prohibitive communication costs. We observe that not all layers contribute equally to the final output, suggesting that selectively transmitting only the most informative layers could maintain performance while reducing overhead.

To quantify the contribution of each hidden layer to the final output, a gradient-based filter is designed. For a given layer i ($i < L - 1$), we gradually vary the value of its hidden state from 0 to H_i and observe the corresponding changes in the output of the last layer. Denoting \mathcal{T}_i^S as layer i of the server-side LLM, we have:

$$\hat{H}_{L-1} = \mathcal{T}_{L-1}^S \circ \dots \circ \mathcal{T}_i^S(\hat{H}_i), \quad (9)$$

where \hat{H}_i is the current value of layer i , and \hat{H}_{L-1} is the output of the last layer corresponding to the hidden state \hat{H}_i . \circ signifies the sequential application of layers, with each layer's output feeding into the next layer in the sequence.

The layer's contribution C_i is defined by the cumulative gradient of these output changes:

$$C_i = H_i \int_0^{H_i} \frac{\partial \hat{H}_{L-1}}{\partial \hat{H}_i} d\hat{H}_i. \quad (10)$$

However, in practice, calculating the continuous integral is computationally challenging. Following (Dai et al., 2022), we approximate the integral using Riemann summation with m steps:

$$C_i = \frac{H_i}{m} \sum_{j=1}^m \left. \frac{\partial \hat{H}_{L-1}}{\partial \hat{H}_i} \right|_{\hat{H}_i=(j/m)H_i}. \quad (11)$$

270 This calculation is performed before fine-tuning. A small subset is sampled from the training dataset.
 271 Each sample undergoes standard preprocessing: tokenization, embedding, and perturbation, but not
 272 denoising. The server computes the layer contributions for each sample using Eq. (11) and averages
 273 these contributions across all samples.

274 Layers with the highest k contributions are selected to minimize communication overhead while
 275 maintaining performance, where k is a small hyperparameter. During each forward pass, only these
 276 layers’ hidden states are transmitted, significantly reducing communication costs. Upon receiving
 277 these hidden states, the client’s denoising module correspondingly skips unselected layers, acceler-
 278 ating computation and lowering resource requirements.
 279

280 **Dimension Reducer** While layer selection reduces the number of transmitted states, each hidden
 281 state remains high-dimensional. Projecting the hidden states of the server-side LLM using linear
 282 layers is often effective, but it may fail to learn optimal representations due to the lack of explicit
 283 optimization objectives. We address this by applying the information bottleneck technique (Alemi
 284 et al., 2017) to compress hidden states while preserving task-relevant information.

285 In `HiddenEcho`, we formulate dimension reduction as an information bottleneck problem: mini-
 286 mize the mutual information (MI) between the noisy embedding E' and the downsampled hidden
 287 states H_i^{dn} , while maximizing the MI between the denoised output H^{denoised} and the downsampled
 288 hidden states H_i^{dn} . The corresponding loss function is:

$$\mathcal{L}^{\text{IB}} = \frac{1}{n} \sum_{i=0}^{n-1} I(E'; H_i^{\text{dn}}) - \beta I(H^{\text{denoised}}; H_i^{\text{dn}}). \quad (12)$$

292 Consequently, the overall model optimization loss is a combination of the task loss and the informa-
 293 tion bottleneck loss, weighted by α, β :

$$\mathcal{L} = \mathcal{L}(\hat{y}, y) + \alpha \mathcal{L}^{\text{IB}}. \quad (13)$$

296 Although exact MI computation for high-dimensional variables is inherently challenging (Belghazi
 297 et al., 2018), an exact value is often unnecessary for optimization. Based on this, MINE (Belghazi
 298 et al., 2018), a neural network-based approach, is employed to estimate MI effectively. MINE uses
 299 a statistics network to learn a function f_θ that maximizes the difference between its expectation over
 300 the joint distribution $P(X, Y)$, and the exponential expectation over the product of the marginal dis-
 301 tributions $P(X)P(Y)$. The estimated MI is then approximated by the supremum of this difference.
 302 Mathematically, this can be expressed as

$$\max_{\theta} (\mathbb{E}_{P(X, Y)}[f_\theta(X, Y)] - \exp(\mathbb{E}_{P(X)}[\mathbb{E}_{P(Y)}[f_\theta(X, Y)]])). \quad (14)$$

$$I(X; Y) \approx \sup_{\theta} (\mathbb{E}_{P(X, Y)}[f_\theta(X, Y)] - \exp(\mathbb{E}_{P(X)}[\mathbb{E}_{P(Y)}[f_\theta(X, Y)]])). \quad (15)$$

307 This neural network-based estimator allows for an efficient computation of MI in scenarios where
 308 traditional methods are computationally prohibitive.

309 Specially, we prepare two statistics networks for each hidden state H_i^{dn} : one to estimate the MI
 310 $I(E'; H_i^{\text{dn}})$, and the other to estimate $I(H^{\text{denoised}}; H_i^{\text{dn}})$. After calculating the task loss at each
 311 step, these statistics networks are optimized for several steps according to Eq. equation 14. Once the
 312 optimization process is finished, the networks are used to compute the MI estimates. The informa-
 313 tion bottleneck loss is computed based on these estimates, as described in Eq. equation 12.
 314

315 5 EXPERIMENTS

317 We evaluate perturbation methods on text classification and generation tasks using Qwen2-1.5B and
 318 Llama3-1B (1.54B and 1.23B parameters) for classification, and T5-Large (0.75B parameters) for
 319 generation. Datasets include Financial Phrasebank, MRPC, BBC News, and Tweet Annotation for
 320 classification; IWSLT2014, CNN/DailyMail, and Samsum for generation. Details are provided in
 321 Appendix J.2. We employ LoRA fine-tuning via Transformers (Wolf et al., 2020) and PEFT (Man-
 322 grulkar et al., 2022), with AdamW and a linear scheduler (initial lr = 1.5e-4). Performance is mea-
 323 sured using AUC and Empirical Privacy (Definition 4) for classification (Li et al., 2023a), and BLEU
 for generation (Papineni et al., 2002). All experiments run on an NVIDIA RTX 3090 GPU.

324 **Attacks** Following prior studies (Song & Raghunathan, 2020), we evaluate the privacy protection
 325 effectiveness of `HiddenEcho` and baseline methods under simulated attacks within the split federated
 326 learning framework (Shen et al., 2023). In our experiments, a white-box attack setting is
 327 assumed, where attackers have access to user-submitted text embeddings and the parameters of the
 328 embedding model. As described in 3.1, the **Embedding Inversion Attack (EIA)** and **Attribute In-**
 329 **ference Attack (AIA)** models are used to evaluate the effectiveness of privacy preservation methods.
 330

331 Table 1: Performance of different perturbation methods on text classification tasks based on Qwen2-
 332 1.5B.

Dataset		MRPC				Financial				BBC News			
Privacy Budget η		100	1000	5000	6000	100	1000	5000	6000	100	1000	5000	6000
GAN-DP	AUC	0.497	0.532	0.597	0.612	0.501	0.524	0.618	0.629	0.606	0.620	0.684	0.720
	EP	1.000	0.999	0.999	0.998	1.000	0.999	0.997	0.992	0.995	0.991	0.971	0.962
LDP	AUC	0.551	0.557	0.553	0.599	0.596	0.595	0.629	0.617	0.648	0.646	0.736	0.803
	EP ¹	0.988	0.987	0.956	0.867	0.988	0.987	0.967	0.886	0.973	0.972	0.914	0.820
SnD	AUC	0.513	0.513	0.526	0.533	0.558	0.565	0.595	0.630	0.627	0.628	0.629	0.637
HiddenEcho-Full	AUC	0.646	0.657	0.661	0.667	0.875	0.874	0.883	0.889	0.685	0.803	0.839	0.960
	AUC	0.660	0.655	0.666	0.668	0.857	0.855	0.860	0.866	0.732	0.747	0.805	0.951
AUC Improve %		19.78	15.22	11.56	9.15	46.81	46.89	40.38	41.11	12.96	24.30	13.99	19.55

¹ The EP of SnD and `HiddenEcho` is consistent with that of LDP, while GAN-DP differs from the other methods. Subsequent tables follow this format in reporting EP.

347 5.1 RESULTS OF EMBEDDING INVERSION ATTACK

348 We evaluate various methods against embedding inversion attacks in text classification using
 349 Qwen2-1.5B under Metric-DP, which is based on d_χ -privacy budgets $\eta = 100, 1000, 5000$ (definition
 350 in Appendix B)); results on Llama3-1B are in Appendix J.3). We describe the baseline methods
 351 in Appendix J.1. Our proposed approach has two variants: `HiddenEcho-Full` uses all hidden
 352 layers for denoising, while `HiddenEcho` selectively transmits high-impact layers via gradient-based
 353 filtering to achieve significantly reduced communication. For comparison, we also evaluate SnD,
 354 which relies on a fixed pre-trained denoising model.

355 As shown in Table 1, `HiddenEcho-Full` achieves higher AUC scores, confirming its effectiveness
 356 in mitigating noise amplification and delivering the best performance on several datasets, with AUC
 357 improvements of up to 46.89% (Financial Phrasebank) and 24.30% (BBC News). Interestingly, the
 358 more efficient `HiddenEcho` variant can even outperform `HiddenEcho-Full` on MRPC (+19.78%)
 359 and BBC News (+12.96%), suggesting that not all layers contribute positively to denoising. In con-
 360 trast, SnD underperforms because its fixed model fails to adapt to the shifting hidden distributions
 361 during fine-tuning, leading to ineffective noise removal. See Appendix J.6 for visualization of the
 362 baselines’ classification. Additional EIA evaluation on text generation is provided in Appendix J.4.

364 5.2 ABLATION STUDY

365 We conduct ablation studies on `HiddenEcho`, which subsumes all components. We evaluate three
 366 variants: removing residual connections ($-Res$), replacing the Hidden Layer Filter with fixed skip
 367 layers ($-HLF$), and substituting the Dimension Reducer with a linear layer ($-DR$). As shown

371 Table 2: Ablation study of `HiddenEcho` on text classification tasks based on Qwen2-1.5B.

Dataset		MRPC				Financial				BBC News			
Privacy Budget η		100	1000	5000	6000	100	1000	5000	6000	100	1000	5000	6000
HiddenEcho	0.660	0.655	0.666	0.857	0.855	0.860	0.732	0.747	0.805				
HiddenEcho- <i>Res</i>	0.646	0.648	0.658	0.814	0.815	0.819	0.659	0.661	0.729				
HiddenEcho- <i>HLF</i>	0.637	0.640	0.641	0.773	0.773	0.774	0.629	0.630	0.719				
HiddenEcho- <i>DR</i>	0.632	0.649	0.644	0.789	0.799	0.801	0.630	0.663	0.789				

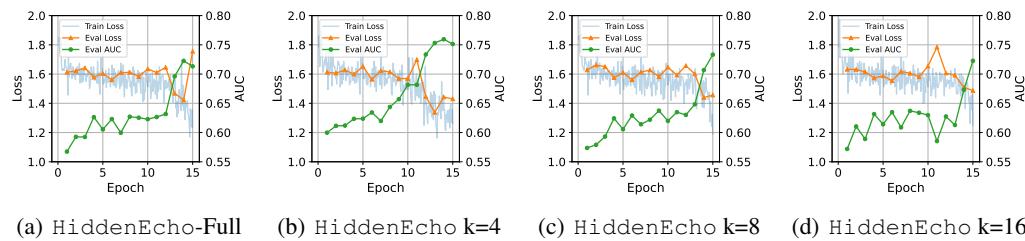
378 in Table 2, the complete HiddenEcho consistently achieves the highest AUC across datasets and
 379 privacy budgets. Removing residual connections degrades performance by 1.1%–11.51%, with the
 380 largest drop on BBC News (9.4%–11.51%). Replacing the HLF causes the most significant de-
 381 cline—up to 14.1% (e.g., 0.732→0.629 on BBC News at $\eta=100$)—demonstrating the importance
 382 of dynamic layer selection in noise suppression. The $-DR$ variant reduces AUC by 0.9%–13.9%,
 383 with greater impact on complex tasks (e.g., 6.5%–7.9% drop on Financial).

384 These results confirm that residual connections stabilize training, the HLF enhances communication
 385 and noise control, and the dimension reducer improves feature robustness, collectively ensuring
 386 architectural efficacy under DP perturbations.
 387

388 5.3 RESULTS OF ATTRIBUTE INFERENCE ATTACK

390 Compared to other text classification datasets,
 391 the Tweet Annotation dataset includes critical
 392 attributes such as the author’s age and education,
 393 making it well-suited for attribute inference
 394 attacks. Following the approach in (Song
 395 & Raghunathan, 2020), we train an MLP model
 396 to predict related information for each tweet.
 397 For detailed architecture, refer to Appendix J.5.
 398 Specifically, we evaluate the model’s robust-
 399 ness using RMSE for age prediction and Em-
 400 pirical Privacy (EP) for education inference,
 401 where higher values indicate stronger resistance
 402 to attacks. As depicted in Fig 3, the red dashed
 403 line represents the privacy protection capa-
 404 bility without perturbation. Both HiddenEcho and
 405 standard LDP exhibit performance degra-
 406 dation as privacy protection increases. However,
 407 except in scenarios with high privacy budgets (e.g.,
 408 $\eta = 100$), where both methods show nearly comparable,
 409 HiddenEcho consistently outperforms
 410 LDP in terms of privacy protection under other conditions.

411 5.4 OPTIMIZATION



412 Figure 4: Optmization performance of HiddenEcho-Full and HiddenEcho with different hidden
 413 layers on BBC News based on Qwen2-1.5B.
 414

415 We report the optimization process of the HiddenEcho, with results on the BBC News dataset
 416 using Qwen2-1.5B visualized in Fig 4. Specifically, we compare the optimization trajectories of
 417 two configurations: HiddenEcho-Full, which utilizes full hidden layer states, and HiddenEcho,
 418 which employs filtered k hidden layers. The evaluation metrics encompass training loss, evaluation
 419 loss, and evaluation AUC, providing a comprehensive view of model convergence and classification
 420 performance. During optimization, HiddenEcho-Full shows stable decline in evaluate loss in
 421 the early period, while overfitting starting at the 14th epoch, with increased evaluation loss and
 422 performance degradation, likely due to the use of full hidden layers for correction. In contrast,
 423 we observe the optimization trajectories of HiddenEcho with 4, 8, and 16 hidden layers. The
 424 4-layer configuration achieves an AUC above 75% by the 12th epoch. The hidden layer filter in
 425 HiddenEcho enables more focused corrections, reducing overfitting. These findings suggest that

432
 433 **Table 3: Training time cost overhead of different methods for one epoch (left) and communication**
 434 **cost of HiddenEcho-Full (HE-Full) and HiddenEcho (HE) for one batch (right).**

435	Training time cost (Second)					Communication cost (MiB)				
	Approaches	LDP	GAN-DP	SnD	HE-Full	HE	Approaches	HE-Full	HE	Saved
437	MRPC	125	118	248	196	166	MRPC	2.63	0.38	85.55%
	Financial	74	76	184	115	92	Financial	1.97	0.28	85.79%
	BBC News	95	97	393	118	108	BBC News	10.50	1.50	85.71%
440	IWSLT	25	26	-	51	37	IWSLT	6.00	2.25	62.50%
	CNNDM	35	37	-	64	46	CNNDM	8.25	3.09	62.55%
	Samsun	32	33	-	62	40	Samsun	3.05	1.14	62.62%

442
 443
 444 using fewer hidden layers in `HiddenEcho` can lead to faster convergence and lower communication
 445 overhead without sacrificing performance.

448 5.5 TIME COST

450 We compare the time overhead of different methods for perturbing embeddings by recording the
 451 training time for one epoch for each method. Statistics are shown in the left side of Table 3, where
 452 Q and T denotes Qwen2-1.5B and T5-Large, respectively. Since SnD is not applicable to text genera-
 453 tion, we do not report statistics for it in this context. The `HiddenEcho` framework, which
 454 builds upon LDP, incurs higher computational overhead compared to LDP alone. However, when
 455 compared to SnD, which also includes a denoising module, `HiddenEcho-Full` demonstrates faster
 456 training speeds, with time costs reduced by up to 72.52% on the BBC News dataset. Although
 457 `HiddenEcho` incorporates additional steps such as a hidden layer filter and dimension reduction, it
 458 still achieves faster training speeds due to the use of fewer hidden layers. Notably, while the GAN-
 459 DP method based on DNN shows advantages in a single training epoch, it requires a pre-training
 460 process for the GAN, which adds to its overall time cost.

462 5.6 COMMUNICATION COST

464 This section analyzes the communication overhead of `HiddenEcho`. `HiddenEcho` requires trans-
 465 mitting hidden layer states between the server and client to enable correction. The full hidden
 466 states are transmitted in `HiddenEcho-Full`, resulting in large data volumes and high real-time
 467 transmission demands during LLM fine-tuning. In contrast, `HiddenEcho` compresses communi-
 468 cation by selecting key hidden layers for transmission. The communication costs per data batch
 469 for both `HiddenEcho` variants are shown in the right side of Table 3. The results indicate that
 470 `HiddenEcho` reduces communication overhead by over 60% compared to `HiddenEcho-Full`.
 471 Specifically, for text classification tasks, it achieves a remarkable space saving of over 85%. For text
 472 generation tasks, which require `HiddenEcho` to filter more hidden layers to achieve optimal per-
 473 formance, the space saving is approximately 62%. Under typical network bandwidth, client-server
 474 communication using `HiddenEcho` remains unaffected. A detailed communication conservation
 475 analysis is provided in Appendix E.

477 6 CONCLUSION

480 Large language models (LLMs) in the Model-as-a-Service paradigm enable convenient customiza-
 481 tion but raise privacy concerns. While differential privacy (DP) mitigates these risks, it degrades
 482 model performance, especially as injected noise is amplified through multi-layer transformer blocks.
 483 To address this, we propose `HiddenEcho`, a split learning-based framework that integrates with
 484 hidden layers and supports both fine-tuning and inference. Experiments show that `HiddenEcho`
 485 achieves a superior privacy-utility trade-off and significantly improves downstream task per-
 486 formance under DP constraints, offering a novel solution to noise mitigation in privatized LLMs.

486 REFERENCES
487

488 Iwslt2014, international workshop on spoken language translation. <https://workshop2014.iwslt.org/>, 2014.

489

490 Alexander A. Alemi, Ian Fischer, Joshua V. Dillon, and Kevin Murphy. Deep variational information
491 bottleneck. In *5th International Conference on Learning Representations, ICLR 2017, Toulon,
492 France, April 24-26, 2017, Conference Track Proceedings*. OpenReview.net, 2017.

493

494 Rouzbeh Behnia, Mohammadreza Reza Ebrahimi, Jason Pacheco, and Balaji Padmanabhan. Ew-
495 tune: A framework for privately fine-tuning large language models with differential privacy. In
496 *2022 IEEE International Conference on Data Mining Workshops (ICDMW)*, pp. 560–566. IEEE,
497 2022.

498

499 Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeswar, Sherjil Ozair, Yoshua Bengio, R. Devon
500 Hjelm, and Aaron C. Courville. Mutual information neural estimation. In Jennifer G. Dy and
501 Andreas Krause (eds.), *Proceedings of the 35th International Conference on Machine Learning,
ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018*, volume 80 of *Proceedings
502 of Machine Learning Research*, pp. 530–539. PMLR, 2018.

503

504 Maximin Coavoux, Shashi Narayan, and Shay Cohen. Privacy-preserving neural representations
505 of text. In *2018 Conference on Empirical Methods in Natural Language Processing*, pp. 1–10.
506 Association for Computational Linguistics, 2018a.

507

508 Maximin Coavoux, Shashi Narayan, and Shay B Cohen. Privacy-preserving neural representations
509 of text. In *2018 Conference on Empirical Methods in Natural Language Processing*, pp. 1–10.
510 Association for Computational Linguistics, 2018b.

511

512 Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao Chang, and Furu Wei. Knowledge neurons
513 in pretrained transformers. In *Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers)*, pp. 8493–8502, 2022.

514

515 Olaf David, Wes Lloyd, Ken Rojas, Mazdak Arabi, Frank Geter, James C Ascough II, Tim Green,
516 George Leavesley, and Jack Carlson. Model-as-a-service (maas) using the cloud services innova-
517 tion platform (csip). 2014.

518

519 Oluwaseyi Feyisetan, Borja Balle, Thomas Drake, and Tom Diethe. Privacy-and utility-preserving
520 textual analysis via calibrated multivariate perturbations. In *Proceedings of the 13th international
conference on web search and data mining*, pp. 178–186, 2020.

521

522 Bogdan Gliwa, Iwona Mochol, Maciej Bieseck, and Aleksander Wawer. SAMSum corpus: A human-
523 annotated dialogue dataset for abstractive summarization. In *Proceedings of the 2nd Workshop
524 on New Frontiers in Summarization*, pp. 70–79, Hong Kong, China, November 2019. Association
for Computational Linguistics.

525

526 Derek Greene and Pádraig Cunningham. Practical solutions to the problem of diagonal dominance
527 in kernel document clustering. In *Proceedings of the 23rd international conference on Machine
learning*, pp. 377–384, 2006.

528

529 Otkrist Gupta and Ramesh Raskar. Distributed learning of deep neural network over multiple agents.
530 *Journal of Network and Computer Applications*, 116:1–8, 2018.

531

532 Meng Hao, Hongwei Li, Hanxiao Chen, Pengzhi Xing, Guowen Xu, and Tianwei Zhang. Iron:
533 private inference on transformers. In *Proceedings of the 36th International Conference on Neural
Information Processing Systems*, pp. 15718–15731, 2022.

534

535 Charlie Hou, Mei-Yu Wang, Yige Zhu, Daniel Lazar, and Giulia Fanti. Popri: Private federated
536 learning using preference-optimized synthetic data, 2025. URL <https://arxiv.org/abs/2504.16438>.

537

538

539 Xiaoyang Hou, Jian Liu, Jingyu Li, Jiawen Zhang, and Kui Ren. Faster lookup table evaluation with
application to secure llm inference. *Cryptology ePrint Archive*, 2024.

540 Christoph Kern, Stephanie Eckman, Jacob Beck, Rob Chew, Bolei Ma, and Frauke Kreuter. An-
 541 notation sensitivity: Training data collection methods affect model performance. In *Findings*
 542 of the Association for Computational Linguistics: EMNLP 2023

543 pp. 14874–14886, Singapore, December 2023. Association for Computational Linguistics.

544 Maxat Kulmanov, Francisco J Guzmán-Vega, Paula Duek Roggli, Lydie Lane, Stefan T Arold, and
 545 Robert Hoehndorf. Protein function prediction as approximate semantic entailment. *Nature Ma-*
 546 *chine Intelligence*, 6(2):220–228, 2024.

547 Yansong Li, Zhixing Tan, and Yang Liu. Privacy-preserving prompt tuning for large language model
 548 services. *arXiv preprint arXiv:2305.06212*, 2023a.

549 Yinheng Li, Shaofei Wang, Han Ding, and Hang Chen. Large language models in finance: A survey.
 550 In *Proceedings of the fourth ACM international conference on AI in finance*, pp. 374–382, 2023b.

551 Xuanqi Liu and Zhuotao Liu. Llms can understand encrypted prompt: Towards privacy-computing
 552 friendly transformers. *arXiv preprint arXiv:2305.18396*, 2023.

553 Yi Liu, Jialiang Peng, JQ James, and Yi Wu. Ppgan: Privacy-preserving generative adversarial net-
 554 work. In *2019 IEEE 25Th international conference on parallel and distributed systems (ICPADS)*,
 555 pp. 985–989. IEEE, 2019.

556 Lingjuan Lyu, Xuanli He, and Yitong Li. Differentially private representation for nlp: Formal
 557 guarantee and an empirical study on privacy and fairness. In *Findings of the Association for*
 558 *Computational Linguistics: EMNLP 2020*, pp. 2355–2365, 2020.

559 Peihua Mai, Ran Yan, Zhe Huang, Youjia Yang, and Yan Pang. Split-and-denoise: Protect large
 560 language model inference with local differential privacy. In *International Conference on Machine*
 561 *Learning*, pp. 34281–34302. PMLR, 2024.

562 Pekka Malo, Ankur Sinha, Pekka Korhonen, Jyrki Wallenius, and Pyry Takala. Good debt or bad
 563 debt: Detecting semantic orientations in economic texts. *Journal of the Association for Infor-*
 564 *mation Science and Technology*, 65(4):782–796, 2014.

565 Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut, Younes Belkada, Sayak Paul, and Benjamin
 566 Bossan. Peft: State-of-the-art parameter-efficient fine-tuning methods, 2022.

567 Michele Miranda, Elena Sofia Ruzzetti, Andrea Santilli, Fabio Massimo Zanzotto, Sébastien
 568 Bratières, and Emanuele Rodolà. Preserving privacy in large language models: A survey on
 569 current threats and solutions. *arXiv preprint arXiv:2408.05212*, 2024.

570 Ramesh Nallapati, Bowen Zhou, Caglar Gulcehre, Bing Xiang, et al. Abstractive text summarization
 571 using sequence-to-sequence rnns and beyond. *arXiv preprint arXiv:1602.06023*, 2016.

572 Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
 573 evaluation of machine translation. In *Proceedings of the 40th annual meeting of the Association*
 574 *for Computational Linguistics*, pp. 311–318, 2002.

575 Chen Qu, Weize Kong, Liu Yang, Mingyang Zhang, Michael Bendersky, and Marc Najork. Natural
 576 language understanding with privacy-preserving bert. In *Proceedings of the 30th ACM Interna-*
 577 *tional Conference on Information & Knowledge Management*, pp. 1488–1497, 2021.

578 Xicong Shen, Yang Liu, Huiqi Liu, Jue Hong, Bing Duan, Zirui Huang, Yunlong Mao, Ye Wu, and
 579 Di Wu. A split-and-privatize framework for large language model fine-tuning. *arXiv preprint*
 580 *arXiv:2312.15603*, 2023.

581 Congzheng Song and Ananth Raghunathan. Information leakage in embedding models. In *Pro-*
 582 *ceedings of the 2020 ACM SIGSAC conference on computer and communications security*, pp.
 583 377–390, 2020.

584 Yi-Lin Sung, Jaemin Cho, and Mohit Bansal. Lst: Ladder side-tuning for parameter and memory
 585 efficient transfer learning. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and
 586 A. Oh (eds.), *Advances in Neural Information Processing Systems*, volume 35, pp. 12991–13005.
 587 Curran Associates, Inc., 2022.

594 Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. *Journal of machine*
 595 *learning research*, 9(11), 2008.

596

597 Kushala VM, Harikrishna Warrier, Yogesh Gupta, et al. Fine tuning llm for enterprise: Practical
 598 guidelines and recommendations. *arXiv preprint arXiv:2404.10779*, 2024.

599

600 Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. GLUE:
 601 A multi-task benchmark and analysis platform for natural language understanding. In *Proceedings*
 602 *of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for*
 603 *NLP*, pp. 353–355. Association for Computational Linguistics, November 2018.

604

605 Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
 606 Pierrick Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
 607 von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
 608 Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural
 609 language processing. In *Proceedings of the 2020 Conference on Empirical Methods in Natural*
 610 *Language Processing: System Demonstrations*, pp. 38–45, Online, October 2020. Association for
 611 Computational Linguistics.

612

613 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 614 Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. *arXiv preprint*
 615 *arXiv:2412.15115*, 2024a.

616

617 Qimin Yang, CHEN JIEXIN, Runqi Su, Tao Tan, et al. Fine-tuning medical language models for en-
 618 hanced long-contextual understanding and domain expertise. In *First Workshop on Long-Context*
 619 *Foundation Models@ ICML 2024*, 2024b.

620

621 Rui Zhang, Song Guo, Junxiao Wang, Xin Xie, and Dacheng Tao. A survey on gradient inversion:
 622 Attacks, defenses and future directions. In *Proceedings of the Thirty-First International Joint*
 623 *Conference on Artificial Intelligence*, pp. 5678–685, 2023a.

624

625 Zongshun Zhang, Andrea Pinto, Valeria Turina, Flavio Esposito, and Ibrahim Matta. Privacy and
 626 efficiency of communications in federated split learning. *IEEE Transactions on Big Data*, 9(5):
 627 1380–1391, 2023b.

628

629 Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from gradients. *Advances in neural infor-*
 630 *mation processing systems*, 32, 2019.

631

632 A THE USE OF LARGE LANGUAGE MODELS

633 The language of this paper was polished using large language models (LLMs) to enhance clarity and
 634 readability. The final content and academic integrity remain the responsibility of the authors.

635 B d_χ PRIVACY

636 Differential Privacy (DP) is a perturbation-based privacy-preserving mechanism that provides a rig-
 637 orous framework for safeguarding data confidentiality. By introducing carefully calibrated noise
 638 during the training or fine-tuning of LLMs, DP makes it significantly harder to extract sensitive
 639 information from the perturbed data (Behnia et al., 2022).

640 In particular, the d_χ -based Metric-DP method is more suitable for text structural embed-
 641 dings (Feyisetan et al., 2020). Based on the differential privacy, we define the d_χ -Privacy.

642 **Definition 3 (d_χ -Privacy)** *Let X be the input domain, Y be the output domain, and d_χ be a distance*
 643 *metric over X . A randomized mechanism $M : X \rightarrow Y$ satisfies ηd_χ -privacy if for any two inputs*
 644 *$x, x' \in X$ and any subset $S \subseteq Y$, the following inequality holds:*

$$\frac{\Pr[M(x) \in S]}{\Pr[M(x') \in S]} \leq e^{\eta d_\chi(x, x')}, \quad (16)$$

645 where $\eta \geq 0$ represents the privacy budget, controlling the trade-off between privacy and utility.

648 HiddenEcho offers a novel solution to mitigate LLM performance degradation caused by noise-
 649 based differential privacy mechanisms.
 650

651 C PRIVACY DEFINITION

654 Building on prior research (Coavoux et al., 2018b), which defines privacy as the adversary’s inability
 655 to infer information about the input from its latent representations, we adopt a similar perspective in
 656 our work.

657 **Definition 4 (Empirical Privacy)** *Empirical Privacy (EP) quantifies the adversary’s inability to
 658 reconstruct the original input or infer sensitive attributes from perturbed text. The degree of privacy
 659 protection increases as it becomes more challenging for an attacker to recover the original text or
 660 extract sensitive information.*

$$662 EP = 1 - \frac{\sum_{x_i \in X} \mathbb{I}(f(\Phi(x_i)), x_i)}{|X|}, \quad (17)$$

664 where $\Phi(x_i)$ represents the embedding layer of the LLM, f denotes a general inversion process, and
 665 \mathbb{I} indicates the correct predictions.
 666

667 D TIME AND SPACE COMPLEXITY

668 D.1 HIDDEN ECHO-FULL

672 The computational cost of HiddenEcho-Full is primarily driven by its denoising module. For the
 673 time complexity:

674 1. Transformer Layers: Each Transformer layer processes hidden states with a complexity of
 675 $O(n^2 d' + nd'^2)$, where $d' = d/r$ (reduced hidden size), n is the sequence length, and L is
 676 the number of layers. The total complexity for all layers is:

$$678 O(L(n^2 d/r + nd^2/r^2)).$$

680 2. Down/Upsampling: The linear transformations for downsampling and upsampling the em-
 681 beddings have a complexity of $O(Lndd')$.
 682 3. Computing gate vectors and performing mixing operations incurs a complexity of
 683 $O(Lnd')$.

684 Combining these, the total time complexity is:

$$686 O(L(n^2 d/r + nd^2/r^2 + nd^2/r)).$$

688 For the space complexity:

690 1. Parameter storage: The Transformer layers and linear transformations require $O(Ld'^2 +$
 691 $Ldd')$ for storing parameters.
 692 2. Intermediate Representations: The hidden states and gate vectors contribute $O(Lnd' + Ld')$
 693 to memory usage.

695 Thus, the total space complexity is:

$$697 O(L(d^2/r^2 + nd/r + d^2/r)).$$

698 D.2 HIDDEN ECHO

701 To address the high communication overhead, HiddenEcho compresses the hidden layer states
 702 using selective filtering and dimensionality reduction. For the time complexity:

702 1. Hidden Layer Filter: Estimating the gradient $\frac{\partial \hat{H}_{L-1}}{\partial \hat{H}_i}$ for each approximation step involves
 703 backpropagation through the layers following H_i . This incurs a complexity of $O(mn^2d)$
 704 per layer, where m denotes the number of approximation steps. Summing across L layers,
 705 the total cost is:
 706
$$O(mLn^2d).$$

 707

708 2. Dimension Reducer: Downsampling and upsampling hidden states incur $O(ndd')$, where
 709 $d' = d/r$ is the reduced dimension, and r is the reduction factor. MINE operations over
 710 n_H selected layers require $O(knn_Hd')$, where k is the optimization steps for MINE.
 711

712 The total time complexity is:

713
$$O(mLn^2d + knn_Hd/r + nd^2/r).$$

 714

715 For the space complexity:

716 1. Hidden Layer Filter: Requires $O(Lnd)$ for storing gradients and contributions.
 717
 718 2. Dimension Reducer: MINE statistics networks require $O(n_Hd'^2)$. Downsam-
 719 pled/upsampled states add $O(nn_Hd')$.
 720

721 The total space complexity is:

722
$$O(Lnd + n_Hd^2/r^2 + nn_Hd/r).$$

 723

724 E COMMUNICATION ANALYSIS

725 In the `HiddenEcho-Full`, all L hidden states of the server-side LLM are transmitted. Each hidden
 726 state has dimensions of $n \cdot d$, where n represents the sequence length and $d' = d/r$ denotes the
 727 reduced hidden dimension achieved via dimensionality reduction by a factor r . The total commun-
 728 ication volume can be expressed as:

729
$$V_{\text{HiddenEcho-Full}} = L \cdot n \cdot d'.$$

 730

731 In contrast, the `HiddenEcho` configuration transmits only n_H selected hidden layers, resulting in
 732 a total communication volume of:

733
$$V_{\text{HiddenEcho}} = n_H \cdot n \cdot d'.$$

 734

735 To quantify the reduction in transmission, the ratio of communication volumes between the two
 736 configurations is given by:
 737

738
$$\frac{V_{\text{HiddenEcho}}}{V_{\text{HiddenEcho-Full}}} = \frac{n_H \cdot n \cdot d'}{L \cdot n \cdot d'} = \frac{n_H}{L}.$$

 739

740 The percentage of transmission volume saved is therefore:
 741

742
$$\text{Savings (\%)} = \left(1 - \frac{n_H}{L}\right) \cdot 100.$$

 743

744 **Example Case:** When $n_H \ll L$, significant communication savings can be achieved. For instance,
 745 consider $n_H = 4$ and $L = 28$. The percentage savings in transmission volume is calculated as:
 746

747
$$\text{Savings (\%)} = \left(1 - \frac{4}{28}\right) \cdot 100 \approx 87.50\%.$$

 748

756 **F PROOF OF NOISE MITIGATION IN HIDDEN ECHO**
 757

758 We provide proof demonstrating how the HiddenEcho-Full framework mitigates interlayer noise
 759 amplification by analyzing noise propagation through transformer layers and the corrective effects
 760 of the denoising module.
 761

762 **F.1 NOISE AMPLIFICATION IN TRANSFORMER LAYERS**
 763

764 Let the hidden state at the i -th layer be H_i , and the corresponding noise be δ_i . The hidden state at
 765 the $(i+1)$ -th layer can be expressed as:
 766

$$H_{i+1} = \mathcal{T}_{i+1}(H_i + \delta_i),$$

767 where \mathcal{T}_{i+1} represents the transformer operation. Due to the nonlinear nature of \mathcal{T}_{i+1} , noise δ_i
 768 propagates and is amplified. The noise at the $(i+1)$ -th layer can be approximated as:
 769

$$\delta_{i+1} = f(\delta_i),$$

770 where $f(\cdot)$ denotes the transformation applied by the layer. The magnitude of δ_{i+1} is bounded by
 771 the Jacobian norm of the transformation:
 772

$$\|\delta_{i+1}\| \leq \|J_f(H_i)\| \cdot \|\delta_i\|,$$

773 where $\|J_f(H_i)\|$ is the Jacobian norm. Defining the noise amplification factor as $\alpha_i = \mathbb{E}[\|J_f(H_i)\|]$,
 774 we obtain:
 775

$$\|\delta_{i+1}\| \leq \alpha_i \|\delta_i\|, \quad \text{where } \alpha_i > 1.$$

776 Over L layers, the noise at the final layer is amplified as:
 777

$$\|\delta_L\| \leq \prod_{i=1}^L \alpha_i \|\delta_0\|,$$

778 where δ_0 denotes the initial noise introduced by the privacy-preserving mechanism.
 779

780 **F.2 NOISE DECOMPOSITION AND DENOISING**
 781

782 The hidden state H_i can be decomposed into two components:
 783

$$H_i = S_i + \delta_i,$$

784 where:
 785

- S_i : Signal component containing task-relevant information.
- δ_i : Noise component introduced for privacy preservation.

786 The HiddenEcho module \mathcal{D} utilizes the noise-free initial embedding E and the set of server-side
 787 hidden states $\mathbf{H} = \{H_0, H_1, \dots, H_{L-1}\}$ to produce a denoised hidden state:
 788

$$H_i^{\text{denoised}} = \mathcal{D}(E, \mathbf{H}).$$

789 The denoised hidden state can be expressed as:
 790

$$H_i^{\text{denoised}} = S_i + \delta_i^{\text{denoised}},$$

801 where $\delta_i^{\text{denoised}}$ represents the residual noise after applying the denoising module.
 802

803 **F.3 DYNAMIC MIXING AND RESIDUAL CONNECTIONS**
 804

805 The HiddenEcho module incorporates dynamic mixing and residual connections to enhance signal
 806 retention and suppress noise. The input to the i -th layer of the module is given by:
 807

$$Z_i = \mu_i A_{i-1} + (1 - \mu_i) H_i^{\text{dn}},$$

808 where:
 809

810 • A_{i-1} : Output from the previous layer with reduced noise.
 811 • $H_i^{\text{dn}} = \mathcal{W}^{\text{dn}}(H_i)$: Compressed version of the hidden state, containing both signal and
 812 noise.
 813

814 The gate parameter $\mu_i \in (0, 1)$ dynamically adjusts the contributions of A_{i-1} and H_i^{dn} . Expanding
 815 Z_i in terms of its components:

$$816 \quad 817 \quad Z_i = \mu_i(S_{A_{i-1}} + \delta_{A_{i-1}}) + (1 - \mu_i)(S_{H_i} + \delta_{H_i}).$$

818 The contributions of signal and noise can be written as

$$819 \quad 820 \quad S_{Z_i} = \mu_i S_{A_{i-1}} + (1 - \mu_i) S_{H_i}, \quad \delta_{Z_i} = \mu_i \delta_{A_{i-1}} + (1 - \mu_i) \delta_{H_i}.$$

821 Using the triangle inequality, the noise magnitude satisfies:

$$822 \quad 823 \quad \|\delta_{Z_i}\| \leq \mu_i \|\delta_{A_{i-1}}\| + (1 - \mu_i) \|\delta_{H_i}\|.$$

824 This demonstrates the effectiveness of dynamic mixing and residual connections in amplifying the
 825 signal while suppressing sparse noise. Generally, it ensures that $\|\mathcal{D}(\delta, E, H)\| > 0$.

826 F.4 NOISE REDUCTION AT THE FINAL LAYER

827 The residual noise after denoising is given by:

$$828 \quad 829 \quad \|\delta^{\text{denoised}}\| = \|\delta\| \cdot \left(1 - \frac{\|\mathcal{D}(\delta, E, H)\|}{\|\delta\|}\right).$$

830 We have $\|\mathcal{D}(\delta, E, H)\| > 0$, ensuring:

$$831 \quad 832 \quad 0 < 1 - \frac{\|\mathcal{D}(\delta, E, H)\|}{\|\delta\|} < 1,$$

833 which implies:

$$834 \quad 835 \quad \|\delta^{\text{denoised}}\| < \|\delta\|.$$

836 Let $0 < \beta = \frac{\|\delta^{\text{denoised}}\|}{\|\delta\|} < 1$. The corrected noise at the i -th layer satisfies:

$$837 \quad 838 \quad \|\delta_i^{\text{denoised}}\| \leq \beta_i \|\delta_i\|.$$

839 At the $(i+1)$ -th layer, the noise satisfies:

$$840 \quad 841 \quad \|\delta_{i+1}^{\text{denoised}}\| \leq \beta_{i+1} \alpha_i \|\delta_i^{\text{denoised}}\|.$$

842 By recursively applying this relationship across L layers, the noise at the final layer satisfies:

$$843 \quad 844 \quad \|\delta_L^{\text{denoised}}\| \leq \left(\prod_{i=1}^L \beta_i \alpha_i \right) \|\delta_0\| < \prod_{i=1}^L \alpha_i \|\delta_0\| = \|\delta_L\|.$$

845 G COMPARING WITH DP

846 G.1 PRIVACY GUARANTEE UNDER EMBEDDING-BASED INVERSION

847 We first analyze the privacy strength of `HiddenEcho` compared with the standard DP mechanism
 848 under Embedding-based Inversion. Let the clean embedding be E and the added DP noise be δ ,
 849 such that the privatized embedding is

$$850 \quad 851 \quad E' = E + \delta.$$

852 Since the randomization is fully applied at the client side, the transmitted E' already satisfies the DP
 853 constraint with privacy budget η . By the *post-processing property* of differential privacy, any further
 854 mapping of E' (e.g., the server computing hidden states $H = B(E')$ and returning them to the
 855 client) does not weaken the privacy guarantee. Therefore, the overall mechanism of `HiddenEcho`
 856 satisfies the same η -DP guarantee as the baseline DP approach:

$$857 \quad 858 \quad \text{DP_budget}_{\text{HiddenEcho}} = \text{DP_budget}_{\text{DP}} = \eta.$$

864 G.2 MODEL ACCURACY AND NOISE AMPLIFICATION
865

866 Next, we compare robustness to noise amplification across transformer layers. Denote by α_i the
867 amplification factor of the i -th layer. For the baseline DP mechanism, the accumulated noise at the
868 final layer L is bounded by

$$869 \quad 870 \quad 871 \quad \|\delta_L\| \leq \left(\prod_{i=1}^L \alpha_i \right) \|\delta_0\|,$$

872 where δ_0 is the initial DP noise at the embedding layer. In `HiddenEcho`, a lightweight client-side
873 correction is applied at each layer with suppression factor $\beta_i \in (0, 1)$, yielding

$$874 \quad 875 \quad 876 \quad \|\delta_L^{\text{den}}\| \leq \left(\prod_{i=1}^L \beta_i \alpha_i \right) \|\delta_0\|.$$

877 Since $\beta_i < 1$, we have

$$878 \quad 879 \quad \|\delta_L^{\text{den}}\| < \|\delta_L\|,$$

880 which shows that `HiddenEcho` effectively suppresses inter-layer noise amplification and preserves
881 task-relevant signals under the same DP budget.

882 G.3 COMMUNICATION COST

883 Finally, we compare the communication overhead. For the baseline DP mechanism, transmitting
884 only embeddings requires

$$885 \quad V_{\text{DP}} = n \cdot d,$$

886 where n is the sequence length and d the embedding dimension. For `HiddenEcho-Full`, all L
887 hidden layers are downsampled to dimension $d' = d/r$, resulting in

$$888 \quad 889 \quad V_{\text{HiddenEcho-Full}} = L \cdot n \cdot d'.$$

890 In the communication-efficient variant `HiddenEcho`, only n_H critical layers are transmitted, giving
891

$$892 \quad V_{\text{HiddenEcho}} = n_H \cdot n \cdot d'.$$

893 The relative saving ratio is

$$894 \quad 895 \quad \text{Savings} = 1 - \frac{V_{\text{HiddenEcho}}}{V_{\text{HiddenEcho-Full}}} = 1 - \frac{n_H}{L}.$$

896 For example, if $L = 28$ and $n_H = 4$, the saving is 87.5%, which aligns with our experimental
897 results showing more than 85% reduction in classification tasks.

902 H POTENTIAL PRIVACY RISKS

903 HiddenEcho's denoising procedure builds on a one-shot Local Differential Privacy (LDP) perturbation
904 of client-side embeddings. Consequently, against embedding-based inversion attacks, HiddenEcho
905 inherits the formal privacy guarantees of LDP: since the server receives only the perturbed
906 embedding ($E' = E + \delta$), all subsequent processing is protected by DP post-processing invariance.

907 A different situation arises under gradient-based reconstruction attacks, because HiddenEcho
908 requires returning certain gradient signals from the client-side denoiser to the server during training.
909 Under our threat model, an eavesdropping adversary may intercept these gradients. In such cases,
910 HiddenEcho no longer benefits from a provable DP guarantee, since the gradient may, in principle,
911 encode additional information about the client input.

912 However, mainstream gradient inversion techniques (e.g., Deep Leakage from Gradients (Zhu et al.,
913 2019) and follow-up work) rely fundamentally on a white-box optimization pipeline: they iteratively
914 search for a "virtual input" whose gradients are computed using the known model architecture
915 and parameters and match the intercepted gradients. White-box access (or a surrogate with high
916 structural fidelity) is crucial for high-quality recovery.

918 Under HiddenEcho’s deployment setting, the adversary does not have access to the server-side LLM
 919 parameters or weights. They observe only (i) perturbed embeddings and (ii) a small subset of
 920 gradient signals from the denoiser. As summarized in the recent survey of Zhang et al. (2023a), when
 921 model parameters are unavailable, gradient inversion becomes dramatically harder: attackers require
 922 additional priors, surrogate models, or complex meta-optimization, and recovery quality degrades
 923 substantially. Black-box/gray-box scenarios are far less effective than white-box settings.

924 Thus, while HiddenEcho does not offer a formal DP guarantee under gradient interception, the
 925 practical feasibility of such reconstruction attacks is significantly constrained by the absence of
 926 model parameters.

927

928 I WORKFLOW OF HIDDEN ECHO

930 Algorithm 1 outlines the training process for HiddenEcho.

933 Algorithm 1 Workflow of a Training Step of HiddenEcho

934 **Require:** Input tokens x , ground truth y

935 **Ensure:** Loss

936 **Client Phase**

- 937 1: Embed tokens: $E \leftarrow \mathcal{E}(x)$;
- 938 2: Inject sampled noise to E : $E' \leftarrow E + \delta$;
- 939 3: Send E' to server;

940 **Server Phase**

- 941 4: Compute hidden states: $H \leftarrow \mathcal{B}(E')$;
- 942 5: Filter the hidden states according to the precomputed layer contributions to create a subset S ;
- 943 6: Downsample the hidden states in S by Eq. equation 4;
- 944 7: Return the downsampled S to client;

945 **Client Phase**

- 946 8: Compute downsampled embeddings E^{dn} by Eq. equation 5;
- 947 9: Denoising: $H_{\text{denoised}} \leftarrow \mathcal{D}(E^{\text{dn}}, S)$;
- 948 10: Compute task loss $\mathcal{L}_{\text{task}}$ by Eq. equation 7 and Eq. equation 8;
- 949 11: Optimize the MI estimators by Eq. equation 14;
- 950 12: Compute information bottleneck loss \mathcal{L}_{IB} by Eq. equation 12;
- 951 13: Compute total loss \mathcal{L} by Eq. equation 13;
- 952 14: **return** Loss \mathcal{L} ;

953

954 J EXPERIMENTAL SUPPLEMENTS

955

J.1 BASELINES

956

957 We evaluate HiddenEcho against several strong baselines within the segmented framework, en-
 958 compassing standard DP algorithms, DP-based denoising methods, and DNN-based perturbation
 959 approaches. The baselines include:

960

- 961 • Local Differential Privacy (LDP): Embeddings fed into the LLM’s word embedding layer
 962 are perturbed with d_{χ} -noise (Qu et al., 2021), then transmitted to the server.

963

964 In the standard LDP framework for language model inference, the client first maps each
 965 input token x to its corresponding dense embedding $e = \text{Embed}(x) \in \mathbb{R}^d$. To satisfy ϵ -
 966 local differential privacy under the metric $d_{\chi}(e, e') = \|e - e'\|_2$, the client adds calibrated
 967 noise η drawn from the multivariate Laplace mechanism:

$$968 \quad \tilde{e} = e + \eta, \quad \text{where} \quad p(\eta) = \frac{\epsilon^d}{C_d B^d} \exp\left(-\frac{\epsilon \|\eta\|_2}{B}\right), \quad (18)$$

969

970

971

972 with $B = \sup_{x \sim x'} \|\text{Embed}(x) - \text{Embed}(x')\|_2$ denoting the L_2 sensitivity of the embed-
 973 ding function, and $C_d = 2^{d/2} \pi^{d/2} \Gamma(d/2)$ being the surface area of the unit sphere in \mathbb{R}^d .

972 This distribution ensures that for any neighboring inputs x and x' , the resulting perturbed
 973 embeddings satisfy

$$\frac{p(\tilde{e} | x)}{p(\tilde{e} | x')} \leq \exp(\epsilon), \quad (19)$$

977 which is the formal guarantee of ϵ - d_χ -privacy. The privatized embedding \tilde{e} is then trans-
 978 mitted to the server, which performs downstream inference using the standard LLM archi-
 979 tecture without any modification.

- 980 • **GAN-DP:** A GAN-based noise addition method designed to perturb embeddings by intro-
 981 ducing d_χ -based noise of varying magnitudes to generate perturbed vectors.

982 In the GAN-DP, a generative adversarial network synthesizes privacy-preserving noise
 983 adapted to the geometry of the embedding space under the d_χ -privacy notion, where
 984 $d_\chi(e, e') = \|e - e'\|_2$. The generator G_ϕ learns to produce adaptive noise vectors con-
 985 ditioned on the clean embedding e and a target privacy budget ϵ , while the discriminator
 986 D_ψ distinguishes between natural (unperturbed) and perturbed embeddings to preserve se-
 987 mantic utility. Given an input token embedding $e = \text{Embed}(x) \in \mathbb{R}^d$, the client samples a
 988 latent vector $z \sim \mathcal{N}(0, I)$ and generates privacy-aware noise as

$$\eta = G_\phi(e, z; \epsilon), \quad (20)$$

990 which is added to the original embedding to yield the privatized representation

$$\tilde{e} = e + \eta. \quad (21)$$

993 During training, the generator is optimized such that the induced distribution over \tilde{e} ap-
 994 proximates the exponential mechanism required for ϵ - d_χ -privacy:

$$p(\tilde{e} | e) \propto \exp(-\epsilon \cdot \|\tilde{e} - e\|_2 / B),$$

996 where $B = \sup_{x \sim x'} \|\text{Embed}(x) - \text{Embed}(x')\|_2$ denotes the L_2 sensitivity. The adversarial
 997 objective further encourages \tilde{e} to remain close to the manifold of real embeddings, balanc-
 998 ing privacy and utility. Once trained, only the generator G_ϕ is deployed on the client side,
 999 enabling efficient, on-device generation of privacy-compliant embeddings without server
 1000 interaction during inference.

- 1001 • **SnD (Mai et al., 2024):** A DP-based denoising approach where the denoising module is
 1002 pre-trained on the server and then downloaded to the client for noise correction.

1003 In the SnD framework, the client first computes a token embedding $e = \text{Embed}(x)$ from
 1004 the private input x , then perturbs it with calibrated noise to satisfy ϵ - d_χ -privacy under the
 1005 L_2 metric, yielding the privatized embedding

$$\tilde{e} = e + \eta, \quad \text{with} \quad p(\eta) \propto \exp\left(-\frac{\epsilon \|\eta\|_2}{B}\right), \quad (22)$$

1006 where B is the L_2 sensitivity of the embedding function. The client sends \tilde{e} to the server,
 1007 which performs the main LLM inference:

$$y = \text{LLM}_{\text{server}}(\tilde{e}). \quad (23)$$

1014 The server returns y to the client, who then applies a pre-trained denoising module
 1015 D_θ —downloaded from the server and trained on public data with synthetic d_χ -compliant
 1016 noise—to refine the result using knowledge of the original input x and the privacy param-
 1017 eters (ϵ, B) :

$$\hat{y} = D_\theta(y; x, \epsilon, B). \quad (24)$$

1019 This client-side denoising step mitigates utility degradation caused by privacy-preserving
 1020 perturbation while preserving the formal ϵ - d_χ -privacy guarantee of the initial encoding.

- 1021 • **HiddenEcho-Full:** Our end-to-end client-side denoising method transmits the full LLM
 1022 hidden states for processing.
- 1023 • **HiddenEcho:** Featuring gradient-based hidden layer filtering and dimensionality reduc-
 1024 tion via information bottleneck theory to lower communication overhead while preserving
 1025 performance.

1026
 1027 Table 4: Performance of different perturbation methods on text classification tasks based on Llama3-
 1028 1B.

Dataset		MRPC			Financial			BBC News		
Privacy	Budget η	1000	4000	5000	1000	4000	5000	1000	4000	5000
GAN-DP	AUC	0.506	0.502	0.513	0.540	0.550	0.576	0.619	0.647	0.664
	EP	0.999	0.998	0.998	0.999	0.999	0.997	0.999	0.989	0.986
LDP	AUC	0.489	0.529	0.494	0.561	0.567	0.559	0.619	0.627	0.641
	EP	0.951	0.889	0.809	0.952	0.897	0.848	0.903	0.803	0.700
SnD	AUC	0.509	0.504	0.507	0.558	0.553	0.572	0.632	0.633	0.633
HiddenEcho-Full	AUC	0.654	0.659	0.663	0.894	0.906	0.905	0.978	0.978	0.978
HiddenEcho	AUC	0.645	0.653	0.655	0.828	0.824	0.829	0.971	0.972	0.974
AUC Improve %		28.48	24.57	29.24	59.36	59.79	57.12	54.75	51.16	47.29

1043 Table 5: Statistics of datasets.

Dataset	Task	#Train	#Dev	#Test
FP	sentiment analysis	1,811	226	227
MRPC	semantic equivalence judgment	3,301	1,725	1,725
BBC News	news topic classification	1225	500	500
Tweet	offensive speech detection	1500	500	500
IWSLT	machine translation	1,044	130	131
CNNDM	summarization	1,322	50	47
Samsum	summarization	2,916	171	150

1055 J.2 DATASET DETAILS AND BASE PERFORMANCE

1056 For the text classification task, we utilize:

1057

- 1058 Financial Phrasebank (Malo et al., 2014): A sentiment classification dataset with 4,840
 1059 financial news sentences, categorized by annotator agreement rates.
- 1060 Microsoft Research Paraphrase Corpus (Wang et al., 2018): A sentence pairs dataset col-
 1061 lected from news articles, each labeled by human annotators to indicate whether the pairs
 1062 are paraphrases.
- 1063 BBC News (Greene & Cunningham, 2006): Consists of articles published on the BBC
 1064 News between 2004 and 2005, with each article categorized into one of five topics: busi-
 1065 ness, entertainment, politics, sports, or technology.
- 1066 Tweet Annotation (Kern et al., 2023): A dataset comprises annotated tweet data for hate
 1067 speech and offensive language under five experimental conditions, which are utilized for
 1068 attribute inference attacks.

1069 For the text generation task, we utilize:

1070

- 1071 IWSLT2014 (IWSLT) (201, 2014): A dataset for English-to-French machine translation,
 1072 focusing on spoken language.
- 1073 CNN DailyMail Short (CNNDM) (Nallapati et al., 2016): A concise version of CNN Dai-
 1074 lyMail news summaries, paired with fill-in-the-blank questions.
- 1075 Samsum Short (Samsum): A shortened version from (Gliwa et al., 2019), comprising
 1076 messenger-style dialogues with corresponding summaries.

1077 More dataset statistics are reported in Table 5. For reference, the ground truth performance of each
 1078 large model across various datasets is provided in Table 6.

1080
1081 Table 6: Performances of centralized fine-tuning on six datasets for each LLMs.
1082
1083
1084

Text Classification				
Base Model	Metric	MRPC	Financial	BBC News
Qwen2-1.5B	AUC	0.920	0.976	0.998
LLama3-1B	AUC	0.928	0.980	0.999

Text Generation				
Base Model	Metric	IWSLT	CNNDM	Samsun
T5-large	BLEU	34.047	17.738	24.371

1087
1088
1089
1090
1091
1092
1093 Table 7: Performance of different perturbation methods on text generation tasks based on T5-Large.
1094

Dataset		IWSLT			CNNDM			Samsun		
Privacy Budget η		20	30	40	20	30	40	20	30	40
GAN-DP	BLEU	0.109	10.309	29.816	5.461	13.572	12.697	4.120	4.964	5.509
	EP	0.883	0.821	0.799	0.460	0.372	0.348	0.503	0.461	0.449
LDP	BLEU	0.035	15.553	24.576	0.764	7.974	12.107	2.403	14.602	20.235
	EP	0.994	0.970	0.914	0.987	0.916	0.764	0.989	0.931	0.806
HiddenEcho-Full	BLEU	1.092	20.080	26.366	2.915	11.617	12.323	4.618	20.636	21.851
HiddenEcho	BLEU	0.824	22.403	25.654	0.971	10.925	12.718	4.323	18.192	20.867

1105
1106
1107
1108 J.3 EIA AGAINST FOR TEXT CLASSIFICATION BASED ON LLAMA3-1B
1109

1110 Furthermore, we extend to evaluate the performance of baselines against EIA in text classification
1111 tasks using Llama3-1B. Given the significant differences in embedding layer parameter scales across
1112 different LLMs, privacy budgets of 1000, 4000, and 5000 are selected for this experiment. All other
1113 experimental settings are consistent with those outlined in 5.1. The detailed results are presented in
1114 Table 4.

1115 In contrast to Qwen2-1.5B, HiddenEcho-Full exhibits clear superiority when applied to Llama3,
1116 achieving significantly higher improvements over baselines, with a maximum performance gain of
1117 59.79%. Although HiddenEcho typically performs slightly below HiddenEcho-Full, it remains
1118 a more advantageous choice in bandwidth-constrained scenarios.

1119
1120 J.4 EIA AGAINST FOR TEXT GENERATION BASED ON T5-LARGE
1121

1122 We evaluate machine translation on the IWSLT dataset and text summarization on the CNN Dai-
1123 lyMail Short and Samsun Short datasets, using T5-Large as the base model. The BLEU scores of
1124 HiddenEcho and other baseline methods are assessed against EIA at varying η . Note that SnD's
1125 noise reduction model, which processes classification vectors, is unsuitable for text generation tasks.

1126 As shown in Table 7, HiddenEcho-Full consistently demonstrates near-optimal performance. On
1127 the IWSLT dataset, HiddenEcho-Full achieves the highest BLEU scores at $\eta = 20$ (1.092) and
1128 $\eta = 40$ (26.366), while HiddenEcho outperforms at $\eta = 30$ (22.403). A similar trend is observed
1129 on the CNNDM dataset, although HiddenEcho-Full performs suboptimally at lower privacy bud-
1130 gets.

1131 The Samsun dataset further confirms HiddenEcho-Full's effectiveness, with HiddenEcho-Full
1132 consistently delivering the highest BLEU scores across all privacy budgets (4.618 at $\eta = 20$, 20.636
1133 at $\eta = 30$, and 21.851 at $\eta = 40$). HiddenEcho-Full significantly outperforms GAN-DP and LDP,
particularly at lower privacy budgets.

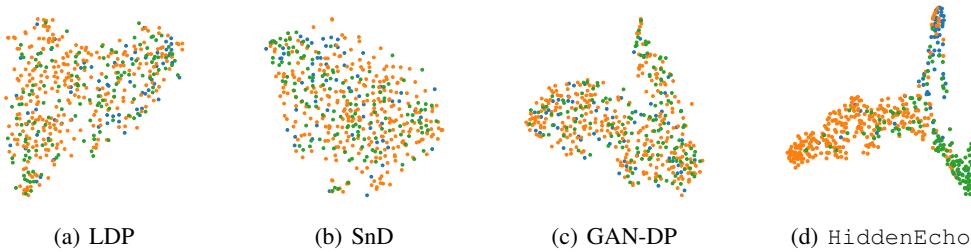
1134 HiddenEcho-Full strikes a better balance between privacy and utility in text generation, maintaining
 1135 competitive EP values while achieving significantly higher generation quality, particularly in
 1136 summarization tasks.
 1137

1138 J.5 AIA MODEL ARCHITECTURE

1140 The architecture of the attacker model for attribute inference attacks is detailed in Table 8. The
 1141 model’s output size is set to 4 for education inference and 1 for age prediction.
 1142

1143 **Table 8: Attacker Model Architecture**

1144 Layer	1145 Shape
1146 Input	1147 Batch size \times 1536
1148 FC	1149 1536 \times 768
1149 ReLU	-
1150 FC	1151 768 \times Output size



1153 **Figure 5: Comparison of visualization of t-SNE between baselines and HiddenEcho on the Fi-
 1154 nancial Phrasebank with Qwen2-1.5B.**

1155 J.6 VISUALIZATION

1156 Additionally, we extract the output of the final layer of the server-side LLM after training conver-
 1157 gence and employ t-SNE (Van der Maaten & Hinton, 2008) to project the embeddings into a 2D
 1158 space, maintaining consistent settings across all methods. This visualization enables a comparative
 1159 analysis of the effects of different perturbation techniques on the feature space. Each perturbation
 1160 algorithm is evaluated under the same privacy budget ϵ .
 1161

1162 We conduct experiments using four perturbation baselines on the Financial Phrasebank dataset with
 1163 the Qwen2-1.5B model and ϵ of 5000. The results are visualized in Fig 5.
 1164

1165 The visualization of HiddenEcho reveals a triangular spatial distribution of clusters, with points
 1166 from the same category forming compact groups. This clustering pattern is especially evident in the
 1167 orange and green categories, highlighting effective feature separation. In contrast, other methods
 1168 fail to form distinct clusters, with nodes exhibiting dispersed and overlapping distributions. The
 1169 lack of clear intra-class cohesion and inter-class separation in the embedding space leads to their
 1170 suboptimal performance.
 1171

1172 **K REBUTTAL SECTION**

1173 **K.1 ADDITIONAL COMMUNICATION COST**

1174 To further demonstrate the practical efficiency of HiddenEcho, we also measured its inference-time
 1175 communication overhead on three representative generation benchmarks: IWSLT (machine transla-
 1176 tion), CNNNDM (abstractive summarization), and SamSum (dialogue summarization). As shown in
 1177

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
Table 9, the reported values represent the per-sample autoregressive communication cost (normalized relative to full activation transmission), where Avg denotes the mean across all samples in the dataset, and Min/Max indicate the smallest and largest costs observed for any single sample.

Notably, even on long-output tasks like CNNDM, the average overhead remains below 0.75x, with many samples (e.g., in SamSum) requiring as little as 0.17x. This confirms that HiddenEcho effectively reduces communication during decoding, especially by leveraging incremental updates and state caching between Prefill and Decode stages

Table 9: Inference communication cost overhead of HiddenEcho for one epoch.

Dataset	Avg	Min	Max
IWSLT	0.27MiB	0.12MiB	0.92MiB
CNNDM	0.73MiB	0.30MiB	1.09MiB
Samsum	0.28MiB	0.17MiB	0.44MiB

K.2 COMPARISON WITH FEDERATED LEARNING METHOD

Table 10: Performances of POPri on different tasks based on Qwen2-1.5B.

Task	Metric	Task	Metric
Classification	AUC	Generation	BLEU
Financial	0.615	IWSLT	30.604
MRPC	0.596	CNNDM	10.570
BBC News	0.727	Samsum	8.231

To enable a more comprehensive comparison with state-of-the-art federated learning approaches, we report the performances of POPri Hou et al. (2025) on different tasks in Table 10. It is important to note that direct alignment of privacy settings between our method and POPri is not feasible, as their privacy-preserving mechanism fundamentally differs from ours. POPri leverages synthetic data generation optimized via client DP feedback, while our approach relies on split learning with client-side noise injection. To ensure fair comparison, we adopt the original privacy parameters reported in POPri’s experiments without modification.

The results show that POPri generally underperforms on text classification tasks. It achieves relatively better performance only on the IWSLT translation task in terms of BLEU score, but still lags behind our method on most other benchmarks.

K.3 ADAPTABILITY OF LARGE-SCALE LLMs

To further evaluate the scalability of HiddenEcho to larger models, we extended our experiments to Qwen2-7B on the FP text classification dataset, with results presented in Table 11. The results show that our method consistently outperforms the LDP baseline, demonstrating its effectiveness even at the 7B-parameter scale.

Table 11: Performance (AUC) of HiddenEcho on text classification tasks based on Qwen2-7B.

Privacy Budget	100	1000	5000	6000
HiddenEcho-Full	0.812	0.813	0.831	0.837
HiddenEcho	0.799	0.805	0.823	0.826

K.4 PARAMETER SENSITIVITY OF INFORMATION BOTTLENECK

Our experiments on the Financial dataset (Table 12) show that the hyperparameter β critically balances privacy and utility: at $\beta = 0.1$, AUC is only 0.779 due to insufficient task-relevant signal

1242 retention; performance peaks at $\beta = 0.5$ (AUC = 0.826) and $\beta = 1$ (AUC = 0.823); but rises sharply
 1243 to 0.612 when $\beta = 5$. This is because β governs a trade-off, which targets on minimizing mutual
 1244 information between noisy embeddings and compressed states (for privacy) while preserving mu-
 1245 tual information between denoised outputs and compressed states (for utility). Values of $\beta \in [0.5, 1]$
 1246 achieve the optimal balance between these competing objectives.

1247
1248 Table 12: Sensitivity of β on Finantial dataset based on Qwen2-7B.

β	0.1	0.5	1	5
AUC	0.779	0.826	0.823	0.612

1249
1250
1251
1252
1253
1254 K.5 ADDITIONAL ABLATION RESULTS
1255
1256

1257 Table 13: Additional Ablation Study of HiddenEcho on Financial dataset based on Qwen2-7B.

Privacy Budget	100	1000	5000	6000
A	0.573	0.571	0.576	0.577
B	0.567	0.569	0.565	0.569

1263 We added two comparison schemes for the ablation studies: Scheme A uses the original denoising
 1264 module structure, with inputs limited to dimension-reduced clean embeddings and the final-layer
 1265 hidden state (in the split learning architecture, the server only feeds back the final hidden layer to
 1266 the client to complete the task prediction loop, which is an inherent constraint of data interaction
 1267 under this paradigm, so the last hidden layer must serve as the fixed input benchmark); Scheme
 1268 B takes noisy embeddings and intermediate hidden states as denoising module inputs. Scheme A
 1269 isolates the independent contribution of clean embeddings in denoising, while Scheme B highlights
 1270 the role of the server’s intermediate hidden layers in noise correction.

1271 Experiments on the FP dataset and Qwen2-1.5B model show both schemes performed poorly. This
 1272 confirms dimensionality-reduced clean embeddings and server-side noisy hidden states are comple-
 1273 mentary and indispensable. The former provides the basic noise correction signal, while the latter
 1274 delivers task-related deep features. Only their combination supports effective task learning.

1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295