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Abstract— Open-world navigation requires robots to make
decisions in complex, dynamic environments and adapt to
flexible task requirements. Traditional approaches often rely
on hand-crafted goal metrics and struggle to generalize beyond
specific tasks. Recent advances in vision-language-action (VLA)
models enable end-to-end policies conditioned on natural lan-
guage, but they typically require interactive training or large-
scale data collection with a mobile agent. We frame naviga-
tion as a discrete sub-goal identification problem and extend
our previous work, FrontierNet—a learning-based exploration
system that detects and localizes frontiers directly from visual
cues. We integrate FrontierNet with pre-trained vision-language
models (VLMs) through a set-of-mark prompting strategy,
enabling direct zero-shot, general-purpose navigation from nat-
ural language instructions. FrontierNet achieves state-of-the-art
performance in autonomous exploration, and when combined
with a VLM, demonstrates zero-shot adaptation across a variety
of semantic tasks, such as object search—without requiring any
additional training or map updating.

I. INTRODUCTION
Navigation is a core capability for autonomous robots, crit-

ical for performing diverse tasks. Conventional approaches
typically rely on modular pipelines that decompose the
problem into perception, reasoning, and control. While such
systems offer flexibility and interoperability, they often re-
quire significant manual effort for system design, integration,
and hand-crafted task-specific metrics. Recent research has
explored learning-based alternatives, including reinforcement
learning (RL) from trial-and-error interaction [1]–[5], and
large-scale vision-language-action models trained on curated
navigation datasets [6]–[10]. These methods have demon-
strated strong performance in in-distribution environments.
However, their performance often degrades in open-world
scenarios, which vary significantly from the training distri-
bution. Moreover, adapting or retraining such models for new
settings remains costly and time-consuming.

In this work, we propose a lightweight, reactive, and
robust alternative for general-purpose navigation in open-
world settings. Our system, OpenFrontier, is designed to be
easy to deploy, flexible to various situations, and capable
of accepting natural language task specifications—without
requiring re-training. We observe that navigation can be
framed as a sparse goal identification problem, which does
not inherently require dense 3D scene representations or
continuous action prediction. Building on this insight, we
leverage both the structure of conventional modular systems
and the generalization capabilities of pre-trained vision-
language models (VLMs). At the core of OpenFrontier is

1ETH Zurich, 2 Microsoft, 3 University of Bonn
Details about FrontierNet: https://boysun045.github.io/FrontierNet-

Project/

Fig. 1: Top: FrontierNet processes an RGB image (left) to propose frontier pixels and
their information gain (middle), registering candidate goal viewpoints with varying
priorities in 3D (right). Bottom: The proposed frontiers are used to query a vision-
language model via set-of-mark prompting. Information gain (high-low) dynamically
adapts to the open-vocabulary query, guiding the robot toward the target.

FrontierNet [11], our previously proposed model that detects
and registers 3D frontier candidates directly from posed
RGB images, without relying on accurate dense 3D mapping.
Unlike traditional exploration pipelines, FrontierNet uses
only visual input to predict frontier pixels and estimate their
potential information gain. This allows the system to capture
rich visual cues that are useful for both spatial reasoning and
semantic interpretation. To extend FrontierNet for general-
purpose navigation, we introduce a novel mechanism for
querying VLMs using the predicted frontiers. We employ
a set-of-marks prompting strategy [12], [13], where the
proposed frontiers act as spatial markers, and the VLM re-
weights them based on an open-vocabulary task prompt.
This process effectively grounds semantic goals in the scene
by identifying the most relevant frontiers to pursue. We
validate our approach in both simulation and real-world
settings. FrontierNet achieves state-of-the-art performance on
autonomous exploration benchmarks. When combined with
a VLM, OpenFrontier exhibits strong zero-shot generaliza-
tion across diverse semantic navigation tasks, without any
additional training. In summary, our contributions are:
∙ FrontierNet: a learning-based model for efficient au-

tonomous exploration that predicts frontier proposals and
their associated information gain directly from visual input.

∙ VLM-based extension of FrontierNet that enables zero-
shot general-purpose navigation by grounding open-
vocabulary task prompts onto predicted frontiers.

∙ Extensive evaluations in simulation and real-world set-
tings that validate both the exploration performance of
FrontierNet and the zero-shot semantic navigation capa-
bilities of its VLM-based extension.



Fig. 2: FrontierNet Overview. Our system processes posed RGB images with a depth
prediction model [14] to generate estimated depth. FrontierNet uses visual input to
predict 2D frontier regions and their info gain, which are transformed into sparse 3D
frontiers with different gains (colored frustums). These frontiers are tracked, and the
planning module selects the next best goal and plans a path using the occupancy map.

II. RELATED WORK

Autonomous exploration has been widely studied, with
most methods falling into frontier-based or sampling-based
approaches that operate on 3D representations such as occu-
pancy grids [15], [16], signed distance fields [17], or point
clouds [18]. Recent works incorporate learning-based scene
understanding to guide viewpoint selection [19], [20], or
explore emerging 3D representations like neural fields [21],
[22] and 3D Gaussians [23]. Others introduce semantics via
object-level maps [24], or frame exploration as a decision-
making problem using reinforcement learning from RGB
inputs [2]. More recent efforts leverage vision foundation
models and large language models for interactive, human-
like exploration [25]–[27]. These works show the value of
visual cues for exploration, but typically rely on dense maps
or auxiliary models. In contrast, we first demonstrate appear-
ance cues alone can be used to directly detect and evaluate
frontier regions without requiring full 3D reconstruction.

Navigation builds on exploration, shifting from uncovering
space to reaching semantic targets such as objects [3], [28],
places [29], or dynamic entities [30]. Recent approaches
follow three main directions: 1) scene-centric methods [26],
[31]–[33] that improve map building, representation, or in-
terpretation; 2) reinforcement learning-based methods [5],
[34], [35] that learn navigation via interaction; and 3)
end-to-end policies [6]–[9] that map raw inputs to actions
through imitation learning. All of these directions show
promising progress, but also face limitations. They often
rely on resource-intensive components, either in building and
maintaining map representations, or in training large models.
Moreover, they lack flexibility and are difficult to adapt to
new setups without retraining policys or updating the map.

In this work, we treat navigation as a special case of
exploration and use generic frontier goals to drive task-
conditioned behavior. We introduce a lightweight framework
that detects frontiers from individual images and maintains
modularity with downstream planners and controllers. This
allows us to avoid costly mapping or training, while enabling
strong generalization and fast adaptation across tasks.

Fig. 3: VLM-based Extension of FrontierNet. OpenFrontier takes the 2D frontier
clusters produced by FrontierNet and queries a VLM using set-of-mark prompting. This
re-weights the information gain of each frontier based on a given language instruction,
grounding vision-language understanding into detected frontiers. In practice, we merge
these relevance weights with the information gain predicted by FrontierNet, allowing
the system to balance task-driven exploitation with exploration.

III. METHOD
A. System Overview

OpenFrontier consists of two main components: 1) Fron-
tierNet, a learning-based model that detects frontier regions
from visual input and registers them in 3D space. 2) VLM-
based extension that leverages the frontiers proposed by
FrontierNet to support natural language queries for general-
purpose navigation. An overview of the FrontierNet pipeline
is shown in Fig. 2. It performs joint frontier prediction and
information gain estimation from posed RGB input, followed
by 3D anchoring and goal selection via planning. During
exploration, the system maintains an updating mechanism
to track the status of frontiers over time. A path planner
selects the next frontier goal and generates a trajectory
accordingly. The VLM-based extension, illustrated in Fig. 3,
shows how OpenFrontier integrates the frontier proposals
from FrontierNet with a pre-trained VLM. This enables
open-vocabulary goal specification and task-aware frontier
re-weighting via a set-of-marks prompting mechanism. For
full details, please refer to the FrontierNet [11] paper.
B. Learning to Propose Frontiers from Visual Appearance

Following Yamauchi’s formulation [15], we define frontier
as region of free space that directly borders unexplored
space. Commonly, frontiers are therefore proposed from 3D
voxel maps. Instead, we consider frontier pixels as the 2D
projection of 3D frontier voxels within a camera’s observed
space and train a model that locates these pixels directly
on image plane. Conventional frontier definitions treat every
frontier as equally valuable. Recent studies [19], [20], [36]
address this limitation by introducing quantitative metrics,
often called information gain, that rank frontiers according to
their expected exploratory benefit. We define the additional
observable volume previously unknown from a frontier as
its information gain (info gain) and train our model to also
predict it from the visual input. This prediction depends only
on individual images, assuming no prior exploration.

To unify the proposal of frontier pixels with the prediction
of info gain, we employ a two-head UNet-like structure, and
frame the task as an image-to-image prediction. It utilizes
both the color image and its corresponding monocular depth
prior as input and jointly predicts the frontier pixels and info



gain. We design one prediction head that learns to estimate
the distance of each image pixel to the nearest frontier
boundary. Inspired by recent advances in structured edge and
line detection [37], [38], our model outputs a soft distance
field over the image, where lower values indicate proximity
to likely frontiers. This allows the system to reason about
spatial layout and boundary structure directly from image. In
parallel, we predict an information gain map over the image
on another head, representing how much new environment
is likely to be revealed. Rather than regressing exact values,
which can be noisy and sensitive to input variance [39],
we discretize the gain into semantic bins and formulate the
task as a classification problem. This improves stability and
allows the model to prioritize meaningful frontiers.
C. Anchoring Frontier in 3D

To generate actionable navigation targets, we introduce an
anchoring stage that lifts frontier predictions into 3D space
as candidate viewpoints. Starting from pixel-wise frontier
region and info gain maps predicted by FrontierNet, we
identify sparse 2D frontier regions and infer the viewing
direction of each pixel. We estimate their directions toward
occluded or unknown regions using local geometry provided
by monocular depth prior. We then cluster the frontier pixels
based on spatial proximity, viewing direction, and estimated
info gain. Each cluster yields a representative 2D frontier,
comprising its pixel location, averaged viewing angle, and
aggregated info gain. To lift these into 3D, we estimate depth
at each frontier by sampling foreground and background
depth values along the local gradient direction. This produces
a set of sparse 3D frontiers, each associated with a 3D
position, orientation, and task-relevant score. This anchoring
procedure provides the planner with semantically meaningful
and spatially grounded navigation targets. By relying only
image input, it avoids the need for dense 3D reconstructions
and remains robust to partial or noisy depth predictions.
D. VLM-based Information Gain Re-weighting

The original information gain predicted by FrontierNet
measures how much unknown space each frontier could
uncover—an effective metric for exploration. However, this
geometric definition does not generalize to tasks like object
search or language-conditioned navigation. Manually design-
ing new metrics for each task is infeasible, and training end-
to-end navigation models requires large-scale data collec-
tion or simulation. Instead, we use the predicted frontiers
as spatial queries to a pre-trained vision-language model,
enabling task-aware frontier re-weighting without retraining.
As shown in Fig. 3, we cluster frontiers on each image
and visualize them as markers overlaid on the RGB view.
This guides the VLM’s attention toward candidate regions.
Using a set-of-marks prompting scheme, we query the VLM
(Gemini-2.5) to assess the likelihood that reaching each
frontier would accomplish a given natural language goal. The
VLM leverages its pre-trained priors and surrounding visual
context to return goal-conditioned beliefs over frontiers. We
then merge the original info gain with these VLM-predicted
scores, allowing the planner to balance exploration and

exploitation. A stop condition can similarly be implemented
by querying whether the goal has been achieved.
E. Exploration Planning

We design an exploration planner that selects the next nav-
igation target based on a utility score balancing information
gain and travel distance. For each predicted 3D frontier, its
utility reflects the ratio between its estimated info gain and
the effort required to reach it from the robot’s current pose.
This encourages the planner to prefer informative frontiers
that are also efficient to reach.

During navigation, we maintain a tree-based structure
that links robot poses and observed frontiers. Each node
corresponds to either a past robot pose or a visible frontier.
Whenever a frontier is registered, it is anchored to the
pose from which it was observed, creating a local visibility
edge. This structure ensures that all frontiers are physically
reachable and have at least one valid line of sight from the
robot’s prior trajectory. To reach a selected frontier that lies
beyond the current 3D map boundary, the planner samples
intermediate waypoints along its visibility edge to find a
reachable location within the known map. It then plans
toward this intermediate point and progressively updates the
map as it moves, eventually enabling a path to the original
frontier goal. This planning strategy is especially robust in
long-range navigation or under uncertainty from monocular
depth, as it relies primarily on visibility and visual anchoring.
It also supports operation in resource-limited scenarios by
running in a completely map-free mode.

IV. EXPERIMENT AND RESULT
A. Experimental Setup

We evaluate FrontierNet in 10 diverse indoor scenes
from the HM3D dataset, covering a wide range of layouts,
scales, and geometric complexity. Importantly, none of the
evaluation scenes were used to train either FrontierNet or
the monocular depth model. We simulate exploration using
a virtual RGBD camera and construct occupancy maps using
Octomap. Two types of depth input are considered: perfect
rendered depth and predicted depth from Metric3D [14].

We benchmark against several exploration baselines, in-
cluding the classic frontier-based method [15], the learning-
based SEER [19], and the sampling-based NBVP [40], using
official or re-implemented versions of each. We introduce
Vox@𝑘(%)—the fraction of scene volume explored after 𝑘%
of the maximum allowed steps as the main metric. We report
this metric at 𝑘 = 50 and 100, averaged across multiple
randomized runs per scene. Success rate is defined by
achieving over 40% coverage before step limits are reached.
B. Results

For autonomous exploration, Table I summarizes the re-
sults across 10 validation scenes. FrontierNet achieves the
best overall performance across all metrics. Notably, it attains
the highest early-stage coverage (Vox@50) in all scenes,
highlighting its ability to effectively prioritize informative
regions during exploration. Complete result can be found
in [11]. Figure 4 shows qualitative examples. We use the



824 827 876 880 804 807 812 834 854 879
10/79/21 8/65/19 14/148/8 11/70/16 10/111/11 14/256/12 8/67/16 10/90/13 6/72/5.0 15/126/28 Mean

Vo
x@

50
Classic 29.1±4.8 37.6±8.0 31.9±7.2 26.1±7.2 39.4±0.0 24.2±0.0 27.7±6.7 37.5±5.6 43.1±4.4 39.2±5.6 33.6
NBVP 46.2±5.7 46.1±5.9 44.5±5.1 31.0±1.3 46.6±4.6 35.3±2.7 49.4±6.6 44.1±3.0 52.3±2.6 45.5±4.8 44.1
SEER 47.0±4.4 46.6±6.2 30.4±9.9 57.1±2.2 40.4±7.7 32.2±6.0 41.0±5.5 22.8±5.2 43.5±3.1 44.8±3.9 40.6
Ours 58.0±4.8 61.9±3.9 58.2±4.2 61.9±7.5 53.9±4.2 50.7±4.5 60.3±8.1 53.7±5.0 72.1±9.8 55.5±5.7 58.6

Vo
x@

10
0 Classic 47.6±1.6 61.2±8.6 45.0±8.2 61.3±5.2 53.7±0.0 45.2±0.0 68.6±10.9 48.3±5.0 54.1±3.7 50.5±5.4 53.6

NBVP 65.0±5.6 78.5±4.9 60.8±9.3 49.8±1.6 69.7±4.8 49.9±2.1 83.4±3.5 70.0±8.8 80.1±20.3 62.6±5.6 67.0
SEER 60.6±6.7 60.1±5.6 50.5±8.8 60.3±6.1 62.3±3.2 51.7±5.6 60.8±8.3 45.1±4.9 51.0±3.4 48.1±3.0 55.1
Ours 71.2±6.0 72.6±8.9 72.0±8.5 68.4±10.8 62.2±8.9 59.8±6.1 82.2±10.1 70.3±10.1 98.3±13.2 58.8±6.5 71.5

Su
c.

Classic 33.3 86.7 38.0 40.0 6.3 5.6 37.5 31.3 90.0 20.0 38.9
NBVP 100.0 100.0 90.0 50.0 100.0 65.0 100.0 100.0 60.0 100.0 86.5
SEER 88.9 55.6 61.1 66.7 55.6 33.3 55.6 33.3 80.0 77.8 60.8
Ours 100.0 81.3 83.3 100.0 80.0 80.0 100.0 86.7 100.0 75.0 88.6

TABLE I: Comparison of mapping efficiency (Vox@k%) and success rate (Suc.) with baseline methods. All methods use ground-truth depth from the simulator. SEER is our
re-implementation of the original frontier-proposal technique, paired with our planner and evaluated under identical test conditions.. The 3-digit numbers in the first row are scene
IDs. The three parameters below each scene ID are the retrieved relevant scene parameters from HM3D metadata (num_rooms, navigable_area, and navigation_complexity)

Fig. 4: Qualitative Exploration Comparison of FrontierNet compared to three
baseline methods across four different scenes (left to right: 876, 824. 880, 854). Starting
location is marked as red point. Notably, our approach successfully handles multi-floor
environments (scene 854), a challenge for traditional frontier-based methods. All 3D
meshes in this visualization are generated by TSDF integration using ground-truth
depth images just for fair and clearer comparison.

same path planner, frontier assignment, and update logic for
our method, our implementation of the Classic method, and
SEER. FrontierNet’s superior results therefore arise solely
from its own strengths: it detects frontiers more reliably and
estimates information gain more accurately. These improve-
ments show that leveraging the visual cues leads to more
effective exploration.

For open-vocabulary navigation, Figure 5 illustrates tra-
jectories generated by OpenFrontier. The robot starts from
the same initial pose and is given different navigation targets
in natural language. Without any retraining or fine-tuning,
our system achieves strong zero-shot performance. In all six
test cases, the agent successfully navigates to the correct
semantic goal, showcasing the framework’s generality, task
flexibility, and ease of adaptation across tasks—all enabled
by integrating visual frontiers with a vision-language model.
A video of the exploration process is available at YouTube.
C. Real-world Validation

We deploy our system on a Boston Dynamics Spot robot
with a front RGB camera (640×480 @ 3 Hz). Running in real
time on a laptop (i9, 3080Ti), FrontierNet achieves ∼5 Hz
inference. As shown in Fig. 6, the robot explores a large
indoor space without human input. Despite training only in
simulation, the system generalizes well to real-world scenes.

Fig. 5: Qualitative Navigation Result of our OpenFrontier in scene 876. Starting
locations are all the same and marked as red points.

Fig. 6: Real-world Validation Result. Exploration process of a quadrupedal robot in a
real-world environment. Top: Floor plan. Bottom: Reconstructed map and exploration
path from TSDF integration using monocular depth prediction. Colored boxes indicate
key correspondences between the map and floor plan.

V. CONCLUSION
In this work, we present a general-purpose navigation

system that supports natural language instructions through
a novel integration of frontier-based spatial reasoning and
vision-language models. We treat navigation as a special
case of exploration and use frontiers as grounding targets
to query a VLM for task-aware prioritization via set-of-
marks prompting. Our proposed model, FrontierNet, detects
and registers frontiers directly from visual input without
relying on dense mapping. Built on top of it, OpenFrontier
demonstrates strong zero-shot adaptability across a range
of navigation tasks, with minimal assumptions about the
environment or training data. Experimental results highlight
the effectiveness of each component, and ongoing work aims
to further improve the system’s reactivity and robustness in
real-world scenarios.

https://www.youtube.com/watch?v=KPkTKTry0WM
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