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ABSTRACT

Multi-view data has become ubiquitous, especially with multi-sensor systems like
self-driving cars or medical patient-side monitors.
We look at modeling multi-view data through robust representation learning, with
the goal of leveraging relationships between views and building resilience to miss-
ing information. We propose a new flavor of multi-view AutoEncoders, the Ro-
bust Multi-view AutoEncoder, which explicitly encourages robustness to missing
views. The principle we use is straightforward: we apply the idea of drop-out
to the level of views. During training, we leave out views as input to our model
while forcing it to reconstruct all of them. We also consider a flow-based gen-
erative modeling extension of our approach in the case where all the views are
available.
We conduct experiments for different scenarios: directly using the learned rep-
resentations for reconstruction, as well as a two-step process where the learned
representation is subsequently used as features for the data for a down-stream ap-
plication. Our synthetic and real-world experiments show promising results for
the application of these models to robust representation learning.

1 INTRODUCTION

Multi-view machine learning, or multi-modal machine learning, involves learning on data which has
multiple, potentially asynchronous, observation models. For example, videos have both an audio
and visual channel which provide complementary information. Images and their captions provide
different views of the same data.

The applications of multi-view machine learning are numerous. One simple setting would be to
use the multiple views of a dataset to build a more robust classifier than one that can be trained
on any single view alone. This is the basis for the co-training learning paradigm. Co-training is a
semi-supervised learning framework which uses two or more complementary views to jointly train
classifiers over each view. It does so by first building view-specific classifiers and iteratively ex-
pands the labeled dataset by adding the unlabeled points based on the confidence of these individual
classifiers.

Other common applications are cross-modal translation/retrieval. For example, given an image, we
would like to generate an appropriate text caption. On the other hand, given a text description,
we could also retrieve the most appropriate image from a given dataset. Language translation, and
cross-modal sequence-to-sequence translation in general, is another domain for the application of
multi-modal machine learning.

In this paper, we are interested in exploring multi-view representation learning from the perspec-
tive of understanding and exploiting the relationships between the multiple views. The idea is that
multi-view data doesn’t just provide us with multiple sets of ”features” for the data, it also pro-
vides structural information in the form of the interactions and redundancies between views. To this
end, we propose a multi-view AutoEncoder based approach for Robust Multi-view Representation
Learning.

The essential idea is straightforward: we apply the idea of drop-out at the level of the views them-
selves. We would like to encourage robustness to missing views, so we explicitly force a random
subset of views to go missing during training while having the model reconstruct all. This en-
courages the model to leverage local redundancies and relationships between views to build this
robustness.
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Our method has a two-tiered structure where we have one encoder for each view giving us interme-
diate codes which are then concatenated and fed into a shared encoder for the final representation.
This separation is done so as to allow the model flexibility to learn a good ”translation” of each
view which is more conducive to shared representation learning. These individual encoders may be
Auto-Encoders themselves or a similar trainable feature extraction method.

Our generative modeling extension looks at using flow-based approaches to learn the latent distri-
bution of the data. Flow-based models work under the philosophy that a good representation of the
data is one in which the data distribution is simple. They typically consist of a sequence of train-
able invertible transforms into a latent space, where they maximize its likelihood over a simple, or
trainable, base distribution. We apply the two-tiered structure to this as well, to build a flow-based
Multi-view AutoEncoder.

Notation: The data is represented by the rows of Xi for each view i of K views, drawn from the
data-distribution pX . We represent any intermediate latent spaces with Li for view i, and the shared
latent space as Lall. We assume that our data is centered.

2 RELATED WORK

Learning over multiple modalities is often difficult, due to heterogeneous sources of data, different
levels of noise or missing data in some views. This makes it imperative to extract meaningful
information from the different views in a robust fashion. Representation learning is thus one of the
core directions of multi-modal machine learning research. It is common as an intermediate step
before learning over a down-stream task.

Many such learning methods are tailored to certain domains, wherein they exploit the structure
available specific to the data. For example, Audio-Video Speech Recognition (AVSR) has been the
subject of research for many years now. Traditionally, deep neural networks are used to handle
visual, textual and acoustic data Ngiam et al. (2011), Ouyang et al. (2014), Wang et al. (2015) where
the model projects the modalities into a joint space Antol et al. (2015), Mroueh et al. (2015), Ouyang
et al. (2014), Wu et al. (2014). This representation is then used for the relevant learning task.

Multi-view AutoEncoders are also extended to learn latent representations over multi-modal data.
Ngiam et al. (2011) learn modality specific AEs and then fuse together the latent states into a final
shared representation. Silberer & Lapata (2014) use auto-encoders for semantic concept ground-
ing, with the addition of a loss-term for object-label prediction. Wang et al. (2015) fine-tunes the
representation learned by the generic AEs on a given task.

Neural networks have their advantages; given domain-specific architectures and the potential for
pre-training, they often show superior performance on certain tasks. But they need a lot of data
and are not always able to gracefully handle missing data from modalities. Another popular multi-
modal representation learning approach is based on graphical models. Unsupervised methods such
as Deep Boltzman Machines (DBN) Srivastava & Salakhutdinov (2012), Kim et al. (2013), Huang
& Kingsbury (2013) are often used for multi-modal representation learning.

Our work, however, tries to remain agnostic to the application domain. We also try to explicitly
reason about the local relationships between views, where we look at structure that may only exist
between subsets of views and not shared between all the views.

3 APPROACHES

3.1 ROBUST MULTI-VIEW AUTOENCODER

The typical strategies for training a Multi-view AutoEncoder (MVAE) have the same concerns out-
lined in the previous section; they try to directly learn a shared embedding space which best recon-
structs all views (Ye et al. (2016), Wang et al. (2015)). This often means learning a single bottle
neck representation shared across all views. Such an architecture implicitly captures the intersection
of information across all views. We train an MVAE which learns to be robust to missing views by
trying to capture the union of information across the views instead.
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Figure 1: This is the outline of the Robust Multi-view AutoEncoder for 5 views. Each bottom arrow
represents the encoder for its respective view, and each upper arrow represents the decoder. Li is
the encoding for view i and LS is the global latent representation. The bottom arrows are dotted to
represent potential drop-out during training time.

In our proposed architecture, called the Robust MVAE (RMAE), as shown in 1, we have two levels
of encoding. The first is at the view level, where every view has its own individual encoder network.
These encoders produce the latent embeddings Li for their respective views. Then, we compose this
with an additional encoder, called the meta-encoder, which operates on top of these embeddings to
produce the final global latent representation LS . This is then used as input to the decoders for the
reconstruction of different views.

Here, our idea for ”robustness” of a representation is the ability of faithful reconstruction of all views
given that an arbitrary subset of views are missing at input. For this, we borrow from the idea of
dropout; every batch, we drop a different, random subset of views while forcing the reconstruction
of all views. In this way, the training encourages the latent representation to exploit redundancy of
information across different views.

This is similar to the Variational Auto-Encoder with Arbitrary Conditioning (VAEAC) Ivanov et al.
(2019), which is a generative model for estimating arbitrary missing feature values in data (eg. in-
painting). While theirs is a single-view approach, similar to RMAE, they also consider sampling
”dropped” features from some prior distribution. However, our approach allows us to learn view-
specific encoders, since we can exploit the view-structure in our data. In our proposed work, we will
look at generative modeling of multi-view data in a similar fashion to the VAE-AC, as well as using
flow-based models.

To emulate dropout more appropriately, we perform a relative scaling of the input to the encoders
based on number available views. In dropout with probability p, the output of the used units are
scaled by 1

p to compensate for the missing unites. Similarly, we scale the available views by K
Ka

where Ka is the number of available views during that iteration. However, unlike in unit-level
dropout, we also do this during test time when we have missing views.

We can also change where the view-dropout takes place; we can either zero out the input Xi or we
can zero out the latent encoding L1. The former method is similar to encouraging every individual
view encoder to output an informative ”mean” embedding which works well in lieu of missing data.
The latter localizes the ”robustness” of the encoding to the meta-encoder level.

4 GENERATIVE MODELING EXTENSION

Now, we try to look at a more natural way to represent multi-view data, namely as an underlying
data generation process with the views as observation models into it. In this paper, we consider
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flow-based models like RealNVP Dinh et al. (2016) and NICE Dinh et al. (2014) to extend the
RMAE.

4.1 BACKGROUND: FLOW-BASED GENERATIVE MODELING

We will quickly provide some background on Flow-based generative modeling. The philosophy
behind these approaches is that a ”good” representation of the data is one in which the data has a
simple distribution. To achieve this, they learn an invertible encoding q()̇ of the data into a space
where this is the case. The pdf of the (single-view) latent distribution can be represented in terms of
the data distribution (or vice-versa), using the change-of-variables theorem:

pX (x) =

∣∣∣∣det dqdx
∣∣∣∣ pL(q(x)) (1)

The invertible function q is designed to have a triangular Jacobian, allowing efficient computation of
the determinant. Even with this restriction, we can design q which have a lot of representative power.
This is typically achieved by composing sequence of invertible transforms, each with appropriate
Jacobians. These transforms are usually ”coupling” transforms , which allow us to represent useful
inter-dependence structure between the transformed covariates.

Equation 1 is gives the likelihood the training procedure optimizes. The latent distribution can either
be a simple distribution like a standard Gaussian, or a trainable one like a mixture model and/or an
AutoRegressive model.

4.2 FLOW-BASED RMAE

For our flow-based model, we primarily consider the case where we have all the view data available
during training and testing. Our architecture remains largely the same as the one represented in
Figure 1. The individual view-encoders can be flow-based models or independently trained auto-
encoders; the intermediate shared representation is then fed through a flow-based invertible encoding
to give the final encoding.

In the case of missing views, we can apply the idea behind AC-Flow Li et al. (2019). Here, we
would condition on an arbitrary subset of missing views to learn a flexible flow-transform for each
view. We leave this for the immediate next step for our future work.

5 EXPERIMENTS

For our experiments, we first look at some synthetic data to demonstrate the applicability of our
approaches. We follow this up with some real world experiments where we use the learned repre-
sentation as features for down-stream classification tasks.

5.1 SYNTHETIC EXPERIMENTS

We design our synthetic datasets with structured redundancies between views. We look at the case
where, for K views, we need K − 1 views to reconstruct the last. We achieve this by having each
view i sharing half of its features with view i − 1, and the other half with view i + 1, with view 0
and K wrap around to each other. The views are then independently transformed (so as to not have
the exact same observable covariates), and perturbed by independent noise.

5.1.1 RMAE

Here are the baseline methods we compare against for the RMAE:

• Multi-view Feature Concatention (CAT)
A simple alternative method for representation learning is to simply concatenate the mul-
tiple available views into a single feature vector. While this approach preserves all the
information as contained by the different views, it is not robust to missing views, since it
does there is no inter-relationship modeling.
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Figure 2: Train and test reconstruction error vs. number of views for different AE competitors. This
plot also shows the 1-sigma confidence interval for different choices of available views.

• Intersection Multi-view Auto-Encoder (IMAE)

This baseline is an alternative multi-view AutoEncoder approach which forces all the views
to share a single bottle-neck representation. The final code is represented as the average
code from all the views. This method tends to extract the intersection of the information
contained between the latent spaces, and is thus not as robust to relationships and redun-
dancies local to only a subset of views.

• Concatenation AutoEncoder (CMAE)

Here, we first concatenate the multi-view features just as the first baseline, but train an Au-
toEncoder above this to learn inter-view relationships. This approach is the middleground
between the RMAE and just simple feature concatenation; and can be seen as skipping the
first level of view-specific encoders in the RMAE framework.

While this approach is the closest in spirit to the RMAE, it lacks the initial feature trans-
formation/encoding which often helps unravel inter-view relationship structure.

We look at K = 4, 5, 6 for our experiments, with each view having 6 dimensions (3 shared with
the previous view and the rest shared with the next view). Figure 2 shows the reconstruction error
for all the views, against the number of available views. The trend is intuitive for the RMAE; the
reconstruction error improves as we include more views. The confidence intervals in the bar plots
represents the variance over choices of input views, for a given number of available views. In the
case of CMAE and IMAE, these intervals are small because there is little difference over choices
of different views – the representation does not learn robust relationships across different views for
reconstruction.

We also have single-view error matrices for K = 6 shown in Figure 3. Here, an element (i, j) of
the matrix represents the error from using a single view i for the reconstruction of a single view j.
Note: We only show this for K = 6 but the others look the same. We expect the banded diagonal
structure, since by design, each of our views is constructed to share features only with the next and
previous views. Again, RMAE demonstrates that it is better able to uncover these local relationships
between the views.
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Figure 3: [6-view problem] One-to-one single-view reconstruction for different AE competitors.

5.2 FLOW-BASED RMAE

Here, we look at the how well our generative model can recover the underlying data distribution of
our synthetic datasets. We compare the relative performance of using a simple gaussian underlying
distribution vs. an AutoRegressive model for our flow-based approaches. In these experiments, we
train our models on the training set and look at how well their generated samples compare with the
test set. Here, we look at K = 3 with each view having 6 dimensions.

Figure 4 shows samples drawn from the simple base distribution and the learned AR base distribu-
tion, as compared to true samples from the test-set. We project the data into 2D space using a umap
embedding to better visualize the differences between the samples. Here, we see that the AR base
model is able to better represent the data, as compared to the simple gaussian base distribution.

Figure 4: This figure shows samples as generated from the simple gaussian and AR base distributions
as they compare with test samples from the true distribution.

5.2.1 REAL-WORLD EXPERIMENTS

We only consider RMAE for our current real-world experiments. Here, we look at the usefulness of
the learned representation for down-stream classification tasks on real-world datasets. Each method
is trained similarly with view-dropouts as before, and the test-time latent representation is used as
features for the downstream tasks.

The datasets we consider are:

• 3 Sources News Dataset1 This dataset consists of featurized news articles from three
sources: BBC, Guardian, Reuters.

• NUS-Wide-Lite Chua et al. (July 8-10, 2009) This is an image dataset where each image is
associated with one or more of 81 concepts like ”lake” or ”person”; the views are different
image featurizations.

• N-MNIST Basu et al. (2017) This dataset consists of three noisy versions of the original
MNIST dataset as the different views.

1http://mlg.ucd.ie/datasets/3sources.html
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Figure 5: [3-Source News + NMNIST] Plots for accuracy vs. number of available views for the
different approaches.

Figure 6: [NUS-WIDE-Lite: Sunset] Plots for accuracy vs. number of available views for the
different approaches.
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In Figures 5 and 6, we see that different methods win out over different datasets. Leveraging local
relationships may be detrimental in cases where the global shared structure is the most important for
solving the task. However, we note that RMAE consistently is either the best or the second best for
all the datasets, over most of view-subsets. This shows us that there is indeed some generalizable
structure that the RMAE is able to uncover which is useful for the tasks at hand.

This can likely be improved for all methods by simultaneously training the representation learning as
well as the downstream tasks. Currently, the representations learned are agnostic to the task at hand,
and are specifically tailored to reconstruction. Incorporating the application in the training process
would likely help improve the performance of the learned representations on the classification tasks.

6 CONCLUSION

In this paper, we considered the problem of Robust Multi-view Representation Learning where we
sought to leverage relationships between views to learn representations of multi-view data. We pro-
posed two methods, one based on view-dropout and its flow-based generative modeling extension.
Synthetic and real world experiments show promising results for their application to missing data
reconstruction as well as other down-stream learning tasks.
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