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ABSTRACT

Recent research has shown that large language models (LLMs) can be effectively
used for real-world time series forecasting due to their strong natural language
understanding capabilities. However, aligning time series into semantic spaces
of LLMs comes with high computational costs and inference complexity, partic-
ularly for long-range time series generation. Building on recent advancements
in using linear models for time series, this paper introduces an LLM-enhanced
mixture of linear experts for precise and efficient time series forecasting. This
approach involves developing a mixture of linear experts with multiple lookback
lengths and a new multimodal fusion mechanism. The use of a mixture of linear
experts is efficient due to its simplicity, while the multimodal fusion mechanism
adaptively combines multiple linear experts based on the learned features of the
text modality from pre-trained large language models. In experiments, we rethink
the need to align time series to LLMs by existing time-series large language mod-
els and further discuss their efficiency and effectiveness in time series forecasting.
Our experimental results show that the proposed LeMoLE model presents lower
prediction errors and higher computational efficiency than existing LLM models.

1 INTRODUCTION

Long-term time series forecasting (LTSF) is a significant challenge in machine learning due to its
wide range of applications. It has been important in various domains such as weather modeling
(Ma et al., 2023; Lin et al., 2022), traffic flow management (Lv et al., 2014), and financial analysis
(Abu-Mostafa & Atiya, 1996). Traditional statistical models like ARIMA (Box & Pierce, 1970)
and exponential smoothing (Gardner Jr, 1985) have served as the foundation for forecasting tasks
for decades. However, these models often struggle to handle the complexities arising from real-
world applications, such as non-linearity, high dimensionality, and intricate temporal dynamics. In
recent years, deep learning models have emerged as a breakthrough in forecasting, revolutionizing
accuracy and efficiency. These models can remarkably capture complex temporal patterns and in-
teractions within the data. By leveraging the power of deep learning, they excel in forecasting tasks
by effectively learning from large-scale datasets.

It is intriguing to note that while deep models (e.g., transformer-based models) have gained pop-
ularity and achieved significant success in various fields like computer vision, natural language
processing, and time series research, they usually come at the cost of extensive computational bur-
dens. Recent empirical studies have revealed scenarios where simpler and more computationally ef-
ficient linear-based models outperform complex deep learning models. Models like DLinear (Zeng
et al., 2023) and RLinear (Li et al., 2023) have demonstrated superior performance. Linear mod-
els have proven effective in time series forecasting due to their capacity to capture and leverage
the linear relationships inherent in many time series datasets. By exploiting these linear relation-
ships, linear-based models can provide competitive predictions while maintaining computational
efficiency. While linear-based models have demonstrated strengths in certain time series forecasting
scenarios, it is important to acknowledge their limitations:
i) Non-linear patterns: Real-world time series data often exhibit non-linear patterns resulting from
complex underlying mechanisms, such as variable interactions or abrupt regime shifts. Linear mod-
els may struggle to capture and model these non-linear relationships effectively (Chen et al., 2023;
Ni et al., 2024; Lin et al., 2024).
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ii) Long-range dependencies: Linear models might face difficulties handling long-term dependen-
cies within time series data. As the dependency structure becomes more intricate and extends over
longer periods, the effectiveness of linear models diminishes (Nie et al., 2023a; Liu et al., 2024c).

Therefore, the challenge of developing a powerful prediction model that retains the high efficiency
of linear models remains an open question.

A mixture of linear experts is a promising solution to build such a model. Intuitively, multiple linear
experts can convert the original nonlinear time series prediction into several component prediction
problems. For example, some experts focus on trends, while others handle seasonals, or some deal
with short-term patterns while others learn long-term patterns. For example in (Ni et al., 2024),
Mixture-of-Linear-Experts (MoLE) is proposed to train multiple linear-centric models (i.e., experts)
to collaboratively predict the time series. Additionally, a router model, which accepts a timestamp
embedding of the input sequence as input, learns to weigh these experts adaptively. This allows that
different experts specialize in different periods of the time series.

Figure 1: Inference time on ETTh1.

In addition, incorporating multimodal knowledge into
predictive models is also a promising solution. Recently,
there has been a significant surge of interest in multi-
modal time series forecasting. For example, TimeLLM
(Jin et al., 2024) aims to align the modalities of time se-
ries data and natural language such that the capabilities of
pretrained large language model (LLM) from natural lan-
guage process (NLP) can be activated to model time se-
ries dynamics. In practice, the alignment of multimodal-
ity in time series forecasting can be easily achieved by
fine-tuning the input and output layers. In this way, both
time series and non-time series data (such as text data)
can be jointly inputted to LLM for multimodal time series forecasting. Although such alignment-
based LLMs have shown improvement in time series forecasting tasks, compared to linear models,
they are not very effective and suffer from slow inference speed (Liu et al., 2024b) as they have to
use large language model as time series predictor. Figure 1 shows inference efficiency comparisons.

Motivated by the above-related works, in this paper, we propose LeMoLE for Time Series Forecast-
ing. LeMoLE refers to an LLM-enhanced mixture of linear experts. Different from the Mixture-
of-Linear-Experts (MoLE) (Ni et al., 2024), the proposed LeMoLE enhances ensemble diversity by
leveraging multiple linear experts with varying lookback window lengths. This strategy is simple yet
effective. Intuitively, this improvement encourages the experts to effectively handle both short-term
and long-term temporal patterns in historical data. Moreover, LeMoLE incorporates informative
multimodal knowledge from global and local text data during the ensemble process of the multi-
ple linear experts. This adaptive approach allows LeMoLE to allocate specific experts for specific
temporal patterns, enhancing its flexibility and performance. We introduce a pre-trained large lan-
guage model for extracting text representations to improve the fusion of outputs from multiple linear
experts and text knowledge. Additionally, to incorporate static and dynamic text information, we
incorporate two conditioning modules based on the well-known FiLM (Feature-wise linear modula-
tion) conditioning layer (Perez et al., 2018). Consequently, the proposed LLM-enhanced mixture of
linear experts enables more flexible and effective long-range predictions than alignment-based time
series LLM models.

The main contributions of our work are summarized as follows:
i) We present an LLM-enhanced mixture of linear experts called LeMoLE. To the best of our knowl-
edge, it is the first work on improving linear time series models based on mixture-of-expert learning
and multimodal learning.
ii) We introduce linear experts with varying lookback window lengths to enhance ensemble diversity
and incorporate two novel conditioning modules based on FiLM (Feature-wise Linear Modulation)
to effectively integrate global and local text data adaptively.
iii) We rethink existing large language models for time series and compared several recent state-of-
the-art prediction networks on long-term forecasting and few-shot tasks. The results demonstrate
the effectiveness of the proposed LeMoLE in terms of accuracy and efficiency.
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2 RELATED WORK

2.1 LINEAR MODELS AND LINEAR ENSEMBLE MODELS

While transformer-based models (Zhou et al., 2022a; Nie et al., 2023a; Wu et al., 2021) have been
successful in Long-Term Time Series Forecasting (LTSF), (Zeng et al., 2023) questioned their uni-
versal superiority and suggested simpler architectural approaches like DLinear and NLinear. DLin-
ear (Zeng et al., 2023) decomposes time series into trend and season branches and uses linear models
for forecasting. Subsequent research by (Li et al., 2023) further confirmed the potential of linear-
centric models like RLinear and RMLP, which outperformed PatchTST (Nie et al., 2023a) in specific
benchmarks. Based on linear-based models and research focusing on the frequency domain, FITS
(Xu et al., 2024) operates within the complex frequency domain. Although linear models are effi-
cient, they are still limited in high-nonlinear time series (Chen et al., 2023; Ni et al., 2024). Related
ensemble linear models, such as TimeMixer (Wang et al., 2024) mixing the decomposed season and
trend components of time series from multiple resolutions. Then, multiple predictors are utilized
to project the resolution features for the final prediction. Based on a mixture of experts, MoLE
(Ni et al., 2024) applies multiple linear experts for forecasting, which is based on a router module
to adaptively reweigh experts’ outputs for the final generation. The proposed LeMoLE is different
from them due to its multimodal fusion mechanism.

2.2 LLM-BASED MULTIMODAL FORECASTING

Pre-trained foundation models, such as large language models (LLMs), have driven rapid progress
in natural language processing (NLP) (Radford et al., 2019; Brown, 2020; Touvron et al., 2023)
and multimodal modeling (Caffagni et al., 2024; Hu et al., 2024). Several works have tried to
transfer LLMs’ capabilities of other modalities to advance time series forecasting. However, the
main challenges lie in discussing the relationships between the two modalities, time series and text.
Some previous works claim that aligning them is important and useful for multimodal forecasting.
LLM4TS (Chang et al., 2023) use a two-stage fine-tuning process on the LLM, first supervised
pre-training on time series, then task-specific fine-tuning. Zhou et al. (2024) leverages pre-trained
language models without altering the self-attention and feedforward layers of the residual blocks. It
is fine-tuned and evaluated on various time series analysis tasks to transfer knowledge from natural
language pre-training. Jin et al. (2024) reprograms the input time series with text prototypes before
feeding it into the frozen LLM to align the two modalities. Conversely, AutoTimes (Liu et al.,
2024b) states the aligning is overlooked, resulting in insufficient utilization of the LLM potentials.
It presents token-wise prompting that utilizes corresponding timestamps and then concatenates the
time and prompt features as the multimodal input.

Although these LLM-based time series methods have improved, their main limitation is their effi-
ciency compared with lightweight models like linear-based models. In this work, we rethinnk the
use of large language models for time series and strive to develop a more efficient and effective
LLM-enhanced prediction model.

3 LEMOLE: LLM-ENHANCED MIXTURE OF LINEAR EXPERTS

Problem formulation. Given a lookback window X1:T ∈ RT×C (T is the length of history obser-
vations and C is the number of variables), a task of time series forecasting aims to train a model F
to predict its future values in a forecast window XT+1:T+H . Ideally, an optimal model F∗ builds a
(nonlinear) mapping between the lookback window and the forecast window:

XT+1:T+H = F∗(X1:T ). (1)
However, the underlying temporal dynamics tend to be highly complex in terms of real-world time
series characteristics. Consequently, training F to approximate F∗ solely based on the lookback
window becomes exceedingly challenging. Incorporating multimodal knowledge (such as time
series-related text data) is a promising solution (Jin et al., 2024) to help time series forecasting. This
work considers the text-enhanced time series forecasting scenes, where a static prompt (denoted as
PS) and a dynamic prompt (denoted as PD) are processed by a pretrained large language model,
and the extracted text features are used to enhance the time series prediction model. Formally,

X̂T+1:T+H = F(X1:T ,PD,PS). (2)
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Figure 2: The proposed LeMoLE is based on a mixture of linear experts with different look-
back lengths. We effectively incorporate (static and dynamic) multimodal knowledge into our
approach by leveraging two frozen large language models (LLMs). The conditioning module
associated with each LLM plays a crucial role in activating and enhancing our multi-expert
prediction network. Finally, a lightweight CNN produces future predictions.

Here, X̂ denotes the estimation output of the forecast window. Figure 2 illustrates the proposed
LeMoLE. Note that rather than simply combining multiple linear experts with the same lookback
lengths as in (Ni et al., 2024), we set different lookback lengths for our linear experts. This allows
different experts to focus on various short-term and long-term temporal patterns. This section will
formally elaborate on each component in the proposed model.

3.1 MIXTURE OF LINEAR EXPERTS

Linear models have demonstrated effectiveness in time series forecasting (Zeng et al., 2023). How-
ever, due to their inherent simplicity, they are still limited to complex non-periodic changes in time
series patterns (Ni et al., 2024). In the proposed LeMoLE, we introduce a mixture of linear experts
with different lookback lengths to model both short-term and long-term temporal patterns.

Mathematically, let the number of experts be M . Given a time series window X1:T , we generate its
M views for M experts respectively. For the mth expert (m = 1, 2, . . . ,M ), we have the input as
XT−wm:T . Here, wm is the window length for the mth expert (we assume w1 ≥ w2 ≥ · · · ≥ wM ).
Then we can obtain the prediction of the mth expert by

Y(m) = WmXT−wm:T + bi, (3)

where m = 1, . . . ,M , Wm ∈ RH×wm and bm ∈ RH×C are trainable expert-specific parameters.
Based on Equation (??), we can obtain M prediction output from M linear experts, denoted by
{Y (1), Y (2), . . . , Y (M)}. All of these outputs are with the same sizes of H × C.

3.2 LLM-ENHANCED CONDITIONING MODULE

Prompting serves as a straightforward yet effective approach to task-specific activation of LLMs.
To leverage abundant multimodal knowledge to help time series forecasting, it is essential to design
appropriate text prompts and the corresponding conditioning module to activate our multi-expert
prediction network.

In time series data, there are two important types of text information that describe temporal dynam-
ics. The first type is static text, which typically provides global information about the time series
dataset, such as data source descriptions. The second type of text is dynamic and time-dependent,
including information like time stamps, weather conditions, or other external environmental factors.
To incorporate these two types of text data into the prediction network, we create static and dynamic
prompts and use a pretrained language model to obtain their corresponding representations.

Static prompt. Figure 5 (left) in Appendix B shows a static prompt example we used on the ETTh
dataset. It is about the data source description. Specifically, it includes what, where, and how the
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data was collected. Also, it contains the meanings of variables in the multivariate time series. This
information helps understand and assess the reliability and relevance of the particular prediction
tasks. We assume the static prompt PS contains the LS length of texts (including punctuation
marks). To facilitate the LLM ability of text understanding, the LLM encoder denoted as LLM(·)
is utilized to obtain the text representation vector ZS ∈ RLS×dllm , i.e.

ZS = LLM(PS). (4)
where dllm is the dimension of the LLM encoder LLM token embeddings.

Dynamic prompt. Distinct from the static prompt, the timestamps in the datasets indicate when
the observations were recorded. We follow AutoTimes (Liu et al., 2024b) to use the timestamps
as related dynamic text data and design our dynamic prompt as in Figure 5 (right) in Appendix B.
We aggregate textual covariates TT−w1

, . . . ,TT to generate the dynamic prompt as PD ∈ RLD×1.
Formally, it is given by PD = Prompt([TT−w1

,TT−w1+1, . . . ,TT ]), where w1 is the maximum
lookback length in all experts. Then by LLM, the dynamic prompt is encoded into representations
ZD ∈ RLD×dllm by

ZD = LLM(PD). (5)

3.3 CONDITIONING MODULE

After obtaining the representations ZS ∈ RLS×dllm and ZD ∈ RLD×dllm from the static prompt and
dynamic prompt respectively, we can use them as conditions to activate our multi-expert prediction
network. Specifically, we first introduce two conditioning modules to fuse ZS and ZD respectively
and then use light-weight CNN blocks to summarize all branches to get the final prediction.

The proposed conditioning module is based on the popular conditioning layer, FiLM (Perez et al.,
2018). First, we use a CNN to map the multi-linear experts’ outputs {Y(1),Y(2), . . . ,Y(M)} into a
tensor Y of H×C, say Y = CNN([Y(1);Y(2); . . . ;Y(M)]). Then, we fuse the static representation
ZS ∈ RLS×dllm with Y by

Y′
S = γS ⊙Y + βS , (6)

where γS = Lineart
S,1 ◦Linearc

S,1(ZS), βS = Lineart
S,2 ◦Linearc

S,2(ZS). Here, Lineart

is the linear mapping to change the time dimension from LS to H . Linearc changes the channel
dimension from dllm to C. Finally, we have γS ∈ RH×C , βS ∈ RH×C , and the fused output
Y′

S ∈ RH×C .

Similarly, when using dynamic representation ZD as condition, we have
Y′

D = γD ⊙Y + βD, (7)

where γD = Lineart
D,1 ◦ Linearc

D,1(ZD), βD = Lineart
D,2 ◦ Linearc

D,2(ZD). Here, we
obtain output Y′

D ∈ RH×C . Finally, we get the final prediction Ŷ by

Ŷ = CNNfinal([Y;Y′
S ;Y

′
D]). (8)

Given the final prediction Ŷ, we can minimize the distance (e.g., mean square errors) between the
ground truths XT+1:T+H and predictions Ŷ to train the whole network in an end-to-end way

L = ||xT+1:T+H − Ŷ||22. (9)
The pseudocode for the training procedures of the backward denoising process can be found in
Appendix A.

Extension to frequency domain. In the proposed LeMoLE, we introduce linear experts with vary-
ing lookback window lengths to enhance ensemble diversity. In this section, drawing inspiration
from a recent frequency-based linear model known as FITS (Xu et al., 2024) (Frequency Interpola-
tion Time Series Analysis Baseline), we propose an extension of LeMoLE called LeMoLE-F, where
each linear expert is implemented using FITS. Consequently, we can rename the original LeMoLE
in the time domain as LeMoLE-T. The setup of lookback window lengths of LeMoLE-F is the same
as that in LeMoLE-T. In LeMoLE-F, each linear expert takes the input as a frequency domain pro-
jection of a specific lookback window. This projection is achieved by applying a real FFT (Fast
Fourier Transform). Subsequently, a single complex-valued linear layer is used to interpolate the
frequencies. To revert the interpolated frequency back to the time domain and obtain the output of
the linear expert, zero padding and an inverse real FFT are applied.
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4 EXPERIMENT

To verify the proposed LeMoLE model’s effectiveness and efficiency, we conducted extensive ex-
periments to dicsuss the following research questions. In Appendix F, we further provided the
visualization results about using the proposed LeMoLE on real-world time series.

RQ1: How deos LeMoLE perform on long-range prediction and few-shot learning scenarios?
RQ2: Is multimodal knowledge, specifically text features, always useful on various datasets?
RQ3: What about using linear experts in the frequency domain?
RQ4: What are the effects of the hyperparameter sensitivity?
RQ5: Is LeMoLE computationally efficient compared to existing LLM-based time series models?

4.1 EXPERIMENTAL SETTINGS

Table 1: Evaluation of non-stationarity by the Aug-
mented Dick-Fuller (ADF) test. A higher ADF test
statistic indicates a lower stationarity degree, meaning
the distribution is less stable.

Traffic Electricity ETTh1 ETTm1

ADF statistic -2.801 -2.797 -2.571 -1.734
p-value 0.005 0.006 0.099 0.414

Datasets. We conider four commonly-used
real-world datasets (Jin et al., 2024; Wu
et al., 2023): ETTh1, ETTm1, Electricity
(ECL), and Traffic datasets. As in (Liu
et al., 2022b), we use the Augmented Dick-
Fuller (ADF) test statistic (Elliott et al., 1996)
to evaluate if they are non-stationary. The null
hypothesis is that the time series is not station-
ary (has some time-dependent structure) and
can be represented by a unit root. The test statistic results are shown in Table 1. As can be seen, with
a threshold of 5%, ETTm1 and ETTh1 are considered non-stationary. More details about datasets
can be found in Appendix C.

Baselines. We compare our method with the recent strong time series models, including i) CNN-
based models: FiLM (Zhou et al., 2022b), TimesNet (Wu et al., 2023); ii) Linear models: LightTS
(Zhang et al., 2022), DLinear (Zeng et al., 2023), TSMixer (Chen et al., 2023), SparseTSF (Lin
et al., 2024), TimeMixer (Wang et al., 2024), FITS (Xu et al., 2024) and MoLE (Ni et al., 2024);
iii) Transformers: Informer (Zhou et al., 2021), Autoformer (Wu et al., 2021), PatchTST (Nie et al.,
2023b), iTransformer (Liu et al., 2024a); iv) recent most popular LLM models: GPT4TS (Zhou
et al., 2024), AutoTimes (Liu et al., 2024b), TimeLLM (Jin et al., 2024). To ensure a fair comparison,
we adhere to the experimental settings of TimesNet (Wu et al., 2023). 1

Implementation details. In the experiments, following previous works (Zhou et al., 2024; Liu
et al., 2024b), we use GPT2 (Radford et al., 2019) as the LLM encoder for text-prompt representation
learning. All datasets will follow a split ratio of 7:1:2 for the training, validation, and testing sets,
respectively. For evaluation, we adopt the widely used metrics mean square error (MSE) and mean
absolute error (MAE) (Wu et al., 2021; 2023; Nie et al., 2023b; Zhou et al., 2024). The history length
T is searched from the {96, 192, 336, 512, 672, 1024} based on the best validation MSE values for
all methods. Other hyperparameters, such as learning rate and network configurations for different
baselines, are set based on their official code in Appendix D. In addition, channel-independence
is crucial for multivariate time series prediction (Nie et al., 2023a), so it is necessary to verify
the performance of models on a single channel to ensure their effectiveness across all channels in
multivariate time series prediction. In this paper, experiments were conducted on a single channel as
suggested by Jia et al. (2023). All experiments were conducted using PyTorch Paszke et al. (2019)
on NVIDIA 3090-24G GPUs.

4.2 MAIN RESULTS (RQ1)

Long-range forecasting. In this section, we consider long-range prediction tasks on four real-world
datasets: Electricity, Traffic, ETTh1, and ETTm1. As shown in Table 1, the proposed
model achieves the best average performance in the long-range prediction tasks. Specifically, the
proposed models consistently outperform the linear ensemble model MoLE and TimeMixer with an

1In this section, the following abbreviations are used: “TimesN.” for TimesNet, “S.TSF” for SparseTSF,
“T.Mixer” for TimeMixer, “MoLE” for MoLE, “Infr.” for Informer, “Autofr.” for Autoformer, “GPT4TS” for
GPT4TS, “AutoT.” for AutoTimes and “T.LLM” for TimeLLM.
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average improvement of 23.17% and 20.70% respectively in terms of MSE, which demonstrates the
effectiveness of using multimodal knowledge. As using a large language model for text information
extraction, the proposed mixture of linear experts is allowed for better modeling of nonlinear parts in
real-world time series. By comparing the LLM-based time series model GPT4TS and AutoTimes,
we also have average improvements of 11.76% and 29.85% in terms of MSE. This demonstrates
the effectiveness of the proposed multimodal fusion strategies and multiple linear expert ensembles.
Directly aligning language models for time series may degrade the forecasting performance due
to the essential differences between the time series structure and the natural language syntactic
structure (Tan et al., 2024). Due to the lack of space, MAE results are reported in Appendix E.

Linear-mixer LLM-based Linear-based Transformer-based others

H Ours MoLE T.Mixer AutoT. T.LLM GPT4TS S.TSF FITS DLinear LightTS iTrans. PatchT. Infr. Autofr. TSMixer TimesN.

E
le
ct
ri
ci
ty 96 0.197 0.195 0.267 0.234 0.256 0.209 0.204 0.200 0.197 0.247 0.254 0.312 0.268 0.595 0.322 0.278

192 0.217 0.228 0.287 0.321 0.302 0.250 0.236 0.235 0.229 0.285 0.307 0.355 0.280 0.515 0.332 0.290
336 0.241 0.262 0.466 0.383 0.467 0.289 0.268 0.270 0.263 0.323 0.358 0.415 0.332 0.539 0.377 0.341
720 0.255 0.299 0.392 0.276 0.448 0.381 0.315 0.323 0.297 0.364 0.395 0.477 0.615 0.627 0.429 0.415
Avg 0.227 0.246 0.353 0.304 0.405 0.282 0.256 0.257 0.246 0.305 0.328 0.390 0.374 0.569 0.365 0.331

T
ra

f
f
ic

96 0.112 0.123 0.152 0.278 0.145 0.136 0.116 0.117 0.135 0.233 0.274 0.133 0.218 0.243 0.170 0.158
192 0.117 0.124 0.147 0.280 0.145 0.137 0.118 0.128 0.137 0.246 0.207 0.137 0.259 0.235 0.176 0.148
336 0.113 0.123 0.146 0.278 0.144 0.135 0.117 0.155 0.137 0.255 0.329 0.140 0.272 0.232 0.172 0.155
720 0.117 0.140 0.166 0.292 0.168 0.151 0.132 0.314 0.154 0.306 0.236 0.168 0.319 0.237 0.203 0.161
Avg 0.115 0.128 0.153 0.282 0.151 0.140 0.121 0.178 0.141 0.260 0.262 0.144 0.267 0.237 0.180 0.156

E
T
T
h
1

96 0.052 0.063 0.056 0.069 0.063 0.057 0.063 0.059 0.062 0.082 0.065 0.055 0.149 0.089 0.155 0.058
192 0.066 0.087 0.073 0.078 0.071 0.073 0.078 0.075 0.079 0.102 0.066 0.071 0.436 0.101 0.186 0.067
336 0.079 0.107 0.085 0.085 0.089 0.087 0.088 0.086 0.102 0.123 0.072 0.083 0.238 0.117 0.263 0.084
720 0.080 0.197 0.075 0.114 0.095 0.089 0.103 0.105 0.201 0.211 0.072 0.082 0.253 0.118 0.298 0.091
Avg 0.069 0.114 0.072 0.086 0.079 0.077 0.083 0.081 0.111 0.129 0.069 0.073 0.269 0.106 0.225 0.075

E
T
T
m
1

96 0.026 0.028 0.028 0.033 0.033 0.026 0.027 0.027 0.027 0.081 0.029 0.028 0.092 0.063 0.057 0.028
192 0.039 0.048 0.046 0.048 0.048 0.040 0.040 0.040 0.042 0.184 0.045 0.041 0.227 0.068 0.163 0.044
336 0.051 0.056 0.076 0.064 0.056 0.052 0.052 0.054 0.057 0.271 0.060 0.056 0.227 0.077 0.240 0.059
720 0.072 0.075 0.083 0.080 0.077 0.070 0.071 0.071 0.072 0.368 0.078 0.074 0.319 0.112 0.295 0.081
Avg 0.047 0.052 0.058 0.056 0.053 0.047 0.048 0.048 0.049 0.226 0.053 0.050 0.216 0.080 0.189 0.053

All Avg 0.115 0.135 0.159 0.182 0.172 0.137 0.127 0.141 0.137 0.230 0.178 0.164 0.282 0.248 0.240 0.154

1st Count 16 1 0 0 0 3 0 0 0 0 4 0 0 0 0 0

Table 2: MSE results of long-range forecasting. A lower value indicates better performance. The
best results are highlighted in bold. The second best is underlined.

Few-shot forecasting refers to the scenario of making predictions with limited data, which is partic-
ularly difficult for data-driven deep learning methods. Recently, LLM time series models Jin et al.
(2024); Zhou et al. (2024) have shown impressive few-shot learning capabilities. In this section,
we will evaluate whether the proposed multimodal time series fusion mechanism outperforms those
LLM-alignment methods in forecasting tasks. We will follow the setups in (Zhou et al., 2024; Jin
et al., 2024) for fair comparisons, and we will assess scenarios with limited training data (i.e., using
only 10% of the training data, while keeping the test data the same for the long-range forecast-
ing task). Table 3 summarizes the MSE results for few-shot forecasting (MAE results are left in
Appendix E due to the limit of space). As can be seen, the proposed model still outperforms all
other baselines regarding average performance, especially for those LLM-based prediction models.
This suggests that when dealing with limited forecasting, utilizing the proposed multimodal fusion
mechanism (which combines information from global and local text prompts) is a better choice than
aligning large language models for time series modeling.

4.3 COMPONENT ANALYSIS (RQ2)

This section explores the impact of the static and dynamic prompts in LeMoLE. We analyze the
effects of removing each prompt individually, as well as both prompts, on long-range forecasting
and few-shot forecasting tasks. Through this experiment, we aim to provide a detailed discussion on
whether and which text prompts improve prediction performance.

The results in Table 4 summarize the analysis of the components. It is evident that the prediction
performance declines when either or both components are removed from the proposed LeMoLE.
This shows that introducing the text modality using the proposed multimodality fusion strategy is
effective. Interestingly, we observed that in the non-stationary ETT datasets, the proposed LeMoLE
benefits more from the dynamic prompt. On the other hand, for ECL, which is relatively easy due to
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Linear-mixer LLM-based Linear-based Transformer-based others

H Ours MoLE T.Mixer AutoT. T.LLM GPT4TS S.TSF FITS DLinear LightTS iTrans. PatchT. Infr. Autofr. TSMixer TimesN.

E
le
ct
ri
ci
ty 96 0.263 0.276 0.307 0.505 0.298 0.304 0.275 0.397 0.362 0.508 0.336 0.354 0.937 0.691 0.399 0.348

192 0.307 0.298 0.350 0.527 0.312 0.323 0.351 0.629 0.416 0.515 0.385 0.365 0.896 0.599 0.437 0.382
336 0.337 0.323 0.374 0.553 0.328 0.354 0.391 0.740 0.443 0.563 0.399 0.442 1.264 0.751 0.508 0.457
720 0.437 0.457 0.488 0.642 0.443 0.506 0.417 1.037 0.547 0.676 0.542 0.505 1.243 0.711 0.650 0.640
Avg 0.336 0.339 0.380 0.557 0.345 0.372 0.359 0.701 0.442 0.565 0.415 0.417 1.085 0.688 0.498 0.457

T
ra

f
f
ic

96 0.142 0.240 0.163 1.280 0.238 0.156 0.210 0.878 0.257 0.710 0.196 0.159 1.967 0.358 0.570 0.183
192 0.153 0.246 0.180 1.303 0.241 0.157 0.227 1.457 0.257 0.683 0.194 0.161 1.333 0.501 0.521 0.212
336 0.155 0.254 0.171 1.328 0.321 0.165 0.245 1.645 0.262 0.655 0.181 0.161 1.872 0.380 0.560 0.217
720 0.187 0.322 0.215 1.431 0.357 0.204 0.419 2.377 0.307 0.867 0.240 0.189 1.953 0.465 0.571 0.330
Avg 0.159 0.265 0.182 1.336 0.289 0.170 0.275 1.589 0.271 0.729 0.203 0.167 1.781 0.426 0.555 0.236

E
T
T
h
1

96 0.065 0.072 0.068 0.381 0.073 0.070 0.074 0.074 0.074 1.273 0.062 0.060 1.926 0.304 1.908 0.073
192 0.071 0.086 0.087 0.503 0.108 0.085 0.090 0.091 0.089 1.566 0.088 0.094 2.695 0.349 1.258 0.093
336 0.074 0.093 0.116 0.831 0.150 0.087 0.112 0.103 0.123 1.729 0.106 0.265 3.398 0.338 1.288 0.179
720 0.083 0.207 0.102 6.660 0.227 0.114 0.154 0.154 0.097 2.170 0.119 0.280 7.022 0.720 2.032 0.171
Avg 0.073 0.115 0.093 2.094 0.139 0.089 0.108 0.106 0.096 1.684 0.094 0.175 3.760 0.428 1.621 0.129

E
T
T
m
1

96 0.030 0.037 0.041 0.063 0.048 0.031 0.032 0.038 0.037 1.175 0.032 0.039 5.233 0.345 2.023 0.033
192 0.043 0.049 0.047 0.073 0.055 0.044 0.044 0.050 0.055 1.356 0.047 0.060 6.433 1.263 1.515 0.049
336 0.054 0.063 0.062 0.083 0.062 0.054 0.057 0.060 0.067 1.602 0.062 0.067 5.837 5.759 1.484 0.064
720 0.081 0.085 0.093 0.103 0.100 0.085 0.079 0.078 0.083 1.698 0.086 0.126 7.920 15.005 1.847 0.093
Avg 0.052 0.059 0.060 0.081 0.066 0.054 0.053 0.057 0.060 1.458 0.057 0.073 6.356 5.593 1.717 0.060

All Avg 0.155 0.231 0.179 1.017 0.210 0.520 0.199 0.613 0.217 1.109 0.192 0.208 3.246 1.784 1.098 0.220

1st Count 15 2 0 0 0 1 1 1 0 0 0 1 0 0 0 0

Table 3: MSE results for few-shot case on 10% of training data. Lower is better, with the best results
highlighted in bold and the second best underlined.

its significant periodicity, the dynamic prompt is less important than the static prompt. This could
be explained by the fact that the dynamic prompt introduces more local temporal information suit-
able for capturing non-stationary temporal behaviors. When a forecasting task exhibits significant
periodic behaviors, the static prompt with global information contributes relatively more.

Tasks Long-range forecasting Few-shot forecasting

Dataset ETTh Electricity ETT Electricity

MSE ↓ MSE ↓ MSE ↓ MSE ↓
Ours 0.0527 - 0.241 - 0.0643 - 0.338 -

w/o Static Prompt 0.0530 0.57% 0.296 23.00% 0.0756 17.57% 0.357 5.40%
w/o Dynamic Prompt 0.0536 1.71% 0.276 14.89% 0.0764 18.82% 0.348 2.86%

w/o Both Prompts 0.0538 2.09% 0.328 36.22% 0.0772 20.06% 0.387 14.18%

Table 4: Ablations study of the proposed model design in predicting 336 steps on ETTh1, ETTm1
and Electricity. A lower value indicates better performance. The best results are highlighted
in bold. The second best is underlined. ↓ indicates the degradation percentage.

4.4 MIXUP OF LINEAR EXPERTS IN TIME OR FREQUENCY DOMAIN (RQ3)

This section compares the proposed LeMoLE-T with its frequency extension LeMoLE-F introduced
in Section 3. In Figure 3, the MSE prediction errors are reported with varying horizon H’s. As
can be seen, the mixture of time experts proves to be a better choice than that of the frequency
experts in the proposed LeMoLE framework. This is mainly because LeMoLE-T contains experts
with different historical lookback lengths, allowing for good short- and long-term pattern modeling.
On the other hand, LeMoLE-F is based on the linear frequency model FITS (Xu et al., 2024),
which emphasizes modeling low-frequency components and tends to generate smooth trends while
overlooking detailed local variations.

4.5 EFFECTS OF THE NUMBER OF EXPERTS (RQ4)

In this experiment, we analyze the effects of the number of experts in the proposed LeMoLE. In
Figure 4, we observed that when the prediction task is relative stationary and with significant pe-
riodic, say Electricity and Traffic, the number of experts for mixture is relatively small.
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(a) Average results on ETT. (b) Results on Electricity.

Figure 3: MSE resulrs of time vs. frequency experts.
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Figure 4: Average MSE’s with varying numbers of experts in LeMoLE.

For example, the best number of experts on Electricity and Traffic are 1 and 3, respec-
tively. However, more experts are expected for more challenging datasets ETTh1 and ETTm1 that
are highly nonlinear and non-stationary.

4.6 EFFICIENCY (RQ5)

H=96 H=720

Metric Param. Train. Inference. Param. Train. Inference.
Unit (M) (ms) (ms) (M) (ms) (ms)

DLinear 0.098 0.032 0.325 0.277 0.036 0.244
MoLE 0.493 0.061 0.404 0.738 0.071 0.464

TimeMixer 0.075 0.589 0.574 0.190 0.633 4.541

AutoTimes 0.148 15.22 8.781 0.148 16.96 68.86
TimeLLM 53.44 1.740 22.312 58.55 1.772 22.87
GPT4TS 3.920 0.329 3.964 24.04 0.398 4.030

LeMoLE-T 0.514 0.163 1.209 3.850 0.197 1.306
LeMoLE-F 0.431 0.194 2.219 3.030 0.352 2.865

Table 5: Efficiency analysis: number of trainable pa-
rameters and training/inference speed (in s) of various
time series models.

Table 5 shows the number of trainable pa-
rameters and inference speed. The exist-
ing alignment-based LLM models suffer from
slower training and inference speeds due to the
immensity of LLMs. While AutoTimes has a
faster inference speed compared to TimeLLM
due to its patching-based inference strategy, its
autoregressive decoding process still necessi-
tates multiple forward processes of LLM. The
inference efficiency of LeMoLE over exist-
ing LLM time series models is due to: i) In
LeMoLE, time series are modeled using a com-
bination of linear experts instead of aligning a
large language model with time series. This re-
sults in lower computational costs. ii) Addition-
ally, the multimodal fusion module is imple-
mented using lightweight CNNs, avoiding the
introduction of additional self-attention layers,
which have quadratic complexity with the length of the time series for time series-text alignment.

5 CONCLUSION

This study introduces LeMoLE, a multimodal mixture of linear experts, for time series forecasting.
By harnessing the powerful capabilities of a pre-trained large language model, LeMoLE allows for a
flexible ensemble of multiple linear experts by integrating static and dynamic text knowledge corre-
lated to time series data. By comparing existing LLM time series models aligning text and time series
in large language models’ spaces, the proposed LeMoLE shows greater effectiveness. This finding
demonstrates the effectiveness of a mixture of linear experts and the use of multimodal knowledge.
Furthermore, the study delves into detailed discussions regarding the variant of frequency experts
and computational costs.
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A PSEUDO-CODE OF TRAINING PROCEDURE.

The training procedure of LeMoLE is shown in Algorithms 1.

Algorithm 1 Training procedure for LeMoLE
1: repeat
2: Input: Time series X1:T ∈ RT×C , static prompt Ps

3: Initialization: Learning rate η, number of experts M , window lengths {w1, w2, . . . , wM}
4: for m = 1, 2, . . . ,M do
5: Transform X1:T into sub-series XT−wm:T for the m-th expert
6: Generate dynamic prompt Pd

m for the m-th expert
7: Obtain prediction Ŷ

(m)
T+1:T+H = WmXT−wm:T + bm, see Equation (3)

8: end for
9: Encode static prompt Ps and dynamic prompts {Pd

m}Mm=1 using LLM to get ZS and Z
(m)
D

10: for m = 1, 2, . . . ,M do
11: Fuse static representation ZS with expert outputs Ŷ

(m)
T+1:T+H using FiLM: γ

(m)
S =

LinearS,1(ZS),β
(m)
S = LinearS,2(ZS)

12: Apply FiLM Layer: Ŷ(m)′

T+1:T+H = γ
(m)
S ⊙ Ŷ

(m)
T+1:T+H + β

(m)
S , see Equation ( 6)

13: Fuse dynamic representation Z
(m)
D : γ(m)

D = LinearD,1(Z
(m)
D ),β

(m)
D = LinearD,2(Z

(m)
D )

14: Apply FiLM Layer: Ŷ(m)′′

T+1:T+H = γ
(m)
D ⊙ Ŷ

(m)′

T+1:T+H + β
(m)
D , see Equation ( 7)

15: end for
16: Ensemble Output: ŶT+1:T+H = CNNfinal

(
[Ŷ

(1)′′

T+1:T+H , . . . , Ŷ
(M)′′

T+1:T+H ]
)

, see Equation
(8)

17: Loss Calculation: L(θ) = ||XT+1:T+H − ŶT+1:T+H ||22, see ( 9)
18: Gradient Update: θ ← θ − η∇θL(θ)
19: until converged

B PROMPT EXAMPLE.

In this section, we provide a prompt example regarding the static and dynamic text prompts used in
the proposed model. Figure 5 shows the text prompts on the ETT dataset.

Static Prompt
The Electricity Transformer Temperature (ETT) is a crucial indicator in the electric power long-term 
deployment. This dataset consists of 2 years data from two separated counties in China. To explore 
the granularity on the Long sequence time-series forecasting (LSTF) problem, different subsets are 
created, {ETTh1, ETTh2} for 1-hour-level and ETTm1 for 15-minutes-level. Each data point consists 
of the target value ”oil temperature” and 6 power load features. The train/val/test is 12/4/4 months.

Dynamic Prompt
<Format>

This is the series 
including <start 
timestamp>,…, 

<end timestamp>.

Figure 5: Text prompt examples on ETT dataset.

C SUPPLEMENTARY OF DATASETS

Dataset Sampling Frequency Total Observations Dimension

Electricity 1 hour 26,304 321
Traffic 1 hour 17,544 862
ETTh1 1 hour 17,544 7
ETTm1 1 min 69,680 7

Table 6: Summary of datasets
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The ETT (Electricity Transformer Temperature) 2 (Zhou et al., 2021) encompasses a comprehensive
collection of transformer operational data, consisting of two subsets: ETTh, featuring hourly record-
ings, and ETTm, with data collected at a finer 15-minute interval. Both subsets span the period from
July 2016 to July 2018. The Traffic 3 provides insights into road congestion patterns by detail-
ing occupancy rates along San Francisco’s freeway network, and encompasses hourly measurements
spanning from 2015 through 2016. The Electricity 4 compiles hourly records of energy usage
from a cohort of 321 individual clients, spanning a three-year time-frame between 2012 and 2014.

D SUPPLEMENTARY OF BASELINES

Recent transformer variants aim to improve the standard transformer structure for time series mod-
eling (Wen et al., 2022; Zhou et al., 2021; Wu et al., 2023). For example, to reduce the time com-
plexity and memory usage, Informer (Wen et al., 2022) proposes ProbSparse self-attention mech-
anism and the adoption of a generative decoder to reduce the time complexity and memory usage.
Autoformer (Wu et al., 2021) adopts data decomposition techniques and designs an efficient auto-
correlation mechanism to improve prediction accuracy. To analyze time series in the multi-scale as-
pect, Pyraformer (Liu et al., 2022a) implements intra-scale and inter-scale attention to capture tem-
poral dependencies across different resolutions effectively. In the frequency domain, FEDFormer
(Zhou et al., 2022a) designs the enhanced blocks with Fourier transform and wavelet transform,
enabling the focus on capturing important structures in time series through frequency domain map-
ping. Recently, PatchTST (Nie et al., 2023a) segments time series into patches that serve as input
tokens to Transformer and use the channel independence assumption to get better performance. To
capture the relationship between the variables, iTransformer (Liu et al., 2024a) replaces the standard
attention across the time with variable attention while keeping the whole structure of the standard
transformer model.

MoLE: https://github.com/RogerNi/MoLE; TimeMixer: https://github.
com/kwuking/TimeMixer; TSMixer: https://github.com/google-research/
google-research/tree/master/tsmixer; AutoTimes: https://github.com/
thuml/AutoTimes; Time-LLM: https://github.com/KimMeen/Time-LLM;
GPT4TS https://github.com/DAMO-DI-ML/NeurIPS2023-One-Fits-All;
SparseTSF: https://github.com/lss-1138/SparseTSF; FITS: https://github.
com/VEWOXIC/FITS;DLinear: https://github.com/cure-lab/LTSF-Linear
LightTS: https://tinyurl.com/5993cmus; iTransformer: https://github.com/
thuml/iTransformer; PatchTST: https://github.com/yuqinie98/PatchTST;
Informer: https://github.com/zhouhaoyi/Informer2020; Autoformer:
https://github.com/thuml/Autoformer; TimesNet: https://github.com/
thuml/Time-Series-Library

2https://github.com/zhouhaoyi/ETDataset
3https://pems.dot.ca.gov/
4https://archive.ics.uci.edu/dataset/321/electricityloaddiagrams20112014

14

https://github.com/RogerNi/MoLE
https://github.com/kwuking/TimeMixer
https://github.com/kwuking/TimeMixer
https://github.com/google-research/google-research/tree/master/tsmixer
https://github.com/google-research/google-research/tree/master/tsmixer
https://github.com/thuml/AutoTimes
https://github.com/thuml/AutoTimes
https://github.com/KimMeen/Time-LLM
https://github.com/DAMO-DI-ML/NeurIPS2023-One-Fits-All
https://github.com/lss-1138/SparseTSF
https://github.com/VEWOXIC/FITS
https://github.com/VEWOXIC/FITS
https://github.com/cure-lab/LTSF-Linear
https://tinyurl.com/5993cmus
https://github.com/thuml/iTransformer
https://github.com/thuml/iTransformer
https://github.com/yuqinie98/PatchTST
https://github.com/zhouhaoyi/Informer2020
https://github.com/thuml/Autoformer
https://github.com/thuml/Time-Series-Library
https://github.com/thuml/Time-Series-Library


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

E LONG-RANGE AND FEW SHOT FORECASTING (RQ1&RQ2)

Mean absolute error (MAE) is another important metric in time series forecasting tasks. We list the
MAE results in Table 7 and Table 8 following the same experiment environments in RQ1 and RQ2.

Linear-mixer LLM-based Linear-based Transformer-based others

H Ours MoLE T.Mixer AutoT. T.LLM GPT4TS S.TSF FITS DLinear LightTS iTrans. PatchT. Infr. Autofr. TSMixer TimesN.

E
le
ct
ri
ci
ty 96 0.311 0.307 0.377 0.351 0.353 0.318 0.312 0.309 0.309 0.359 0.363 0.411 0.373 0.566 0.404 0.384

192 0.335 0.330 0.378 0.413 0.380 0.348 0.335 0.334 0.331 0.382 0.400 0.418 0.380 0.522 0.411 0.388
336 0.353 0.358 0.470 0.461 0.486 0.376 0.360 0.364 0.359 0.409 0.435 0.448 0.421 0.547 0.441 0.419
720 0.375 0.402 0.454 0.381 0.478 0.443 0.411 0.423 0.401 0.448 0.463 0.507 0.601 0.586 0.483 0.466
Avg 0.344 0.349 0.420 0.401 0.424 0.371 0.355 0.357 0.350 0.400 0.415 0.446 0.444 0.555 0.435 0.414

T
ra

f
f
ic

96 0.189 0.204 0.245 0.378 0.224 0.229 0.185 0.193 0.228 0.335 0.370 0.205 0.312 0.348 0.187 0.242
192 0.193 0.206 0.233 0.379 0.228 0.229 0.187 0.211 0.230 0.348 0.313 0.211 0.339 0.340 0.329 0.235
336 0.191 0.208 0.244 0.379 0.230 0.230 0.190 0.263 0.233 0.359 0.420 0.218 0.361 0.340 0.409 0.248
720 0.200 0.232 0.273 0.388 0.262 0.247 0.208 0.439 0.257 0.398 0.338 0.247 0.392 0.345 0.474 0.259
Avg 0.194 0.212 0.249 0.381 0.236 0.234 0.193 0.277 0.237 0.360 0.360 0.220 0.351 0.343 0.349 0.246

E
T
T
h
1

96 0.175 0.192 0.181 0.203 0.197 0.186 0.197 0.188 0.186 0.219 0.197 0.181 0.315 0.239 0.327 0.187
192 0.203 0.227 0.207 0.219 0.210 0.212 0.220 0.213 0.212 0.244 0.203 0.209 0.592 0.244 0.360 0.199
336 0.223 0.257 0.225 0.231 0.237 0.235 0.238 0.234 0.249 0.275 0.213 0.227 0.416 0.270 0.443 0.223
720 0.233 0.367 0.221 0.266 0.243 0.236 0.252 0.256 0.370 0.383 0.217 0.227 0.428 0.270 0.478 0.239
Avg 0.208 0.261 0.208 0.230 0.222 0.217 0.227 0.223 0.254 0.280 0.207 0.211 0.438 0.256 0.402 0.212

E
T
T
m
1 96 0.123 0.124 0.126 0.140 0.142 0.124 0.124 0.127 0.124 0.225 0.129 0.127 0.247 0.191 0.187 0.126

192 0.151 0.163 0.161 0.168 0.170 0.152 0.151 0.153 0.153 0.340 0.163 0.156 0.411 0.205 0.329 0.159
336 0.172 0.177 0.215 0.192 0.181 0.174 0.174 0.177 0.178 0.441 0.188 0.183 0.401 0.219 0.409 0.186
720 0.206 0.205 0.221 0.216 0.215 0.204 0.203 0.205 0.204 0.522 0.215 0.209 0.474 0.271 0.474 0.218
Avg 0.163 0.167 0.181 0.179 0.177 0.163 0.163 0.166 0.165 0.382 0.174 0.169 0.383 0.221 0.349 0.172

1st Count 10 2 0 0 0 1 7 0 0 0 3 0 0 0 0 1
All Avg 0.227 0.247 0.265 0.298 0.265 0.246 0.235 0.256 0.252 0.356 0.289 0.262 0.404 0.344 0.384 0.261

Table 7: Full long-term forecasting MAE results of univariate time series. We set the forecasting
horizons H ∈ {96, 192, 336, 720} for all datasets. A lower value indicates better performance. The
best results are highlighted in bold. The second best is underlined.

Linear-mixer LLM-based Linear-based Transformer-based others

H Ours MoLE T.Mixer AutoT. T.LLM GPT4TS S.TSF FITS DLinear LightTS iTrans. PatchT. Infr. Autofr. TSMixer TimesN.

E
le
ct
ri
ci
ty 96 0.369 0.385 0.399 0.539 0.401 0.408 0.371 0.470 0.466 0.551 0.412 0.436 0.715 0.666 0.466 0.430

192 0.407 0.403 0.431 0.549 0.410 0.422 0.420 0.614 0.506 0.552 0.446 0.439 0.717 0.591 0.495 0.454
336 0.423 0.425 0.451 0.563 0.428 0.444 0.449 0.672 0.528 0.579 0.462 0.490 0.846 0.662 0.542 0.508
720 0.498 0.527 0.524 0.618 0.516 0.554 0.483 0.814 0.597 0.635 0.564 0.539 0.843 0.644 0.619 0.610
Avg 0.425 0.435 0.451 0.567 0.439 0.457 0.431 0.643 0.524 0.579 0.471 0.476 0.780 0.641 0.531 0.501

T
ra

f
f
ic

96 0.238 0.341 0.260 0.948 0.348 0.250 0.304 0.782 0.360 0.654 0.301 0.247 1.111 0.456 0.615 0.285
192 0.254 0.346 0.280 0.958 0.351 0.250 0.317 1.016 0.360 0.637 0.300 0.255 0.910 0.563 0.573 0.315
336 0.250 0.356 0.275 0.969 0.421 0.261 0.334 1.077 0.369 0.618 0.290 0.259 1.118 0.480 0.602 0.332
720 0.290 0.406 0.323 1.011 0.453 0.303 0.467 1.281 0.401 0.707 0.352 0.291 1.179 0.518 0.564 0.427
Avg 0.258 0.362 0.284 0.972 0.393 0.266 0.356 1.039 0.372 0.654 0.311 0.263 1.080 0.504 0.588 0.339

E
T
T
h
1

96 0.200 0.202 0.201 0.459 0.213 0.204 0.213 0.212 0.211 0.933 0.190 0.186 1.335 0.428 1.191 0.208
192 0.214 0.227 0.233 0.519 0.254 0.229 0.237 0.237 0.234 1.027 0.229 0.234 1.551 0.457 0.972 0.233
336 0.217 0.244 0.271 0.640 0.317 0.234 0.271 0.255 0.282 1.082 0.258 0.409 1.780 0.442 0.915 0.345
720 0.232 0.369 0.253 1.469 0.394 0.268 0.317 0.313 0.251 1.235 0.273 0.442 2.604 0.714 1.148 0.332
Avg 0.216 0.261 0.240 0.772 0.295 0.234 0.260 0.254 0.244 1.069 0.238 0.318 1.818 0.510 1.056 0.280

E
T
T
m
1 96 0.132 0.146 0.152 0.193 0.169 0.133 0.138 0.153 0.149 0.884 0.134 0.151 2.232 0.528 1.389 0.136

192 0.158 0.167 0.167 0.207 0.179 0.159 0.161 0.174 0.177 0.998 0.166 0.189 2.486 1.055 1.178 0.168
336 0.179 0.190 0.193 0.221 0.192 0.178 0.183 0.189 0.194 1.085 0.191 0.201 2.376 2.327 1.159 0.195
720 0.214 0.223 0.234 0.249 0.243 0.222 0.216 0.217 0.222 1.091 0.225 0.277 2.778 3.766 1.323 0.234
Avg 0.171 0.182 0.187 0.218 0.196 0.173 0.174 0.183 0.186 1.015 0.179 0.205 2.468 1.919 1.262 0.183

All Avg 0.267 0.340 0.291 0.632 0.331 0.421 0.305 0.530 0.332 0.829 0.300 0.315 1.536 0.894 0.859 0.326
1st Count 16 1 0 0 0 1 1 0 0 0 0 2 0 0 0 0

Table 8: Few-shot learning MAE results on 10% training data. A lower value indicates better
performance. The best results are highlighted in bold. The second best is underlined.
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F VISUALIZATION ANALYSIS

In this section, we provide visualization results on periodic Electricity data and nonstationary
ETTh1 data. Figure 6 and Figure 7 showcase the prediction results of various time series forecasting
models, including SparseTSF, iTransformer and PatchTST, DLinear, MoLE, Time-LLM, GPT4TS,
and the proposed LeMoLE.

As can be seen, for that relative smooth periodic Electricity data, LeMoLE can produce higher
quality prediction. When dealing with the nonstationary ETTh1 data, LLM models such as Time-
LLM, GPT4TS and our LeMoLE all perform better than other methods. This is mainly due to the
use of multimodal knowledge.
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(f) Time-LLM
0 50 100 150 200 250 300 350 400

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5 History
GroundTruth
Prediction

(g) GPT4TS
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(h) Ours

Figure 6: Prediction results on Electricity.
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Figure 7: Prediction results on ETTh1.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

G HYPERPARAMETER SENSITIVITY

Table 9 presents the results of our comparison tests between the choices of the number and type of
experts. Here, we observe under the same number of experts, the temporal linear expert is better
than the frequency expert in the average results.

Our analysis shows that increasing the number of experts, in the LeMoLE and LeMoLE-F mod-
els affects their performance, varying depending on the dataset as shown in Table 9. In the
Electricity dataset, LeMoLE improves up to three experts, but additional experts add com-
plexity without accuracy gains. In contrast, the Traffic dataset shows consistent improvements up to
three experts. For the ETTh1 and ETTm1 datasets, stability is observed with minimal performance
changes, suggesting these datasets require fewer experts. The frequency-based LeMoLE-F model
benefits specific configurations but needs careful tuning for optimal results.

Methods LeMoLE-T LeMoLE-F

num expert 1 2 3 4 5 1 2 3 4 5

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
le

ct
ri

ci
ty 96 0.212 0.323 0.201 0.314 0.197 0.311 0.213 0.330 0.209 0.331 0.208 0.320 0.213 0.326 0.203 0.318 0.227 0.360 0.207 0.321

192 0.217 0.335 0.318 0.447 0.234 0.350 0.250 0.379 0.317 0.446 0.240 0.358 0.230 0.334 0.227 0.329 0.251 0.353 0.243 0.354
336 0.285 0.402 0.241 0.353 0.255 0.377 0.311 0.437 0.311 0.431 0.271 0.386 0.272 0.384 0.368 0.480 0.326 0.424 0.286 0.402
720 0.255 0.375 0.393 0.504 0.306 0.428 0.478 0.563 0.342 0.452 0.549 0.602 0.304 0.410 0.308 0.421 0.386 0.482 0.336 0.431

Avg 0.242 0.359 0.288 0.405 0.248 0.367 0.313 0.427 0.295 0.415 0.317 0.417 0.255 0.364 0.276 0.387 0.297 0.405 0.268 0.377

Tr
af

fic

96 0.117 0.193 0.112 0.189 0.122 0.215 0.118 0.200 0.124 0.215 0.124 0.207 0.135 0.233 0.139 0.247 0.149 0.248 0.131 0.217
192 0.126 0.214 0.124 0.206 0.117 0.193 0.142 0.245 0.141 0.229 0.117 0.197 0.140 0.238 0.130 0.229 0.119 0.201 0.127 0.209
336 0.122 0.210 0.172 0.270 0.112 0.191 0.119 0.202 0.135 0.237 0.156 0.262 0.136 0.236 0.134 0.234 0.144 0.249 0.116 0.198
720 0.148 0.248 0.149 0.265 0.117 0.200 0.130 0.227 0.122 0.205 0.150 0.254 0.149 0.253 0.151 0.260 0.166 0.275 0.155 0.258

Avg 0.128 0.216 0.139 0.232 0.117 0.200 0.127 0.219 0.131 0.222 0.137 0.230 0.140 0.240 0.139 0.242 0.144 0.243 0.132 0.220

E
T

T
h1

96 0.062 0.194 0.061 0.192 0.056 0.182 0.053 0.178 0.052 0.175 0.059 0.190 0.058 0.186 0.058 0.187 0.053 0.178 0.053 0.178
192 0.075 0.215 0.076 0.217 0.074 0.214 0.068 0.204 0.066 0.203 0.071 0.209 0.072 0.210 0.072 0.212 0.070 0.205 0.065 0.201
336 0.082 0.230 0.083 0.230 0.083 0.229 0.084 0.231 0.079 0.225 0.075 0.218 0.078 0.223 0.077 0.222 0.073 0.216 0.074 0.216
720 0.087 0.233 0.087 0.234 0.089 0.236 0.088 0.234 0.088 0.235 0.097 0.250 0.086 0.232 0.092 0.240 0.086 0.234 0.084 0.232

Avg 0.077 0.218 0.077 0.218 0.075 0.215 0.074 0.213 0.071 0.209 0.076 0.217 0.073 0.213 0.075 0.215 0.071 0.208 0.069 0.207

E
T

T
m

1 96 0.027 0.126 0.027 0.124 0.027 0.123 0.026 0.123 0.027 0.123 0.027 0.124 0.026 0.123 0.027 0.125 0.027 0.124 0.027 0.123
192 0.041 0.153 0.040 0.152 0.040 0.151 0.039 0.152 0.041 0.153 0.040 0.152 0.040 0.151 0.040 0.153 0.040 0.152 0.040 0.151
336 0.053 0.175 0.055 0.177 0.054 0.178 0.053 0.175 0.053 0.174 0.053 0.177 0.054 0.176 0.052 0.174 0.053 0.174 0.053 0.175
720 0.111 0.250 0.071 0.205 0.072 0.206 0.073 0.205 0.109 0.254 0.078 0.219 0.074 0.208 0.077 0.216 0.075 0.212 0.074 0.208

Avg 0.049 0.165 0.049 0.165 0.048 0.165 0.048 0.164 0.048 0.164 0.049 0.168 0.048 0.164 0.049 0.167 0.049 0.166 0.048 0.164

Table 9: Comparison between the choices of the number of experts in LeMoLE(-F) and the choices
of the type of experts, i.e. time or frequency
.

H STABILITY RESULTS

Table 10 lists both mean and STD of MSE and MAE metrics for LeMoLE with 3 runs in different
random seeds on ETTh1, ETTm2, Electricity and Traffic datasets. The results show a
small variance in the performance that represents the stability of our model.

Dataset ETTh1 ETTm1 ECL Traffic

Metric MSEstd MAEstd MSEstd MAEstd MSEstd MAEstd MSEstd MAEstd

96 0.0530.0005 0.1780.0007 0.0270.0002 0.1240.0000 0.2970.0874 0.4150.0787 0.1230.0049 0.2040.0114
192 0.0660.0009 0.2040.0009 0.0400.0003 0.1510.0004 0.2380.0145 0.3570.0175 0.1230.0033 0.2080.0072
336 0.0790.0011 0.2280.0018 0.0530.0010 0.1770.0012 0.3090.0364 0.4250.0312 0.1210.0051 0.2050.0105
720 0.0860.0010 0.2330.0013 0.0710.0011 0.2050.0012 0.2680.0151 0.3920.0132 0.1360.0538 0.2230.0708

Table 10: Model stability test of univariate time series with different random seeds. We report the
standard error with different datasets,
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