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Abstract

Recently, reasoning-based MLLMs have achieved a degree of success in gener-
ating long-form textual reasoning chains. However, they still struggle with com-
plex tasks that necessitate dynamic and iterative focusing on and revisiting of vi-
sual regions to achieve precise grounding of textual reasoning in visual evidence.
We introduce VLM-R3 (Visual Language Model with Region Recognition and
Reasoning), a framework that equips an MLLM with the ability to (i) decide
when additional visual evidence is needed, (ii) determine where to ground within
the image, and (iii) seamlessly weave the relevant sub-image content back into an
interleaved chain-of-thought. The core of our method is Region-Conditioned Re-
inforcement Policy Optimization (R-GRPO), a training paradigm that rewards
the model for selecting informative regions, formulating appropriate transforma-
tions (e.g. crop, zoom), and integrating the resulting visual context into subsequent
reasoning steps. To bootstrap this policy, we compile a modest but carefully cu-
rated Visuo-Lingual Interleaved Rationale (VLIR) corpus that provides step-level
supervision on region selection and textual justification. Extensive experiments
on MathVista, ScienceQA, and other benchmarks show that VLM-R3 sets a new
state of the art in zero-shot and few-shot settings, with the largest gains appear-
ing on questions demanding subtle spatial reasoning or fine-grained visual cue
extraction.

1 Introduction

Multimodal Large Language Models (MLLMs) have recently emerged as a powerful paradigm,
demonstrating remarkable capabilities in understanding and generating content across different
modalities, primarily vision and language [38, 27, 23, 65, 5, 7]. Models like O1 [37], QvQ [3], and
Gemini 2.5 [1] have showcased impressive performance on a wide array of tasks such as MMMU
[66], MathVista [30], and ScienceQA [31]. A key factor contributing to their advanced reasoning
abilities is the integration of Chain-of-Thought (CoT) prompting [58], which elicits step-by-step
reasoning pathways, often leading to more accurate and interpretable outputs.

Despite these advancements, a critical limitation persists in the way current MLLMs interact with
visual information during complex reasoning processes. Most existing approaches [3, 37, 61, 62]
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employing CoT predominantly confine the reasoning steps to the textual domain, with only an initial
static grounding in the visual input. This paradigm falls short in scenarios demanding dynamic,
iterative, and fine-grained interaction with specific visual regions throughout the reasoning chain.

<think> I need to find the symbol on the first red box from the top on the right side of 
the image. First, I'll get a closer look at that specific area to identify the box and its 
markings.{"bbox_2d": [875, 234, 961, 540]}

What is the symbol of the first red box counted 
from top to bottom on the right?

Based on the visual analysis of the image, here is the identification of the symbol 
on the first red box from the top on the right: The image shows a stack of shipping 
containers on the right-hand side. The container at the very top of this stack is red.
On the upper left corner of this red container, there is a white symbol. This symbol 
consists of three letters arranged vertically: “t”, “e”, and “x”.
Therefore, the symbol on the first red box counted from top to bottom on the right 
is “tex”. </think> <answer> tex </answer> 

Now I see the stack of containers on the right side. The very top container is red, 
which matches the description in the question. On this red container, I can see a 
white symbol written vertically. To confirm this and get a better look at the details, 
I will zoom in on just the top red container. {"bbox_2d": [875, 234, 961, 306]}

zooming

cropping

cropping

zooming

Figure 1: This figure visualizes our proposed
VLM-R3 approach, which integrates region
grounding and refinement in an interleaved
visual-textual reasoning chain. While conven-
tional text-based reasoning fails when analyz-
ing scenes that require dynamic, iterative, and
fine-grained interaction with specific visual re-
gions, our approach succeeds by precisely iden-
tifying and focusing on critical visual elements,
such as ’the first red box counted from top to
bottom on the right’ in this example, to de-
rive accurate conclusions through targeted vi-
sual reasoning.

As shown in Figure 1, examples include se-
quentially verifying hypotheses against image de-
tails, tracking object states across visual cues,
or comprehending intricate spatial relationshipsall
of which require a more active and adaptive vi-
sual grounding mechanism. Encouragingly, recent
models such as O3 [2] which capable of interleav-
ing image analysis with text generationinspire a
new frontier where reasoning is not merely con-
ditioned on an image, but is continuously inter-
twined with ongoing visual perception and local-
ization.

Developing an MLLM that can look again dur-
ing reasoning faces two notable hurdles: Region-
grounding learning. The model must learn where
to focus and how to transform the grounded re-
gion (crop, zoom) based on partial textual delib-
eration. Credit assignment. Simply supervising
final answers does not teach the model whether a
chosen region actually contributed to correct rea-
soning, making it hard to refine the visual-query
policy.

To bridge this crucial gap, we make two primary
contributions. First, we introduce Visuo-Lingual
Interleaved Rationale (VLIR), a pioneering dataset
meticulously curated to support the development
of MLLMs for interleaved text-image CoT reason-
ing. VLIR provides explicit annotations for visual
region localization, image cropping instructions,
and semantic enhancement cues, all embedded
within multi-step reasoning narratives. Second,
building upon this, we propose VLM-R3 (Visual
Language Model with Region Recognition and
Reasoning), a novel framework designed to master
this intricate reasoning style. VLM-R3 is trained
using a distinctive strategy that combines cold-
start finetuning on our VLIR dataset with a novel
Region-Conditioned Reinforcement Policy Opti-
mization (R-GRPO). This empowers VLM-R3 to
learn when and where to look within an image, how to process the localized visual evidence (e.g.,
by cropping or requesting enhancement), and how to integrate this dynamically acquired informa-
tion into its evolving reasoning chain. Our extensive experiments on diverse multimodal reasoning
benchmarks, including MME [14], ScienceQA [31] and MathVista [30], demonstrate that VLM-R3

significantly outperforms existing state-of-the-art models. In summary, our contributions are:

• The introduction of VLIR, the first benchmark dataset tailored for training and evaluating
MLLMs on interleaved visual-textual CoT reasoning with explicit region-level interactions.

• The proposal of VLM-R3, a novel MLLM framework, and its associated R-GRPO training
strategy, which enables dynamic visual region localization and evidence integration within
the reasoning process.

• Comprehensive empirical validation showing that VLM-R3 achieves superior performance
on challenging multimodal reasoning tasks, setting a new benchmark for fine-grained,
visually-grounded inference.
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2 Related Work

2.1 Large Language Model Reasoning

Reasoning in Large Language Models [50, 70, 67, 18] evolved substantially with Chain of Thought
(CoT) prompting [49, 58, 24, 57, 35, 41], which enables models to break down complex problems
into intermediate steps, mimicking human reasoning. This foundational approach has expanded
to include diverse structures like program-of-thoughts [10], table-of-thoughts [19], and tree-of-
thoughts [64], each offering unique advantages for different reasoning scenarios. Recent advances
include OpenAI’s O1 [37], which combines reinforcement learning [39, 44, 16] with CoT to opti-
mize decision-making without external guidance, and DeepSeek R1 [12], which employs pure rein-
forcement learning through Group Relative Policy Optimization (GRPO) [46] to enable autonomous
evolution of reasoning capabilities while incorporating rule-based rewards that significantly improve
performance across complex reasoning tasks.

2.2 Multi-modal Large Language Model Reasoning

Multi-modal Large Language Model reasoning research [69, 59, 43, 34, 40, 29, 28] has emerged
following the success of text-only reasoning models [37, 6, 12, 52], focusing on both effective
multi-modal chain-of-thought structures [61, 53, 51, 21] and high-quality training data construction
methods [13, 47, 4]. Mainstream approaches have adapted text-based reasoning paradigms to multi-
modal contexts, as seen in Virgo [13], which demonstrated that text-only reasoning data can activate
certain multi-modal reasoning capabilities, and more structured frameworks like LLaVA-CoT’s [61]
four-stage reasoning process and MM-Verify’s [51] verification-enhanced approach. However, these
methods largely inherit reasoning paradigms from text-only models without adequately addressing
visual information processing, leading to limitations in visually-intensive reasoning tasks.

3 Method

We propose a novel framework, VLM-R3, designed to perform visuo-lingual interleaved reasoning
with region grounding. This section details the components of our approach, including the con-
struction of the Visuo-Lingual Interleaved Rationale (VLIR) dataset used for cold-start supervised
fine-tuning, the interactive inference pipeline enabling dynamic visual grounding, and the Region-
Conditioned Reinforcement Policy Optimization (R-GRPO) strategy employed to enhance reason-
ing capabilities.

3.1 Visuo-Lingual Interleaved Rationale (VLIR) Dataset

Prior work, such as Visual CoT [45], introduced the concept of incorporating visual grounding
(specifically bounding boxes) into reasoning chains. However, these methods typically suffer from
several limitations: (1) They often lack explicit linguistic reasoning steps interleaved with visual
actions. (2) The visual grounding actions (e.g., cropping based on bounding boxes) are predefined
or manually specified, rather than being dynamically generated by the model. (3) They are often
restricted to a limited number of visual interactions, typically a single bounding box selection be-
fore providing a final answer, lacking the flexibility for multi-step visual querying. To address these
limitations and cultivate the ability for models to autonomously and flexibly perform iterative visual
retrieval and cropping based on their ongoing reasoning, we introduce the Visuo-Lingual Inter-
leaved Rationale (VLIR) dataset. This dataset is specifically curated to provide rich, interleaved
sequences of textual reasoning steps interspersed with explicit visual grounding actions and the cor-
responding cropped visual evidence.

3.1.1 Data Construction

The construction of the VLIR dataset focuses on scenarios that necessitate fine-grained spatial un-
derstanding and precise utilization of visual cues. We select data from a diverse set of existing
benchmarks to cover a wide range of visual reasoning challenges:

• Text/Document Understanding: TextVQA [48], DocVQA [33] for tasks requiring OCR
and document structure understanding.
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What can be 
inferred ......  

<think>To determine the 
correct ...... {"bbox_2d": 
[17, 131, 156, 255]} 

The cropped images 
show ...... {"bbox_2d": 
[336, 57, 462, 186]} 

cropping

zooming
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<think>To determine the 
correct ...... {"bbox_2d": 
[17, 131, 156, 255]} 

The cropped images 
show ...... {"bbox_2d": 
[336, 57, 462, 186]} 

The first monitor is ....... 
activities.</think>
<answer>C</answer>

Image token Query token Response token Masked token

EOS EOS EOS

Figure 2: The visualization of the inference pipeline of our proposed methods.

• General Visual Question Answering: GQA [17] for complex multistep reasoning over
visual scenes.

• Chart and Infographic Interpretation: InfographicsVQA [32] for understanding struc-
tured visual data.

• Spatial Relation Reasoning: VSR [26] for tasks focused on identifying and reasoning
about spatial relationships between objects.

We leverage the advanced capabilities of powerful MLLMs, such as Qwen2.5-VL 72B [8], through
sophisticated prompt engineering to generate interleaved image-text reasoning chains for data points
from benchmarks like GQA and TextVQA, which represent real-world question answering scenarios.
We then employ a rejection sampling strategy on the generated samples, filtering for those that align
with the ground-truth answers.

For tasks where direct prompt engineering on the original image-question pair is less effective, par-
ticularly those involving detailed OCR or tabular data interpretation (e.g., data underlying Visual
CoT [45]), we utilize GPT-4o [36] with tailored prompts that incorporate the metadata provided by
the source dataset (e.g., the initial bounding boxes from Visual CoT). This allows us to generate
detailed, step-by-step interleaved rationales within these challenging domains.

3.1.2 Data Filtering

To ensure the quality and relevance of the interleaved rationales generated, we apply a rigorous
filtering process based on the following criteria:

• Semantic Unit Validity of Regions: Each proposed bounding box must enclose a complete
and semantically meaningful visual unit (e.g., a recognizable object, a block of text, or a
distinct part of a chart). To automate this, we utilize a smaller VLM and prompt it with the
cropped image corresponding to the proposed bbox, asking it to confirm the presence and
identity of a recognizable entity ("Can you identify what is in this image (a specific object
or piece of text)? Respond with yes/no."). Samples in which the VLM fails to confirm a
meaningful semantic unit are rejected.

• Logical Coherence and Non-Redundancy of Reasoning: The generated textual reason-
ing steps must be logically sound, progressive, and directly contribute to arriving at the
final answer, avoiding spurious or redundant text. We employ a powerful text-only LLM,
such as DeepSeek V3 [25], through prompt engineering to evaluate the logical flow and
relevance of the text rationale preceding each visual interaction and the overall reasoning
path. Samples with illogical or padded reasoning are rejected.
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3.2 Interactive Inference Pipeline

The VLM-R3 model executes reasoning through an interactive pipeline that enables the model to
dynamically select and incorporate visual information during its inference process.

The interaction is initiated by providing the VLM-R3 with an instruction that defines the reasoning
task and the available visual interaction tool:

You need to first think about the reasoning process in your mind, and then
provide the answer. When thinking, you should call the "crop" tool (format:
{"bbox_2d": [x1, y1, x2, y2]}) to focus on the key areas in the image. The
reasoning process and the answer are included in the <think> </think> and
<answer> </answer> tags respectively.

When the model generates a string that matches the specified JSON format, the pipeline intercepts
the output. The system parses the coordinates [x1, y1, x2, y2] and performs a cropping operation
on the original input image. The resulting cropped image is then zoomed in and encoded into
visual tokens and appended to the model’s input sequence, effectively providing the model with
the requested visual detail as a new context. Following the injection of the cropped image, the
model resumes generation, which may involve generating further text or issuing additional "Crop"
commands. This interactive loop continues until the model generates the final answer, at which point
the process terminates. This pipeline structure shows as Figure 2,

3.3 Region-Conditioned Reinforcement Policy Optimization (R-GRPO)

Standard supervised learning on fixed trajectories struggles to optimize the complex state-dependent
policy of deciding when and where to acquire visual information. Our approach, Region-
Conditioned Reinforcement Policy Optimization (R-GRPO), adapts a policy optimization frame-
work, building upon Group Relative Policy Optimization (GRPO) [46]. The "Region-Conditioned"
aspect implies that πθ is explicitly conditioned on the visual state, including dynamically incorpo-
rated regional evidence.

To estimate the advantage of each reasoning trajectory, we normalize its reward relative to the group
as follow:

Âi =
ri − mean({r1, r2, ..., rM})

std({r1, r2, ..., rM})
(1)

Here, ri is the total reward for the i-th trajectory in a group of M trajectories, and Âi serves as a
form of advantage function relative to the group performance.

A critical adaptation in R-GRPO concerns the computation of the policy gradient and the actions
considered in the objective. In our interleaved image-text sequences, some tokens are generated by
the model (textual reasoning, bbox commands), while others (the representations of cropped images)
are injected by the environment. The policy gradient should only optimize the likelihood of actions
generated by the model. Therefore, when calculating the gradient of log πθ(at|st), we apply a mask:
the gradient is computed only for tokens at that are text tokens or bounding box command tokens,
masking out gradients for tokens corresponding to injected image regions. Conceptually, the sum
of actions As in the loss primarily considers the probabilities of generating valid text tokens and
bounding box commands, weighted by their advantage. The injected image tokens influence the
state st+1 but are not actions at for which we compute a policy gradient.

Following this, we optimize the policy model πθ with the loss function defined as:

LGRPO = −EQ∈DS

[
M∑
i=1

πθ(c
i|Q)

πθ(ci|Q)|no grad
Âi − βDKL(πθ||πref)

]
(2)

where DS is the dataset of question-state pairs, Q represents a specific question and current visual
state, ci is the sequence of generated tokens for the i-th trajectory given Q, and β is a coefficient
for the KL divergence term. The first term in the sum uses the normalized reward Âi to weight the
likelihood of the generated sequence, encouraging sequences with higher relative rewards.
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The KL divergence between the policy model and the reference model is estimated as in [46]:

DKL(πθ||πref) =
πref(c

i|Q)

πθ(ci|Q)
− log

πref(c
i|Q)

πθ(ci|Q)
− 1 (3)

The total reward ri for a trajectory comprises four components that encourage desired VLM-R3

behaviors:

• Accuracy Reward (racc): A terminal reward: 1 if the final answer is correct, 0 otherwise.

• Format Reward (rformat): A terminal reward: 1 if the output uses correct <answer> tags,
0 otherwise.

• Region Validity Reward (rregion): An intermediate reward of 0.5 for each valid, non-
redundant bounding box generated (only when the answer is correct), capped at 0.5 per
episode.

• Reasoning Length Reward (rlength): An intermediate reward of 0.001 per character for
reasoning steps, capped at 0.25 per episode to prevent verbosity.

The total reward is computed as:

roverall = racc + rformat + rlength + rregion · I(racc = 1.0) (4)

By optimizing this objective, R-GRPO encourages the VLM to learn a policy that not only leads to
correct final answers but also involves generating logical textual reasoning and strategically gather-
ing the necessary visual evidence.

4 Experiments

4.1 Experiment Setting

We covers several public benchmarks. General visionlanguage understanding is measured on MME
[14] and MMMU[66]; complex mathematical reasoning on MathVista [30] and MathVision [55];
scientific question answering on ScienceQA [31]; and document understanding on DocQA [33].
We also assess hallucination rates with HallucinationBench[15]. We evaluate our method against
three categories of multimodal models. The first category consists of open-source baselines with-
out explicit reasoning capability, including Qwen2.5-VL 7B [8] (also used as our primary baseline),
InternVL2.5-8B [11], and LLaVA-Next 8B [22]. The second category comprises closed-source non-
reasoning systems, represented by Gemini-2 Flash [1] and GPT-4o [36]. The third category contains
models equipped with dedicated reasoning modules, namely LLaVA-CoT 11B [61] , Mulberry-
Qwen2VL 7B [63], R1-onevision 7B [62]. To probe the upper bound of performance, we also
compare our results with two larger closed-source models o1 [37]. Moreover, we also evaluate
our model on four vision-centric benchmarks: MMVP [54], V* [60], HR-Bench [56], and MME-
Realworld [68] to evaluate the model’s capability in fine-grained visual understanding and spatial
reasoning.

4.2 Dataset Details

Our supervised fine-tuning experiments used the VLIR dataset, which comprises 11,810 samples
in total. As shown in figure 3, the distribution of crops per image exhibits considerable variation:
11,105 images contain a single crop, 607 images feature two crops, 68 images have three crops, 16
images include four crops, 8 images contain five crops, and 6 images have six or seven crops (3
each). These samples are drawn from five distinct source datasets: GQA (4,057 samples), TextVQA
(3,267 samples), DocVQA (1,497 samples), InfographicsVQA (1,497 samples), and VSR (1,492
samples). We categorize the crops based on their relative size, defined as the ratio of the bounding
box area to the total image area: "very small" (ratio < 0.05) accounts for 5,280 crops; "small" (0.05
≤ ratio < 0.25) comprises 4,043 crops; "medium" (0.25 ≤ ratio < 0.5) includes 1,914 crops; and
"large" (ratio ≥ 0.5) consists of 573 crops.
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Figure 3: Distribution of the VLIR dataset: (a) number of crops per image, (b) samples across
different source datasets, and (c) categorization of crops based on relative size.

Table 1: Performance comparison of various multimodal models across different benchmarks. Our
model (in bold) is compared against non-reasoning models (both open-source and closed-source)
and reasoning-based MLLMs. The highest values in each column are highlighted with green back-
ground.

Model Params Benchmarks

MathVista MathVision MMMU MME ScienceQA DocVQA HallusionBench

Closed-Source Non-Reasoning MLLMs

Gemini-2 Flash - 73.1 41.3 71.7 - - 92.1 -
GPT-4o - 63.8 30.4 70.3 2328 66.2 91.1 56.2

Larger Closed-Source Models

o1 - 71.8 63.2 77.6 - - 81.6 -

Open-Source Non-Reasoning MLLMs

InternVL2.5 8B 58.3 17.1 51.8 2210 - - -
LLaVA-Next 8B 37.5 - 41.7 1957 72.8 - -

Open-Source Reasoning MLLMs

LLaVA-CoT 11B 54.8 - - - - - 47.8
R1-onevision 7B 64.1 29.9 - - - - -
Vision-R1 7B 73.5 - - 2190 - - 49.5
Mulberry 7B 63.1 - 55.0 - - - 54.1

Qwen2.5-VL 7B 68.2 25.1 58.6 2347 73.6 95.7 61.3
Ours 7B 70.4 30.2 62.2 2432 87.9 96.8 62.0

4.3 Main Result

Our VLM-R3 model, built upon the Qwen2.5-VL 7B architecture, consistently outperforms its base
model across all benchmarks, with particularly significant gains in domains requiring precise visual
reasoning and fine-grained understanding. Specifically, we observe a 2.2% improvement on Math-
Vista (70.4% vs. 68.2%) and a remarkable 5.1% improvement on MathVision (30.2% vs. 25.1%),
highlighting our method’s effectiveness in mathematical reasoning tasks that demand careful at-
tention to visual details. The substantial performance gain of 14.33% on ScienceQA (87.90% vs.
73.57%) further demonstrates VLM-R3’s superior capability in scientific reasoning, where dynamic
grounding of visual evidence is critical. When compared to other open-source reasoning-focused
models like Vision-R1 and Mulberry, VLM-R3 exhibits competitive performance on MathVista
and surpasses Mulberry on HallusionBench (62.0% vs. 54.1%), indicating enhanced reliability in
avoiding visual hallucinations. Our approach also narrows the gap with closed-source models like
Gemini-2 Flash and o1, despite having significantly fewer parameters and being fully transparent in
its architecture.
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Table 2: Performance comparison and ablation study on vision-centric benchmarks. The highest
values in each column are highlighted with green background.

Model MMVP V* HR-4k HR-8k MME-Real Avg.

Open-source General Models

LLaVA-OneVision-72B – 73.8 66.3 60.9 48.7 –
InternVL3-8B – 72.3 70.8 62.0 47.9 –
InternVL3-38B – 77.5 76.3 67.0 51.0 –

Qwen2.5VL-7B (Base) 66.7 74.3 69.8 64.6 42.3 63.5
Base + Vanilla Text RL 72.0 78.5 72.9 64.1 46.2 66.7
Base + Text-only Bbox 72.4 79.5 73.2 65.2 47.2 67.5
Base + Re-insert Full Image 73.9 77.8 72.5 64.8 45.8 67.0
Ours 75.0 83.8 73.4 66.8 51.6 70.1
∆ vs. Vanilla Text RL +3.0 +5.3 +0.5 +2.7 +5.4 +3.4
∆ vs. Text-only Bbox +2.6 +4.3 +0.2 +1.6 +4.4 +2.6
∆ vs. Re-insert Full Image +1.1 +6.0 +0.9 +2.0 +5.8 +3.1

Table 3: Ablation study on MathVista, MMMU, ScienceQA, and DocVQA benchmarks. We evalu-
ate the contribution of each key component: Interleaved Chain-of-Thought, VLIR fine-tuning, and
R-GRPO.

Model Variant MathVista MMMU ScienceQA DocVQA Avg.

Base Model (Qwen2.5-VL) 68.2 58.6 73.6 95.7 74.0

w/o Interleaved Chain-of-Thought 67.1 (↓3.3) 59.4 (↓2.8) 75.4 (↓12.5) 95.9 (↓0.9) 74.4 (↓4.9)
w/o VLIR Fine-tuning 65.8 (↓4.6) 57.0 (↓5.2) 72.2 (↓15.7) 93.3 (↓3.5) 72.1 (↓7.2)
w/o R-GRPO 69.7 (↓0.7) 60.8 (↓1.4) 84.6 (↓3.3) 96.1 (↓0.7) 77.8 (↓1.5)

Full VLM-R3 (Ours) 70.4 62.2 87.9 96.8 79.3

Table 2 presents the performance of our VLM-R3 model on vision-centric benchmarks, including
MMVP [54], V* [60], HRBench [56], and MME-Realworld [68]. Our model shows superior ca-
pability in handling complex visual reasoning tasks. Notably, VLM-R3 attains an average score of
70.1%, significantly outperforming the base Qwen2.5-VL model (63.5%) and larger open-source
models like LLaVA-OneVision-72B [20] and InternVL3-38B [71].

4.4 Ablation Study

To assess the contribution of each component in our VLM-R3 framework, we conduct comprehen-
sive ablation experiments. Table 2 and Table 3 summarize our findings.

4.4.1 Effectiveness of Interleaved Chain-of-Thought

To isolate the impact of our interleaved reasoning approach, we conduct an experiment where we
maintain the region localization capabilities (bounding boxes) but remove the associated region im-
ages from the reasoning chain. This variant relies solely on textual descriptions of identified regions
without visually grounding each reasoning step. As shown in Table 3, removing the interleaved vi-
sual evidence leads to a consistent performance drop across all benchmarks, with particularly notable
decreases on ScienceQA (-12.5%) and MMMU (-2.8%). This degradation is most pronounced in
tasks requiring fine-grained visual understanding, such as scientific diagrams in ScienceQA, where
purely textual descriptions of regions fail to capture crucial visual patterns and spatial relationships.

In Table 2, we further compare this variant against other ablations on vision-centric benchmarks.
The results indicate that the interleaved reasoning chain achieves an average improvement of 3.4%
over a vanilla text-based reinforcement learning approach. Furthermore, it outperforms variants that
rely solely on text-based bounding box descriptions (+2.6%) or re-inserting the full image at each
reasoning step (+3.1%). These findings underscore the critical role of dynamically incorporating
visual regions into the reasoning process for effective multimodal understanding.
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Figure 4: Impact of region grounding accuracy on model performance across three benchmarks.
Each subplot shows the performance trajectory from 40% to 90% grounding accuracy with confi-
dence intervals (shaded regions).

4.4.2 Effectiveness of Finetuning on VLIR

Our approach leverages the VLIR corpus to bootstrap the model’s ability to identify informative re-
gions and incorporate them into coherent reasoning chains. To evaluate the specific contribution of
VLIR fine-tuning, we experiment with a variant that skips this initialization phase and proceeds di-
rectly to R-GRPO training. The results in Table 3 demonstrate that omitting VLIR fine-tuning leads
to performance degradation across all benchmarks, with particularly significant decreases observed
in ScienceQA (-15.7%) and MMMU (-5.2%). More critically, we observed that ablating VLIR
fine-tuning impairs the model’s instruction-following capabilities, leading to substantial deficien-
cies such as failures to adhere to required formatting conventions for bounding box specifications.
This accounts for the substantial performance deterioration observed in our experimental results.

4.4.3 Effectiveness of R-GRPO

To assess the impact of our Region-Conditioned Reinforcement Policy Optimization (R-GRPO),
we evaluate a variant that relies solely on supervised fine-tuning using the VLIR corpus without
the subsequent reinforcement learning stage. This allows us to isolate the specific benefits of our
reinforcement learning approach over purely supervised learning. The experimental results show
that removing R-GRPO reduces performance in all benchmarks, with the highest decreases observed
in ScienceQA (-3.28%) and MathVista (-0.7%). This suggests that while VLIR fine-tuning provides
a strong foundation, the reinforcement learning stage is essential for optimizing the model’s region
selection and reasoning policies beyond what can be achieved through imitation learning alone.

4.5 Discussion

4.5.1 Impact of Region Grounding Accuracy on the Reasoning Chain

The quality of region grounding, represented by the accuracy of bounding boxes (bbox), plays a
critical role in multimodal reasoning capabilities. Our analysis investigates how varying levels of
grounding accuracy impact the performance of the VLM-R3 model across multiple benchmarks. We
systematically evaluated model performance by controlling grounding accuracy from 40% to 90%
and measuring outcomes on three key benchmarks: ScienceQA, MathVista, and MMMU. Ground-
ing accuracy was manipulated by randomly replacing or perturbing a controlled percentage of bound-
ing boxes in the input. As shown in Figure 4, there is a clear positive correlation between region
grounding accuracy and model performance across all three benchmarks. ScienceQA demonstrates
the most substantial improvement, with performance increasing from 54.1% at 40% grounding ac-
curacy to 87.9% at 90% grounding accuracy. MathVista shows a similar upward trend, rising from
47.9% to 70.4%, while MMMU exhibits more modest but consistent gains from 43.8% to 62.2%.
These results underscore the fundamental importance of precise region grounding for effective multi-
modal reasoning, with higher-level reasoning tasks showing greater sensitivity to grounding quality.
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What is the 
blue thing 
behind the 
man sitting 
at the table 
with a blue 

plastic 
tablecloth?"

 To identify the blue thing behind the 
man, I need to focus on the area 

behind him. The blue plastic tablecloth 
is visible on the table in front of him, 
but I need to look further back to find 

the blue object.
 I will crop and zoom in on the area 

behind the man to get a clearer view of 
what is blue.

{"bbox_2d": [301, 1, 390, 206]}

After cropping, I can see 
that the blue object is an 

umbrella. It is closed 
and hanging above the 

man's head. The 
umbrella has some white 
text on it, but the text is 
not clearly legible in this 
view.The answer is an 

umbrella 

To identify the blue thing behind the man, I’ll look at the objects situated 
directly behind him in the image. There appears to be a tall, vertical blue 
shape that somewhat resembles a sign or a board. Since it's standing upright 
and seems to have writing on it, and because there are other restaurant or 
café elements visible (like chairs and tables), it makes sense to interpret this 
object as a menu board or a sign displaying information for customers. The 
answer is "a menu board".

What is the blue 
thing behind the 
man sitting at the 
table with a blue 

plastic 
tablecloth?"

Interleaved Reasoning Chain with Visual Region Localization

General Textual Reasoning Chain

User

User

VLM-R3

Gneral
MLLMs

Figure 5: Comparison of attention distribution patterns between the interleaved reasoning chain with
visual region localization (top) and general textual reasoning chain (bottom).

4.5.2 Why is the Interleaved Reasoning Chain with Visual Region Localization Effective?

To understand the efficacy of our VLM-R3 approach, we conducted a comparative analysis between
the interleaved reasoning chain with visual region localization and traditional textual reasoning
chains. Figure 5 visualizes the attention distribution patterns for both approaches when answer-
ing the same visual query. Our analysis reveals a critical insight: in traditional approaches where
the image is positioned at the beginning of the sequence, attention to visual information diminishes
significantly as the reasoning chain progresses. As shown in the lower portion of Figure 4, gen-
eral MLMs tend to make incorrect inferences (identifying a "menu board" instead of an umbrella)
as they lose visual context during extended reasoning. In contrast, VLM-R3 maintains persistent
visual attention throughout the reasoning process by dynamically localizing and incorporating rele-
vant visual regions. The attention heatmap demonstrates that tokens generated later in the reasoning
process maintain strong attention connections to the cropped visual regions. This region-specific
attention enables the model to correctly identify the blue object as an umbrella by explicitly fo-
cusing on the area behind the person, cropping it for detailed examination, and making accurate
observations about its features.

5 Conclusion

This paper introduced VLM-R3, a novel framework enabling MLLMs to perform dynamic visual
reasoning through region recognition, reasoning, and refinement. By integrating our custom VLIR
dataset and Region-Conditioned Reinforcement Policy Optimization (R-GRPO), we demonstrated
that interleaved visual-textual chains-of-thought significantly outperform traditional approaches.
VLM-R3 achieves state-of-the-art results across multiple benchmarks, particularly excelling in tasks
requiring fine-grained spatial reasoning and visual evidence integration. Our work opens promising
directions for developing more sophisticated visually-grounded reasoning systems that can adap-
tively focus on relevant regions during multi-step inference processes.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research, ad-
dressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT
count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (12 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evalu-
ation. While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No]
" provided a proper justification is given (e.g., "error bars are not reported because it would be too
computationally expensive" or "we were unable to find the license for the dataset we used"). In
general, answering "[No] " or "[NA] " is not grounds for rejection. While the questions are phrased
in a binary way, we acknowledge that the true answer is often more nuanced, so please just use your
best judgment and write a justification to elaborate. All supporting evidence can appear either in the
main paper or the supplemental material, provided in appendix. If you answer [Yes] to a question,
in the justification please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Check-
list",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: [NA]

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: [NA]

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: [NA]

Guidelines:
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: [NA]
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/

public/guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not

be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification:[NA]
Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification:[NA]
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research

with human subjects.
• Including this information in the supplemental material is fine, but if the main contri-

bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Experiment Settings

A.1 Pipline Settings

A.1.1 Model Hyperparameter Settings

Our base model is Qwen2.5VL-7B[8], which supports dynamic resolution for input images. In all
experiments, we constrained the pixel dimensions of each image to a minimum of 3136 pixels and
a maximum of 1605632 pixels. Because the value of the bounding box is related to the number of
pixels in the input image, the setting of the range of pixels needs to be unified.

A.1.2 Zoom Scaling Rule

In our pipeline, when a region is selected for closer inspection (e.g., via a "Crop" operation), a zoom
operation is applied. The scaling factor for this zoom, denoted as scale, is determined dynamically
based on the relative area of the selected bounding box (Abbox) compared to the area of the original
image (Aorig). Let r = Abbox

Aorig
be this area ratio. The scale is calculated using the following piecewise

function:

scale =


2.0, if r < 0.125

1.0, if r ≥ 0.5

2.0− r − 0.125

0.375
, otherwise

(5)

This rule implies that smaller selected regions (smaller r) are scaled up more significantly (up to a
factor of 2.0), while larger regions (larger r) are scaled up less, or not at all if they already occupy
a substantial portion of the original image. The intermediate case provides a linear interpolation of
the scaling factor.

A.2 Training Setting for Supervised Fine-tuning Stage

In the supervised fine-tuning stage, we used the complete VLIR dataset. Our experiments were con-
ducted on 4 NVIDIA A100 GPUs, each equipped with 80GB of memory, leveraging DeepSpeed[42]
for efficient training. We used a batch size of 2 with a gradient accumulation of 8, a learning rate of
2 × 10−7, and trained for 3 epochs. During this phase, the vision encoder and MLP projector were
frozen, and only the Large Language Model (LLM) component was trained.

A.3 Training Setting for R-GRPO Stage

For the R-GRPO stage, we sampled approximately 5,000 data points from TextVQA [48], GQA
[17], VSR [26], DocVQA [33] and M3CoT [9] datasets. Regarding the hyperparameters for the
GRPO formulation(2), we set M = 5. Following the experience of related studies, we set β = 0.0,
i.e., we eliminate the KL divergence constraint.

Our experiments for R-GRPO were performed on 6 NVIDIA A100 GPUs, each with 80GB of
memory, also utilizing DeepSpeed[42]. The batch size per device was set to 1, with a gradient
accumulation of 16. The learning rate was 1 × 10−6, and training continued for 300 steps. We
employ a rule-based reinforcement learning approach, where the correctness of the final answer was
judged using an exact match criterion. Similar to the supervised fine-tuning stage, the vision encoder
and MLP projector were frozen, and only the LLM component was trained.

B Prompt Templates for VLIR Dataset Construction and Filtering

B.1 Data Construction Prompts

Given an {image, question, answer} triplet, the following prompt was used to construct the inter-
leaved visual-linguistic chain of thought:

You are performing "Multimodal Interleaved Reasoning". During the thinking
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process, you need to keep an eye on the visual cues in the original image,
find regions of the image that help answer the question, and use the "Crop"
tool to crop and zoom in for detailed analysis.
When using the tool, you must output a JSON object in the following format:
{"bbox_2d": [x1, y1, x2, y2]}
Ensure that you "Crop" at least once.
Continue thinking after each operation until you reach the final answer.
Output the thinking process within a pair of <think> </think> tags and then
output the final answer within a pair of <answer> </answer> tags.
{question}

Listing 1: Prompt for dataset construction.

Given an {image, question, answer, bounding box annotation} quadruplet, the following prompt was
used:

I will now provide you with an image, a question, and a "Crop" operation
string. Your task is to write the reasoning process used to answer the
question as instructed. During the reasoning process, the respondent
utilizes a "Crop" operation to assist with reasoning. The format of
the operation is as follows:
{"bbox_2d": [x1, y1, x2, y2]}
This bounding box indicates the key region that needs to be focused
on to correctly answer the question.
You must think step by step from the perspective of the respondent,
using the "Crop" operation at appropriate moments in your reasoning
process to eventually reach the correct answer. Important notes:
1. You must not modify the content or format of the "Crop" operation
in any way.
2. In a real setting, the respondent only has access to the image and
the question. This bounding box indicates the area where the correct
answer information is located. In this task, they are provided to ensure
the correctness of your reasoning process. When writing the reasoning,
pretend you are the respondent who independently identifies when to use
the "Crop" operation and how to reach the answer step by step.
3. Make sure the reasoning is fluent, logical, and concise.
4. Format of the reasoning process: <think>...</think><answer>...</answer>

Here is an example:
Question: Are there any black numbers or letters?
"Crop" operation: {"bbox_2d": [247, 384, 307, 444]}
Reasoning: <think>
Step 1: To determine if there are black numbers or letters, I need to
focus on the text visible in the image. The dog is wearing a heart-shaped
tag that has some text on it. I will crop and zoom in on the tag for a
closer look at the text details. {"bbox_2d": [247, 384, 307, 444]}
Step 2: After cropping, I can see that the letters "G PLUS" are in red,
and the numbers "6 223 13" are also in red. There are no black numbers
or letters on the tag. Review the rest of the image, there are no black
numbers or letters either.</think>
<answer>no</answer>

Question:{question}
"Crop" operation:{crop}
Now Output the reasoning process:

Listing 2: Prompt for dataset construction.

B.2 Data Filtering Prompts

The prompt for assessing the recognizability of the cropped images is as follows:

26



You need to determine whether the content in a picture is a complete and
semantically meaningful visual unit. Please look carefully at this cropped
image and determine whether it contains a recognizable object, block of text,
or specific part of a diagram. If it is recognizable, answer ’yes’; if not,
answer ’no’.
Now output ’yes’ or ’no’ directly.

Listing 3: Prompt for assessing cropped image recognizability.

The prompt for assessing the quality of the reasoning process is as follows:

You need to make an in-depth assessment of this reasoning process. First,
determine whether its logic is rigorous and whether each step of reasoning leads
naturally and smoothly to the next; second, check whether the reasoning process
progresses gradually towards arriving at the final answer; and lastly, check
whether there is any false information or repetitive redundancy in the text
that is not relevant to the reasoning. If this textual reasoning meets the
requirements in terms of logic, advancement and content streamlining, output
’yes’; whenever one of these is not met, output ’no’.
{question}
{ground-truth answer}
{reasoning process}
Now output ’yes’ or ’no’ directly.

Listing 4: Prompt for assessing reasoning process quality.

C More Demonstrations

This section provides qualitative examples illustrating the capabilities of VLM-R3.

Figure 6: This figure presents how VLM-R3 captures details in a natural image and reasons about
them.
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Figure 7: This figure presents how VLM-R3 gets the text details from the document image.

Figure 8: This figure presents how VLM-R3 iteratively tracks multiple visual cues in an image.
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Figure 9: This figure presents how VLM-R3 performs complex interleaved text-image CoT reason-
ing.

Figure 10: This figure presents how VLM-R3 performs complex interleaved text-image CoT reason-
ing.
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