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ABSTRACT

The indicator matrix plays an important role in machine learning, but optimizing it
is an NP-hard problem. We propose a new relaxation of the indicator matrix and
compared with other existing relaxations, it can flexibly incorporate class informa-
tion. We prove that this relaxation forms a manifold, which we call the Relaxed
Indicator Matrix Manifold (RIM manifold). Based on Riemannian geometry, we
develop a Riemannian toolbox for optimization on the RIM manifold. Specifically,
we provide several methods of Retraction, including a fast Retraction method to
obtain geodesics. We point out that the RIM manifold is a generalization of the
double stochastic manifold, and it is much faster than existing methods on the
double stochastic manifold, which has a complexity of O(n3), while RIM mani-
fold optimization is O(n) and often yields better results. We conducted extensive
experiments, including image denoising, with millions of variables to support our
conclusion, and applied the RIM manifold to Ratio Cut, we provide a rigorous
convergence proof and achieve clustering results that outperform the state-of-the-art
methods. Our Code in Appendix H.

1 INTRODUCTION

Indicator matrices play a crucial role in machine learning (Mo et al., 2025; Li et al., 2024a; Tsit-
sulin et al., 2023), particularly in tasks such as clustering (Fan et al., 2022; Macgregor, 2024) and
classification (Shi et al., 2024). For a problem with n samples and c classes, the indicator matrix
F ∈ Indn×c, where Indn×c = {X ∈ Rn×c | Xij ∈ {0, 1}, X1c = 1n} and 1c is the column vector
of ones of size c. The optimization of indicator matrices, which can be seen as a 0-1 programming
problem, is NP-hard (Schuetz et al., 2022; Gasse et al., 2022). Therefore, finding efficient methods to
relax the indicator matrix for optimization is important.

Ng et al. (2001) relaxed the indicator matrix to the Steifel manifold, F ∈ {X | XTX = I},
where I is the identity matrix. This approach further developed spectral graph theory and led to the
formulation of classic algorithms such as spectral clustering (Balestriero & LeCun, 2022; Macgregor
& Sun, 2022). However, optimizing over the Steifel manifold always requires O(n3) operations
(Altmann et al., 2022), making it challenging to scale for large datasets, and it can only provide an
optimal solution for problems of the form tr(FTLF ), while in clustering, the resulting F still needs
post-processing through methods like K-means (Li et al., 2015; Mondal et al., 2021). An alternative
relaxation is to make F onto the single stochastic manifold, F ∈ {X | X1c = 1n, X > 0} (Sun
et al., 2015), which gave rise to well-known algorithms like Fuzzy K-means (Ferraro, 2024; Borlea
et al., 2021). However, this approach has the drawback of not considering the total number of samples
per class, which can lead to empty clusters or imbalanced class distributions (Ikotun et al., 2023;
Hu et al., 2023). The most recent method is to relax the indicator matrix onto the double stochastic
manifold, i.e., F ∈ {X | X1c = 1n, X

T 1n = r,X > 0} (Fettal et al., 2024; Yuan et al., 2024c).
However, this approach also has significant drawbacks. The double stochastic manifold imposes
overly strict requirements on the columns of F , as it necessitates knowing the true distribution of
each class in the dataset as a prior, which is nearly impossible for unknown datasets. Additionally,
optimization over the double stochastic manifold is extremely challenging, still requiring O(n3) time
(Douik & Hassibi, 2019; 2018), making it almost infeasible for large-scale datasets.

To solve above questions, we propose a new relaxation method, where F ∈ {X | X1c = 1n, l <
XT 1n < u,X > 0}. In this approach, the constraints on the column sums are relaxed to lie within a
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specified range. This allows us to flexibly incorporate as much prior knowledge as possible into the
model. When there is more prior knowledge, we can choose a tighter (l, u) interval. Conversely, we
can make it more relaxed. Specifically, when the column sums and the true distribution are known,
we can set l = u and l to the true distribution (In fact, this does not lead to the absence of solutions,
for further discussion, see Appendix G). When no prior knowledge is available, we can set l < 0 and
u > n, which means our relaxation is a generalization of both the single stochastic manifold and the
double stochastic manifold, offering a more adaptable framework.

We prove that the set of relaxed indicator matrices forms a manifold, which we call the Relaxed
Indicator Matrix Manifold (RIM manifold). Based on Riemannian geometry (Boumal, 2023; Fei
et al., 2025), we have developed a Riemannian optimization toolbox (Boumal et al., 2014; Townsend
et al., 2016) for running optimization on the RIM manifold. In particular, we provide three distinct
Retraction methods, including one that allows for fast computation of geodesics (Nguyen, 2022;
Jordan et al., 2022), enabling our algorithm to efficiently operate along the geodesic. Furthermore,
we demonstrate that our algorithm, compared to existing Riemannian optimization methods on the
double stochastic manifold, reduces the time complexity from O(n3) to O(n). Furthermore, we have
developed various Riemannian optimization algorithms that run on the RIM manifold.

We designed a series of large-scale experiments with millions of optimization variables to validate
our algorithm. These experiments include comparisons with state-of-the-art optimization algorithms
on both convex and non-convex problems like image denoising (Takemoto et al., 2022; Zhou et al.,
2024). In particular, we applied the Ratio Cut model (Veldt, 2023; Hagen & Kahng, 1992) to the RIM
manifold. When l = u, our algorithm is 70-200 times faster than those based on the double stochastic
manifold for large-scale problems with millions of variables, and it achieves lower loss results. In
general, the algorithms on the RIM manifold outperform the latest optimization algorithms in both
loss function values and time. Additionally, the Ratio Cut clustering metric on the RIM manifold
exceeds that of the latest clustering algorithms.

Overall, our contributions include:

• We propose a novel relaxation method for the indicator matrix, which allows for the full
utilization of varying levels of prior information from the dataset, and we proved that the
relaxed matrix forms a manifold.

• We develope a Riemannian optimization toolbox for manifolds, providing three Retraction
algorithms, including a fast method for obtaining geodesics on the RIM manifold. We also
demonstrated that the RIM manifold can replace methods on the double stochastic manifold,
reducing the time complexity from O(n3) to O(n).

• We conducte lots of experiments with millions of variables, demonstrating the speed and
efficiency of our algorithm. Our method outperforms the double stochastic manifold by
70-200 times in large-scale experiments, yielding better results and shorter time on various
problems compared to latest optimization methods. We apply the RIM manifold to Ratio
Cut and achieve superior clustering performance compared to the state-of-the-art methods.

2 PRELIMINARIES

The Preliminaries section consists of four parts: an introduction to the notations, a brief overview of
Riemannian optimization, and an introduction to the single stochastic manifold, double stochastic
manifold, and Steifel manifold, as well as machine learning methods on these manifolds. All the
notations used in this paper follows the standard conventions of Riemannian optimization, and
important symbols are introduced in the main text. Due to space limitations, the Preliminaries can be
found in Appendix B.

3 RIEMANNIAN TOOLBOX

3.1 DEFINITION OF THE RELAXED INDICATOR MATRIX MANIFOLD

The optimization of indicator matrix F ∈ Indn×c, where typically n� c, is an NP-hard optimization
problem. Three relaxation methods have already been introduced. The Steifel manifold F ∈ {X |
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XTX = I} always requires O(n3) time complexity (Shustin & Avron, 2023) and can only yield
an analytical optimal solution in the form of tr(FTLF ), while in clustering, the resulting F still
needs post-processing through methods like K-means. The single stochastic manifold F ∈ {X |
X1c = 1n, X > 0} does not impose any constraints on the column sums of F , which may lead to
empty or imbalanced classes and cannot incorporate column sum information into the model. The
double stochastic manifold F ∈ {X | X1c = 1n, X

T 1n = r,X > 0}, on the other hand, still has
a time complexity of O(n3), and the constraints on the column sums are too strict, often making it
impossible to obtain the sum of the column. Therefore, we propose a new relaxation method:

F ∈ {X | X1c = 1n, l < XT 1n < u,X > 0} (1)

Introducing l and u allows us to incorporate as much information as possible into the model. Ad-
ditionally, when l < 0 and u > n, our relaxation reduces to {X | X1c = 1n, X > 0}. When
u = l = r, our relaxation becomes {X | X1c = 1n, X

T 1n = r,X > 0}. Thus, our relaxation
generalizes the previously mentioned approaches. Importantly, our relaxation forms an embedded
submanifold of the Euclidean space.
Theorem 1. Our relaxed indicator matrix setM = {X | X1c = 1n, l < XT 1n < u,X > 0}
forms an embedded submanifold of the Euclidean space, with dimM = (n− 1)c. We refer to it as
the Relaxed Indicator Matrix Manifold. Proof in A.1

3.2 RIEMANNIAN OPTIMIZATION TOOLBOX FOR THE RIM MANIFOLD

In this section, we will establish an optimized Riemannian toolbox for the RIM manifold. To
transform the embedded submanifold (Zhang et al., 2024; Lee & Lee, 2012)M into a Riemannian
submanifold (Lee, 2018; Gulbahar, 2021), it is necessary to equipM with an inner product 〈·, ·〉X .
Mishra et al. (2021) adopt the Fisher information (Ly et al., 2017; Rissanen, 1996) metric for
manifolds. However, an alternative approach is to directly restrict the Euclidean inner product onto
the manifold. The reason for doing so is seen in F. This restriction allows for a straightforward
derivation of the Riemannian gradient (Huang & Wei, 2022) from the Euclidean gradient and the
method lies in enabling an intuitive and convenient Retraction mapping.
Theorem 2. By restricting the Euclidean inner product 〈U, V 〉 =

∑n
i=1

∑c
j=1 UijVij onto the RIM

manifoldM, the tangent space ofM at X is given by TXM = {U | U1c = 0}. For any function
H, if its Euclidean gradient is GradH(F ), the Riemannian gradient gradH(F ) is expressed as
following. Proof in A.2

gradH(F ) = GradH(F )− 1

c
GradH(F )1c1

T
c . (2)

To further obtain second-order information of a function, it is necessary to equip the manifoldM
with a Riemannian connection (Epstein, 1975). We select the unique connection that ensures the
Riemannian Hessian hessH is symmetric and compatible with the inner product as the Riemannian
connection. The following theorem formalizes this:
Theorem 3. For the manifoldM, there exists a unique connection that is compatible with the inner
product and ensures that the Riemannian Hessian mapping is self-adjoint. This connection is given
by following. ∇̄ is the Riemannian connection in Euclidean space. Proof in A.3

∇V U = ∇̄V U −
1

c
∇̄V U1c1

T
c . (3)

The Riemannian Hessian mapping can be directly derived from the above Riemannian connection.
Theorem 4. For the manifold M equipped with the connection ∇V U , the Riemannian Hessian
mapping satisfies following. HessH is the Riemannian Hessian in Euclidean space. Proof in A.4

hessH[V ] = HessH[V ]− 1

c
HessH[V ]1c1

T
c . (4)

A Retraction (Hu et al., 2020; Hosseini & Sra, 2015) is a mappingRX(tV ) that maps from the tangent
space ofM at X to the manifoldM, i.e., RX(tV ) : TXM→M. A Retraction is used to generate
a curve γ(t) = RX(tV ), starting at X and moving in the initial direction given by V , allowing X to
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move along the manifold. Specifically,RX(tV ) should satisfyRX(0) = X and d
dtRX(tV )

∣∣
t=0

= V .
If Ddtγ

′(t)
∣∣
t=0

= 0, then γ(t) forms a geodesic, where D
dt represents the Levi-Civita derivative (Berz,

1996). Geodesics provide better convergence guarantees for optimization algorithms on manifolds
(Vishnoi, 2018). The following theorem presents a method for obtaining geodesics.
Theorem 5. Let RX(tV ) = argminF∈M‖F − (X + tV )‖2F , X ∈M. Then

argminF∈M‖F − (X + tV )‖2F = max(0, X + tV − ν(t)1Tc − 1nω
T (t) + 1nρ

T (t)) (5)

where ν(t), ωT (t), ρT (t) are Lagrange multipliers. Moreover, there exists δ > 0 such that for
t ∈ (0, δ), −ν(t)1Tc − 1nω(t)T + 1nρ(t)T = 0, and the Retraction satisfies the following. Where D

dt
denotes the Levi-Civita derivative.

RX(0) = X,
d

dt
RX(tV )

∣∣
t=0

= V,
D

dt
R′X(tV )

∣∣
t=0

= 0 (6)

Thus, RX(tV ) is a geodesic. Proof in A.5

The essence of solving the Retraction is to compute the orthogonal projection argminF∈M‖F − (X+
tV )‖2F , which can be addressed from two perspectives: the primal problem and the dual problem.
Theorem 6. M = Ω1 ∩ Ω2 ∩ Ω3, where Ω1 = {X | X > 0, X1c = 1n}, Ω2 = {X | XT 1n > l},
and Ω3 = {X | XT 1n < u}. The primal problem can be solved using the Dykstras (Tibshirani,
2017; Boyle & Dykstra, 1986) algorithm by iteratively projecting onto Ω1, Ω2, and Ω3. Specifically:

ProjΩ1
(X) =

(
Xij + ηi

)
+

, where η is determined by ProjΩ1
(X)1c = 1n.

ProjΩ2
(X) and ProjΩ3

(X) are defined similarly. For example,

ProjΩ2
(Xj) =

{
Xj , if (Xj)T 1n > lj ,
1
n (lj − 1TnX

j)1n +Xj , if (Xj)T 1n ≤ lj ,
(7)

where Xj is the j-th column of X , and lj is the j-th element of the column vector l. Proof in A.6

Another approach is the dual gradient ascent method. We have proven the following theorem.
Theorem 7. Solving the primal problem is equivalent to solving the following dual problem:

max
ω≥0,ρ≥0

L =
1

2
‖max(0, X + tV − ν1Tc − 1nω

T + 1nρ
T )‖2F − 〈ν, 1n〉 − 〈ω, u〉+ 〈ρ, l〉 (8)

where ν, ω, and ρ are Lagrange multipliers. The partial derivatives of L with respect to ν, ω, and ρ
are known, and gradient ascent can be used solving ν, ω, and ρ. Finally, RX(tV ) can be obtained
using max(0, X + tV − ν1Tc − 1nω

T + 1nρ
T ). The partial derivatives are following. Proof in A.7

∂L
∂ν

= max(0, X + tV − ν1Tc − 1nω
T + 1nρ

T )1c − 1n

∂L
∂ω

= max(0, X + tV − ν1Tc − 1nω
T + 1nρ

T )T 1n − u

∂L
∂ρ

= −max(0, X + tV − ν1Tc − 1nω
T + 1nρ

T )T 1n + l

(9)

Additionally, we propose a Retraction method based on a variant of the Sinkhorn algorithm (Xie
et al., 2025; Cuturi, 2013). This approach also attempts to map a matrix onto the RIM manifold using
two diagonal matrices. The following theorem illustrates this property. However, it is equivalent to
solving an optimal transport problem with an entropy regularization parameter, whose choice may
not be well justified.
Theorem 8. The Sinkhorn-based Retraction is defined as

RsX(tV ) = S(X � exp(tV �X)) = diag(p∗)(X � exp(tV �X)) diag(q∗ � w∗) (10)
where p∗, q∗, w∗ are vectors, exp(·) denotes element-wise exponentiation, and diag(·) converts
a vector into a diagonal matrix. The vectors p∗, q∗, w∗ are obtained by iteratively updating the
following equations:

p(k+1) = 1n �
(
(X � exp(tV �X)) (q(k) � w(k))

)
,

q(k+1) = max
(
l �
(

(X � exp(tV �X))
T
p(k+1) � w(k)

)
, 1c

)
,

w(k+1) = min
(
u�

(
(X � exp(tV �X))

T
p(k+1) � q(k+1)

)
, 1c

)
.

(11)
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Table 1: Time complexity comparison(n� c).
Operation RIM Manifold Doubly Stochastic Manifold Speedup factorAdditions Multiplications Total Additions Multiplications Total

Riemannian Gradient O(nc) O(n) O(n) O(n3) O(n3) O(n3) O(n2)
Retraction O(nc) O(nc) O(nc) O(nc) O(nc) O(nc) O(1)

Riemannian Hessian O(nc) O(n) O(n) O(n3) O(n3) O(n3) O(n2)

This iterative procedure ensures the mapping onto the RIM manifold. The solution RsX(tV ) =
diag(p∗)(X�exp(tV �X)) diag(q∗�w∗) is equivalent to solving the dual-bound optimal transport
problem (12) with an entropy regularization parameter of 1. Proof in A.8.

RsX(tV ) = argminF∈M
〈
F,− log(X � exp(tV �X))

〉
+ δ
∣∣
δ=1

n∑
i=1

c∑
j=1

(
Fij log(Fij)− Fij

)
(12)

Based on the Riemannian toolbox for the RIM manifold, we have developed Riemannian Gradient
Descent (RIMRGD), Riemannian Conjugate Gradient (RIMRCG), and Riemannian Trust-Region
(RIMRTR) methods on the RIM manifold. The algorithmic procedures are provided in Appendix C.

3.3 COMPARISON ANALYSIS OF TIME COMPLEXITY

When u = l, the RIM manifold reduces to the doubly stochastic manifold and provides a fast way for
solving problems on the doubly stochastic constraint. Existing optimization methods on the doubly
stochastic manifold are extremely time-consuming. This section provides a comparative analysis of
the time complexity between the RIM manifold and the doubly stochastic manifold.

First, we discuss the Riemannian gradient. The computation of the Riemannian gradient on
the RIM manifold is given by gradH(F ) = GradH(F ) − 1

c GradH(F )1c1
T
c . Here, the term

GradH(F )1c1
T
c involves summing each column, dividing by c, and then replicating it across c

columns. This requires 2nc additions and n divisions.

For the doubly stochastic manifold, the Riemannian gradient is (n = c):{
gradH(F ) = γ −

(
α1Tn + 1n1

T
nγ − 1nα

TF
)
� F,

α =
(
I − FFT

)† (
γ − FγT

)
1n, γ = GradH(F )� F.

(13)

The term FFT ∈ Rn×n, and computing its pseudo-inverse (I−FFT )† requires at least n3 additions
or multiplications. Further computing the Riemannian gradient involves at least n3 operations. When
n 6= c, we need to solve a linear system of (n+ c) dimensions still takes O(n3) time (where n� c).

For the Retraction operation, the time complexity is O(nc), which scales linearly with the number
of variables. For the computation of the Riemannian Hessian, the RIM manifold also requires
only O(nc) additions and O(c) multiplications. In contrast, the Hessian mapping on the doubly
stochastic manifold has a highly complex expression (181), requiring at least O(n3) additions and
multiplications.

We summarize the time complexity in Table 1, including the complexity of each operation and the
speedup factor. We will conduct extensive experiments to verify the acceleration effect.

4 RIM MANIFOLD FOR GRAPH CUT

In this section, we apply the RIM manifold to graph cut problems, using Max Cut (Shinde et al.,
2021; Wang et al., 2022) and Ratio Cut (Chen et al., 2022b; Nie et al., 2024) as examples. Max Cut
and Ratio Cut are both well-known graph partitioning algorithms, and their loss functions are given
byHm(F ) = −tr(FTSF ) for the Max Cut, andHr(F ) = tr(FTLF (FTF )−1) for the Ratio Cut.
S is the similarity matrix, and L is the Laplacian matrix (Nie et al., 2016; 2014). The constraint is
F ∈ Indn×c, and we relax this constraint on the RIM manifold.

First, the Euclidean gradient of −tr(FTSF ) is Grad(−tr(FTSF )) = −SF , and its corresponding
Riemannian gradient is gradHm(F ) = −SF+ 1

cSF1c1
T
c . According to Theorem 4, the Riemannian

Hessian expression is hessHm[V ] = HessHm[V ]− 1
c HessHm[V ]1c1

T
c Moreover,because we know

that

HessHm[V ] = lim
t→0

GradHm(F + tV )−GradHm(F )

t
= lim
t→0

−S(F + tV ) + SF

t
= −SV (14)
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Therefore, we show that hess
(
− tr(FTSF )

)
[V ] can be represented as following:

hess
(
− tr(FTSF )

)
[V ] = −SV +

1

c
SV 1c1

T
c (15)

Now we apply the RIM manifold to the Ratio Cut problem. Ratio Cut is an important graph
partitioning method with the objective function tr(FTLF (FTF )−1) , subject to F ∈ Indn×c. The
relaxed optimization problem is formulated as:

min
F∈M

tr(FTLF (FTF )−1), M = {X | X1c = 1n, l < XT 1n < u,X > 0} (16)

The following theorem provides the expressions for the Euclidean gradient and the Euclidean Hessian
map of the Ratio Cut.
Theorem 9. The loss function for the Ratio Cut is given by Hr(F ) = tr(FTLF (FTF )−1). Then,
the Euclidean gradient of the loss function with respect to F is following. Proof in A.9

GradHr(F ) = 2
(
LF (FTF )−1 − F (FTF )−1(FTLF )(FTF )−1

)
(17)

Given the substitutions (FTF )−1 = J and FTLF = K, the Euclidean Hessian map for the loss
function is:

HessHr[V ] = 2
(
LV J − LFJ(V TF + FTV )J − V JKJ + FJ(V TF + FTV )JKJ (18)

− FJ(V TLF + FTLV )J + FJKJ(V TF + FTV )J
)

(19)

The above theorem provides the Euclidean gradient of Ratio Cut. Although computing (FTF )−1

requires inversion, where FTF ∈ Rc×c, the inversion complexity is onlyO(c3) and c� n. Next, we
will perform graph cut optimization on the RIM manifold, comparing the loss results and runtime with
various state-of-the-art algorithms, as well as evaluating the effectiveness of graph cut for clustering.

In addition, we provide convergence theorems for graph cut optimization on the RIM manifold
using Riemannian optimization techniques Proof in A.10 and A.11.

5 EXPERIMENTS

In this section, we will conduct extensive experiments to evaluate the performance of Riemannian
optimization on the RIM manifold and address several key questions of interest.

• Question 1: For the RIM manifold, this paper proposes three different Retraction methods.
Which method is the most efficient? Which Retraction is recommended for use?

• Question 2: When l = u, does the Riemannian optimization algorithm on the RIM manifold
outperform the Riemannian optimization algorithm on the doubly stochastic manifold in
terms of effectiveness and speed?

• Question 3: For non-convex optimization problems, we evaluate whether optimization on
the RIM manifold is faster or more effective compared to other state-of-the-art methods? As
examples, we consider a classic non-convex graph cut problem Ratio Cut.

• Question 4: When relaxing the graph cut problem onto the RIM manifold (followed by
discretization), can common clustering metrics(ACC,NMI,ARI) achieve better values?

5.1 EXPERIMENTAL SETUPS

5.1.1 EXPERIMENT 1 SETUP

To determine which of the three Retraction methods is more efficient, we randomly select a large
number of matrices V ∈ TXM, i.e., generate a large number of tangent vectors, and set t = 1.
Then, we apply the three Retraction methods to generate points on the RIM manifold M. To
ensure the experiment’s validity, we vary the matrix dimensions V ∈ Rn×c, where n takes values
from {500, 1000, 3000, 5000, 7000, 10000} and c takes values from {5, 10, 50, 100, 500, 1000}. The
lower and upper bounds are set as l = 0.9

⌊
n
c

⌋
and u = 1.1

⌊
n
c

⌋
, respectively, as well as l = u = n

c .
We then calculate the computation time for the three Retraction methods and compare them. For
large-scale problems, we recommend using the faster Retraction method. If the computation times
are nearly identical, we recommend using the norm-based Retraction, as it yields geodesics with
better properties.
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5.1.2 EXPERIMENT 2 SETUP

To answer the second question, we need to compare Riemannian optimization methods on the RIM
manifold with optimization methods on the doubly stochastic manifold under the condition l = u. To
this end, we design two optimization problems, including both convex and non-convex cases.

The first problem is a norm approximation problem. Specifically, we randomly generate a matrix
A ∈ Rn×c with sizes n ∈ {5000, 7000, 10000}, c ∈ {5, 10, 20, 50, 70, 100} and solve the following
optimization problem. We compare the runtime and loss function values of the two manifolds.

min
F∈M

‖F −A‖2F , M = {X | X1c = A1c, X
T 1n = AT 1c, X > 0} (20)

The second problem is an image denoising task based on the classical total variation (TV) regulariza-
tion model. The RIM-TV model is given by{

minF∈M
1
2‖F − Ã‖

2
F + ξ

∑
i,j

(
|Fi,j+1 − Fi,j |+ |Fi+1,j − Fi,j |

)
M = {X | X > 0, X1c = Ã1c, X

T 1n = ÃT 1n}
(21)

Here, ξ is the total variation (TV) regularization coefficient, A is the original image obtained from
the dataset, and Ã is the noisy image generated by adding Gaussian white noise to A. The image Aij
is in(0, 1), ξ is chosen from the set {0.3,0.7}, and the variance of the added Gaussian noise is chosen
from the set {0.3, 0.5, 0.9}. We will compare the speed and objective function values of the algorithm
when running on the RIM manifold versus the doubly stochastic manifold. More experimental details
can be found in Appendix D.1.

5.1.3 EXPERIMENT 3 SETUP

To answer the third question, we apply the RIM manifold to Ratio Cut and conduct experiments
on 8 real datasets (as shown in Appendix D.3.4). The values of l and u are set as l = u = n

c

and l = 0.9
⌊
n
c

⌋
, u = 1.1

⌊
n
c

⌋
, respectively. For l = u = n

c , we compare seven algorithms:
Riemannian Gradient Descent (RIMRGD), Riemannian Conjugate Gradient (RIMRCG), Riemannian
Trust Region (RIMRTR), Frank-Wolfe Algorithm (FWA) (Jaggi, 2013; Weber & Sra, 2023; Yurtsever
& Sra, 2022), Projected Gradient Descent (PGD) (Shen & Chen, 2023; Chen & Wainwright, 2015),
Riemannian Gradient Descent on the Double Stochastic Manifold (DSRGD) (Tripuraneni et al.,
2018), and Riemannian Conjugate Gradient on the Double Stochastic Manifold (DSRCG) (Sato,
2022). For l = 0.9

⌊
n
c

⌋
and u = 1.1

⌊
n
c

⌋
, we only compare RIMRGD, RIMRCG, RIMRTR, FWA,

and PGD. The optimization results of these algorithms are then compared. More experimental details
can be found in Appendix D.2.

5.1.4 EXPERIMENT 4 SETUP

To answer the fourth question, we compare the Ratio Cut algorithm on the RIM manifold with
ten clustering algorithms. We again choose 8 real datasets with different types, including images,
tables, waveforms, etc. (as shown in Appendix D.3.4), and conduct large-scale validation using 10
comparison algorithms (listed in D.3). We evaluate the clustering performance using three metrics:
clustering accuracy (ACC) (Yuan et al., 2024a;b), normalized mutual information (NMI) (Ren et al.,
2024), and adjusted Rand index (ARI) (Ronen et al., 2022). For the similarity matrix, we use the
k-nearest neighbor (k-NN) (Li et al., 2024b; Zhu et al., 2022) Gaussian kernel function (Wang
et al., 2009; Chen et al., 2021) and construct the Gaussian kernel function using the mean Euclidean
distance. For the parameter k, each comparison algorithm is tested by searching for the best value of
k within the range k = [8, 10, 12, 14, 16]. More experimental details can be found in Appendix D.3.

5.2 EXPERIMENTAL RESULTS

5.2.1 RESULT OF EXPERIMENTAL 1

The data for Experiment 1 when l = u is presented in Table 2. The horizontal axis indicates the
methods used, while the vertical axis represents the number of columns, and the horizontal axis
represents the number of rows of the experimental matrix. The table entries represent the time
required for Retraction, measured in seconds. The fastest method is highlighted in red. As observed,
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Table 2: Table of Execution Time when l = u for Different Retraction Algorithms(s)
Row&Col Dual Sinkhorn Dykstras

500 1000 3000 5000 7000 10000 500 1000 3000 5000 7000 10000 500 1000 3000 5000 7000 10000

5 0.012 0.024 0.054 0.084 0.108 0.140 0.004 0.009 0.048 0.132 0.169 0.499 0.006 0.007 0.011 0.019 0.028 0.038
10 0.022 0.036 0.075 0.112 0.141 0.188 0.002 0.006 0.036 0.087 0.166 0.343 0.006 0.005 0.014 0.023 0.031 0.043
50 0.074 0.095 0.791 1.307 1.886 2.766 0.002 0.008 0.043 0.125 0.228 0.474 0.005 0.008 0.023 0.039 0.053 0.074

100 0.012 0.174 1.597 2.962 3.831 5.710 0.003 0.008 0.056 0.140 0.288 0.580 0.006 0.010 0.031 0.060 0.072 0.106
500 0.054 0.122 8.597 14.32 20.16 23.77 0.013 0.030 0.237 0.629 1.155 2.265 0.016 0.033 0.096 0.168 0.223 0.318

1000 0.102 0.178 17.26 28.56 40.55 56.56 0.034 0.082 0.446 1.038 1.931 3.614 0.034 0.067 0.219 0.384 0.556 0.789

(a) Origin (b) Noisy Image (c) RIM Result (d) DS Result
Figure 1: Image Denoising Results, Noise Coefficient 0.3, ξ = 0.3.

when the matrix is small, the Sinkhorn method is faster. However, as the matrix size increases, the
Dykstras method shows significant advantages and produces the geodesic. Therefore, we recommend
using the Dykstras method to obtain the Retraction curve. More data can be found in Appendix E.1.

5.2.2 RESULT OF EXPERIMENTAL 2

Table 3 shows the time and final loss required by the Riemannian Trust Region method to solve convex
optimization problems of different scales. It can be seen that, for problems of varying sizes, the
RIMTRT significantly outperforms the DSTRT in both time consumption and final loss. Therefore,
we have highlighted the RIM manifold results in red. Data for the Riemannian Gradient Descent and
Riemannian Conjugate Gradient methods can be found in Table 10 and Table 11.

For the second part of the experiment, Figure 1 shows the comparison of denoising results using the
TV algorithm on the RIM manifold and the doubly stochastic manifold with a noise level of 0.3. In
this case, ξ = 0.3. On the RIM manifold, the running time was 29.77s, and the loss value decreased
to 1.05e5, while on the doubly stochastic manifold, the time was 85.33s, and the loss value was
1.17e5. By observing the images, it is evident that the image obtained using the doubly stochastic
manifold has noticeable noise when zoomed in, while the image on the RIM manifold is smoother.
Additional data and images can be found in Figure 4.

Table 3: Cost and Time on the RIM Manifold and Doubly Stochastic Manifold(RTR).
Row&Col RIM Manifold Doubly Stochastic Manifold

Cost Time Cost Time

Size 5000 7000 10000 5000 7000 10000 5000 7000 10000 5000 7000 10000

5 3.09E-23 8.28E-20 2.09E-20 0.265 0.355 0.516 4.38E-11 3.96E-10 2.89E-10 9.530 12.85 31.97
10 1.91E-20 9.58E-20 3.80E-20 0.283 0.464 0.690 1.91E-10 3.66E-10 4.12E-10 16.25 17.04 32.72
20 1.02E-19 1.22E-23 8.29E-19 0.366 0.562 0.691 9.49E-10 6.04E-10 1.17E-09 18.77 35.15 26.77
50 7.66E-20 2.13E-18 2.20E-20 0.602 0.844 1.087 3.08E-09 1.99E-09 1.57E-09 38.55 64.27 111.1
70 1.85E-20 2.84E-18 7.49E-19 0.791 0.983 1.352 2.59E-09 1.65E-09 3.18E-09 70.47 121.0 77.28

100 1.31E-19 5.04E-20 1.26E-17 0.990 1.324 1.721 1.78E-09 2.18E-09 2.83E-09 91.40 121.3 241.4

5.2.3 RESULT OF EXPERIMENTAL 3

When l = u, the time and loss for the seven comparison algorithms are presented in Table 4. We have
marked the algorithm names on the RIM manifold in blue, the shortest time in red, and the lowest
loss in bright red. It can be observed that the optimization algorithms on the RIM manifold achieved
most of the top positions. Figure 2 shows the loss decrease curves for some datasets. More results
can be found in Appendix E.3.

5.2.4 RESULT OF EXPERIMENTAL 4

For Experiment 4, Table 5 records the performance of 12 comparison algorithms across 8 real-world
datasets based on clustering accuracy (ACC), normalized mutual information (NMI), and adjusted
Rand index (ARI). Our algorithm is marked in blue, and the best-performing algorithm is marked

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 100 200 300 400 500 600
0

50

100

150

200

250

RIMRGD
RIMRCG
RIMRTR
PGD
FWA
DSRGD
DSRCG

(a) USPS20
0 100 200 300 400 500 600

20

40

60

80

100

120

140

160

180

200

RIMRGD
RIMRCG
RIMRTR
PGD
FWA
DSRGD
DSRCG

(b) JAFFE
0 100 200 300 400 500 600

0

10

20

30

40

50

60

70

RIMRGD
RIMRCG
RIMRTR
PGD
FWA
DSRGD
DSRCG

(c) MnistData05
0 100 200 300 400 500 600

0

10

20

30

40

50

60

RIMRGD
RIMRCG
RIMRTR
PGD
FWA
DSRGD
DSRCG

(d) waveform21
Figure 2: Comparison of Loss Decrease for Optimization Algorithms on Real Datasets.

Table 4: Time and Loss of Different Optimization Algorithms on Ratio Cut when l = u

Datasets&Methods DSRGD DSRCG FWA PGD RIMRGD RIMRCG RIMRTR
Time Cost Time Cost Time Cost Time Cost Time Cost Time Cost Time Cost

COIL20 8.978 28.17 11.90 28.41 10.49 41.12 6.967 31.53 1.145 24.83 0.685 27.46 14.20 22.48
Digit 8.650 2.751 11.87 2.312 9.196 0.492 6.077 0.953 7.058 0.942 0.886 1.319 13.73 1.089

JAFFE 2.224 30.06 2.774 60.16 0.303 29.39 2.725 44.35 0.149 29.56 0.119 29.92 1.982 28.94
MSRA25 9.901 2.775 11.94 2.249 9.687 1.845 6.954 1.221 2.221 1.636 1.957 1.009 17.74 1.070

PalmData25 43.39 737.1 54.48 1054 88.35 561.1 23.74 642.2 9.506 456.0 2.583 642.3 18.77 516.3
USPS20 9.238 25.52 12.65 23.58 10.37 16.76 6.842 17.32 5.257 16.46 0.735 19.91 12.59 16.31

Waveform21 11.16 4.328 13.76 3.313 17.81 2.457 8.645 2.392 4.094 2.385 1.237 2.434 8.508 2.390
MnistData05 18.16 6.834 23.60 4.894 26.29 0.619 14.96 2.520 16.43 2.126 1.724 3.325 35.93 2.154

in red. It can be observed that performing Ratio Cut on the RIM manifold leads to superior results
compared to the most advanced algorithms. More results can be found in Appendix E.4.

Table 5: Mean clustering performance of compared methods on real-world datasets.
Metric Method COIL20 Digit JAFFE MSRA25 PalmData25 USPS20 Waveform21 MnistData05

ACC

KM 53.44 58.33 72.16 49.33 70.32 55.51 50.38 53.86
CDKM 52.47 65.82 80.85 59.63 76.05 57.68 50.36 54.24

Rcut 78.14 74.62 84.51 56.84 87.03 57.83 51.93 62.80
Ncut 78.88 76.71 83.76 56.23 86.76 59.20 51.93 61.14

Nystrom 51.56 72.08 75.77 52.85 76.81 62.55 51.49 55.91
BKNC 57.11 60.92 93.76 65.47 86.74 62.76 51.51 52.00
FCFC 59.34 43.94 71.60 54.27 69.38 58.23 56.98 54.41
FSC 82.76 79.77 81.69 56.25 82.27 67.63 50.42 57.76

LSCR 65.67 78.14 91.97 53.82 58.25 63.07 56.19 57.15
LSCK 62.28 78.04 84.98 54.41 58.31 61.86 54.95 58.57

RIMRcut 79.72 82.53 96.71 56.64 90.85 70.28 74.80 65.55

NMI

KM 71.43 58.20 80.93 60.10 89.40 54.57 36.77 49.57
CDKM 71.16 63.64 87.48 63.83 91.94 55.92 36.77 49.23

Rcut 86.18 75.28 90.11 71.64 95.41 63.84 37.06 63.11
Ncut 86.32 76.78 89.87 71.50 95.26 64.46 37.06 63.22

Nystrom 66.11 70.13 82.53 57.77 93.09 59.00 36.95 48.53
BKNC 69.80 59.37 92.40 69.30 95.83 57.10 36.94 44.56
FCFC 74.05 38.33 80.30 63.34 89.47 55.71 22.89 48.75
FSC 91.45 80.98 90.43 70.60 94.62 74.75 36.76 58.33

LSCR 74.67 75.07 93.13 68.06 81.84 62.36 33.37 52.82
LSCK 74.02 76.53 87.89 67.97 81.70 65.23 36.92 59.14

RIMRcut 85.63 80.05 96.24 71.76 96.50 69.08 42.14 59.35

ARI

KM 50.81 45.80 66.83 34.66 65.06 43.57 25.56 37.18
CDKM 48.11 52.74 76.36 37.70 71.73 45.59 25.56 36.79

Rcut 73.73 65.81 81.70 46.35 84.76 51.99 25.31 51.32
Ncut 74.30 68.21 81.30 45.90 84.25 52.72 25.31 50.51

Nystrom 45.96 59.50 69.85 38.07 76.23 50.01 25.03 38.21
BKNC 49.96 48.98 87.96 54.78 85.56 48.43 25.02 32.89
FCFC 54.41 25.50 65.73 40.42 66.03 46.32 22.89 36.86
FSC 79.46 73.03 80.26 43.99 79.67 61.71 25.10 44.78

LSCR 57.68 67.21 86.76 43.31 48.70 52.64 25.12 41.46
LSCK 54.59 68.70 77.37 42.18 48.58 52.54 26.47 46.48

RIMRcut 73.98 75.01 93.32 46.82 88.49 56.06 42.89 52.87

6 CONCLUSION

This paper presents a new relaxation for indicator matrices and proves that it forms a Riemannian
manifold. We have constructed a Riemannian toolbox for optimization on the RIM manifold. In
particular, we introduce multiple methods for Retraction, including one that operates quickly along
the geodesic. The paper demonstrates that optimization on the RIM manifold is useful for machine
learining and it is a fast method O(n) that can replace the existing double stochastic manifold
optimization with a time complexity of O(n3). Through large-scale experiments from multiple
perspectives, we have proven the effectiveness and speed of optimization on the RIM manifold.
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7 STATEMENT

For the reproducibility of this paper, we have submitted the complete anonymized code with fixed
random seeds, as detailed in Appendix H. In addition, large language models (LLMs) were only used
for language polishing.
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A PROOFS OF THEOREMS

A.1 PROOF OF THEOREM 1

Our relaxed indicator matrix setM = {X | X1c = 1n, l < XT 1n < u,X > 0} forms an embedded
submanifold of the Euclidean space, with dimM = (n− 1)c. We refer to it as the Relaxed Indicator
Matrix Manifold.

Proof. The set M can be viewed as the intersection of three sets: M = {X | X1c = 1n, l <
XT 1n < u,X > 0} = Ω1 ∩Ω2 ∩Ω3, where Ω1 = {X | X > 0, X1c = 1n}, Ω2 = {X | XT 1n >
l}, and Ω3 = {X | XT 1n < u}. Consider the differential of the local defining function for the set
Ω1, i.e.

D(X1c − 1n)[V ] = lim
t→0

(X + tV )1c − 1n − (X1c − 1n)

t
= lim
t→0

tV 1c
t

= V 1c (22)

Consider the null space of D(X1c − 1n)[V ], given by Ker(D(X1c − 1n)[V ]) = {V | V 1c = 0}.
The dimension of this null space is

dim(Ker(D(X1c − 1n)[V ])) = nc− c = (n− 1)c (23)

In addition, since Ω2 = {X | XT 1n > l} and Ω3 = {X | XT 1n < u}, take Ω2 as an example. For
any directional vector U , there must exist δU > 0 such that (X + δUU)T 1n > l. Thus, both Ω2

and Ω3 are open sets. According to Theorem (Petersen, 2006), Ω1 forms a manifold, and Ω2 and
Ω3 are open sets. The intersection of an open set with a manifold remains a manifold. Therefore,
M = {X | X1c = 1n, l < XT 1n < u,X > 0} = Ω1 ∩ Ω2 ∩ Ω3 is still a manifold, and
dim(M) = dim(Ker(D(X1c − 1n)[V ])) = (n− 1)c.

We refer toM as the Relaxed Indicator Matrix manifold, abbreviated as the RIM manifold.

A.2 PROOF OF THEOREM 2

By restricting the Euclidean inner product 〈U, V 〉 =
∑n
i=1

∑c
j=1 UijVij onto the RIM manifold

M, the tangent space ofM at X is given by TXM = {U | U1c = 0}. For any function H, if its
Euclidean gradient is GradH(F ), the Riemannian gradient gradH(F ) is expressed as following.

gradH(F ) = GradH(F )− 1

c
GradH(F )1c1

T
c . (24)

Proof. According to the definition of tangent space,

TXM = Ker(D(X1c − 1n)[U ]) = {U | U1c = 0} (25)

Let GradH be the gradient of H in the Euclidean space. Then, GradH = GradH‖ + GradH⊥,
where GradH‖ represents the component of GradH parallel to TXM, and GradH⊥ represents the
component perpendicular to TXM.

By the definition of the Riemannian gradient,

DH[V ] = 〈GradH, V 〉 = 〈gradH, V 〉X , V ∈ TXM (26)

Here, 〈gradH, V 〉X denotes the inner product equipped on the manifold at X . When 〈gradH, V 〉X
coincides with the Euclidean inner product, we have

〈GradH, V 〉 = 〈GradH‖, V 〉+ 〈GradH⊥, V 〉 = 〈GradH‖, V 〉 = 〈gradH, V 〉X (27)

for V ∈ TXM, since 〈GradH⊥, V 〉 = 0 for V ∈ TXM. By the Ritz representation theorem, in this
case, gradH is the orthogonal projection of GradH onto the tangent space. The next step is to solve
the optimization problem:

min
U∈{U |U1c=0}

L = min
U∈{U |U1c=0}

‖U − GradH‖2F (28)

The Lagrangian function for the optimization problem is given by: L = 1
2‖U−GradH‖2F +αT (U1c).

Taking the gradient with respect to U , we have:

∇UL = U − GradH+ α1Tc = 0 (29)
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Solving for U , we obtainU = GradH − α1Tc .. Since U1c = 0, substituting U gives GradH1c −
α1Tc 1c = GradH1c − cα = 0, which implies α = 1

cGradH1c. Therefore, the Riemannian gradient
is following.

gradH = argminU∈{U |U1c=0}‖U − GradH‖2F = GradH− 1

c
GradH1c1

T
c (30)

A.3 PROOF OF THEOREM 3

For the manifoldM, there exists a unique connection that is compatible with the inner product and
ensures that the Riemannian Hessian mapping is self-adjoint. This connection is given by following.
∇̄ is the Riemannian connection in Euclidean space.

∇V U = ∇̄V U −
1

c
∇̄V U1c1

T
c . (31)

Proof. First, we need to prove that the connection is compatible with the inner product, which means
proving W 〈U, V 〉 = 〈∇WU, V 〉+ 〈U,∇WV 〉. We have the following equation

W 〈U, V 〉 = D(〈U, V 〉)[W ] = D

 n∑
i=1

n∑
j=1

UijVij

 [W ] =

n∑
i=1

n∑
j=1

D(UijVij)[W ]

=

n∑
i=1

n∑
j=1

(VijD(Uij)[Wij ] + UijD(Vij)[Wij ]) = 〈U,D(V )[W ]〉+ 〈D(U)[W ], V 〉

= 〈U,D(V )[W ]− 1

c
D(V )[W ]1c1

T
c 〉+ 〈D(U)[W ]− 1

c
D(U)[W ]1c1

T
c , V 〉

+ 〈U, 1

c
D(V )[W ]1c1

T
c 〉+ 〈1

c
D(U)[W ]1c1

T
c , V 〉.

(32)
Since the standard inner product in Euclidean space is chosen, we have

〈U, 1

c
D(V )[W ]1c1

T
c 〉 =

1

c
tr(UTD(V )[W ]1c1

T
c ) =

1

c
tr(D(V )[W ]1c1

T
c U

T ) (33)

=
1

c
tr(D(V )[W ]1c(U1c)

T ) = 0 (34)

The last step equals zero because U ∈ TXM, which implies that U1c = 0. In the Euclidean space,
the connection ∇̄V U is defined as D(U)[V ]. Furthermore, we have:

W 〈U, V 〉 = 〈U,D(V )[W ]− 1

c
D(V )[W ]1c1

T
c 〉+ 〈D(U)[W ]− 1

c
D(U)[W ]1c1

T
c , V 〉 (35)

= 〈U, ∇̄WV −
1

c
∇̄WV 1c1

T
c 〉+ 〈∇̄WU −

1

c
∇̄WU1c1

T
c , V 〉 (36)

= 〈U,∇WV 〉+ 〈V,∇WU〉 (37)

The second step is to prove that the Hessian map obtained from the connection is self-adjoint. That
is, we need to prove [U, V ] = ∇UV − ∇V U, where [U, V ] is the Lie bracket, and [U, V ]f =
U(V (f))− V (U(f)). with f being a smooth scalar field on the manifoldM. U and V are tangent
vectors of the RIM manifold M, i.e., U, V ∈ TXM. Let Ū and V̄ be smooth extensions of U
and V in the neighborhood of M, satisfying Ū |M = U and V̄ |M = V . We have [Ū , V̄ ] =
DV̄ [Ū ]−DŪ [V̄ ] = ∇̄Ū V̄ − ∇̄V̄ Ū . Thus, we can prove that:

[U, V ] = [Ū , V̄ ]|M (38)

=
(
∇̄Ū V̄ − ∇̄V̄ Ū

)
|M (39)

= ProjM
(
∇̄Ū V̄ − ∇̄V̄ Ū

)
|M (40)

= ∇̄UV −
1

c
∇̄UV 1c1

T
c − ∇̄V U +

1

c
∇̄V U1c1

T
c (41)

= ∇UV −∇V U. (42)
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This equality,
(
∇̄Ū V̄ − ∇̄V̄ Ū

)
|M = ProjM

(
∇̄Ū V̄ − ∇̄V̄ Ū

)
|M, holds because [U, V ] is defined in

the tangent space ofM. Therefore, the expression
(
∇̄Ū V̄ − ∇̄V̄ Ū

)
|M and its projection onto the

tangent space ofM must be equal.

A.4 PROOF OF THEOREM 4

For the manifoldM equipped with the connection ∇V U = ∇̄V U − 1
c ∇̄V U1c1

T
c , the Riemannian

Hessian mapping satisfies following.

hessH[V ] = HessH[V ]− 1

c
HessH[V ]1c1

T
c . (43)

Proof. The Riemannian Hessian is defined as

hessH[U ] = ∇U gradH = ∇U
(

GradH− 1

c
GradH1c1

T
c

)
. (44)

Using the definition of the Riemannian connection∇, we have

hessH[U ] = ∇U gradH = D

(
GradH− 1

c
GradH1c1

T
c

)
[U ] (45)

= lim
t→0

GradH(X + tU)−GradH(X)

t
− lim
t→0

GradH(X + tU)1c1
T
c −GradH(X)1c1

T
c

ct
(46)

= HessH[V ]− 1

c
HessH[V ]1c1

T
c (47)

A.5 PROOF OF THEOREM 5

Let RX(tV ) = argminF∈M‖F − (X + tV )‖2F , X ∈M. Then

argminF∈M‖F − (X + tV )‖2F = max(0, X + tV − ν(t)1Tc − 1nω
T (t) + 1nρ

T (t)) (48)

where ν(t), ωT (t), ρT (t) are Lagrange multipliers. Moreover, there exists δ > 0 such that for
t ∈ (0, δ), −ν(t)1Tc − 1nω(t)T + 1nρ(t)T = 0, and the Retraction satisfies the following. Where D

dt
denotes the Levi-Civita derivative.

RX(0) = X,
d

dt
RX(tV )

∣∣
t=0

= V,
D

dt
R′X(tV )

∣∣
t=0

= 0 (49)

Thus, RX(tV ) is a geodesic.

Proof. First, the Lagrangian dual function of the original problem is as follows:

L(F, ν, ω, ρ) =
1

2
‖F − (X + tV )‖2F − νT (F1c − 1n)− ωT (FT 1n − u) + ρT (l − FT 1n) (50)

Where ν, ω, and ρ are the corresponding Lagrange multipliers, satisfying ν ≥ 0, ω ≥ 0, ρ ≥ 0. Let
∂L
∂F = 0, then we have the following formular:

∂L
∂F

= F −X + ν1Tc + 1nω
T − 1nρ

T − tV = 0, (51)

That is, F = X + tV − ν1Tc − 1nω
T + 1nρ

T . Since F lies on the manifoldM and F ≥ 0, the final
result is:

F ∗ = argminF∈M‖F − (X + tV )‖2F = max
(
0, X + tV − ν1Tc − 1nω

T + 1nρ
T
)
. (52)

It can be proven that F ∗ satisfies the KKT conditions of the original problem. For different t, the
values of the Lagrange multipliers ν, ω, ρ vary, and they are functions of t: ν(t), ω(t), ρ(t). The next
step is to prove the three properties of the second-order Retraction, RX(0) = X, ddtRX(tV )

∣∣
t=0

=

V, DdtR
′
X(tV )

∣∣
t=0

= 0. First, consider RX(0) = argminF∈M‖F −X‖2F .
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Since X ∈ M, we have RX(0) = F ∗(0) = X . Additionally, since F ∗(0) = max
(
0, X +

tV − ν1Tc − 1nω
T + 1nρ

T
)∣∣
t=0

= max
(
0, X − ν(0)1Tc − 1nω(0)T + 1nρ(0)T

)
. We know that

X = max
(
0, X − ν(0)1Tc − 1nω(0)T + 1nρ(0)T

)
.

According to the definition, we calculate:

d

dt
RX(tV )|t=0 = lim

t→0

F ∗(t)− F ∗(0)

t
= lim
t→0

max
(
0, X + tV − ν1Tc − 1nω

T + 1nρ
T
)
− F ∗(0)

t
(53)

Since X ∈ M, we know that Xij > 0, X1c = 1n, and l < X1n < u. Furthermore, since V ∈
TXM, there exists a δ > 0 such that for t ∈ (0, δ), we still have (X + tV )ij > 0, (X + tV )1c = 1n,
and l < (X + tV )1n < u. This means that for t ∈ (0, δ), we have RX(tV ) = argminF∈M‖F −
(X + tV )‖2F , and since (X + tV ) ∈ M, it follows that RX(tV ) = F ∗(t) = X + tV . Therefore,
we have:

d

dt
RX(tV )|t=0 = lim

t→0

F ∗(t)− F ∗(0)

t
= lim
t→0

X + tV −X
t

= V (54)

For D
dtR

′
X(tV ), first consider d

dtR
′
X(tV )|t=0 = limt→0

1
t

(
d
dtF

∗(t)− d
dtF

∗(0)
)
. Since there

exists an interval (0, δ) such that F ∗(t) = max
(
0, X + tV − ν1Tc − 1nω

T + 1nρ
T
)

=

X + tV , and within (0, δ), without loss of generality, we can assume that ν(t)1Tc −
1nω(t)T + 1nρ(t)T = 0, and within this interval, X + tV > 0. Thus, within (0, δ),
we have d

dt max
(
0, X + tV − ν1Tc − 1nω

T + 1nρ
T
)

= V. Therefore, d
dtR

′
X(tV )|t=0 =

limt→0
1
t (V − V ) = 0. Thus, the Levi-Civita derivative, compatible with the connection, is

D
dtR

′
X(tV )|t=0 = 0. This concludes the proof.

A.6 PROOF OF THEOREM 6

M = Ω1 ∪ Ω2 ∪ Ω3, where Ω1 = {X | X > 0, X1c = 1n}, Ω2 = {X | XT 1n > l}, and
Ω3 = {X | XT 1n < u}. The primal problem can be solved using the Dykstras (Tibshirani, 2017;
Boyle & Dykstra, 1986) algorithm by iteratively projecting onto Ω1, Ω2, and Ω3. Specifically:

ProjΩ1
(X) =

(
Xij + ηi

)
+

, where η is determined by ProjΩ1
(X)1c = 1n.

ProjΩ2
(X) and ProjΩ3

(X) are defined similarly. For example,

ProjΩ2
(Xj) =

{
Xj , if (Xj)T 1n > lj ,
1
n (lj − 1TnX

j)1n +Xj , if (Xj)T 1n ≤ lj ,
(55)

where Xj is the j-th column of X , and lj is the j-th element of the column vector l.

Proof. Consider first the orthogonal projection on Ω1, which is to solve the optimization problem:
F = arg minF∈Ω1 ‖F −X‖2F where Ω1 = {X | X > 0, X1c = 1n}. The Lagrange function for
this problem, incorporating the equality constraint X1c = 1n and the inequality constraint X > 0, is:

L(F, η,Θ) =
1

2
‖F −X‖2F − ηT (F1c − 1n)−

∑
i,j

ΘijFij (56)

where η ∈ Rn are Lagrange multipliers for the equality constraints, and Θij ≥ 0 are multipliers for
the non-negativity constraints.

Since the constraints are separable row-wise, we optimize each row Fi independently. The row-wise
Lagrangian is Li(Fi, ηi,Θi) = 1

2‖Fi−Xi‖22− ηi(Fi1c− 1)−
∑
j ΘijFij . Taking the gradient with

respect to Fi and setting it to zero:

Fi −Xi − ηi1Tc −Θi = 0 ⇒ Fi = Xi + ηi1
T
c + Θi (57)

By complementary slackness, ΘijFij = 0. If Fij > 0, then Θij = 0, implying Fij = Xij + ηi. If
Fij = 0, then Xij + ηi + Θij = 0 with Θij ≥ 0, hence Xij + ηi ≤ 0. Thus, the optimal solution is:

F ∗ij = max(Xij + ηi, 0) = (Xij + ηi)+ (58)
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The multiplier ηi is determined by the equality constraint F ∗i 1c = 1→
∑c
j=1(Xij + ηi)+ = 1

For the projection onto Ω2, consider the optimization problem: F ∗ = argminF∈Ω2
‖F −X‖2F where

Ω2 = {X | XT 1n > l}. For each column Xj , solve: minF j ‖F j −Xj‖22 s.t. (F j)T 1n > lj .

If (Xj)T 1n > lj , the constraint is already satisfied: ProjΩ2
(Xj) = Xj

If (Xj)T 1n ≤ lj , introduce the Lagrangian:

L(F j , λ) =
1

2
‖F j −Xj‖22 + λ

(
lj − (F j)T 1n

)
, λ ≥ 0 (59)

Taking the gradient of F j , we have the following:

∇F jL = F j −Xj − λ1n = 0 ⇒ F j = Xj + λ1n (60)

Substitute into the binding constraint (F j)T 1n = lj :

(Xj + λ1n)T 1n = lj ⇒ λ =
1

n

(
lj − (Xj)T 1n

)
(61)

Thus, the projection is:

ProjΩ2
(Xj) = Xj +

1

n

(
lj − (Xj)T 1n

)
1n (62)

Combining both cases, we have that

ProjΩ2
(Xj) =

{
Xj , if (Xj)T 1n > lj ,
1
n (lj − 1TnX

j)1n +Xj , if (Xj)T 1n ≤ lj ,
(63)

Similarly, for the projection onto Ω3, we can follow the same procedure and obtain:

ProjΩ3
(Xj) =

{
Xj , if (Xj)T 1n < uj ,
1
n (uj − 1TnX

j)1n +Xj , if (Xj)T 1n ≥ uj ,
(64)

where Xj is the j-th column of X , and uj is the j-th element of the column vector u.

The ultimate goal is to perform an orthogonal projection onto the intersection of three con-
vex sets, Ω1,Ω2,Ω3. This can be achieved using the von Neumann iterative projection the-
orem. However, the von Neumann iterative projection can only guarantee convergence to
Ω1 ∩ Ω2 ∩ Ω3, but it does not ensure the orthogonal projection, i.e., the solution to the
Retraction problem. To address this, we introduce Dykstras’s projection algorithm, which
performs a linear correction to the von Neumann projection algorithm at each step, ensur-
ing that it achieves the orthogonal projection onto Ω1 ∩ Ω2 ∩ Ω3. The algorithm flowchart
for Dykstras’s projection algorithm for the intersection of d convex sets is shown below.

Algorithm 1: Dykstras’s Algorithm for Projection onto the Intersection of Convex Sets
Input: Closed convex sets Ω1,Ω2, . . . ,Ωd and point y ∈ Rn×c
Output: Sequence of iterates u(k) converging to the projection onto Ω1 ∩ · · · ∩ Ωd

1 Initialize u(0) = y, z(0)
1 = · · · = z

(0)
d = 0;

2 while not converged do
3 u

(k)
0 = u

(k−1)
d ;

4 for i = 1 to d do
5 u

(k)
i = ProjΩi

(u
(k)
i−1 + z

(k−1)
i );

6 z
(k)
i = u

(k)
i−1 + z

(k−1)
i − u(k)

i ;
7 end
8 k ← k + 1;
9 end

10 return u(k);

The algorithm iteratively performs ProjΩ1
(·), ProjΩ2

(·), and ProjΩ3
(·), and at each step, a linear

correction using u(k) is applied. This ensures the final result is the orthogonal projection onto the
intersection Ω1 ∩ Ω2 ∩ Ω3.
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A.7 PROOF OF THEOREM 7

Solving the primal problem is equivalent to solving the following dual problem:

max
ω≥0,ρ≥0

L =
1

2
‖max(0, X + tV − ν1Tc − 1nω

T + 1nρ
T )‖2F − 〈ν, 1n〉 − 〈ω, u〉+ 〈ρ, l〉 (65)

where ν, ω, and ρ are Lagrange multipliers. The partial derivatives of L with respect to ν, ω, and ρ
are known, and gradient ascent can be used solving ν, ω, and ρ. Finally, RX(tV ) can be obtained
using max(0, X + tV − ν1Tc − 1nω

T + 1nρ
T ). The partial derivatives are following.

∂L
∂ν

= max(0, X + tV − ν1Tc − 1nω
T + 1nρ

T )1c − 1n

∂L
∂ω

= max(0, X + tV − ν1Tc − 1nω
T + 1nρ

T )T 1n − u

∂L
∂ρ

= −max(0, X + tV − ν1Tc − 1nω
T + 1nρ

T )T 1n + l

(66)

Proof. According to the previous theorem, we know that

F ∗ = max
(
0, X + tV − ν1Tc − 1nω

T + 1nρ
T
)

(67)

Substituting F ∗ into the Lagrangian function, we obtain

L(ν, ω, θ) =
1

2

∥∥max
(
0, X + tV − ν1Tc − 1nω

T + 1nρ
T
)
−X − tV

∥∥2

F
(68)

+ νT max
(
0, X + tV − ν1Tc − 1nω

T + 1nρ
T
)
1c − νT 1n (69)

+ ωT max
(
0, X + tV − ν1Tc − 1nω

T + 1nρ
T
)T

1n − ωTu (70)

− ρT max
(
0, X + tV − ν1Tc − 1nω

T + 1nρ
T
)T

1n + ρT l (71)

Among the Lagrange multipliers ν, ω, ρ, we have ω ≥ 0 and ρ ≥ 0.

? If
(
X + tV − ν1Tc − 1nω

T + 1nρ
T
)
< 0, then max

(
0, X + tV − ν1Tc − 1nω

T + 1nρ
T
)

= 0,
which further leads to

L(ν, ω, ρ) =
1

2
‖X + tV ‖2F − νT 1n − ωTu+ ρT l (72)

At this point, a simple differentiation yields:

∂

∂ν
L(ν, ω, ρ) = −1n,

∂

∂ω
L(ν, ω, ρ) = −u, ∂

∂ρ
L(ν, ω, ρ) = l (73)

? If
(
X + tV − ν1Tc − 1nω

T + 1nρ
T
)
≥ 0, then max

(
0, X + tV − ν1Tc − 1nω

T + 1nρ
T
)

= X +

tV −ν1Tc −1nω
T +1nρ

T . It is worth noting that νT max
(
0, X+tV −ν1Tc −1nω

T +1nρ
T
)
1c ∈ R

is a real number, that is,

νT max
(
0, X + tV − ν1Tc − 1nω

T + 1nρ
T )1c (74)

= tr
(
νT max

(
0, X + tV − ν1Tc − 1nω

T + 1nρ
T )1c) (75)

= tr
(
max

(
0, X + tV − ν1Tc − 1nω

T + 1nρ
T )T ν1Tc ) (76)

=
〈
max

(
0, X + tV − ν1Tc − 1nω

T + 1nρ
T ), ν1Tc 〉. (77)

At this point, we have

L(ν, ω, ρ) =
1

2

∥∥ν1Tc + 1nω
T − 1nρ

T
∥∥2

F
− 〈ν, 1n〉 − 〈ω, u〉+ 〈ρ, l〉 (78)

+
〈
X + tV − ν1Tc − 1nω

T + 1nρ
T , ν1Tc + 1nω

T − 1nρ
T
〉

(79)

=
1

2

∥∥ν1Tc + 1nω
T − 1nρ

T
∥∥2

F
− 〈ν, 1n〉 − 〈ω, u〉+ 〈ρ, l〉 (80)

+
〈
X + tV, ν1Tc + 1nω

T − 1nρ
T
〉
−
∥∥ν1Tc + 1nω

T − 1nρ
T
∥∥2

F
(81)
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= −1

2

∥∥ν1Tc + 1nω
T − 1nρ

T
∥∥2

F
− 〈ν, 1n〉 − 〈ω, u〉 (82)

+ 〈ρ, l〉+
〈
X + tV, ν1Tc + 1nω

T − 1nρ
T
〉

(83)

At this point, taking derivatives of the Lagrangian with respect to the multipliers ν, ω, ρ, we obtain

∂L
∂ν

= (X + tV − ν1Tc − 1nω
T + 1nρ

T )1c − 1n,

∂L
∂ω

= (X + tV − ν1Tc − 1nω
T + 1nρ

T )T 1n − u,

∂L
∂ρ

= −(X + tV − ν1Tc − 1nω
T + 1nρ

T )T 1n + l.

(84)

Finally, by consolidating the two cases, we obtain

∂L
∂ν

= max(0, X + tV − ν1Tc − 1nω
T + 1nρ

T )1c − 1n,

∂L
∂ω

= max(0, X + tV − ν1Tc − 1nω
T + 1nρ

T )T 1n − u,

∂L
∂ρ

= −max(0, X + tV − ν1Tc − 1nω
T + 1nρ

T )T 1n + l.

(85)

After obtaining the gradient, the dual problem can be solved by a simple dual gradient ascent method.
It should be noted that the multipliers ω and ρ have non-negative constraints, so projection onto the
constraints is needed. Specifically, after each gradient ascent step, ω and ρ should be projected onto
the non-negative constraint. Once ν, ω, and ρ are obtained, F ∗ can be derived using

F ∗ = max
(
0, X + tV − ν1Tc − 1nω

T + 1nρ
T
)

(86)

The algorithm flow is as follows:

Algorithm 2: Dual Gradient Projection Ascent Method
Input: Initial values: ν0, ω0, ρ0

Step size κ > 0
Constraints: ω ≥ 0, ρ ≥ 0
Output: Optimized multipliers: ν∗, ω∗, ρ∗

1 Initialize ν = ν0, ω = ω0, ρ = ρ0;
2 while not converged do
3 Compute Gradient:;
4

∂L
∂ν , ∂L∂ω , ∂L∂ρ ;

5 Update multipliers:;
6 ν ← ν + κ · ∂L∂ν ;
7 ω ← ω + κ · ∂L∂ω ;
8 ρ← ρ+ κ · ∂L∂ρ ;
9 Project onto constraints:;

10 ω ← max(0, ω);
11 ρ← max(0, ρ);
12 end
13 return Final values ν, ω, ρ;

A.8 PROOF OF THEOREM 8

The Sinkhorn-based Retraction is defined as

RsX(tV ) = S(X � exp(tV �X)) = diag(p∗)(X � exp(tV �X)) diag(q∗ � w∗) (87)

where p∗, q∗, w∗ are vectors, exp(·) denotes element-wise exponentiation, and diag(·) converts a
vector into a diagonal matrix. The vectors p∗, q∗, w∗ are obtained by iteratively updating the following
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equations: 
p(k+1) = 1n �

(
(X � exp(tV �X)) (q(k) � w(k))

)
,

q(k+1) = max
(
l �
(

(X � exp(tV �X))
T
p(k+1) � w(k)

)
, 1c

)
,

w(k+1) = min
(
u�

(
(X � exp(tV �X))

T
p(k+1) � q(k+1)

)
, 1c

)
.

(88)

This iterative procedure ensures the mapping onto the RIM manifold. The solution RsX(tV ) =
diag(p∗)(X�exp(tV �X)) diag(q∗�w∗) is equivalent to solving the dual-bound optimal transport
problem (12) with an entropy regularization parameter of 1.

RsX(tV ) = argminF∈M
〈
F,− log(X�exp(tV �X))

〉
+δ
∣∣
δ=1

n∑
i=1

c∑
j=1

(
Fij log(Fij)−Fij

)
(89)

Proof. Introduce Lagrange multipliers η ∈ Rn (for equality F1c = 1n), and λ, ν ∈ Rc,λ, ν > 0 (for
inequalities FT 1n > l, FT 1n < u). The Lagrangian is:

L(F, η, λ, ν) =
〈
F,− log(X � exp(tV �X))

〉
+
∑
i,j

(
Fij log(Fij)− Fij

)
+ ηT (F1c − 1n) + λT (l − FT 1n) + νT (FT 1n − u).

(90)

Differentiate L with respect to Fij and set to zero, we have

− log

(
Xij exp

(
tVij
Xij

))
+ logFij + ηi − λj + νj = 0 (91)

Simplify using log(Xij exp(tVij/Xij)) = logXij + tVij/Xij :

−Xij −
tVij
Xij

+ logFij + ηi − λj + νj = 0 (92)

Solve for Fij :

F ∗ij = Xij exp

(
tVij
Xij
− ηi + λj − νj

)
= Xij exp

(
tVij
Xij

)
e−ηi+λj−νj (93)

Since λ and ν are positive, we introduce the following variable substitutions:
p = e−η,

q = eλ, eλ ≥ 1n,

w = e−ν , e−ν ≤ 1n.

(94)

Writing the component-wise form into matrix form, we have the following formula.

F ∗ = diag(p) (X � exp(tV �X)) diag(q � w). (95)

To construct the iterative format, we first consider the equality constraints. Substitute F into
F1c = 1n:

diag(p) (X � exp(tV �X)) diag(q � w)1c = 1n ⇒ diag(p) (X � exp(tV �X)) (q � w) = 1n
(96)

Further, we can derive the iterative update formula for the row equality constraints.

p = 1n � ((X � exp(tV �X)) (q � w))⇒ p(k+1) = 1n �
(

(X � exp(tV �X)) (q(k) � w(k))
)

(97)
Next, considering the column constraint FT 1n > l, substituting F , we obtain:

diag(q � w) (X � exp(tV �X))
T

diag(p)T 1n > l⇒ (q � w)�
(

(X � exp(tV �X))
T
p
)
> l
(98)

By the complementary slackness condition, we obtain:

λj
[
(q � w)�

(
(X � exp(tV �X))T p

)
− l
]
j

= 0 (99)
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At this point, we discuss the complementary slackness condition.
[
(q � w)�

(
(X � exp(tV �X))T p

)]
j
6= lj , λj = 0⇒ qj = 1[

(q � w)�
(
(X � exp(tV �X))T p

)]
j

= lj , ⇒ qj =
(
l �
(

(X � exp(tV �X))
T
p� w

))
j

(100)
The element-wise iterative update formula is then derived as follows.

qj = max
(
l �
(

(X � exp(tV �X))
T
p� w

)
, 1c

)
j

(101)

⇒q(k+1)
j = max

(
l �
(

(X � exp(tV �X))
T
p� w

)
, 1c

)
j

(102)

⇒q(k+1) = max
(
l �
(

(X � exp(tV �X))
T
p� w

)
, 1c

)
(103)

Considering the column constraint FT 1n < u, substituting F , we obtain:

diag(q�w) (X � exp(tV �X))
T

diag(p)T 1n < u⇒ (q�w)�
(

(X � exp(tV �X))
T
p
)
< u

(104)

By the complementary slackness condition for upper bounds:

νj

[
u− (q � w)�

(
(X � exp(tV �X))

T
p
)]
j

= 0 (105)

This leads to two cases:
[
(q � w)�

(
(X � exp(tV �X))

T
p
)]
j
6= uj , νj = 0⇒ wj = 1[

(q � w)�
(

(X � exp(tV �X))
T
p
)]
j

= uj , ⇒ wj =
(
u�

((
(X � exp(tV �X))

T
p
)
� q
))

j

(106)

The element-wise update rule is then:

wj = min
(
u�

((
(X � exp(tV �X))

T
p
)
� q
)
, 1c

)
j

(107)

⇒w(k+1)
j = min

(
u�

((
(X � exp(tV �X))

T
p(k+1)

)
� q(k+1)

)
, 1c

)
j

(108)

⇒w(k+1) = min
(
u�

((
(X � exp(tV �X))

T
p(k+1)

)
� q(k+1)

)
, 1c

)
(109)

The final update formula can be obtained as follows.
p(k+1) = 1n �

(
(X � exp(tV �X)) (q(k) � w(k))

)
,

q(k+1) = max
(
l �
(

(X � exp(tV �X))
T
p(k+1) � w(k)

)
, 1c

)
,

w(k+1) = min
(
u�

(
(X � exp(tV �X))

T
p(k+1) � q(k+1)

)
, 1c

)
.

(110)

It is easy to verify that the result derived from Sinkhorn is indeed a Retraction (Douik & Hassibi,
2019). It can be seen that the F obtained through the Retraction RsX(tV ) minimizes the inner
product with log(X � exp(tV �X)) under the entropy regularization coefficient of 1. On one hand,
this entropy regularization is introduced merely to facilitate computation via the Sinkhorn theorem.
On the other hand, the regularization coefficient being 1 lacks practical significance. Moreover,
this Retraction is not a second-order Retraction, making its theoretical justification in terms of
convergence properties less rigorous compared to the norm-minimizing Retraction. Therefore, the
norm-minimizing Retraction is recommended.

A.9 PROOF OF THEOREM 9

Theorem 9. The loss function for the Ratio Cut is given byHr(F ) = tr(FTLF (FTF )−1). Then,
the Euclidean gradient of the loss function with respect to F is:

GradHr(F ) = 2
(
LF (FTF )−1 − F (FTF )−1(FTLF )(FTF )−1

)
(111)

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Given the substitutions (FTF )−1 = J and FTLF = K, the Euclidean Hessian map for the loss
function is:

HessHr[V ] = 2
(
LV J − LFJ(V TF + FTV )J − V JKJ + FJ(V TF + FTV )JKJ (112)

− FJ(V TLF + FTLV )J + FJKJ(V TF + FTV )J
)

(113)

Proof. Let the objective function beHr(F ) = tr(FTLFJ), where J = (FTF )−1. Apply a small
perturbation δF to F , yielding the variation:

δHr = tr
(
(δFT )LFJ + FTL(δF )J − FTLFJ

(
(δFT )F + FT (δF )

)
J
)
. (114)

Using the cyclic property of the trace and symmetry (L is symmetric, J is symmetric), we simplify
to:

δHr = 2 tr
(
δFT

(
LFJ − FJ(FTLF )J

))
. (115)

Thus, the Euclidean gradient is:

GradHr(F ) = 2
(
LFJ − FJ(FTLF )J

)
. (116)

Apply the direction V to the gradient and compute the directional derivative:

HessHr[V ] =
d

dt
GradHr(F + tV )

∣∣∣
t=0

. (117)

Expanding the components:

• The derivative of LFJ gives LV J − LFJ(V TF + FTV )J ,

• The derivative of −FJKJ yields:

−V JKJ − F
[
−J(V TF + FTV )JKJ + J(V TLF + FTLV )J + JKJ(V TF + FTV )J

]
.

(118)

Combining and simplifying:

HessHr[V ] = 2
(
LV J−LFJ(V TF+FTV )J−V JKJ+FJ(V TF+FTV )JKJ−FJ(V TLF+FTLV )J

)
.

(119)
Further, to obtain the Riemannian gradient and Riemannian Hessian mapping, the Euclidean gradient
and Euclidean Hessian mapping from the above expressions can be projected onto the RIM manifold.
This allows for the optimization of the Ratio Cut loss function on the RIM manifold.

A.10 PROOF OF THEOREM 10

Theorem 10. For any graph cut problem expressed asH(F ) = tr((FTLF )(FTWF )−1), where W
is any symmetric matrix, the Euclidean gradient GradH(F ) is bounded, and satisfies:

‖GradH(F )‖s ≤ 2

(
‖L‖s

√
n

α
+
‖W‖s‖L‖sn3/2

α2

)
, (120)

where

α =
σmin(W ) · l2

n
, (121)

and σmin(W ) is the smallest singular value of the matrix W . This implies that H(F ) is Lipschitz
continuous.

Proof. The spectral norm of the matrix F , which is its largest singular value, satisfies:

‖F‖2s = σmax(F )2 ≤
n∑
i=1

‖Fi‖22 ≤ n · 12 = n, (122)

therefore, ‖F‖s ≤
√
n.
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Let F j be the j-th column of the matrix F . Given the constraint F>1n > l, the `1-norm of F j
satisfies ‖F j‖1 =

∑n
i=1 Fij > l. By the Cauchy–Schwarz inequality, we have:

‖F j‖1 ≤
√
n‖F j‖2 ⇒ ‖F j‖2 ≥

‖F j‖1√
n
≥ l√

n
. (123)

Next, we estimate a lower bound for the smallest singular value of the matrix FTWF . For any unit
vector v ∈ Rc, we have:

‖Fv‖22 ≥
c∑
j=1

v2
j ‖F j‖22 ≥

l2

n

c∑
j=1

v2
j =

l2

n
. (124)

Therefore, the smallest singular value of the matrix F satisfies:

σmin(F ) ≥ l√
n
. (125)

Since W is a symmetric matrix, its singular values are the absolute values of its eigenvalues, i.e.,
σi(W ) = |λi(W )|. Using the singular value inequality for matrix products, we have:

σmin(FTWF ) ≥ σmin(F )2 · σmin(W ). (126)

Substituting the previously derived σmin(F ) ≥ l√
n
, σmin(W ) = mini |λi(W )| we obtain

σmin(FTWF ) ≥
(

l√
n

)2

· σmin(W ) =
l2

n
· σmin(W ). (127)

Furthermore, the upper bound for the spectral norm of the inverse matrix can be estimated as:

‖(FTWF )−1‖s =
1

σmin(FTWF )
≤ n

σmin(W )l2
≡ 1

α
(128)

and the α can be presented as

α =
σmin(W )l2

n
. (129)

Using the same proof method as in A.9, we provide the gradient expression for the general graph cut
objective function as:

GradH(F ) = 2
(
LF (FTWF )−1 −WF (FTWF )−1(FTLF )(FTWF )−1

)
, (130)

and with the above technique, we can estimate its nuclear norm upper bound.

For ‖LF (FTWF )−1‖s Using the sub-multiplicativity of the spectral norm (‖AB‖s ≤ ‖A‖s ·
‖B‖s):

‖LF (FTWF )−1‖s ≤ ‖L‖s · ‖F‖s · ‖(FTWF )−1‖s (131)

Substituting the known upper bounds:

‖LF (FTWF )−1‖s ≤ ‖L‖s · ‖F‖s · ‖(FTWF )−1‖s = ‖L‖s · ‖F‖s ·
1

σmin(FTWF )
(132)

≤ ‖L‖s · ‖F‖s ·
n

σmin(W )l2
=
‖L‖s · ‖F‖s

α
≤ ‖L‖s ·

√
n

α
(133)

Next, we consider the second term WF (FTWF )−1(FTLF )(FTWF )−1. This term can be decom-
posed into four parts, namely:

‖WF (FTWF )−1(FTLF )(FTWF )−1‖s ≤ ‖WF‖s·‖(FTWF )−1‖s·‖FTLF‖s·‖(FTWF )−1‖s
(134)

For ‖WF‖s, we have the following inequality:

‖WF‖s ≤ ‖W‖s · ‖F‖s ≤ ‖W‖s ·
√
n. (135)
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For ‖FTLF‖s, we have the following inequality:

‖FTLF‖s ≤ ‖FT ‖s · ‖L‖s · ‖F‖s = ‖F‖s · ‖L‖s · ‖F‖s ≤ ‖L‖s · n. (136)

Combining our estimates with the previous inequality, we obtain:

‖WF (FTWF )−1(FTLF )(FTWF )−1‖s (137)

≤ ‖WF‖s · ‖(FTWF )−1‖s · ‖FTLF‖s · ‖(FTWF )−1‖s (138)

≤ ‖W‖s ·
√
n · ‖L‖s · n ·

( 1

σmin(FTWF )

)2 ≤ ‖W‖s · √n · ‖L‖s · n · ( n

σmin(W )l2
)2
(139)

=
‖W‖s · ‖L‖s · n7/2

σ2
min(W )l4

=
‖W‖s · ‖L‖s · n3/2

α2
. (140)

In summary, we have

‖GradH(F )‖s ≤ 2

(
‖L‖s

√
n

α
+
‖W‖s‖L‖sn3/2

α2

)
, (141)

where

α =
σmin(W ) · l2

n
. (142)

Since
‖GradH(F )‖F ≤

√
min(n, c) ‖GradH(F )‖s , (143)

it follows that ‖GradH(F )‖F is also bounded.

In particular, for the Ratio Cut, we know that W = I is the identity matrix. Therefore,

‖GradHm(F )‖s ≤ 2

(
‖L‖s

√
n

α
+
‖L‖sn3/2

α2

)
, α =

l2

n
. (144)

Furthermore, since

gradHr(F ) = GradrH(F )− 1

c
GradrH(F )1c1

T
c , (145)

it is clear that gradHr(F ) is also bounded. An obvious bound is given by

‖gradHr(F )‖s ≤ ‖GradHr(F )‖s +
1

c

(
‖GradHr(F )‖s ·

∥∥1c1
T
c

∥∥
s

)
, (146)

which leads to

‖gradHr(F )‖s ≤ 2

(
‖L‖s

√
n

α
+
‖L‖sn3/2

α2

)
+

1

c

(
2

(
‖L‖s

√
n

α
+
‖L‖sn3/2

α2

)
+
√
nc

)
(147)

= (2 +
2

c
)

(
‖L‖s

√
n

α
+
‖L‖sn3/2

α2

)
+

√
n

c
(148)

where α = l2

n .

A.11 PROOF OF THEOREM 11

Theorem 11. For a general graph cut problem expressed as H(F ) = tr((FTLF )(FTWF )−1),
where W is an arbitrary symmetric matrix, the problem is always Lipschitz smooth. Let the cor-
responding smoothness Lipschitz constant be Q. When applying Riemannian Gradient Descent
(RIMRGD) on the RIM manifold with step size κ, if κ ≤ 1

Q , thenH(F ) converges to a critical point
at a rate of O( 1

T ), i.e.,

min
0≤k≤T

∥∥∥grad H(F (k))
∥∥∥2

≤
2
(
H(F (0))−H(F ∗)

)
κ(T + 1)

, (149)

where T is the total number of iterations, andH(F ∗) is the global minimum ofH(F ).
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Proof. For a general graph cut problem, similar to Theorem A.9, the expression of the Euclidean
Hessian mapping can be given.

HessH[V ] = 2
(
LV J − LFJsym(V TWF )J −WV JKJ (150)

+AFJsym(V TWF )JKJ −WFJsym(V TWF )J (151)

+WFJKJsym(V TWF )J
)

(152)

Where (FTWF )−1 = J and FTLF = K, and sym(·) denotes the symmetrization operation.

Similar to the previous discussion, we can decompose HessH[V ] into multiple parts:

||HessH[V ]||s ≤ 2
(
||LV J ||s + ||LFJsym(V TWF )J ||s + ||WV JKJ ||s (153)

+ ||AFJsym(V TWF )JKJ ||s + ||WFJsym(V TWF )J ||s (154)

+ ||WFJKJsym(V TWF )J ||s
)

(155)

So the spectral norm of each part is bounded. It is not difficult to prove that the spectral norm of
HessH[V ] is also bounded. Furthermore, it can be shown that the Riemannian Hessian map hessH[V ]
is also bounded.

||hessH[V ]||s ≤ ||HessH[V ]||s +
1

c
||HessH[V ]||s · ||1Tc 1c||s (156)

Since Theorem A.5 has already proven that we can obtain geodesics using Dijkstra’s algorithm, in
the subsequent proofs, we will directly assume the use of geodesics for the retraction process.

Since the Riemannian Hessian map is bounded, let its upper bound be Q. Using the retraction
generated by the geodesic, we can expand the functionH(F ) as follows:

H(RF (V )) ≤ H(F ) + 〈gradH(F ), V 〉F +
Q

2
‖V ‖2F (157)

In the Riemannian Gradient Descent method on the RIM manifold (RIMRGD), by choosing V =
−κ gradH(F (k)), and substituting it into the upper bound, we obtain:

H(F (k+1)) ≤ H(F (k))− κ‖gradH(F (k))‖2 +
Qκ2

2
‖gradH(F (k))‖2. (158)

When the step size κ ≤ 1
Q , it simplifies to:

H(F (k+1)) ≤ H(F (k))− κ

2
‖gradH(F (k))‖2. (159)

This indicates that at each iteration, the function value decreases by at least κ
2 ‖gradH(F (k))‖2.

Summing the descent over the first k iterations yields:

k∑
i=0

κ

2
‖gradH(F (i))‖2 ≤ H(F (0))−H(F (k+1)) ≤ H(F (0))−H(F ∗), (160)

where H(F ∗) is the infimum of H(F ). Since the right-hand side is bounded, the series∑∞
i=0 ‖gradH(F (i))‖2 converges, and thus

lim
k→∞

‖gradH(F (k))‖ = 0. (161)

From the inequality above, we obtain:

min
0≤k≤T

‖gradH(F (k))‖2 ≤ 2(H(F (0))−H(F ∗))

κ(T + 1)
(162)

which implies a convergence rate of O
(

1
T

)
.
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In addition, since the algorithm in Manopt adopts the Wolfe step size, we further provide a conver-
gence proof of RIMRGD under the Wolfe step-size scheme. Moreover, based on our experiments, it
usually yields numerical results consistent with those obtained using the Armijo step size.

Condition 1. Equation (156) shows that the Riemannian Hessian hess is bounded. Therefore, we
have hess(F ) ≤ Q. According to Lemma 3.5 (Retraction L-smooth) in (Kasai et al., 2018), there
exists L > 0 such that

f(xt+1) ≤ f(x) + 〈grad f(x), s〉+ 1
2L‖s‖

2, xt+1 = Rx(s), s ∈ TxM. (163)

Condition 2. We adopt the Wolfe step size, i.e.,

f(x+ κd) ≤ f(x) + c1 · κ 〈grad f(x), d〉,
〈grad f(x+ κd), d〉 ≥ c2 〈grad f(x), d〉, (164)

where 0 < c1 < c2 < 1 are hyperparameters.

Condition 3. The Ratio Cut loss is clearly lower bounded (according to the real interpretation of
Ratio Cut).

Therefore, according to (Sato, 2021), the algorithm converges to a critical point.
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B PRELIMINARIES

B.1 NOTATIONS

Matrices are denoted by uppercase letters, while vectors are denoted by lowercase letters. Let tr(·)
the trace of a matrix. 1n denotes an n-dimensional column vector of all ones, and Indn×c represents
the set of indicator matrices. If F ∈ Indn×c, then F ∈ Rn×c satisfies the property that each row
contains exactly one element equal to 1, while all others are 0. The relaxed indicator matrix set is
defined as M = {X | X1c = 1n, l < XT 1n < u,X > 0}, and we proved it can form a manifold
M. TXM represents the tangent space ofM at X . 〈·, ·〉 denotes the Euclidean inner product, while
〈·, ·〉X denotes the inner product on the manifold at X . H represents the objective function, GradH
denotes the Euclidean gradient ofH, and gradH denotes the Riemannian gradient ofH. HessH(F )
represents the Euclidean Hessian mapping, while hessH(F ) represents the Riemannian Hessian
mapping. RX denotes the Retraction function at X , which generates a curve passing through X ,
and RX(tV ) represents a curve on the manifold obtained via the Retraction function, satisfying
d
dtRX(0) = V . The connection in Euclidean space is denoted as ∇̄V U , while the connection on the
manifold is denoted as ∇V U . The differential mapping is represented as DH(F )[V ]. Specifically,
a geodesic γ(t) is a curve on the manifold that extremizes the distance between two points. If
D
dtγ
′(t) = 0, then γ(t) is a geodesic. P represents vector transport, which maps the tangent vector V

at point X on the manifold to the tangent space TYM at another point Y .

We have compiled all the symbols used in this paper in Table 6, where their specific meanings are
explained. Additionally, all Riemannian optimization-related symbols used in this paper follow
standard conventions in the field and can also be referenced in relevant textbooks.

Table 6: Notations.

Notation Description

Indn×c The set of n× c indicator matrices
1n, 1c All-ones column vectors of size n or c
L Laplacian matrix
l, u Lower and upper bounds of the column sum of the relaxed indicator matrix, both are c-dimensional column vectors
M A set that forms a manifold
< ·, · > Inner product defined in Euclidean space, mapping two Euclidean vectors to a scalar
< ·, · >X Inner product defined on the tangent space ofM at X
TXM Tangent space of the manifoldM at X , which is a linear space
H The objective function to be optimized
GradH(F ) Euclidean gradient ofH at F , i.e., the gradient in the embedding space
gradH(F ) Riemannian gradient ofH at F

∇̄V U Riemannian connection of the tangent vector field U along V in Euclidean space
∇V U Riemannian connection of the tangent vector field U along V on the manifold
HessH[V ] Riemannian Hessian mapping along tangent vector V in Euclidean space
hessH[V ] Riemannian Hessian mapping along tangent vector V on the manifold
RX(tV ) A curve on the manifold generated at X along the tangent vector tV
d
dtRX(tV )

∣∣
t=0

The derivative of RX(tV ) at t = 0
D
dtγ
′(t)
∣∣
t=0

Levi-Civita derivative of d
dtγ(t) at t = 0, where D

dtγ
′(t)
∣∣
t=0

= 0 means RX(tV ) generates a geodesic with parameter t

argmin(·) Returns the minimizer of an optimization problem
Ω1, Ω2, Ω3 Linear submanifolds that require projection
Xi The i-th row of matrix X
Xj The j-th column of matrix X
ProjΩi

(Xj) Orthogonal projection of the j-th column of matrix X onto the set Ωi
max(a, b) Returns the maximum of a and b
min(a, b) Returns the minimum of a and b
L Lagrangian function for solving the optimization problem
|| · ||F Frobenius norm of a matrix
ν(t), ω(t), ρ(t) Lagrange multipliers in the optimization problem
∂L
∂ν ,

∂L
∂ω ,

∂L
∂ρ Partial derivatives of L with respect to ν(t), ω(t), ρ(t)

exp(·) Element-wise exponential function on a matrix

diag(·) Converts a vector into a diagonal matrix
DH(F )[V ] The differential mapping ofH at F along V
S(·) Sinkhorn function that outputs a doubly stochastic matrix
P Maps the tangent vector V at point X on the manifold to the tangent space TYM at another point Y
(·)† Moore-Penrose pseudoinverse of a matrix
tr(·) Trace of a matrix
� Element-wise division
� Hadamard product (element-wise multiplication)
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B.2 INTRODUCTION TO RIEMANNIAN OPTIMIZATION

Riemannian optimization optimizes functions over Riemannian manifolds, which are smooth mani-
folds equipped with a metric that defines distance and angles (Meghwanshi et al., 2018). It extends
classical optimization to non-Euclidean spaces by replacing the Euclidean gradient with the Rieman-
nian gradient and so on. Introduced in the 1990s in control theory and signal processing (Edelman
et al., 1998; Overton & Womersley, 1995), it has since been widely adopted in machine learning,
computer vision, and data science due to its ability to handle geometric constraints (Carson et al.,
2017; Khan & Maji, 2021; Boumal, 2023).

The core idea is to respect the manifold’s geometry during optimization. Unlike classical methods
that assume Euclidean space, Riemannian optimization accounts for curvature. Early methods
used steepest descent, while later developments introduced second-order methods like Riemannian
conjugate gradient and Newton methods for faster convergence. Recent advancements have expanded
this framework to more complex manifolds, such as Stiefel manifold.

The main advantage of Riemannian optimization lies in its ability to perform optimization directly
on the manifold, ensuring that the constraints inherent to the problem are naturally respected. For
example, in low-rank matrix factorization, the optimization occurs on the Stiefel manifold St =
{X ∈ Rn×k | XTX = Ik}, where Ik is the identity matrix of size k, naturally respecting the
orthogonality constraints of the factor matrices.

In Riemannian submanifold of Euclidean space, the Riemannian gradient gradH(F ) at a point
F ∈M is defined as the projection of the Euclidean gradient onto the tangent space of the manifold:

gradH(F ) = ProjTFMGradH(F ) (165)

This ensures that the optimization process stays within the manifold, preserving its geometric
structure.

To solve optimization problems efficiently on manifolds, key operations include the Riemannian
gradient, which is used in gradient-based methods. The gradient descent update rule is:

F (k+1) = RF (k)(−α(k)gradH(F (k))) (166)

where RF is the Retraction map, and αk is the step size at iteration k. The purpose of the Retraction
is to update along a curve in the manifold in a specified direction.

For second-order optimization, the Riemannian Hessian hessH(F ) is needed. The Hessian captures
the curvature of the manifold and provides more information about the local behavior of the function.
The Riemannian Hessian is defined as:

hessH(F )[V ] = ∇V gradH(F ) (167)

for any tangent vector V ∈ TFM, and is used in more sophisticated optimization algorithms to
accelerate convergence.

A geodesic is a curve that connects two points on a manifold with an extremal distance, are also
important in Riemannian optimization. They are used to guide the optimization process along the
manifold and are defined by the differential equation:

d2

dt2
γ(t) + Γ(γ(t), γ̇(t)) = 0 (168)

where Γ are the Christoffel symbols that encode the manifold’s curvature (Boumal, 2014; Smirnov,
2021).

The Retraction map RX(tV ) is used to map from the tangent space back onto the manifold after each
iteration. A common Retraction map is the exponential map (Kochurov et al., 2020; Sun et al., 2019),
which can generate a geodesic.

Riemannian optimization efficiently handles manifold structures, avoiding artificial constraints and
leading to faster algorithms. Second-order methods like Riemannian conjugate gradient (RCG) and
Newton methods further improve convergence by utilizing curvature information. The approach is
versatile, extending to manifolds such as the Stiefel, Grassmannian, and the Relaxed Indicator Matrix
(RIM) manifold, which generalizes both single and double stochastic manifolds.

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Overall, Riemannian optimization has become a crucial tool in solving large-scale, constrained
optimization problems, particularly in machine learning, computer vision, and robotics, due to its
ability to manage manifold-valued data and complex constraints.

B.3 INTRODUCTION TO RELATED MANIFOLDS

In this section, we will introduce the single stochastic manifold, the doubly stochastic manifold, and
the Stiefel manifold. For each of these manifolds, we will provide their basic definitions and discuss
optimization methods on these manifolds.

B.3.1 SINGLE STOCHASTIC MANIFOLD

The single stochastic manifold (Sun et al., 2015; Saberi-Movahed et al., 2024) consists of matrices
where each element is greater than zero and the row sums are equal to one, denoted as {X | X >
0, X1c = 1n}, with a dimension of (n − 1)c. The tangent space of a manifoldM at a point X is
given by TXM = {U | X1c = 0}.
In current research, the Fisher information metric is typically used as the inner product on the single
stochastic manifoldM, and is defined as:

< U, V >X=
∑
i

∑
j

UijVij
Xij

, ∀U, V ∈ TXM, X ∈M. (169)

The Riemannian gradient gradH(F ) is the projection of the Euclidean gradient GradH(F ):
gradH(F ) = ProjTFM (GradH(F )� F ) (170)

where ProjTFM is the projection operator that projects vectors from the Euclidean space onto TFM.
Specifically, the projection is given by:

ProjTXM(Z) = Z − (α1Tc )�X, α = Z1c ∈ Rn (171)
This projection operation involves matrix multiplication and element-wise operations, with a com-
plexity of O(nc).

In the single stochastic manifold, the Retraction mapping RX(tV ) is defined as:

X+ = RX(tV ) = (X � exp (tV �X))�
(
X � exp (V �X) 1c1

T
c

)
,

where the operation � denotes element-wise multiplication, and � denotes element-wise division.
The time complexity of this operation involves element-wise computation and normalization, resulting
in a complexity of O(nc).

In the embedded space, the connection is considered with the Fisher metric on the set {X|X > 0}.
According to the Koszul formula theorem, the unique connection in the embedded space is given by:

∇̄UV = DV [U ]− 1

2
(U � V )�X (172)

Based on this, the unique connection on the manifold that makes the Riemannian Hessian mapping
self - adjoint is:

∇UV = ProjTXM
(
∇̄UV

)
= ProjTXM

(
DV [U ]− 1

2
(U � V )�X

)
(173)

When involving directional derivatives and projections, the complexity of the operation is O(nc).

By computing the connection of the Riemannian gradient, one can obtain the Riemannian Hessian
mapping on the manifold. The Riemannian Hessian hessH(F )[V ] is

hessH(F )[V ] = ProjTFM

(
D gradH(F )[V ]− 1

2
(V � gradH(F ))� F

)
(174)

where the computation of D gradH(F )[V ] involves the Euclidean directional derivative:

D gradH(F )[V ] = DGradH(F )[V ]�F+GradH(F )�V −(α1Tc )�V −(Dα[V ]1Tc )�F (175)
where α = (GradH(F ) � F )1c. The time complexity of this computation involves higher-order
derivatives and projections, leading to a complexity of O(nc). Due to the complexity of the computa-
tion, the coefficient in front of O(nc) is large.
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B.3.2 DOUBLY STOCHASTIC MANIFOLD

The double stochastic manifold (Shi et al., 2021; Douik & Hassibi, 2019) refers to the set of matrices
where each element is greater than 0, the row sums equal 1, and the column sums equal r. Specifically,
the manifold is defined as:

{X | X > 0, X1c = 1n, X
T 1n = r} (176)

with dimension (n− 1)(c− 1). In fact, there are requirements for r. The more general definition is
as follows.

{X | X > 0, X1c = 1n, X
T 1n = r, rT 1c = 1TnX1c} (177)

where r is a general vector and the last condition ensures consistency of row and column sums.
Generally, we simply denote it as (176). The tangent space of the manifoldM at X is:

TXM = {U | X1c = 0, XT 1n = 0} (178)

In current research, the Fisher information metric is also used as the inner product on the double
stochastic manifoldM, defined as: 〈U, V 〉X =

∑
i

∑
j
UijVij

Xij
, ∀U, V ∈ TXM, X ∈ M. The

Riemannian gradient on the double stochastic manifold is given by (n=c):{
gradH(F ) = γ −

(
α1Tn + 1n1Tnγ − 1nα

TF
)
� F,

α =
(
I − FFT

)† (
γ − FγT

)
1n, γ = GradH(F )� F.

(179)

Here, (I −FFT )† represents the Moore-Penrose pseudoinverse of an n×n matrix. Since computing
the pseudoinverse requires at least O(n3) operations, this method is impractical for large-scale
datasets.

The connection on the double stochastic manifold is defined as an embedded manifold, and
in the embedding space, the connection is given by ∇̄UV = DV [U ] − 1

2 (U � V ) � X .
Further, the connection on the double stochastic manifold is given by ProjTXM(∇̄UV ) =

ProjTXM
(
DV [U ]− 1

2 (U � V )�X
)
.

ProjTXM denotes the projection into the tangent space of the double stochastic manifold. The
projection expression is:{

ProjTXM(Z) = Z −
(
α1Tn + 1nβ

)
�X,

α =
(
I −XXT

)† (
Z −XZT

)
1n, β = ZT 1n −XTα.

(180)

Indeed, the Riemannian Hessian mapping calculation in the referenced literature involves very
complex expressions, including pseudoinverses and other operations with a time complexity of
O(n3), making it infeasible for large-scale datasets. In contrast, the proposed RIM manifold in this
paper simplifies the calculation significantly, reducing the complexity to O(n).

The Riemannian Hessian is computed as follows:

hessH(F )[V ] = ProjTXM

(
δ̇ − 1

2 (δ � V )� F
)

α = ε
(
γ − FγT

)
1n

β = γT 1n − FTα
γ = GradH(F )� F
δ = γ −

(
α1Tn + 1nβ

T
)
� F

ε =
(
I − FFT

)†
α̇ =

[
ε̇
(
γ − FγT

)
+ ε
(
γ̇ − V γ − F γ̇T

)]
1n

β̇ = γ̇T 1n − V Tα− FT α̇
γ̇ = HessH(F )[V ]� F + GradH(F )� V
δ̇ = γ̇ −

(
α̇1Tn + 1nβ̇

T
)
� F −

(
α1Tn + 1nβ

T
)
� V

ε̇ = ε
(
FV T + V FT

)
ε

(181)

The Retraction map uses Sinkhorn to obtain the doubly stochastic matrix. The time complexity of
optimization on the doubly stochastic manifold is large, with a constant term of O(n3). The aboved
formulas is suitable for the case where n = c. However, when n 6= c, the calculation formula differs
slightly, but the time complexity remains the same.
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B.3.3 STIEFEL MANIFOLD

The Stiefel manifold (Jiang & Dai, 2015; Li et al., 2020; Zhu, 2017) is the set of all matrices whose
columns are orthonormal, i.e.,

St(n, c) = {X ∈ Rn×c | XTX = I}. (182)
It can be proven that this set satisfies the requirements for a manifold, and the dimension of this
manifold is given by:

dim(St(n, c)) = nc− c(c+ 1)

2
. (183)

At X ∈ St, the tangent space of the Stiefel manifold is given by:
TXSt = {Z | ZTX +XTZ = 0}. (184)

Since the Stiefel manifold is an embedded submanifold of Rn×c, its Riemannian inner product is
defined as the Euclidean inner product 〈U, V 〉X =

∑
ij UijVij .

The projection operator onto the tangent space TXSt is given by:{
ProjTXSt(Z) = (Ŵ − ŴT )X,

Ŵ = ZXT − 1
2X(XTZXT ).

(185)

Based on this, the Riemannian gradient can be directly obtained by projecting the gradient.

gradH(F ) = ProjTFSt(GradH(F )) = (Ŵ − ŴT )F, Ŵ = GradH(F )FT − 1

2
F (FT GradH(F )FT )

(186)
To compute the Retraction on the Steifel manifold, the Cayley transform method is used, given by:

Y (α) =
(
I − α

2
W
)−1 (

I +
α

2
W
)
X (187)

Where W = Ŵ − ŴT , α is the length on the curve. However, the inversion of
(
I − α

2W
)

is
computationally expensive. To address this, Li et al. (2020) further attempts to use an iterative
approach to find the solution. The Retraction is obtained by iteratively solving the following equation:

Y (α) = X +
α

2
W (X + Y (α)) (188)

Even so, each iteration still requires multiple matrix multiplications, resulting in a relatively high
computational cost.

To obtain the momentum gradient descent on the Riemannian manifold, it is necessary to define the
vector transport, which moves a tangent vector V1 ∈ TX1St from the Steifel manifold at X1 to the
tangent space TX2

St at X2. This transport operation is denoted as:
P : TX1St→ TX2St, ∀V1 ∈ TX1 ,P(V1) ∈ TX2St. (189)

In fact, this transport operation is general in its definition for manifolds. For the Relaxed Indicator
Matrix (RIM) manifold, TX1M = TX2M for all X1, X2 ∈ M, which means that the vector
transport is simply P(V1) = V1 in the RIM manifold. However, this property does not hold on the
Steifel manifold. The transport formula on the Steifel manifold is given by:

P(V1) = ProjTX2
St(V1) = (Ŵ − ŴT )X2, (190)

where Ŵ = V1X
T
2 − 1

2X2(XT
2 V1X2), ensuring that the vector is properly projected into the tangent

space at X2. This projection step ensures the transfer of the vector V1 from the tangent space at X1

to the tangent space at X2 on the Steifel manifold.

As for the computation of the connection and the Riemannian mapping matrix, although the literature
does not provide explicit expressions, it can be proven that the expressions for the connection and
Hessian map are as follows:{

∇UV = ProjTX2
St(DV [U ]),

hessH(F )[V ] = ProjTX2
St(HessH(F )[V ]).

(191)

Using the above Riemannian toolbox, Riemannian optimization can be performed on the Steifel
manifold. If the closed-form solution for the Retraction is directly computed, the time complexity
is O(n3). However, by using an iterative approach, the time complexity can be reduced to a large
constant factor of O(n2).
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B.4 MANIFOLD-BASED MACHINE LEARNING ALGORITHMS

In this section, we will introduce some classical machine learning algorithms defined on the Single
stochastic, Double stochastic, and Steifel manifolds. In general, we assume the data matrix is Z,
where Z ∈ Rn×k with n samples and k features. Each row of Z represents a sample, and zi denotes
the i-th row of Z.

B.4.1 ALGORITHMS ON THE SINGLE STOCHASTIC MANIFOLD

Fuzzy K-means (Fuzzy C-means, FCM) (Sulaiman & Isa, 2010) is an extension of the traditional
K-means algorithm that allows data points to belong to multiple clusters with degrees of membership,
rather than being strictly assigned to a single cluster. The core idea is to describe the relationship
between data points and clusters through a membership matrix, which is suitable for clustering data
with fuzzy boundaries.

Let the number of clusters be c, and the membership matrix U ∈ Rc×n, where uij represents the
membership degree of the j-th data point in the i-th cluster. The cluster centers are denoted as
C = {c1, c2, ..., cc}. The optimization goal is to minimize the following objective function:

J(U,C) =

c∑
i=1

n∑
j=1

umij‖zj − ci‖2 (192)

The constraints are that the sum of the membership degrees for each data point equals 1:
∑c
i=1 uij =

1 (∀j = 1, 2, ..., n), and the membership degrees are non-negative: uij ∈ [0, 1]. Where m > 1 is
the fuzziness coefficient, which controls the degree of fuzziness in the clustering and ‖zj − ci‖ is the
Euclidean distance between data point zj and cluster center ci. Thus, the final objective function and
constraints can be written as:

min J(U,C) s.t. U ∈ {X ∈ Rc×n | X > 0, XT 1c = 1n}, C ∈ Rc×k (193)

This optimization problem is defined over the Cartesian product of the single stochastic manifold and
the Euclidean space, which still constitutes a form of a single stochastic manifold.

B.4.2 ALGORITHMS ON THE DOUBLE STOCHASTIC MANIFOLD

ANCMM (Yuan et al., 2024c) is a method for solving constrained problems on the double stochastic
manifold, which can achieve adaptive neighbor clustering. Its objective function is given by:

min
S∈Rn×n

n∑
i,j

‖zi − zj‖22 Sij + α‖S‖2F

s.t. ST 1n = 1n, 0 ≤ sij ≤ 1, S = ST , rank(LS) = n− c

(194)

where S is the similarity matrix, and Sij represents the similarity between the i-th and j-th samples.
The constraint can be written as:

{X ∈ Rn×n | X1n = 1n, X
T 1n = 1n, X > 0} ∩ {X ∈ Rn×n | X = XT , LS = n− c} (195)

where LS is the Laplacian matrix corresponding to S, and LS = n − c implies that the learned S
is naturally c-connected, leading to c clusters. Thus, this problem can be viewed as a constrained
optimization problem on the double stochastic manifold.

B.4.3 ALGORITHMS ON THE STEIFEL MANIFOLD

The Min Cut (Fox et al., 2023) is a classic clustering method on the Steifel manifold, and its objective
function and constraints are given by:

min
F

tr(FTLF ), s.t.F ∈ {F ∈ Rn×c | FTF = I} (196)

This optimization problem can be solved through eigenvalue decomposition. However, it requires ap-
proximately O(n3) time complexity, and eigenvalue decomposition alone does not provide clustering
results. Additional post-processing, such as using k-means, is required. Similarly, the derived classic
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methods such as Ratio Cut and Normalized Cut are also classic machine learning algorithms on the
Steifel manifold. The expressions for Ratio Cut and Normalized Cut are as follows:{

minF tr(FTLF (FTF )−1), s.t.F ∈ {F ∈ Rn×c | FTF = I}
minF tr(FTLF (FTDF )−1), s.t.F ∈ {F ∈ Rn×c | FTF = I} (197)

In addition, algorithms such as MinMax Cut (Nie et al., 2010), Principal Component Analysis (PCA)
(Abdi & Williams, 2010), Robust PCA (Hubert et al., 2005), and others are also classic machine
learning algorithms defined on the Steifel manifold.

B.5 OTHER RELATED WORK AND BACKGROUND INTRODUCTION

In this section, we first review our contributions and then introduce other related work beyond
manifold optimization.

As mentioned in our paper, there are currently three main approaches to relaxing the indicator matrix
(ours being the fourth). For the first three, the optimization methods themselves have seen little
change, but have instead been applied to different models. For example:

The earliest approach relaxes to the singly stochastic manifold (Bezdek et al., 1979), which actually
has a history of more than 45 years. More recent applications in clustering include (Bao et al., 2024),
which employs momentum methods to solve the constraint, and Zhao et al. (2022), which introduces
auxiliary variables and updates via coordinate descent. The main drawback of this relaxation is its
inability to incorporate prior information about class sizes into the model.

Another line of work relaxes to the Stiefel manifold, starting from (Ng et al., 2001), which spurred
the development of spectral graph theory and has now a history of about 20 years. The basic idea is
to construct forms like tr(FTLF ) and perform spectral decomposition, as in (He et al., 2025). The
limitation here is that the resulting F lacks the interpretability of an indicator matrix, requiring a
subsequent K-Means step, with a computational complexity of O(n3). Moreover, this approach also
cannot incorporate any class-related information.

A more recent direction is doubly stochastic relaxation, with representative work Fettal et al. (2024),
which solves the problem via optimal transport, and Douik & Hassibi (2019), which adopts manifold
optimization. The challenge here is that the constraints can be overly strict and counterproductive to
the model, and manifold optimization still requires O(n3).

Some works in optimal transport are also related to ours. For example, Chapel et al. (2020) introduces
Partial Optimal Transport, which is a less strict form of optimal transport. This idea is similar to ours
in spirit; however, our algorithm is designed for arbitrary functions defined on manifolds, whereas
theirs focuses on classical linear problems.

In addition, Benamou et al. (2014) shows that optimal transport problems can be solved using
Bregman Projections. This is close in spirit to the original motivation behind our Retraction design.
We further demonstrate that our Retraction corresponds to a geodesic, while also simplifying the
overall algorithmic procedure.
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C OPTIMIZATION ALGORITHMS ON THE RIM MANIFOLD

In this section, we will introduce three renowned Riemannian optimization algorithms that are utilized
in this paper: the Riemannian Gradient Descent method, the Riemannian Conjugate Gradient method,
and the Riemannian Trust-Region method. For each algorithm, we will present its fundamental
concepts and provide pseudocode. For detailed implementations of these algorithms, one may refer
to the open-source manifold optimization package, Manopt (Boumal et al., 2014).

C.1 GRADIENT DESCENT ON THE RIM MANIFOLD

The Gradient Descent on the RIM Manifold method generalizes the classical gradient descent in
Euclidean space to Riemannian manifolds by replacing the traditional gradient with the Riemannian
gradient, ensuring that the iterations remain on the manifold. The key idea is to utilize the manifold’s
geometric structure to adjust the gradient direction, and then use Retraction to map the updated
point back onto the manifold. The process begins with initialization, where an initial point F0 is
chosen on the manifold, and a step size is chosen. In the next step, the Euclidean gradient of the
objective function is computed at the current point F (k). Then, the Euclidean gradient is projected
onto the tangent space of the manifold to obtain the Riemannian gradient, which involves adjusting
the gradient by subtracting the normal component. The updated point is then computed along the
Riemannian gradient direction, and Retraction (such as exponential mapping or projection) is used
to ensure that the new point remains on the manifold. The process continues iteratively until the
gradient norm or the change in the objective function becomes smaller than a predefined threshold.
The reference pseudo code is in Algorithm 3.

C.2 CONJUGATE GRADIENT METHOD ON THE RIM MANIFOLD

The Conjugate Gradient Method on the RIM Manifold introduces conjugate directions to reduce the
redundancy in search directions during iterations, thereby speeding up convergence by incorporating
information from previous search directions. The core idea is to define and update conjugate directions
on the manifold. The method begins with initialization, where the initial point F0 is chosen, the
initial Riemannian gradient g0 is computed, and the initial search direction is set as d0 = −g0. Then,
the optimal step size in the direction of dk is determined through a line search, using conditions
like Armijo’s rule. The point is updated along dk, and Retraction is applied to map it back onto the
manifold. In the next step, the conjugate direction is updated using the current gradient gk+1 and the
previous direction dk, with formulas such as the Polak-Ribière method to compute the new conjugate
direction dk+1. On the RIM manifold, the transport of tangent vectors is equivalent to the vectors
themselves. This property simplifies the process of the Riemannian Conjugate Gradient Method. The
process is repeated until convergence is achieved. The reference pseudo code is in Algorithm 4.

C.3 TRUST REGION METHOD ON THE RIM MANIFOLD

The Trust Region Method on the RIM Manifold constructs a local quadratic model in each iteration
and constrains the step size within a trust region to ensure stability. The trust region radius is
dynamically adjusted to balance the accuracy of the model with the step size. The method starts
with initialization, where the initial point F0 and trust region radius ∆0 are set. The Riemannian
gradient gk and the approximate Hessian Hk are computed at F (k). The next step involves solving
the constrained quadratic optimization problem in the tangent space, given by:

min
d∈T

F (k)M,‖d‖≤∆k

(
gTk d+

1

2
dTHkd

)
(198)

Following this, the method updates the point and adjusts the trust region radius ∆k based on the ratio
of the actual decrease in the objective function to the model’s predicted decrease. Finally, Retraction is
used to project the updated point back onto the manifold. This method is known for its strong stability
and is particularly suited for highly nonlinear problems. However, it requires frequent Hessian
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calculations, resulting in a high computational cost. The reference pseudo code is in Algorithm 5.

Algorithm 3: Riemannian Gradient Descent Algorithm on RIM Manifold

Input: RIM manifoldM = {X | X1c = 1n, l < XT 1n < u,X > 0}
Objective functionH(F ), Retraction RX(tV ), transport P . Initial point F0 ∈M
Output: Sequence of iterates {F (k)} converging to a stationary point ofH

1 Initialize k = 0 while not converged do
2 Compute Euclidean gradient GradH(F (k))

3 Compute Riemannian gradient: gradH(F (k)) = GradH(F (k))− 1
c GradH(F (k))1c1

T
c

4 The line search step size: κ(k)

5 Perform Retraction: F (k+1) = RF (k)(κ(k) gradH(F (k)))
6 k ← k + 1
7 end
8 return F (k)

Algorithm 4: Riemannian Conjugate Gradient Algorithm on RIM Manifold

Input: RIM manifoldM = {X | X1c = 1n, l < XT 1n < u,X > 0}
Objective functionH(F ), Retraction RX(tV ), Initial point F0 ∈M.
Output: Sequence of iterates {F (k)} converging to a stationary point ofH

1 Initialize k = 0;
2 Compute initial Riemannian gradient, d0 ← − gradH(F (0));
3 while not converged do
4 Compute line search step size κ(k)

5 Perform Retraction: F (k+1) = RF (k)(κ(k)d(k))

6 Compute new gradient gradH(F (k+1))

7 Compute the conjugate direction d(k+1) = − gradH(F (k+1)) + β(k)P(d(k))

8 Compute β(k): β(k) = 〈gradH(F (k+1)),gradH(F (k+1))−gradH(F (k))〉
〈gradH(F (k)),gradH(F (k))〉

9 k ← k + 1
10 end
11 return F (k)

Algorithm 5: Riemannian Trust Region Algorithm on RIM Manifold

Input: RIM manifoldM = {X | X1c = 1n, l < XT 1n < u,X > 0}
Objective functionH(F ), Retraction RX(tV ), Initial point F0 ∈M, Initial trust region radius ∆0.
Output: Sequence of iterates {F (k)} converging to a stationary point ofH

1 Initialize k = 0 Initialize ∆0 while not converged do
2 Compute Riemannian gradient gradH(F (k))

3 Compute the Riemannian Hessian hessH(F (k))

4 Solve the trust region subproblem: ∆(k) = arg min‖d‖≤∆k
H(F (k) + d)

5 Compute the step size κ(k) using a line search or heuristic method
6 Perform Retraction: F (k+1) = RF (k)(κ(k)d(k))
7 Update the trust region radius ∆k+1;
8 k ← k + 1
9 end

10 return F (k)
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D DETAILS OF THE EXPERIMENTAL SETUP

D.1 EXPERIMENT 2 SETUP

In the first problem of Experiment 2, due to the particularity of the manifold, it is known that
the optimal solution on manifoldM is A, at which point the value of the objective function is 0.
Therefore, by comparing the losses of different algorithms under various parameters, the one with the
smallest loss is the optimal result.

D.2 EXPERIMENT 3 SETUP

For Experiment 3, we compared the cases when l = u and l 6= u. For l 6= u, we set l = 0.9
⌊
n
c

⌋
and u = 1.1

⌊
n
c

⌋
. When l = u, the RIM manifold degenerates into the double stochastic manifold,

and we can compare it with algorithms on the double stochastic manifold. When l = 0.9
⌊
n
c

⌋
and u = 1.1

⌊
n
c

⌋
, more general methods such as the Frank-Wolfe Algorithm (FWA) and Projected

Gradient Descent (PGD) are used for comparison. For the case where the RIM manifold degenerates
into the double stochastic manifold, we also compared the Riemannian Gradient Descent (DSRGD)
and Riemannian Conjugate Gradient (DSRCG) on the double stochastic manifold. A brief introduction
to these algorithms is provided as follows:

• The Frank-Wolfe algorithm (Xie et al., 2025) is a well-known method for solving nonlinear
constrained optimization problems. The core idea is to find the direction within the constraint
set that is closest to the negative gradient direction, and search and descend along this
direction to optimize the objective function.

• The Projected Gradient Descent algorithm (Chen et al., 2021) is also a method for solving
nonlinear constrained problems. The process involves searching along the gradient direction,
and when leaving the constraint set, the point is projected back onto the constraint set.

• Riemannian optimization on the double stochastic manifold (Douik & Hassibi, 2019): This
includes Double Stochastic Riemannian Gradient Descent, Double Stochastic Riemannian
Conjugate Gradient methods. The algorithm process is similar to the RIM manifold methods,
except that the Retraction and Riemannian gradient computation methods are different.

The PGD method differs greatly from Riemannian optimization methods, including the search
direction. Projected Gradient Descent follows the Euclidean gradient, but the Euclidean gradient may
contain irrelevant information on the constraint set. Riemannian optimization removes the redundant
information and searches along the Riemannian gradient direction.

The Retraction process also differs; the projection process in Projected Gradient Descent may not be
easy to compute and the result may not be unique, whereas Riemannian optimization can choose an
appropriate Retraction process, which is faster and more convenient.

The generality is also different: Riemannian optimization not only has Riemannian descent but can
also be naturally extended to methods like Riemannian Conjugate Gradient, Riemannian Coordinate
Descent, etc., while Projected Gradient Descent has fewer such extensions.

The convergence properties differ as well; for example, Projected Gradient Descent typically requires
convexity to converge to the global optimum, while Riemannian optimization only requires geodesic
convexity, and there are cases where non-convex problems are geodesically convex.

We compared the final results obtained by optimizing with these algorithms and the total time required,
and we organized the data into tables in the main text and appendix, along with visualizations through
plotting.

D.3 EXPERIMENT 4 SETUP

For RIMRcut, we apply the same initialization as (Xie et al., 2025) and perform RIM optimization
on Rcut based on the initialization. When applying the RIM manifold to the Rcut, we compare
it with ten benchmark clustering algorithms across eight real-world datasets. These algorithms
include KM-based methods, bipartite graph clustering techniques, and various balanced clustering
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approaches. By solving the Ratio Cut problem on the RIM manifold, the clustering results are more
balanced, as the number of samples within each cluster is constrained to a reasonable range. A
detailed introduction to each algorithm is provided below.

• KM partitions data into predefined clusters by minimizing the sum of squared distances
between data points and their corresponding cluster centers. It is simple but sensitive to
initial centroids and struggles with non-spherical clusters.

• CDKM (Nie et al., 2021) improves KM by utilizing coordinate descent method to directly
solve the discrete indicator matrix instead of alternative optimization. It could optimize the
solution of KM further.

• Rcut minimizes the cut between two sets in a graph while considering the size of the sets,
aiming to balance the partition.

• Ncut improves on Ratio-Cut by normalizing the cut, balancing the partition while considering
the total graph weight. It’s better suited for non-convex and unevenly distributed clusters.

• Nystrom (Chen et al., 2011) method approximates large kernel matrices using a subset of
data, making spectral clustering scalable and efficient for large datasets.

• BKNC (Chen et al., 2022a) (Balanced K-Means with a Novel Constraint) extends K-Means
by introducing a balance-aware regularizer, allowing flexible control over cluster balance. It
is solved using an iterative optimization algorithm and achieves better balance and clustering
performance than existing balanced K-Means variants.

• FCFC (Liu et al., 2018) is an efficient clustering algorithm that combines K-means with
a balance penalty, ensuring flexible cluster sizes. It scales well to large datasets and
outperforms existing methods in efficiency and clustering quality.

• FSC (Zhu et al., 2017) improves spectral clustering efficiency by using Balanced K-means
based Hierarchical K-means (BKHK) to construct an anchor-based similarity graph. It
achieves high performance on large-scale data.

• LSCR (Chen & Cai, 2011) randomly selects landmarks instead of using K-Means, making
it faster but potentially less accurate than LSCK in capturing data structure.

• LSCK selects representative landmarks via K-Means to construct a smaller graph, reducing
computational cost while preserving clustering quality.

To evaluate the clustering performance comprehensively, three metrics are applied, which are clus-
tering accuracy (ACC), normalized mutual information (NMI) and adjusted rand index (ARI). The
calculation of these three metrics are displayed below.

D.3.1 CLUSTERING ACCURACY (ACC)

Clustering Accuracy (Yuan et al., 2024a;b) measures the proportion of correctly clustered data
points by aligning predicted cluster labels with ground truth labels. Since clustering algorithms do
not inherently assign specific labels, a permutation mapping is applied, often using the Hungarian
algorithm, to maximize alignment. The formula for ACC is:

ACC =
δ(map(ŷi), yi)

n
(199)

where δ(a, b) is an indicator function defined as:

δ(a, b) =

{
1, if a = b

0, otherwise,
(200)

Here, ŷi is the predicted label, yi is the true label, n is the total number of data points, and map(ŷi) is
the permutation mapping function that aligns predicted labels with ground truth labels. ACC ranges
from 0 to 1, with higher values indicating better clustering performance.

D.3.2 NORMALIZED MUTUAL INFORMATION (NMI)

Normalized Mutual Information (Zhong et al., 2021) quantifies the mutual dependence between
clustering results and ground truth labels, normalized to account for differences in label distributions.
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It evaluates the overlap between clusters and true classes using information theory. Given predicted
partitions ˆ{Ci}

c

i=1 and ground truth partitions {Ci}ci=1, NMI is calculated as:

NMI =

∑c
i=1

∑c
j=1

∣∣∣Ĉi ∩ Cj∣∣∣ log
n|Ĉi∩Cj|
|Ĉi||Cj |√(∑c

i=1

∣∣∣Ĉi∣∣∣ log
|Ĉi|
n

)(∑c
j=1 |Cj | log

Cj

n

) (201)

Here, | · | denotes the size of a set, and Ĉi ∩Cj represents the number of data points belonging to both
the i-th predicted cluster and the j-th ground truth class. NMI ranges from 0 to 1, where 1 indicates
perfect agreement between clustering results and ground truth. It is particularly effective in scenarios
with imbalanced class distributions.

D.3.3 ADJUSTED RAND INDEX (ARI)

The Adjusted Rand Index (Dang et al., 2021) measures the similarity between predicted clustering
and ground truth by comparing all pairs of samples and evaluating whether they are assigned to
the same cluster in both results. A contingency table H is first constructed, where each element
hij represents the number of samples in both predicted cluster Ĉi and ground truth cluster Cj . The
formula for ARI is:

ARI(C̄, C) =

∑
ij

(
nij

2

)
−
[∑

i

(
ni

2

)∑
j

(
nj

2

)]
/
(
n
2

)
1
2

[∑
i

(
ni

2

)
+
∑
j

(
nj

2

)]
−
[∑

i

(
ni

2

)∑
j

(
nj

2

)]
/
(
n
2

) (202)

where
(
nij

2

)
=

nij(nij−1)
2 . ARI ranges from -1 to 1, where 1 indicates perfect clustering, 0 represents

random assignments, and negative values indicate worse-than-random clustering. ARI is robust to
differences in cluster sizes and does not favor a large number of clusters.

D.3.4 INTRODUCTION OF REAL DATASETS

The real-world datasets includes: COIL20, Digit, JAFFE, MSRA25, PalmData25, USPS20, Wave-
form21 and MnistData05. These datasets are selected for their diversity in data types (images,
waveforms, and biometric data) and their widespread use in benchmarking machine learning and
computer vision algorithms. They provide a comprehensive evaluation framework for testing the
robustness and generalization capabilities of the proposed methods. The detailed description of them
are displayed below.

• The COIL20 dataset 1 contains 1,440 images of 20 distinct objects, with each object
captured from different angles. Each image has 1,024 dimensions, making it suitable for
object recognition and clustering tasks.

• The Digit dataset consists of 1,797 instances of handwritten digits, ranging from 0 to 9.
Each sample has 64 dimensions, representing low-resolution grayscale images.

• The JAFFE dataset includes 213 facial expression images from 10 subjects, covering seven
basic emotions. Each image has 1,024 dimensions, making it suitable for facial expression
recognition and emotion analysis.

• The MSRA25 dataset is a widely used benchmark for face recognition task. It consists of
1,799 grayscale face images, each resized to 16×16 pixels. The dataset includes 12 clusters,
representing different individuals or categories.

• The PalmData25 2 dataset consists of 2,000 palmprint images, each with 256 dimensions. It
includes 100 clusters.

• The USPS20 dataset is a subset of the USPS handwritten digit dataset, containing 1,854
instances. Each sample has 256 dimensions, representing grayscale images of digits.

1http://www.cad.zju.edu.cn/home/dengcai/Data/data.html
2https://www.scholat.com/xjchensz
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• The Waveform21 dataset 3 contains 2,746 instances of synthetic waveform data, each with
21 dimensions. It includes 3 clusters.

• The MnistData05 dataset is a subset of the MNIST dataset, containing 3,495 instances
of handwritten digits. Each sample has 784 dimensions, representing 28×28 grayscale
images. It is widely used for digit recognition, classification, and clustering tasks, providing
a benchmark for evaluating machine learning models.

D.3.5 HOW TO CHOOSE l AND u

l and u are pivotal parameters within the RIM manifold. When the values of l and u are set to be
equal, an approximation of the doubly stochastic manifold can be achieved. When l and u are not
equal, their application to practical problems holds significant meaning, particularly in the context of
unbalanced scenarios. For instance, in clustering tasks, the RIM manifold encompasses all indicator
matrices, with l and u representing the minimum and maximum number of samples within each
cluster, respectively. The magnitude of these parameters can be estimated based on the total number
of samples and the known number of clusters. Alternatively, they may be assigned according to
certain prior knowledge. However, it is noteworthy that in the absence of prior information, the values
of l and u can be set within a broader range. In addition, a suitable choice of l and u can also be
determined through multiple trials.

The parameter in RIM optimization is listed in Table 7.

Table 7: Values of l and u on different data sets for RIMRcut
Datasets l u
COIL20 [0.6*n/c] [1.2*n/c]

Digit [0.4*n/c] [1.6*n/c]
JAFFE [0.4*n/c] [1.6*n/c]

MSRA25 [0.4*n/c] [1.6*n/c]
PalmData25 [0.4*n/c] [1.8*n/c]

USPS20 [0.6*n/c] [2.0*n/c]
Waveform21 [0.4*n/c] [1.8*n/c]
MnistData05 [0.8*n/c] [1.4*n/c]

Subsequently, we will perform clustering using the data in this table and visualize the clustering
results, as shown in Figure 7 and Figure 8.

Moreover, we acknowledge that precisely choosing l and u is a challenging task, as it is essentially
equivalent to obtaining prior information about the dataset. Our study is conducted under the
assumption that such prior information is available. Nevertheless, we also provide a possible way to
estimate this prior knowledge, namely by running K-Means to approximate the cluster proportions.
For instance, on the MnistData05 dataset, the estimation yields (l, u) = (0.86× n

c , 1.22× n
c ), which

is close to the values we selected.

At the same time, although the algorithm is sensitive to (l, u), the sensitivity is not high. Taking the
MnistData05 dataset as an example, the performance metrics under different values of l and u are as
follows. Here, a× denotes a× n

c .

Table 8: Performance under different (l, u) values on the MnistData05 dataset.
(l, u) (0×, 2×) (0.3×, 1.7×) (0.5×, 1.5×) (0.6×, 1.4×) (0.7×, 1.3×) (0.8×, 1.4×) (0.9×, 1.1×)
ACC 61.23 61.61 62.86 63.12 64.26 65.55 66.09
NMI 54.96 55.53 56.68 57.54 58.68 59.35 61.93
ARI 46.02 46.25 49.37 50.73 51.82 52.87 53.02

3http://archive.ics.uci.edu/datasets
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E ADDITIONAL EXPERIMENTAL RESULTS

In this section, we present additional experimental results to better demonstrate the advantages of the
proposed algorithm.

E.1 RESULTS OF EXPERIMENTAL 1

Experiment 1 compares the running times of three Retraction methods under different matrix sizes. In
Table 9, we compare the running times when l is not equal to u. The results that run the fastest under
each set of experiments are highlighted in red. Additionally, for better visualization, we present a
three-dimensional bar chart showing the performance of multiple Retraction methods, as illustrated
in Figure 3. The experimental results reveal that when the matrix dimension is small, Sinkhorn
outperforms the other two methods in terms of speed, while Dykstras shows an advantage when the
matrix dimension is larger. This conclusion holds true both when l equals u and when l does not
equal u. While the efficiency of dual method is always inferior than other methods.

Table 9: Table of Execution Time when l 6= u for Different Retraction Algorithms(s)
Row&Col Dual Sinkhorn Dykstras

500 1000 3000 5000 7000 10000 500 1000 3000 5000 7000 10000 500 1000 3000 5000 7000 10000

5 0.015 0.025 0.056 0.083 0.109 0.140 0.001 0.004 0.017 0.042 0.085 0.166 0.011 0.005 0.011 0.018 0.027 0.037
10 0.020 0.039 0.082 0.111 0.145 0.183 0.001 0.003 0.017 0.042 0.081 0.179 0.009 0.005 0.015 0.022 0.031 0.044
50 0.053 0.106 0.763 1.353 1.934 2.738 0.001 0.005 0.021 0.056 0.109 0.226 0.006 0.010 0.022 0.038 0.052 0.072
100 0.014 0.156 1.556 2.747 3.948 5.675 0.002 0.005 0.029 0.079 0.149 0.288 0.009 0.012 0.030 0.054 0.071 0.100
500 0.060 0.119 7.296 12.208 17.021 23.773 0.006 0.014 0.114 0.305 0.577 1.119 0.018 0.032 0.089 0.157 0.207 0.299

1000 0.103 0.172 15.483 25.830 37.027 58.107 0.018 0.036 0.194 0.500 0.889 1.781 0.036 0.071 0.204 0.367 0.522 0.763
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Figure 3: Comparison of running time for different Retraction algorithms.

E.2 RESULTS OF EXPERIMENTAL 2

For the first question in Experiment 2, we compare the application of gradient descent, conjugate
gradient, and trust-region methods on the RIM manifold. The value of cost function and running
time of gradient descent and conjugate gradient on RIM manifold are display in Table 10 and 11. As
can be seen from the two tables, regardless of the optimization method employed, the loss function
values and running time of the RIM manifold approach are superior to those of the doubly stochastic
manifold method. This advantage is attributed to the lower computational complexity of gradient
and Hessian matrix calculations on the RIM manifold. For example, when the matrix size is 100 by
10,000, for the RTR method, the running time is increased by approximately 200 times. For the RGD
method, the time required is only one-twenty five of that for the doubly stochastic manifold. As for
RCG method, the running time is increased by approximately 75 times. Meanwhile, optimization
methods on RIM manifolds often yield solutions closer to zero (the ratio of losses can even reach
1E10) compared to methods on doubly stochastic manifolds.

46



2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

Table 10: Cost and Time on the RIM Manifold and Doubly Stochastic Manifold(RGD).

Row&Col RIM Manifold Doubly Stochastic Manifold
Cost Time Cost Time

Size 5000 7000 10000 5000 7000 10000 5000 7000 10000 5000 7000 10000

5 4.74E-14 1.14E-13 1.05E-13 1.233 0.974 1.225 4.96E-07 6.08E-07 9.01E-07 17.19 18.07 38.73
10 1.28E-13 4.48E-05 7.04E-15 0.864 2.686 1.311 1.22E-06 7.73E-07 2.39E-06 12.76 19.20 22.45
20 5.39E-14 1.09E-14 1.89E-13 0.779 1.266 1.914 3.07E-06 2.79E-06 5.46E-06 18.34 20.08 27.02
50 1.95E-13 8.12E-14 1.84E-13 1.442 2.780 2.663 3.71E-06 6.38E-06 9.27E-06 48.72 37.79 75.39
70 1.72E-13 4.47E-13 1.73E-13 2.350 2.811 4.356 7.91E-06 9.68E-06 1.82E-05 39.37 64.68 56.13
100 1.58E-15 1.12E-14 2.32E-13 3.086 3.242 4.126 1.37E-05 1.89E-05 2.99E-05 46.06 93.26 105.8

The second issue pertains to the problem of image restoration. We introduced varying levels of noise
into two images and then compared the visual outcomes of the RIM manifold-based method with
those of the DSM-based method in restoring the original images from their noisy counterparts. The
visual results are displayed in Figure 4, which also annotates the values of the parameter ξ. Regardless
of the intensity of the noise, the images restored by the RIM method are clearer and retain better
texture information.

Table 11: Cost and Time on the RIM Manifold and Doubly Stochastic Manifold(RCG).

Row&Col RIM Manifold Doubly Stochastic Manifold
Cost Time Cost Time

Size 5000 7000 10000 5000 7000 10000 5000 7000 10000 5000 7000 10000

5 3.74E-14 4.63E-13 1.20E-13 0.285 0.375 0.683 8.16E-10 7.78E-10 2.57E-09 4.624 10.22 15.42
10 6.22E-14 2.56E-13 4.92E-14 0.161 0.307 0.579 1.81E-09 2.71E-09 1.53E-09 6.230 11.29 13.96
20 1.03E-13 1.08E-13 1.52E-15 0.396 0.817 0.558 4.75E-09 3.53E-09 2.67E-09 11.91 16.91 17.13
50 5.69E-14 1.56E-13 2.51E-13 0.859 1.047 1.774 3.74E-09 5.49E-09 4.81E-09 30.11 45.33 58.19
70 2.22E-13 1.74E-13 6.37E-17 0.932 1.603 1.024 4.36E-09 2.52E-09 4.81E-09 46.83 73.80 60.49
100 4.21E-13 1.89E-15 1.61E-14 1.542 0.960 2.045 4.03E-09 5.01E-09 7.99E-09 55.70 81.65 158.7

(a) noise=0.3 (b) DSM,ξ=0.3 (c) RIM,ξ=0.3 (d) noise=0.5 (e) DSM,ξ=0.5 (f) RIM,ξ=0.5

(g) noise=0.9 (h) DSM,ξ=0.7 (i) RIM,ξ=0.7 (j) noise=0.3 (k) DSM,ξ=0.3 (l) RIM,ξ=0.3

(m) noise=0.5 (n) DSM,ξ=0.3 (o) RIM,ξ=0.3 (p) noise=0.9 (q) DSM,ξ=0.7 (r) RIM,ξ=0.7
Figure 4: mage Denoising Results.

E.3 RESULTS OF EXPERIMENTAL 3

Experiment 3 compared the objective function values and running times of the rim manifold-based
approach with other solution methods on real datasets when the objective function was the Ratio
Cut. The results for the case where l equals u are shown in Table 4, while the results for l not equal
to u are reported in Table 12. It can be observed that the RIMRCG method achieves the lowest
running time on most datasets. Meanwhile, the RIMRGD method can reach the minimum in terms
of loss. Furthermore, for each dataset, we have plotted the iteration curves of the objective function
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Table 12: Time and Loss of Different Optimization Algorithms on Ratio Cut when l 6= u

Datasets&Methods FWA PGD RIMRGD RIMRCG RIMRTR
Time Cost Time Cost Time Cost Time Cost Time Cost

COIL20 6.220 3.908 6.061 0.7108 8.040 0.5306 2.601 0.494 15.97 0.588
Digit 5.878 0.389 6.063 0.817 7.355 0.652 1.443 0.755 13.92 0.661

JAFFE 0.257 0.207 1.019 0.294 0.116 1.110 0.260 0.154 3.741 0.103
MSRA25 6.238 0.253 6.444 0.048 9.123 0.037 9.787 0.000 15.95 0.033

PalmData25 77.69 16.40 71.73 3.299 25.54 0.984 5.635 6.686 19.05 12.78
USPS20 6.133 1.631 6.109 1.563 7.025 1.544 1.309 1.729 17.72 1.551

Waveform21 12.62 0.405 8.529 0.452 9.650 0.366 1.571 0.373 46.20 0.366
MnistData05 19.86 0.538 17.09 12.36 16.52 1.693 1.876 2.467 30.47 1.677

values against the number of iterations for various optimization methods. These are displayed in
Figures 5 and 6, respectively. From the convergence curves in Figure 5, it is evident that the Rim
manifold-based methods enable the objective to decrease more rapidly within a shorter number of
iterations. In contrast, the descent curves of the PGD and DSRGD methods are more gradual. A
similar experimental outcome is also presented in Figure 6.
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Figure 5: Comparison of Loss Decrease for Optimization Algorithms on Real Datasets (l = u).

0 100 200 300 400 500 600
0

20

40

60

80

100

120

RIMRGD
RIMRCG
RIMRTR
PGD
FWA

(a) COIL20
0 100 200 300 400 500 600

0

10

20

30

40

50

60

RIMRGD
RIMRCG
RIMRTR
PGD
FWA

(b) Digit
0 100 200 300 400 500 600

0

10

20

30

40

50

60

RIMRGD
RIMRCG
RIMRTR
PGD
FWA

(c) JAFFE
0 100 200 300 400 500 600

0

10

20

30

40

50

60

70

80

RIMRGD
RIMRCG
RIMRTR
PGD
FWA

(d) MSRA25

0 100 200 300 400 500 600
0

100

200

300

400

500

600

RIMRGD
RIMRCG
RIMRTR
PGD
FWA

(e) PamlData25
0 100 200 300 400 500 600

0

10

20

30

40

50

60

70

RIMRGD
RIMRCG
RIMRTR
PGD
FWA

(f) USPS20
0 100 200 300 400 500 600

0

2

4

6

8

10

12

14

16

18

RIMRGD
RIMRCG
RIMRTR
PGD
FWA

(g) Waveform21
0 100 200 300 400 500 600

0

10

20

30

40

50

60

RIMRGD
RIMRCG
RIMRTR
PGD
FWA

(h) MnistData05
Figure 6: Comparison of Loss Decrease for Optimization Algorithms on Real Datasets (l 6= u).

E.4 RESULTS OF EXPERIMENTAL 4

In this section, we mainly provide two supplementary materials. First, we verify whether Riemannian
optimization on the RIM manifold ensures that the distribution of each column lies within the
prescribed range. Second, we visualize the learned indicator matrix to examine whether each entry
Fij ∈ [0, 1] is satisfied.

Figure 7 illustrates the column sum distributions of the relaxed indicator matrix obtained via Rie-
mannian gradient descent (RIMRGD) on the RIM manifold for different datasets. The dashed lines
represent the values of the upper bound u and lower bound l. As shown, all column sums eventually
lie within the specified interval [l, u].

It is worth noting that, under the specified bounds [l, u], not all bounds are necessarily active for every
dataset. For instance, in the Digit dataset, the lower bound l is active, as the sum of the 8th column
reaches the lower bound, while no column reaches the upper bound u. In contrast, for the MSRA25
dataset, the upper bound u is active, but the lower bound l is not. For some datasets like COIL20,
neither the lower nor the upper bounds are active, possibly because the dataset naturally leads to a
balanced partitioning.
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Figure 7: Relaxed Indicator Matrix Column Sum Distribution Graph.
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Figure 8: Visualization of the Relaxed Indicator Matrix.

Figure 8 presents the visualization results of the relaxed indicator matrix. It can be observed that each
element Fij lies within the interval [0, 1], and the indicator matrix exhibits a clear clustered structure.
This structure indicates distinct clustering results, suggesting that learning on the relaxed indicator
matrix manifold effectively captures the underlying structure of the graph.
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F RIM MANIFOLD EQUIPPED WITH FISHER METRIC

In this section, we will explain why we assign the Euclidean inner product toM = {X|X1c =
1n, l < XT 1n < u,X > 0} instead of the currently more commonly used Fisher information metric.
The RIM manifold is defined asM = {X|X1c = 1n, l < XT 1n < u,X > 0}, where the row sums
are equal to 1. Therefore, each element’s rows on the RIM manifold can be considered as a probability
distribution and can equip a Fisher information metric. Specifically, for each point X on the RIM
manifold, there exists a tangent space TXM which is a linear space. Previously, the Euclidean metric
was equipped on this linear space, that is, ∀U, V ∈ TXM, < U, V >X=

∑n
i=1

∑n
j=1 UijVij . This

section will discuss the impact on optimization over the manifold when the Fisher information metric
is equipped on TXM, that is,

∀U, V ∈ TXM, < U, V >X=

n∑
i=1

n∑
j=1

UijVij
Xij

(203)

To distinguish it from the previous RIM manifold, we call the RIM manifold equipped with the Fisher
information metric the Fisher RIM manifold, abbreviated as FRIM manifold.

F.1 DIMENSION AND TANGENT SPACE

Regarding dimension and tangent space, their definitions depend only on the manifold itself and are
independent of the metric equipped on it. Therefore, for the same setM, whether it is equipped
with the Euclidean metric or the Fisher information metric, it has the same dimension and tangent
space. That is, both the RIM manifold and the FRIM manifold have a dimension of (n− 1)c, and the
tangent space is TXM = {U | U1c = 0}. The proof can be found in Theorem A.1

F.2 RIEMANNIAN GRADIENT, RIEMANNIAN CONNECTION AND RIEMANNIAN HESSIAN

When the Fisher metric is assigned to {X ∈ Rn×c|X > 0}, the gradient of H at X in {X ∈
Rn×c|X > 0} is given by GradH �X , where GradH is the Euclidean gradient. At this time, the
FRIM manifold is a Riemannian embedded submanifold of {X ∈ Rn×c|X > 0}. The Riemannian
gradient on the FRIM manifold is the orthogonal projection under the Fisher metric. The expression
of this orthogonal projection is

ProjTXM(Z) = Z − (α1Tc )�X, α = Z1c ∈ Rn (204)

The Riemannian connection on the FRIM manifold is the orthogonal projection of the connection
under the Fisher metric, where the connection on {X ∈ Rn×c|X > 0} can be expressed as

∇̄UV = DV [U ]− 1

2
(U � V )�X, U, V ∈ Rn×c (205)

The Riemannian connection on the FRIM manifold is given by{
∇UV = ProjTXM

(
∇̄UV

)
= ProjTXM

(
DV [U ]− 1

2 (U � V )�X
)

U, V ∈ TXM, X ∈ {X ∈ Rn×c|X > 0} (206)

Furthermore, the Riemannian Hessian mapping is given by

hessH(X)[V ] = ProjTXM

(
D gradH(X)[V ]− 1

2
(V � gradH(X))�X

)
(207)

It can be seen that the Riemannian gradient, Riemannian connection and Riemannian Hessian on
the FRIM manifold are the same as those on the single stochastic manifold equipped with the Fisher
information metric. Since the FRIM manifold itself can be regarded as a Riemannian embedded
submanifold of the single stochastic manifold, it is not surprising that these three Riemannian tools
are the same as those on the single stochastic manifold. However, the existing Retraction mapping
on the single stochastic manifold cannot be applied to the FRIM manifold, because it cannot be
guaranteed that the curve generated by the Retraction mapping on the single stochastic manifold will
always lie on the FRIM manifold (it may violate the column constraint).
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F.3 RETRACTION MAPPING

Although the Retraction mapping on the single stochastic manifold cannot be used as the Retraction
mapping on the FRIM manifold, the Retraction mapping on the RIM manifold proposed in this
paper can naturally serve as the Retraction mapping on the FRIM manifold. That is, the FRIM
manifold naturally has three Retraction methods respectively given by Theorems A.6, A.7 and A.8.
However, Theorem A.5 indicates that the result obtained by Theorem A.6 is a geodesic on the RIM
manifold. However, on the FRIM manifold, Theorem A.6 is not an orthogonal projection under the
Fisher information metric, so the geodesic on the FRIM manifold cannot be obtained. That is to say,
although the three methods in Theorems A.6, A.7 and A.8 can all be used as Retractions, none of
them is a second-order Retraction.

F.4 WHICH TO USE?

Although there is also a set of Riemannian tools available on the FRIM manifold, according to the
analysis above, the Riemannian toolbox under the RIM manifold and the Riemannian toolbox on the
FRIM manifold have almost the same time complexity and can use the same Retraction. However,
when using the Dykstras Retraction, a geodesic can be quickly obtained on the RIM manifold, while
it is impossible to obtain a geodesic on the FRIM manifold, meaning a second-order Retraction
cannot be achieved. This may have a certain impact on the convergence of the algorithm. Therefore,
we recommend using the RIM manifold, which restricts the Euclidean inner product to the manifold
rather than the Fisher information metric.

G EXPLANATION REGARDING l = u

We are very pleased that you are interested in the intrinsic principles of the RIM manifold. During
the community’s use of the RIM manifold, we have received related issues in which users asked: when
l = u, the RIM manifold theoretically seems to degenerate into an empty set. They further wondered
what ingenious techniques in the RIM manifold algorithm allow it to still function effectively. We are
glad to provide an answer here.

In fact, it is precisely our design that effectively avoids this situation, and the algorithm can efficiently
converge to the doubly stochastic manifold

{X ∈ Rn×n | X1n = 1n, X
T 1n = 1n, X > 0}. (208)

The effectiveness of the algorithm comes from our deliberately designed retraction. Taking projection
onto Ω2 as an example, computing 1

n (lj − 1TnX
j)1n +Xj essentially projects each column of X

onto {(Xj)T 1n ≥ lj}.
It can be seen that, regardless of the values taken by l and u, the computation of the Riemannian
gradient and other formulas are completely unaffected. With our specially designed retraction, when
l = u = r, projection is carried out respectively onto Ω2 = {XT 1n = r}, Ω3 = {XT 1n = r}.
Thus, the retraction essentially projects onto {XT 1n = r} ∩ {X1n = 1n}, that is, a retraction onto
the doubly stochastic manifold. In this way, our algorithm can elegantly converge to the doubly
stochastic manifold.

Moreover, considering the practical use of the relaxed indicator matrix, taking Ω2 as an example,
there is no essential difference between {XT 1n > l} and {XT 1n ≥ l}. If one is concerned about
obtaining points on the boundary, it suffices to simply set l′ = l + ε, with ε < 10−12, and run the
RIM manifold on {XT 1n > l′}.
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H REFERENCE CODE FOR RIM MANIFOLD RIEMANNIAN TOOLBOX

function M = RIMfactory(n, c, row,upper,lower)

maxDSiters = min(1000, n*c);
if size(row, 1) ~= n

error('row should be a column vector of size n.');
end
if size(upper, 1) ~= c

error('upper should be a column vector of size c.');
end
if size(lower, 1) ~= c

error('lower should be a column vector of size c.');
end

M.name = @() sprintf('%dx%d matrices with positive entries F1_c=1_n,l
<F1_n<u', n, c);

M.dim = @() (n-1)*c;
M.hash = @(X) ['z' hashmd5(X(:))];
M.lincomb = @matrixlincomb;
M.zerovec = @(X) zeros(n, c);
M.transp = @(X1, X2, d) ProjToTangent(d);
M.vec = @(X, U) U(:);
M.mat = @(X, u) reshape(u, n, c);
M.vecmatareisometries = @() true;
M.inner = @iproduct;

function ip = iproduct(X,eta, zeta)
ip = sum((eta(:).*zeta(:)));

end
M.norm = @(X,eta) sqrt(M.inner(X,eta, eta));
M.typicaldist = @() n+c;
M.rand = @random;
function X = random(X)

Z = abs(randn(n, c));
X = Dykstras(Z, row, lower, upper, maxDSiters);

end
M.randvec = @randomvec;
function eta = randomvec(X)

Z = randn(n, c);
eta = ProjToTangent(Z);

end
M.proj = @projection;
function etaproj = projection(X,eta)

etaproj = ProjToTangent(eta);
end
M.tangent = M.proj;
M.tangent2ambient = @(X,eta) eta;
M.egrad2rgrad = @egrad2rgrad;
function rgrad = egrad2rgrad(X,egrad)

rgrad = ProjToTangent(egrad);
end
M.retr = @Retraction;
function Y = Retraction(X, eta, t)

if nargin < 3
t = 1;

end
Y=Dykstras(X+t*eta, row, lower, upper, maxDSiters);

end
M.ehess2rhess = @ehess2rhess;
function rhess = ehess2rhess(X, egrad, ehess, eta)

rhess = ProjToTangent(ehess);
end

end
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In this section, we will provide reference code for the RIM manifold toolbox. Our code is compatible
with the well-known open-source manifold optimization toolbox Manopt (Boumal et al., 2014),
allowing the direct use of Manopt’s algorithms to implement Riemannian optimization on the RIM
manifold. The first code block creates a factory named "RIM", which allows for the direct call to the
RIM factory to obtain the basic description of the RIM manifold, covering the essential information
about the manifold and the invocation of basic Riemannian operations.

Dykstras algorithm is one of the methods for implementing Retraction. Its process involves iterative
projections and the condition for determining when to exit the loop.

function [P] = Dykstras(M, a, b_l, b_u, N)
if b_l==b_u

tol=1e-2;
else

tol=1e-1;
end
rng(1);
[mn, mc] = size(M);
P = M;
z1 = zeros(mn, mc);
z2 = zeros(mn, mc);
z3 = zeros(mn, mc);

for iter = 1:N
for i = 1:mn

prev_row = P(i, :) + z1(i, :);
P(i, :) = EProjSimplex_new(prev_row, a(i));
z1(i, :) = prev_row - P(i, :);

end

for j = 1:mc
prev_col = P(:, j) + z2(:, j);
current_sum = sum(prev_col);
if current_sum >= b_l(j)

z2(:, j) = 0;
P(:, j) = prev_col;

else
delta = (b_l(j) - current_sum) / mn;
new_col = prev_col + delta * ones(mn, 1);
z2(:, j) = prev_col - new_col;
P(:, j) = new_col;

end
end

for j = 1:mc
prev_col = P(:, j) + z3(:, j);
current_sum = sum(prev_col);
if current_sum <= b_u(j)

z3(:, j) = 0;
P(:, j) = prev_col;

else
delta = (b_u(j) - current_sum) / mn;
new_col = prev_col + delta * ones(mn, 1);
z3(:, j) = prev_col - new_col;
P(:, j) = new_col;

end
end

if norm(P*ones(mc,1)-a, 'fro') < tol && all(P(:)>=-tol)
disp(['Converged at iteration: ', num2str(iter)]);
break;

end
end

end
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In the Dykstras algorithm process, the first step is to project onto the simplex, where the projection
function is EProjSimplex_new. The code for this is provided below. During usage, you can create
a file named EProjSimplex_new and call the EProjSimplex_new algorithm in each iteration of the
Dykstras algorithm process.

function [x ft] = EProjSimplex_new(v, k)
if nargin < 2

k = 1;
end;
ft=1;
n = length(v);
v0 = v-mean(v) + k/n;
vmin = min(v0);
if vmin < 0

f = 1;
lambda_m = 0;
while abs(f) > 10^-10

v1 = v0 - lambda_m;
posidx = v1>0;
npos = sum(posidx);
g = -npos;
f = sum(v1(posidx)) - k;
lambda_m = lambda_m - f/g;
ft=ft+1;
if ft > 100

x = max(v1,0);
break;

end;
end;
x = max(v1,0);

else
x = v0;

end;

The function ProjToTangent is a simple projection function onto the tangent space.

function P = ProjToTangent(X)
c=size(X,2);
P=X-1/c*X*ones(c,c);

end

When running the code, please create four separate MATLAB files for RIMfactory, Dykstras,
EProjSimplex_new, and ProjToTangent, and place them in the manopt folder following this
structure:
-manopt;
--manifolds;

---multinomial;
----RIMfactory;
----Dykstras;
----EProjSimplex_new;
----ProjToTangent;

Then you can call the functions in the general way as per manopt.
RIM_manifold = RIMfactory(n,c,row,upper,lower);
problem.M = RIM_manifold;
problem.cost = @(X) ...;
problem.egrad = @(X) ...; % Euclidean gradient
[X_rim,~,info_rim,~] = steepestdescent(problem);
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Furthermore, we provide reference code for the dual gradient and Sinkhorn algorithms, which allow
the Retraction operation to be performed in other ways. Overall, we still recommend using Dykstras
algorithm under the Euclidean inner product for descent along the geodesics of the RIM manifold.

function F = dual_gradient(Z, l, u, max_iter)
[n, c] = size(Z);
l = l(:);
u = u(:);

nu = ones(n, 1);
omega = ones(c, 1);
rho = ones(c, 1);

step_size = .05;

for iter = 1:max_iter
term = Z - nu * ones(1, c) - ones(n, 1) * omega' + ones(n, 1) *

rho';
F_current = max(term, 0);

grad_nu = F_current * ones(c, 1) - ones(n, 1);
grad_omega = F_current' * ones(n, 1) - u;
grad_rho = -F_current' * ones(n, 1)+l;

nu = nu + step_size * grad_nu;
omega = omega + step_size * grad_omega;
rho = rho + step_size * grad_rho;

omega = max(omega, 0);
rho = max(rho, 0);

end
term = Z - nu * ones(1, c) - ones(n, 1) * omega' + ones(n, 1) * rho';
F = max(term, 0);

end

function P = sinkR(X, a, l, u, N)
rng(1)
[n, c] = size(X);
K = X;
u_vec = ones(n, 1);
q_vec = ones(c, 1);
v_vec = ones(c, 1);

for i = 1:N
u_vec = a ./ (K * (q_vec .* v_vec));

sum_P_t = sum((u_vec .* K), 1)';
q_vec = max(l(:) ./ sum_P_t, ones(c, 1));

sum_P_t = sum((u_vec .* K) .* q_vec', 1)';
v_vec = min(u(:) ./ sum_P_t, ones(c, 1));

P = diag(u_vec) * K * diag(q_vec .* v_vec);
P_liehe = P'*ones(n,1);

if norm(P*ones(c,1)-ones(n,1), 'fro') < 1e-2 && all(P(:)>=-1e-2)
&& all(P_liehe>=l-1e-2) && all(P_liehe<=u+1e-2)
break;

end
end

end
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