

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 RIEMANNIAN OPTIMIZATION ON RELAXED INDICATOR MATRIX MANIFOLD

Anonymous authors

Paper under double-blind review

ABSTRACT

The indicator matrix plays an important role in machine learning, but optimizing it is an NP-hard problem. We propose a new relaxation of the indicator matrix and compared with other existing relaxations, it can flexibly incorporate class information. We prove that this relaxation forms a manifold, which we call the Relaxed Indicator Matrix Manifold (RIM manifold). Based on Riemannian geometry, we develop a Riemannian toolbox for optimization on the RIM manifold. Specifically, we provide several methods of Retraction, including a fast Retraction method to obtain geodesics. We point out that the RIM manifold is a generalization of the double stochastic manifold, and it is much faster than existing methods on the double stochastic manifold, which has a complexity of $\mathcal{O}(n^3)$, while RIM manifold optimization is $\mathcal{O}(n)$ and often yields better results. We conducted extensive experiments, including image denoising, with millions of variables to support our conclusion, and applied the RIM manifold to Ratio Cut, we provide a rigorous convergence proof and achieve clustering results that outperform the state-of-the-art methods. Our Code is presented in Appendix H.

1 INTRODUCTION

Indicator matrices play a crucial role in machine learning (Mo et al., 2025; Li et al., 2024a; Tsitsulin et al., 2023), particularly in tasks such as clustering (Fan et al., 2022; Macgregor, 2024) and classification (Shi et al., 2024). For a problem with n samples and c classes, the indicator matrix $F \in \text{Ind}^{n \times c}$, where $\text{Ind}^{n \times c} = \{X \in \mathbb{R}^{n \times c} \mid X_{ij} \in \{0, 1\}, X1_c = 1_n\}$ and 1_c is the column vector of ones of size c . The optimization of indicator matrices, which can be seen as a 0-1 programming problem, is NP-hard (Schuetz et al., 2022; Gasse et al., 2022). Therefore, finding efficient methods to relax the indicator matrix for optimization is important.

Ng et al. (2001) relaxed the indicator matrix to the Steifel manifold, $F \in \{X \mid X^T X = I\}$, where I is the identity matrix. This approach further developed spectral graph theory and led to the formulation of classic algorithms such as spectral clustering (Balestrieri & LeCun, 2022; Macgregor & Sun, 2022). However, optimizing over the Steifel manifold always requires $\mathcal{O}(n^2 c)$ operations (Wen & Yin, 2013), making it challenging to scale for large datasets, and it can only provide an optimal solution for problems of the form $\text{tr}(F^T L F)$, while in clustering, the resulting F still needs post-processing through methods like K-means (Li et al., 2015; Mondal et al., 2021). An alternative relaxation is to make F onto the single stochastic manifold, $F \in \{X \mid X1_c = 1_n, X > 0\}$ (Sun et al., 2015), which gave rise to well-known algorithms like Fuzzy K-means (Ferraro, 2024; Borlea et al., 2021). However, this approach has the drawback of not considering the total number of samples per class, which can lead to empty clusters or imbalanced class distributions (Ikotun et al., 2023; Hu et al., 2023). The most recent method is to relax the indicator matrix onto the double stochastic manifold, i.e., $F \in \{X \mid X1_c = 1_n, X^T 1_n = r, X > 0\}$ (Fettal et al., 2024; Yuan et al., 2024c). However, this approach also has significant drawbacks. The double stochastic manifold imposes overly strict requirements on the columns of F , as it necessitates knowing the true distribution of each class in the dataset as a prior, which is nearly impossible for unknown datasets. Additionally, optimization over the double stochastic manifold is extremely challenging, still requiring $\mathcal{O}(n^3)$ time (Douik & Hassibi, 2019; 2018), making it almost infeasible for large-scale datasets.

To solve above questions, we propose a new relaxation method, where $F \in \{X \mid X1_c = 1_n, l < X^T 1_n < u, X > 0\}$. In this approach, the constraints on the column sums are relaxed to lie within a

054 specified range. This allows us to flexibly incorporate as much prior knowledge as possible into the
 055 model. When there is more prior knowledge, we can choose a tighter (l, u) interval. Conversely, we
 056 can make it more relaxed. Specifically, when the column sums and the true distribution are known,
 057 we can set $l = u$ and l to the true distribution (In fact, this does not lead to the absence of solutions,
 058 for further discussion, you see Appendix G). When no prior knowledge is available, we can set $l < 0$
 059 and $u > n$, which means our relaxation is a generalization of both the single stochastic manifold and
 060 the double stochastic manifold, offering a more adaptable framework.

061 We prove that the set of relaxed indicator matrices forms a manifold, which we call the Relaxed
 062 Indicator Matrix Manifold (RIM manifold). Based on Riemannian geometry (Boumal, 2023; Fei
 063 et al., 2025), we have developed a Riemannian optimization toolbox (Boumal et al., 2014; Townsend
 064 et al., 2016) for running optimization on the RIM manifold. In particular, we provide three distinct
 065 Retraction methods, including one that allows for fast computation of geodesics (Nguyen, 2022;
 066 Jordan et al., 2022), enabling our algorithm to efficiently operate along the geodesic. Furthermore,
 067 we demonstrate that our algorithm, compared to existing Riemannian optimization methods on the
 068 double stochastic manifold, reduces the time complexity from $\mathcal{O}(n^3)$ to $\mathcal{O}(n)$. Furthermore, we have
 069 developed various Riemannian optimization algorithms that run on the RIM manifold.

070 We designed a series of large-scale experiments with millions of optimization variables to validate
 071 our algorithm. These experiments include comparisons with state-of-the-art optimization algorithms
 072 on both convex and non-convex problems like image denoising (Takemoto et al., 2022; Zhou et al.,
 073 2024). In particular, we applied the Ratio Cut model (Veldt, 2023; Hagen & Kahng, 1992) to the RIM
 074 manifold. When $l = u$, our algorithm is 70-200 times faster than those based on the double stochastic
 075 manifold for large-scale problems with millions of variables, and it achieves lower loss results. In
 076 general, the algorithms on the RIM manifold outperform the latest optimization algorithms in both
 077 loss function values and time. Additionally, the Ratio Cut clustering metric on the RIM manifold
 078 exceeds that of the latest clustering algorithms.

079 Overall, our contributions include:

- 080 • We propose a novel relaxation method for the indicator matrix, which allows for the full
 081 utilization of varying levels of prior information from the dataset, and we proved that the
 082 relaxed matrix forms a manifold.
- 083 • We develop a Riemannian optimization toolbox for manifolds, providing three Retraction
 084 algorithms, including a fast method for obtaining geodesics on the RIM manifold. We also
 085 demonstrated that the RIM manifold can replace methods on the double stochastic manifold,
 086 reducing the time complexity from $\mathcal{O}(n^3)$ to $\mathcal{O}(n)$.
- 087 • We conduct lots of experiments with millions of variables, demonstrating the speed and
 088 efficiency of our algorithm. Our method outperforms the double stochastic manifold by
 089 70-200 times in large-scale experiments, yielding better results and shorter time on various
 090 problems compared to latest optimization methods. We apply the RIM manifold to Ratio
 091 Cut and achieve superior clustering performance compared to the state-of-the-art methods.

093 2 PRELIMINARIES

096 The Preliminaries section consists of four parts: an introduction to the notations, a brief overview of
 097 Riemannian optimization, and an introduction to the single stochastic manifold, double stochastic
 098 manifold, and Steifel manifold, as well as machine learning methods on these manifolds. All the
 099 notations used in this paper follows the standard conventions of Riemannian optimization, and
 100 important symbols are introduced in the main text. Due to space limitations, the Preliminaries can be
 101 found in Appendix B.

102 3 RIEMANNIAN TOOLBOX

103 3.1 DEFINITION OF THE RELAXED INDICATOR MATRIX MANIFOLD

105 The optimization of indicator matrix $F \in \text{Ind}^{n \times c}$, where typically $n \gg c$, is an NP-hard optimization
 106 problem. Three relaxation methods have already been introduced. The Steifel manifold $F \in$

$\{X \mid X^T X = I\}$ always requires $\mathcal{O}(n^2 c)$ time complexity (Wen & Yin, 2013) and can only yield an analytical optimal solution in the form of $\text{tr}(F^T L F)$, while in clustering, the resulting F still needs post-processing through methods like K-means. The single stochastic manifold $F \in \{X \mid X 1_c = 1_n, X > 0\}$ does not impose any constraints on the column sums of F , which may lead to empty or imbalanced classes and cannot incorporate column sum information into the model. The double stochastic manifold $F \in \{X \mid X 1_c = 1_n, X^T 1_n = r, X > 0\}$, on the other hand, has a time complexity of $\mathcal{O}(n^3)$, and the constraints on the column sums are too strict, often making it impossible to obtain the sum of the column. Therefore, we propose a new relaxation method:

$$F \in \{X \mid X 1_c = 1_n, l < X^T 1_n < u, X > 0\} \quad (1)$$

Introducing l and u allows us to incorporate as much information as possible into the model. Additionally, when $l < 0$ and $u > n$, our relaxation reduces to $\{X \mid X 1_c = 1_n, X > 0\}$. When $u = l = r$, our relaxation becomes $\{X \mid X 1_c = 1_n, X^T 1_n = r, X > 0\}$. Thus, our relaxation generalizes the previously mentioned approaches. Importantly, our relaxation forms an embedded submanifold of the Euclidean space.

Lemma 1. *Our relaxed indicator matrix set $\mathcal{M} = \{X \mid X 1_c = 1_n, l < X^T 1_n < u, X > 0\}$ forms an embedded submanifold of the Euclidean space, with $\dim \mathcal{M} = (n-1)c$. We refer to it as the Relaxed Indicator Matrix Manifold. The proof is included in A.1*

3.2 RIEMANNIAN OPTIMIZATION TOOLBOX FOR THE RIM MANIFOLD

In this section, we will establish an optimized Riemannian toolbox for the RIM manifold. To transform the embedded submanifold (Zhang et al., 2024; Lee & Lee, 2012) \mathcal{M} into a Riemannian submanifold (Lee, 2018; Gulbahar, 2021), it is necessary to equip \mathcal{M} with an inner product $\langle \cdot, \cdot \rangle_X$. Mishra et al. (2021) adopt the Fisher information (Ly et al., 2017; Rissanen, 1996) metric for manifolds. However, an alternative approach is to directly restrict the Euclidean inner product onto the manifold. The reason for doing so is seen in F. This restriction allows for a straightforward derivation of the Riemannian gradient (Huang & Wei, 2022) from the Euclidean gradient and the method lies in enabling an intuitive and convenient Retraction mapping.

Lemma 2. *By restricting the Euclidean inner product $\langle U, V \rangle = \sum_{i=1}^n \sum_{j=1}^c U_{ij} V_{ij}$ onto the RIM manifold \mathcal{M} , the tangent space of \mathcal{M} at X is given by $T_X \mathcal{M} = \{U \mid U 1_c = 0\}$. For any function \mathcal{H} , if its Euclidean gradient is $\text{Grad } \mathcal{H}(F)$, the Riemannian gradient $\text{grad } \mathcal{H}(F)$ is expressed as following. The proof is included in A.2*

$$\text{grad } \mathcal{H}(F) = \text{Grad } \mathcal{H}(F) - \frac{1}{c} \text{Grad } \mathcal{H}(F) 1_c 1_c^T. \quad (2)$$

To further obtain second-order information of a function, it is necessary to equip the manifold \mathcal{M} with a Riemannian connection (Epstein, 1975). We select the unique connection that ensures the Riemannian Hessian $\text{hess } \mathcal{H}$ is symmetric and compatible with the inner product as the Riemannian connection. The following theorem formalizes this:

Lemma 3. *For the manifold \mathcal{M} , there exists a unique connection that is compatible with the inner product and ensures that the Riemannian Hessian mapping is self-adjoint. This connection is given by following. $\bar{\nabla}$ is the Riemannian connection in Euclidean space. The proof is included in A.3*

$$\nabla_V U = \bar{\nabla}_V U - \frac{1}{c} \bar{\nabla}_V U 1_c 1_c^T. \quad (3)$$

The Riemannian Hessian mapping can be directly derived from the above Riemannian connection.

Lemma 4. *For the manifold \mathcal{M} equipped with the connection $\nabla_V U$, the Riemannian Hessian mapping satisfies following. $\text{Hess } \mathcal{H}$ is the Riemannian Hessian in Euclidean space. The proof is included in A.4*

$$\text{hess } \mathcal{H}[V] = \text{Hess } \mathcal{H}[V] - \frac{1}{c} \text{Hess } \mathcal{H}[V] 1_c 1_c^T. \quad (4)$$

A Retraction (Boumal, 2023; Absil et al., 2008) is a mapping $R_X(tV)$ that maps from the tangent space of \mathcal{M} at X to the manifold \mathcal{M} , i.e., $R_X(tV) : T_X \mathcal{M} \rightarrow \mathcal{M}$. A Retraction is used to generate a curve $\gamma(t) = R_X(tV)$, starting at X and moving in the initial direction given by V , allowing X to

move along the manifold. Specifically, $R_X(tV)$ should satisfy $R_X(0) = X$ and $\frac{d}{dt}R_X(tV)|_{t=0} = V$. If $\frac{D}{dt}\gamma'(t)|_{t=0} = 0$, then $\gamma(t)$ forms a geodesic, where $\frac{D}{dt}$ represents the Levi-Civita derivative (Berz, 1996). Geodesics provide better convergence guarantees for optimization algorithms on manifolds (Vishnoi, 2018). The following theorem presents a method for obtaining geodesics.

Theorem 1. *Let $R_X(tV) = \operatorname{argmin}_{F \in \mathcal{M}} \|F - (X + tV)\|_F^2$, $X \in \mathcal{M}$. Then*

$$\operatorname{argmin}_{F \in \mathcal{M}} \|F - (X + tV)\|_F^2 = \max(0, X + tV - \nu(t)1_c^T - 1_n\omega^T(t) + 1_n\rho^T(t)) \quad (5)$$

where $\nu(t), \omega^T(t), \rho^T(t)$ are Lagrange multipliers. Moreover, there exists $\delta > 0$ such that for $t \in (0, \delta)$, $-\nu(t)1_c^T - 1_n\omega(t)^T + 1_n\rho(t)^T = 0$, and the Retraction satisfies the following. Where $\frac{D}{dt}$ denotes the Levi-Civita derivative.

$$R_X(0) = X, \quad \frac{d}{dt}R_X(tV)|_{t=0} = V, \quad \frac{D}{dt}R'_X(tV)|_{t=0} = 0 \quad (6)$$

Thus, $R_X(tV)$ is a geodesic. *The proof is included in A.5.*

The essence of solving the Retraction is to compute the orthogonal projection $\operatorname{argmin}_{F \in \mathcal{M}} \|F - (X + tV)\|_F^2$, which can be addressed from two perspectives: the primal problem and the dual problem.

Theorem 2. $\mathcal{M} = \Omega_1 \cap \Omega_2 \cap \Omega_3$, where $\Omega_1 = \{X \mid X > 0, X1_c = 1_n\}$, $\Omega_2 = \{X \mid X^T 1_n > l\}$, and $\Omega_3 = \{X \mid X^T 1_n < u\}$. The primal problem can be solved using the Dykstras (Tibshirani, 2017; Boyle & Dykstra, 1986) algorithm by iteratively projecting onto Ω_1 , Ω_2 , and Ω_3 . Specifically:

$\operatorname{Proj}_{\Omega_1}(X) = (X_{ij} + \eta_i)_+$, where η is determined by $\operatorname{Proj}_{\Omega_1}(X)1_c = 1_n$.

$\operatorname{Proj}_{\Omega_2}(X)$ and $\operatorname{Proj}_{\Omega_3}(X)$ are defined similarly. For example,

$$\operatorname{Proj}_{\Omega_2}(X^j) = \begin{cases} X^j, & \text{if } (X^j)^T 1_n > l_j, \\ \frac{1}{n}(l_j - 1_n^T X^j)1_n + X^j, & \text{if } (X^j)^T 1_n \leq l_j, \end{cases} \quad (7)$$

where X^j is the j -th column of X , and l_j is the j -th element of the column vector l . *The proof is included in A.6.*

Please note that Dykstras algorithm is a projection-based retraction algorithm (Absil & Malick, 2012), which in fact seeks the best point in the set $\{X \mid X1_c = 1_n, l \leq X^T 1_n \leq u, X \geq 0\}$. This design allows the algorithm to remain effective even when $l = u$. A detailed discussion of this can be found in Appendix G.

Another approach is the dual gradient ascent method. We have proven the following theorem.

Theorem 3. *Solving the primal problem is equivalent to solving the following dual problem:*

$$\max_{\omega \geq 0, \rho \geq 0} \mathcal{L} = \frac{1}{2} \|\max(0, X + tV - \nu 1_c^T - 1_n\omega^T + 1_n\rho^T)\|_F^2 - \langle \nu, 1_n \rangle - \langle \omega, u \rangle + \langle \rho, l \rangle \quad (8)$$

where ν , ω , and ρ are Lagrange multipliers. The partial derivatives of \mathcal{L} with respect to ν , ω , and ρ are known, and gradient ascent can be used solving ν , ω , and ρ . Finally, $R_X(tV)$ can be obtained using $\max(0, X + tV - \nu 1_c^T - 1_n\omega^T + 1_n\rho^T)$. The partial derivatives are following. *The proof is included in A.7.*

$$\begin{cases} \frac{\partial \mathcal{L}}{\partial \nu} = \max(0, X + tV - \nu 1_c^T - 1_n\omega^T + 1_n\rho^T)1_c - 1_n \\ \frac{\partial \mathcal{L}}{\partial \omega} = \max(0, X + tV - \nu 1_c^T - 1_n\omega^T + 1_n\rho^T)^T 1_n - u \\ \frac{\partial \mathcal{L}}{\partial \rho} = -\max(0, X + tV - \nu 1_c^T - 1_n\omega^T + 1_n\rho^T)^T 1_n + l \end{cases} \quad (9)$$

Additionally, we propose a Retraction method based on a variant of the Sinkhorn algorithm (Xie et al., 2025; Cuturi, 2013). This approach also attempts to map a matrix onto the RIM manifold using two diagonal matrices. The following theorem illustrates this property. However, it is equivalent to solving an optimal transport problem with an entropy regularization parameter, whose choice may not be well justified.

216 **Table 1: Time complexity comparison ($n \gg c$).**

Operation	RIM Manifold			Doubly Stochastic Manifold			Speedup factor
	Additions	Multiplications	Total	Additions	Multiplications	Total	
Riemannian Gradient	$\mathcal{O}(nc)$	$\mathcal{O}(n)$	$\mathcal{O}(n)$	$\mathcal{O}(n^3)$	$\mathcal{O}(n^3)$	$\mathcal{O}(n^3)$	$\mathcal{O}(n^2)$
Retraction	$\mathcal{O}(nc)$	$\mathcal{O}(nc)$	$\mathcal{O}(nc)$	$\mathcal{O}(nc)$	$\mathcal{O}(nc)$	$\mathcal{O}(nc)$	$\mathcal{O}(1)$
Riemannian Hessian	$\mathcal{O}(nc)$	$\mathcal{O}(n)$	$\mathcal{O}(n)$	$\mathcal{O}(n^3)$	$\mathcal{O}(n^3)$	$\mathcal{O}(n^3)$	$\mathcal{O}(n^2)$

217 **Theorem 4.** *The Sinkhorn-based Retraction is defined as*

218
$$R_X^s(tV) = \mathcal{S}(X \odot \exp(tV \oslash X)) = \text{diag}(p^*)(X \odot \exp(tV \oslash X)) \text{diag}(q^* \odot w^*) \quad (10)$$

219 where p^*, q^*, w^* are vectors, $\exp(\cdot)$ denotes element-wise exponentiation, and $\text{diag}(\cdot)$ converts
220 a vector into a diagonal matrix. The vectors p^*, q^*, w^* are obtained by iteratively updating the
221 following equations:

222
$$\begin{cases} p^{(k+1)} = 1_n \oslash ((X \odot \exp(tV \oslash X)) (q^{(k)} \odot w^{(k)})), \\ q^{(k+1)} = \max \left(l \oslash ((X \odot \exp(tV \oslash X))^T p^{(k+1)} \odot w^{(k)}), 1_c \right), \\ w^{(k+1)} = \min \left(u \oslash ((X \odot \exp(tV \oslash X))^T p^{(k+1)} \odot q^{(k+1)}), 1_c \right). \end{cases} \quad (11)$$

223 This iterative procedure ensures the mapping onto the RIM manifold. The solution $R_X^s(tV) =$
224 $\text{diag}(p^*)(X \odot \exp(tV \oslash X)) \text{diag}(q^* \odot w^*)$ is equivalent to solving the dual-bound optimal transport
225 problem (12) with an entropy regularization parameter of 1. *The proof is included in A.8.*

226
$$R_X^s(tV) = \underset{F \in \mathcal{M}}{\text{argmin}} \left\langle F, -\log(X \odot \exp(tV \oslash X)) \right\rangle + \delta \Big|_{\delta=1} \sum_{i=1}^n \sum_{j=1}^c (F_{ij} \log(F_{ij}) - F_{ij}) \quad (12)$$

227 Based on the Riemannian toolbox for the RIM manifold, we have developed Riemannian Gradient
228 Descent (RIMRGD), Riemannian Conjugate Gradient (RIMRCG), and Riemannian Trust-Region
229 (RIMRTR) methods on the RIM manifold. The algorithmic procedures are provided in Appendix C.

230

3.3 COMPARISON ANALYSIS OF TIME COMPLEXITY

231 When $u = l$, the RIM manifold reduces to the doubly stochastic manifold and provides a fast way for
232 solving problems on the doubly stochastic constraint. Existing optimization methods on the doubly
233 stochastic manifold are extremely time-consuming. This section provides a comparative analysis of
234 the time complexity between the RIM manifold and the doubly stochastic manifold.

235 First, we discuss the Riemannian gradient. The computation of the Riemannian gradient on
236 the RIM manifold is given by $\text{grad } \mathcal{H}(F) = \text{Grad } \mathcal{H}(F) - \frac{1}{c} \text{Grad } \mathcal{H}(F) 1_c 1_c^T$. Here, the term
237 $\text{Grad } \mathcal{H}(F) 1_c 1_c^T$ involves summing each column, dividing by c , and then replicating it across c
238 columns. This requires $2nc$ additions and n divisions.

239 For the doubly stochastic manifold, the Riemannian gradient is ($n = c$):

240
$$\begin{cases} \text{grad } \mathcal{H}(F) = \gamma - (\alpha 1_n^T + 1_n 1_n^T \gamma - 1_n \alpha^T F) \odot F, \\ \alpha = (I - FF^T)^\dagger (\gamma - F\gamma^T) 1_n, \quad \gamma = \text{Grad } \mathcal{H}(F) \odot F. \end{cases} \quad (13)$$

241 The term $FF^T \in \mathbb{R}^{n \times n}$, and computing its pseudo-inverse $(I - FF^T)^\dagger$ requires at least n^3 additions
242 or multiplications. Further computing the Riemannian gradient involves at least n^3 operations. When
243 $n \neq c$, we need to solve a linear system of $(n + c)$ dimensions still takes $\mathcal{O}(n^3)$ time (where $n \gg c$).

244 For the Retraction operation, the time complexity is $\mathcal{O}(nc)$, which scales linearly with the number
245 of variables. For the computation of the Riemannian Hessian, the RIM manifold also requires
246 only $\mathcal{O}(nc)$ additions and $\mathcal{O}(c)$ multiplications. In contrast, the Hessian mapping on the doubly
247 stochastic manifold has a highly complex expression (186), requiring at least $\mathcal{O}(n^3)$ additions and
248 multiplications.

249 We summarize the time complexity in Table 1, including the complexity of each operation and the
250 speedup factor. *We will conduct extensive experiments to verify the acceleration effect.*

251

4 RIM MANIFOLD FOR GRAPH CUT

252 In this section, we apply the RIM manifold to graph cut problems, using Max Cut (Shinde et al.,
253 2021; Wang et al., 2022) and Ratio Cut (Chen et al., 2022b; Nie et al., 2024) as examples. Max Cut

5

270 and Ratio Cut are both well-known graph partitioning algorithms, and their loss functions are given
 271 by $\mathcal{H}_m(F) = -\text{tr}(F^T SF)$ for the Max Cut, and $\mathcal{H}_r(F) = \text{tr}(F^T LF(F^T F)^{-1})$ for the Ratio Cut.
 272 S is the similarity matrix, and L is the Laplacian matrix (Nie et al., 2016; 2014). The constraint is
 273 $F \in \text{Ind}^{n \times c}$, and we relax this constraint on the RIM manifold.

274 First, the Euclidean gradient of $-\text{tr}(F^T SF)$ is $\text{Grad}(-\text{tr}(F^T SF)) = -SF$, and its corresponding
 275 Riemannian gradient is $\text{grad } \mathcal{H}_m(F) = -SF + \frac{1}{c}SF1_c1_c^T$. According to Theorem 4, the Riemannian
 276 Hessian expression is $\text{hess } \mathcal{H}_m[V] = \text{Hess } \mathcal{H}_m[V] - \frac{1}{c} \text{Hess } \mathcal{H}_m[V]1_c1_c^T$. Moreover, because we know
 277 that:

$$279 \text{Hess } \mathcal{H}_m[V] = \lim_{t \rightarrow 0} \frac{\text{Grad } \mathcal{H}_m(F + tV) - \text{Grad } \mathcal{H}_m(F)}{t} = \lim_{t \rightarrow 0} \frac{-S(F + tV) + SF}{t} = -SV \quad (14)$$

281 Therefore, we show that $\text{hess } (-\text{tr}(F^T SF))[V]$ can be represented as following:

$$282 \text{hess } (-\text{tr}(F^T SF))[V] = -SV + \frac{1}{c}SV1_c1_c^T \quad (15)$$

284 Now we apply the RIM manifold to the Ratio Cut problem. Ratio Cut is an important graph
 285 partitioning method with the objective function $\text{tr}(F^T LF(F^T F)^{-1})$, subject to $F \in \text{Ind}^{n \times c}$. The
 286 relaxed optimization problem is formulated as:

$$287 \min_{F \in \mathcal{M}} \text{tr}(F^T LF(F^T F)^{-1}), \quad \mathcal{M} = \{X \mid X1_c = 1_n, l < X^T 1_n < u, X > 0\} \quad (16)$$

289 The following theorem provides the expressions for the Euclidean gradient and the Euclidean Hessian
 290 map of the Ratio Cut.

291 **Theorem 5.** *The loss function for the Ratio Cut is given by $\mathcal{H}_r(F) = \text{tr}(F^T LF(F^T F)^{-1})$. Then,
 292 the Euclidean gradient of the loss function with respect to F is following. The proof is included in
 293 A.9.*

$$294 \text{Grad } \mathcal{H}_r(F) = 2 \left(LF(F^T F)^{-1} - F(F^T F)^{-1}(F^T LF)(F^T F)^{-1} \right) \quad (17)$$

295 Given the substitutions $(F^T F)^{-1} = J$ and $F^T LF = K$, the Euclidean Hessian map for the loss
 296 function is:

$$298 \text{Hess } \mathcal{H}_r[V] = 2(LVJ - LFJ(V^T F + F^T V)J - VJKJ + FJ(V^T F + F^T V)JKJ) \quad (18)$$

$$299 \quad - FJ(V^T LF + F^T LV)J + FJKJ(V^T F + F^T V)J \quad (19)$$

300 The above theorem provides the Euclidean gradient of Ratio Cut. Although computing $(F^T F)^{-1}$
 301 requires inversion, where $F^T F \in \mathbb{R}^{c \times c}$, the inversion complexity is only $\mathcal{O}(c^3)$ and $c \ll n$. Next, we
 303 will perform graph cut optimization on the RIM manifold, comparing the **loss results and runtime** with
 304 various state-of-the-art algorithms, as well as evaluating the effectiveness of graph cut for **clustering**.

305 We further prove that the graph cut problem defined on the RIM manifold is always Lipschitz
 306 continuous. More specifically, we have the following theorem.

307 **Theorem 6.** *For any graph cut problem expressed as $\mathcal{H}(F) = \text{tr}((F^T LF)(F^T WF)^{-1})$, where W
 308 is any symmetric matrix, the Euclidean gradient $\text{Grad } \mathcal{H}(F)$ is bounded, and satisfies:*

$$310 \|\text{Grad } \mathcal{H}(F)\|_{\otimes} \leq 2 \left(\frac{\|L\|_{\otimes} \sqrt{n}}{\alpha} + \frac{\|W\|_{\otimes} \|L\|_{\otimes} n^{3/2}}{\alpha^2} \right), \quad \alpha = \frac{\sigma_{\min}(W) \cdot l^2}{n} \quad (20)$$

312 where $\sigma_{\min}(W)$ is the smallest singular value of the matrix W and $\|\cdot\|_{\otimes}$ denotes the spectral norm.
 313 This implies that $\mathcal{H}(F)$ is Lipschitz continuous.

315 In addition, we provide **convergence theorems for graph cut** optimization on the RIM manifold
 316 using Riemannian optimization. Specifically, in Proof A.11, we show that the graph cut problem is
 317 Lipschitz smooth and provide an analysis of its convergence rate. We also analyze the relationship
 318 between finding the optimal solution via the doubly stochastic manifold and the RIM manifold under
 319 the assumptions of strong convexity and L-smoothness. The proof can be found in Appendix A.12.

320 5 EXPERIMENTS

323 In this section, we will conduct extensive experiments to evaluate the performance of Riemannian
 324 optimization on the RIM manifold and address several key questions of interest.

- **Question 1:** For the RIM manifold, this paper proposes three different Retraction methods. Which method is the most efficient? Which Retraction is recommended for use?
- **Question 2:** When $l = u$, does the Riemannian optimization algorithm on the RIM manifold outperform the Riemannian optimization algorithm on the doubly stochastic manifold in terms of effectiveness and speed?
- **Question 3:** For non-convex optimization problems, we evaluate whether optimization on the RIM manifold is faster or more effective compared to other state-of-the-art methods? As examples, we consider a classic non-convex graph cut problem Ratio Cut.
- **Question 4:** When relaxing the graph cut problem onto the RIM manifold (followed by discretization), can common clustering metrics(ACC,NMI,ARI) achieve better values?

335 5.1 EXPERIMENTAL SETUPS

337 5.1.1 EXPERIMENT 1 SETUP

339 To determine which of the three Retraction methods is more efficient, we randomly select a large
 340 number of matrices $V \in T_X \mathcal{M}$, i.e., generate a large number of tangent vectors, and set $t = 1$.
 341 Then, we apply the three Retraction methods to generate points on the RIM manifold \mathcal{M} . To
 342 ensure the experiment's validity, we vary the matrix dimensions $V \in \mathbb{R}^{n \times c}$, where n takes values
 343 from $\{500, 1000, 3000, 5000, 7000, 10000\}$ and c takes values from $\{5, 10, 50, 100, 500, 1000\}$. The
 344 lower and upper bounds are set as $l = 0.9 \lfloor \frac{n}{c} \rfloor$ and $u = 1.1 \lfloor \frac{n}{c} \rfloor$, respectively, as well as $l = u = \frac{n}{c}$.
 345 We then calculate the computation time for the three Retraction methods and compare them. For
 346 large-scale problems, we recommend using the faster Retraction method. If the computation times
 347 are nearly identical, we recommend using the norm-based Retraction, as it yields geodesics with
 348 better properties.

349 5.1.2 EXPERIMENT 2 SETUP

351 To answer the second question, we need to compare Riemannian optimization methods on the RIM
 352 manifold with optimization methods on the doubly stochastic manifold under the condition $l = u$. To
 353 this end, we design two optimization problems, including both convex and non-convex cases.

354 **The first problem** is a norm approximation problem. Specifically, we randomly generate a matrix
 355 $A \in \mathbb{R}^{n \times c}$ with sizes $n \in \{5000, 7000, 10000\}$, $c \in \{5, 10, 20, 50, 70, 100\}$ and solve the following
 356 optimization problem. We compare the runtime and loss function values of the two manifolds.

$$357 \min_{F \in \mathcal{M}} \|F - A\|_F^2, \quad \mathcal{M} = \{X \mid X1_c = A1_c, X^T 1_n = A^T 1_c, X > 0\} \quad (21)$$

359 **The second problem** is an image denoising task based on the classical total variation (TV) regularization
 360 model. The RIM-TV model is given by

$$362 \begin{cases} \min_{F \in \mathcal{M}} \frac{1}{2} \|F - \tilde{A}\|_F^2 + \xi \sum_{i,j} (|F_{i,j+1} - F_{i,j}| + |F_{i+1,j} - F_{i,j}|) \\ 363 \mathcal{M} = \{X \mid X > 0, X1_c = \tilde{A}1_c, X^T 1_n = \tilde{A}^T 1_n\} \end{cases} \quad (22)$$

365 Here, ξ is the total variation (TV) regularization coefficient, A is the original image obtained from
 366 the dataset, and \tilde{A} is the noisy image generated by adding Gaussian white noise to A . The image A_{ij}
 367 is in $(0, 1)$, ξ is chosen from the set $\{0.3, 0.7\}$, and the variance of the added Gaussian noise is chosen
 368 from the set $\{0.3, 0.5, 0.9\}$. We will compare the speed and objective function values of the algorithm
 369 when running on the RIM manifold versus the doubly stochastic manifold. More experimental details
 370 can be found in Appendix D.1. **When comparing the RIM manifold with the doubly stochastic**
 371 **manifold, the only difference lies in the manifold toolbox used, all other components, including the**
 372 **line search method and stopping criteria, are kept exactly the same.**

373 5.1.3 EXPERIMENT 3 SETUP

375 To answer the third question, we apply the RIM manifold to Ratio Cut and conduct experiments
 376 on 8 real datasets (as shown in Appendix D.3.4). The values of l and u are set as $l = u = \frac{n}{c}$
 377 and $l = 0.9 \lfloor \frac{n}{c} \rfloor$, $u = 1.1 \lfloor \frac{n}{c} \rfloor$, respectively. For $l = u = \frac{n}{c}$, we compare seven algorithms:
 Riemannian Gradient Descent (RIMRGD), Riemannian Conjugate Gradient (RIMRCG), Riemannian

378 **Table 2: Table of Execution Time when $l = u$ for Different Retraction Algorithms(s)**

Row&Col	Dual					Sinkhorn					Dykstras							
	500	1000	3000	5000	7000	10000	500	1000	3000	5000	7000	10000	500	1000	3000	5000	7000	10000
5	0.012	0.024	0.054	0.084	0.108	0.140	0.004	0.009	0.048	0.132	0.169	0.499	0.006	0.007	0.011	0.019	0.028	0.038
10	0.022	0.036	0.075	0.112	0.141	0.188	0.002	0.006	0.036	0.087	0.166	0.343	0.006	0.005	0.014	0.023	0.031	0.043
50	0.074	0.095	0.791	1.307	1.886	2.766	0.002	0.008	0.043	0.125	0.228	0.474	0.005	0.008	0.023	0.039	0.053	0.074
100	0.012	0.174	1.597	2.962	3.831	5.710	0.003	0.008	0.056	0.140	0.288	0.580	0.006	0.010	0.031	0.060	0.072	0.106
500	0.054	0.122	8.597	14.32	20.16	23.77	0.013	0.030	0.237	0.629	1.155	2.265	0.016	0.033	0.096	0.168	0.223	0.318
1000	0.102	0.178	17.26	28.56	40.55	56.56	0.034	0.082	0.446	1.038	1.931	3.614	0.034	0.067	0.219	0.384	0.556	0.789

384 Trust Region (RIMRTR), Frank-Wolfe Algorithm (FWA) (Jaggi, 2013; Weber & Sra, 2023; Yurtsever
385 & Sra, 2022), Projected Gradient Descent (PGD) (Shen & Chen, 2023; Chen & Wainwright, 2015),
386 Riemannian Gradient Descent on the Double Stochastic Manifold (DSRGD) (Tripuramani et al.,
387 2018), and Riemannian Conjugate Gradient on the Double Stochastic Manifold (DSRCG) (Sato,
388 2022). For $l = 0.9 \lfloor \frac{n}{c} \rfloor$ and $u = 1.1 \lfloor \frac{n}{c} \rfloor$, we only compare RIMRGD, RIMRCG, RIMRTR, FWA,
389 and PGD. The optimization results of these algorithms are then compared. More experimental details
390 can be found in Appendix D.2.

392 **5.1.4 EXPERIMENT 4 SETUP**

394 To answer the fourth question, we compare the Ratio Cut algorithm on the RIM manifold with
395 ten clustering algorithms. We again choose 8 real datasets with different types, including images,
396 tables, waveforms, etc. (as shown in Appendix D.3.4), and conduct large-scale validation using 10
397 comparison algorithms (listed in D.3). We evaluate the clustering performance using three metrics:
398 clustering accuracy (ACC) (Yuan et al., 2024a;b), normalized mutual information (NMI) (Ren et al.,
399 2024), and adjusted Rand index (ARI) (Ronen et al., 2022). For the similarity matrix, we use the
400 k-nearest neighbor (k-NN) (Li et al., 2024b; Zhu et al., 2022) Gaussian kernel function (Wang
401 et al., 2009; Chen et al., 2021) and construct the Gaussian kernel function using the mean Euclidean
402 distance. For the parameter k , each comparison algorithm is tested by searching for the best value of
403 k within the range $k = [8, 10, 12, 14, 16]$. More experimental details can be found in Appendix D.3.

404 **5.2 EXPERIMENTAL RESULTS**406 **5.2.1 RESULT OF EXPERIMENTAL 1**

408 The data for Experiment 1 when $l = u$ is presented in Table 2. The horizontal axis indicates the
409 methods used, while the vertical axis represents the number of columns, and the horizontal axis
410 represents the number of rows of the experimental matrix. The table entries represent the time
411 required for Retraction, measured in seconds. The fastest method is highlighted in red. As observed,
412 when the matrix is small, the Sinkhorn method is faster. However, as the matrix size increases, the
413 Dykstras method shows significant advantages and produces the geodesic. Therefore, we recommend
414 using the Dykstras method to obtain the Retraction curve. More data can be found in Appendix E.1.

415 **5.2.2 RESULT OF EXPERIMENTAL 2**

417 Table 3 shows the time and final loss required by the Riemannian Trust Region method to solve convex
418 optimization problems of different scales. It can be seen that, for problems of varying sizes, the
419 RIMTRT significantly outperforms the DSTRT in both time consumption and final loss. Therefore,
420 we have highlighted the RIM manifold results in red. Data for the Riemannian Gradient Descent and
421 Riemannian Conjugate Gradient methods can be found in Table 13 and Table 14.

422 For the second part of the experiment, Figure 1 shows the comparison of denoising results using the
423 TV algorithm on the RIM manifold and the doubly stochastic manifold with a noise level of 0.3. In
424 this case, $\xi = 0.3$. On the RIM manifold, the running time was **29.77s**, and the loss value decreased
425 to **1.05e5**, while on the doubly stochastic manifold, the time was **85.33s**, and the loss value was
426 **1.17e5**. By observing the images, it is evident that the image obtained using the doubly stochastic
427 manifold has noticeable noise when zoomed in, while the image on the RIM manifold is smoother.
428 Additional data and images can be found in Figure 4.

429 In addition, we evaluated the denoising results obtained from the RIM manifold and the doubly
430 stochastic manifold using multiple metrics (Valsesia et al., 2020). The resulting table is shown Table
431 4. It can be observed that the denoising performance of the RIM manifold consistently surpasses that
of the doubly stochastic manifold. In addition, it is important to note that the relative values rather

432 Table 3: Cost and Time on the RIM Manifold and Doubly Stochastic Manifold(RTR).
433

Row&Col	RIM Manifold						Doubly Stochastic Manifold					
	Cost			Time			Cost			Time		
Size	5000	7000	10000	5000	7000	10000	5000	7000	10000	5000	7000	10000
5	3.09E-23	8.28E-20	2.09E-20	0.265	0.355	0.516	4.38E-11	3.96E-10	2.89E-10	9.530	12.85	31.97
10	1.91E-20	9.58E-20	3.80E-20	0.283	0.464	0.690	1.91E-10	3.66E-10	4.12E-10	16.25	17.04	32.72
20	1.02E-19	1.22E-23	8.29E-19	0.366	0.562	0.691	9.49E-10	6.04E-10	1.17E-09	18.77	35.15	26.77
50	7.66E-20	2.13E-18	2.20E-20	0.602	0.844	1.087	3.08E-09	1.99E-09	1.57E-09	38.55	64.27	111.1
70	1.85E-20	2.84E-18	7.49E-19	0.791	0.983	1.352	2.59E-09	1.65E-09	3.18E-09	70.47	121.0	77.28
100	1.31E-19	5.04E-20	1.26E-17	0.990	1.324	1.721	1.78E-09	2.18E-09	2.83E-09	91.40	121.3	241.4

440 Figure 1: Image Denoising Results, Noise Coefficient 0.3, $\xi = 0.3$.
441442 than the absolute values—of metrics such as LPIPS should be the focus, since TV regularization is
443 not a state-of-the-art denoising method. Our goal here is to compare RIM against DSM.
444

445 5.2.3 RESULT OF EXPERIMENTAL 3

446 When $l = u$, the time and loss for the seven comparison algorithms are presented in Table 5. We have
447 marked the algorithm names on the RIM manifold in blue, the shortest time in red, and the lowest
448 loss in bright red. It can be observed that the optimization algorithms on the RIM manifold achieved
449 most of the top positions. Figure 2 shows the loss decrease curves for some datasets. More results
450 can be found in Appendix E.3.
451

452 5.2.4 RESULT OF EXPERIMENTAL 4

453 For Experiment 4, Table 6 records the performance of 12 comparison algorithms across 8 real-world
454 datasets based on clustering accuracy (ACC), normalized mutual information (NMI), and adjusted
455 Rand index (ARI). Our algorithm is marked in blue, and the best-performing algorithm is marked
456 in red. It can be observed that performing Ratio Cut on the RIM manifold leads to superior results
457 compared to the most advanced algorithms. More results can be found in Appendix E.4.
458

468 6 LIMITATIONS

469 We acknowledge that our study still has several limitations that warrant further investigation. First, the
470 RIM manifold is a relaxation of the indicator matrix, and for an NP-hard non-convex indicator-matrix
471 optimization problem, our analysis can only demonstrate that the RIM manifold outperforms existing
472 relaxations such as the single stochastic, doubly stochastic, and Stiefel manifolds in various aspects.
473 It remains challenging to provide a precise bound between the optimal solution of the relaxed problem
474 and that of the original NP-hard problem under general conditions. Second, the RIM manifold
475 employs projection onto a closed set as its retraction. When strict adherence to an open set is required,
476 a small correction term ε . Finally, additional experimental results could be included in future work to
477 further demonstrate the superiority of the RIM manifold.
478479 Figure 2: Comparison of Loss Decrease for Optimization Algorithms on Real Datasets.
480

486 Table 4: Comparison of Denoising Performance between the RIM Manifold and the DSM
487

(noise, ξ) Metric	(0.3, 0.3)		(0.3, 0.7)		(0.5, 0.3)		(0.5, 0.7)		(0.9, 0.3)		(0.9, 0.7)	
	RIM	DSM										
MSE	0.012	0.015	0.020	0.027	0.022	0.026	0.023	0.032	0.085	0.106	0.044	0.051
PSNR	19.27	18.33	17.06	15.66	16.56	15.78	16.32	14.92	10.73	9.751	13.59	12.89
SSIM	0.502	0.412	0.434	0.256	0.282	0.247	0.327	0.209	0.107	0.096	0.183	0.148
LPIP	0.561	0.671	0.719	0.929	0.742	0.824	0.775	0.968	0.969	1.020	0.803	1.020

492 Table 5: Time and Loss of Different Optimization Algorithms on Ratio Cut when $l = u$
493

Datasets&Methods	DSRGD	DSRCG	FWA	PGD	RIMRGD	RIMRCG	RIMRTR	
	Time	Cost	Time	Cost	Time	Cost	Time	
COIL20	8.978	28.17	11.90	28.41	10.49	41.12	6.967	31.53
Digit	8.650	2.751	11.87	2.312	9.196	0.492	6.077	0.953
JAFFE	2.224	30.06	2.774	60.16	0.303	29.39	2.725	44.35
MSRA25	9.901	2.775	11.94	2.249	9.687	1.845	6.954	1.221
PalmData25	43.39	737.1	54.48	1054	88.35	561.1	23.74	642.2
USPS20	9.238	25.52	12.65	23.58	10.37	16.76	6.842	17.32
Waveform21	11.16	4.328	13.76	3.313	17.81	2.457	8.645	2.392
MnistData05	18.16	6.834	23.60	4.894	26.29	0.619	14.96	2.520

500 Table 6: Mean clustering performance of compared methods on real-world datasets.
501

Metric	Method	COIL20	Digit	JAFFE	MSRA25	PalmData25	USPS20	Waveform21	MnistData05
ACC	KM	53.44	58.33	72.16	49.33	70.32	55.51	50.38	53.86
	CDKM	52.47	65.82	80.85	59.63	76.05	57.68	50.36	54.24
	Rcut	78.14	74.62	84.51	56.84	87.03	57.83	51.93	62.80
	Ncut	78.88	76.71	83.76	56.23	86.76	59.20	51.93	61.14
	Nystrom	51.56	72.08	75.77	52.85	76.81	62.55	51.49	55.91
	BKNC	57.11	60.92	93.76	65.47	86.74	62.76	51.51	52.00
	FCFC	59.34	43.94	71.60	54.27	69.38	58.23	56.98	54.41
	FSC	82.76	79.77	81.69	56.25	82.27	67.63	50.42	57.76
	LSCR	65.67	78.14	91.97	53.82	58.25	63.07	56.19	57.15
	LSCK	62.28	78.04	84.98	54.41	58.31	61.86	54.95	58.57
NMI	RIMRcut	79.72	82.53	96.71	56.64	90.85	70.28	74.80	65.55
	KM	71.43	58.20	80.93	60.10	89.40	54.57	36.77	49.57
	CDKM	71.16	63.64	87.48	63.83	91.94	55.92	36.77	49.23
	Rcut	86.18	75.28	90.11	71.64	95.41	63.84	37.06	63.11
	Ncut	86.32	76.78	89.87	71.50	95.26	64.46	37.06	63.22
	Nystrom	66.11	70.13	82.53	57.77	93.09	59.00	36.95	48.53
	BKNC	69.80	59.37	92.40	69.30	95.83	57.10	36.94	44.56
	FCFC	74.05	38.33	80.30	63.34	89.47	55.71	22.89	48.75
	FSC	91.45	80.98	90.43	70.60	94.62	74.75	36.76	58.33
	LSCR	74.67	75.07	93.13	68.06	81.84	62.36	33.37	52.82
ARI	LSCK	74.02	76.53	87.89	67.97	81.70	65.23	36.92	59.14
	RIMRcut	85.63	80.05	96.24	71.76	96.50	69.08	42.14	59.35
	KM	50.81	45.80	66.83	34.66	65.06	43.57	25.56	37.18
	CDKM	48.11	52.74	76.36	37.70	71.73	45.59	25.56	36.79
	Rcut	73.73	65.81	81.70	46.35	84.76	51.99	25.31	51.32
	Ncut	74.30	68.21	81.30	45.90	84.25	52.72	25.31	50.51
	Nystrom	45.96	59.50	69.85	38.07	76.23	50.01	25.03	38.21
	BKNC	49.96	48.98	87.96	54.78	85.56	48.43	25.02	32.89
	FCFC	54.41	25.50	65.73	40.42	66.03	46.32	22.89	36.86
	FSC	79.46	73.03	80.26	43.99	79.67	61.71	25.10	44.78

527 7 CONCLUSION
528

529 This paper presents a new relaxation for indicator matrices and proves that it forms a Riemannian
530 manifold. We have constructed a Riemannian toolbox for optimization on the RIM manifold. In
531 particular, we introduce multiple methods for Retraction, including one that operates quickly along
532 the geodesic. The paper demonstrates that optimization on the RIM manifold is useful for machine
533 learning and it is a fast method $\mathcal{O}(n)$ that can replace the existing double stochastic manifold
534 optimization with a time complexity of $\mathcal{O}(n^3)$. Through large-scale experiments from multiple
535 perspectives, we have proven the effectiveness and speed of optimization on the RIM manifold.

540 8 STATEMENT
541542 For the reproducibility of this paper, we have submitted the complete anonymized code with fixed
543 random seeds, as detailed in Appendix H. In addition, large language models (LLMs) were only used
544 for language polishing.
545546 REFERENCES
547548 Hervé Abdi and Lynne J Williams. Principal component analysis. *Wiley interdisciplinary reviews: computational statistics*, 2(4):433–459, 2010.
549550 P-A Absil and Jérôme Malick. Projection-like retractions on matrix manifolds. *SIAM Journal on Optimization*, 22(1):135–158, 2012.
551552 P-A Absil, Robert Mahony, and Rodolphe Sepulchre. *Optimization algorithms on matrix manifolds*.
553 Princeton University Press, 2008.
554555 Randall Balestrieri and Yann LeCun. Contrastive and non-contrastive self-supervised learning
556 recover global and local spectral embedding methods. *Advances in Neural Information Processing Systems*, 35:26671–26685, 2022.
557558 Yichen Bao, Han Lu, and Quanxue Gao. Fuzzy k-means clustering without cluster centroids. *arXiv preprint arXiv:2404.04940*, 2024.
559560 Jean-David Benamou, Guillaume Carlier, Marco Cuturi, Luca Nenna, and Gabriel Peyré. Iterative
561 bregman projections for regularized transportation problems, 2014. URL <https://arxiv.org/abs/1412.5154>.
562563 Martin Berz. Calculus and numerics on levi-civita fields. *Computational Differentiation: Techniques, Applications, and Tools*, (89):19–37, 1996.
564565 James Bezdek, Robert Gunderson, Robert Ehrlich, and Tom Meloy. On the extension of fuzzy
566 k-means algorithms for detection of linear clusters. In *1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes*, pp. 1438–1443. IEEE, 1979.
567568 Ioan-Daniel Borlea, Radu-Emil Precup, Alexandra-Bianca Borlea, and Daniel Iercan. A unified form
569 of fuzzy c-means and k-means algorithms and its partitional implementation. *Knowledge-Based Systems*, 214:106731, 2021.
570571 Nicolas Boumal. Optimization and estimation on manifolds. 2014.
572573 Nicolas Boumal. *An introduction to optimization on smooth manifolds*. Cambridge University Press,
574 2023.
575576 Nicolas Boumal, Bamdev Mishra, P-A Absil, and Rodolphe Sepulchre. Manopt, a matlab toolbox for
577 optimization on manifolds. *The Journal of Machine Learning Research*, 15(1):1455–1459, 2014.
578579 Stephen Boyd and Lieven Vandenberghe. *Convex optimization*. Cambridge university press, 2004.
580581 James P Boyle and Richard L Dykstra. A method for finding projections onto the intersection of
582 convex sets in hilbert spaces. In *Advances in Order Restricted Statistical Inference: Proceedings of the Symposium on Order Restricted Statistical Inference held in Iowa City, Iowa, September 11–13, 1985*, pp. 28–47. Springer, 1986.
583584 Timothy Carson, Dustin G Mixon, Soledad Villar, and Rachel Ward. Manifold optimization for
585 k-means clustering. In *2017 International Conference on Sampling Theory and Applications (SampTA)*, pp. 73–77. IEEE, 2017.
586587 Xiaojun Chang, Feiping Nie, Zhigang Ma, and Yi Yang. Balanced k-means and min-cut clustering,
588 2014. URL <https://arxiv.org/abs/1411.6235>.
589590 Laetitia Chapel, Mokhtar Z. Alaya, and Gilles Gasso. Partial optimal transport with applications on
591 positive-unlabeled learning, 2020. URL <https://arxiv.org/abs/2002.08276>.
592

594 Huimin Chen, Qianrong Zhang, Rong Wang, Feiping Nie, and Xuelong Li. A general soft-balanced
 595 clustering framework based on a novel balance regularizer. *Signal Processing*, 198:108572, 2022a.
 596

597 Wen-Yen Chen, Yangqiu Song, Hongjie Bai, Chih-Jen Lin, and Edward Y. Chang. Parallel spectral
 598 clustering in distributed systems. *IEEE Trans. Pattern Anal. Mach. Intel.*, 33(3):568–586, 2011.

599 Xiaojun Chen, Zhicong Xiao, Feiping Nie, and Joshua Zhexue Huang. Finc: An efficient and effective
 600 optimization method for normalized cut. *IEEE Transactions on Pattern Analysis and Machine*
 601 *Intelligence*, 2022b.

602

603 Xinlei Chen and Deng Cai. Large scale spectral clustering with landmark-based representation.
 604 In *Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2011, San*
 605 *Francisco, California, USA, August 7-11, 2011*. AAAI Press, 2011.

606 Yifan Chen, Qi Zeng, Heng Ji, and Yun Yang. Skyformer: Remodel self-attention with gaussian
 607 kernel and nystrom method. *Advances in Neural Information Processing Systems*, 34:2122–2135,
 608 2021.

609

610 Yudong Chen and Martin J Wainwright. Fast low-rank estimation by projected gradient descent:
 611 General statistical and algorithmic guarantees. *arXiv preprint arXiv:1509.03025*, 2015.

612 Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. *Advances in neural*
 613 *information processing systems*, 26, 2013.

614

615 Zhiyuan Dang, Cheng Deng, Xu Yang, Kun Wei, and Heng Huang. Nearest neighbor matching for
 616 deep clustering. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
 617 *recognition*, pp. 13693–13702, 2021.

618 Ahmed Douik and Babak Hassibi. A riemannian approach for graph-based clustering by doubly
 619 stochastic matrices. In *2018 IEEE Statistical Signal Processing Workshop (SSP)*, pp. 806–810.
 620 IEEE, 2018.

621

622 Ahmed Douik and Babak Hassibi. Manifold optimization over the set of doubly stochastic matrices:
 623 A second-order geometry. *IEEE Transactions on Signal Processing*, 67(22):5761–5774, 2019.

624 Alan Edelman, Tomás A Arias, and Steven T Smith. The geometry of algorithms with orthogonality
 625 constraints. *SIAM journal on Matrix Analysis and Applications*, 20(2):303–353, 1998.

626

627 DBAd Epstein. Natural tensors on riemannian manifolds. *Journal of Differential Geometry*, 10(4):
 628 631–645, 1975.

629

630 Jicong Fan, Yiheng Tu, Zhao Zhang, Mingbo Zhao, and Haijun Zhang. A simple approach to
 631 automated spectral clustering. *Advances in Neural Information Processing Systems*, 35:9907–9921,
 632 2022.

633 Yanhong Fei, Yingjie Liu, Chentao Jia, Zhengyu Li, Xian Wei, and Mingsong Chen. A survey of
 634 geometric optimization for deep learning: from euclidean space to riemannian manifold. *ACM*
 635 *Computing Surveys*, 57(5):1–37, 2025.

636

637 Maria Brigida Ferraro. Fuzzy k-means: history and applications. *Econometrics and Statistics*, 30:
 110–123, 2024.

638

639 Chakib Fettal, lazhar labiod, and Mohamed Nadif. Graph cuts with arbitrary size constraints through
 640 optimal transport. *Transactions on Machine Learning Research*, 2024. ISSN 2835-8856. URL
 641 <https://openreview.net/forum?id=UG7rtrsuaT>.

642

643 Kyle Fox, Debmalya Panigrahi, and Fred Zhang. Minimum cut and minimum k-cut in hypergraphs
 644 via branching contractions. *ACM Transactions on Algorithms*, 19(2):1–22, 2023.

645

646 Maxime Gasse, Simon Bowly, Quentin Cappart, Jonas Charfreitag, Laurent Charlin, Didier Chételat,
 647 Antonia Chmiela, Justin Dumouchelle, Ambros Gleixner, Aleksandr M Kazachkov, et al. The
 648 machine learning for combinatorial optimization competition (ml4co): Results and insights. In
 649 *NeurIPS 2021 competitions and demonstrations track*, pp. 220–231. PMLR, 2022.

648 Mehmet Gulbahar. Qualar curvatures of pseudo riemannian manifolds and pseudo riemannian
 649 submanifolds. *AIMS Mathematics*, 6(2):1366–1377, 2021.
 650

651 Lars Hagen and Andrew B Kahng. New spectral methods for ratio cut partitioning and clustering.
 652 *IEEE transactions on computer-aided design of integrated circuits and systems*, 11(9):1074–1085,
 653 1992.

654 Wei He, Shangzhi Zhang, Chun-Guang Li, Xianbiao Qi, Rong Xiao, and Jun Guo. Neural normalized
 655 cut: A differential and generalizable approach for spectral clustering. *Pattern Recognition*, 164:
 656 111545, 2025.

657 Haize Hu, Jianxun Liu, Xiangping Zhang, and Mengge Fang. An effective and adaptable k-means
 658 algorithm for big data cluster analysis. *Pattern Recognition*, 139:109404, 2023.

660 Wen Huang and Ke Wei. Riemannian proximal gradient methods. *Mathematical Programming*, 194
 661 (1):371–413, 2022.

662 Mia Hubert, Peter J Rousseeuw, and Karlien Vanden Branden. Robpca: a new approach to robust
 663 principal component analysis. *Technometrics*, 47(1):64–79, 2005.

664 Abiodun M Ikotun, Absalom E Ezugwu, Laith Abualigah, Belal Abuhaija, and Jia Heming. K-means
 665 clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big
 666 data. *Information Sciences*, 622:178–210, 2023.

667 Martin Jaggi. Revisiting frank-wolfe: Projection-free sparse convex optimization. In *International
 668 conference on machine learning*, pp. 427–435. PMLR, 2013.

669 Bo Jiang and Yu-Hong Dai. A framework of constraint preserving update schemes for optimization
 670 on stiefel manifold. *Mathematical Programming*, 153(2):535–575, 2015.

671 Michael Jordan, Tianyi Lin, and Emmanouil-Vasileios Vlatakis-Gkaragkounis. First-order algorithms
 672 for min-max optimization in geodesic metric spaces. *Advances in Neural Information Processing
 673 Systems*, 35:6557–6574, 2022.

674 Hiroyuki Kasai, Hiroyuki Sato, and Bamdev Mishra. Riemannian stochastic recursive gradient
 675 algorithm. In *International conference on machine learning*, pp. 2516–2524. PMLR, 2018.

676 Aparajita Khan and Pradipta Maji. Multi-manifold optimization for multi-view subspace clustering.
 677 *IEEE Transactions on Neural Networks and Learning Systems*, 33(8):3895–3907, 2021.

678 Max Kochurov, Rasul Karimov, and Serge Kozlukov. Geoopt: Riemannian optimization in pytorch.
 679 *arXiv preprint arXiv:2005.02819*, 2020.

680 John M Lee. *Introduction to Riemannian manifolds*, volume 2. Springer, 2018.

681 John M Lee and John M Lee. Submanifolds. *Introduction to smooth manifolds*, pp. 98–124, 2012.

682 Jing Li, Quanxue Gao, Qianqian Wang, Cheng Deng, and Deyan Xie. Label learning method based on
 683 tensor projection. In *Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery
 684 and Data Mining*, pp. 1599–1609, 2024a.

685 Jun Li, Li Fuxin, and Sinisa Todorovic. Efficient riemannian optimization on the stiefel manifold via
 686 the cayley transform. *arXiv preprint arXiv:2002.01113*, 2020.

687 Shuai Li, Yingjie Zhang, Hongtu Zhu, Christina Wang, Hai Shu, Ziqi Chen, Zhuoran Sun, and Yanfeng
 688 Yang. K-nearest-neighbor local sampling based conditional independence testing. *Advances in
 689 Neural Information Processing Systems*, 36, 2024b.

690 Yeqing Li, Feiping Nie, Heng Huang, and Junzhou Huang. Large-scale multi-view spectral clustering
 691 via bipartite graph. In *Proceedings of the AAAI conference on artificial intelligence*, volume 29,
 692 2015.

693 Hongfu Liu, Ziming Huang, Qi Chen, Mingqin Li, Yun Fu, and Lintao Zhang. Fast clustering with
 694 flexible balance constraints. In *2018 IEEE International Conference on Big Data (Big Data)*, pp.
 695 743–750, 2018.

702 Alexander Ly, Maarten Marsman, Josine Verhagen, Raoul PPP Grasman, and Eric-Jan Wagenmakers.
 703 A tutorial on fisher information. *Journal of Mathematical Psychology*, 80:40–55, 2017.
 704

705 Peter Macgregor. Fast and simple spectral clustering in theory and practice. *Advances in Neural*
 706 *Information Processing Systems*, 36, 2024.

707 Peter Macgregor and He Sun. A tighter analysis of spectral clustering, and beyond. In *International*
 708 *Conference on Machine Learning*, pp. 14717–14742. PMLR, 2022.

709

710 Mayank Meghwanshi, Pratik Jawanpuria, Anoop Kunchukuttan, Hiroyuki Kasai, and Bamdev Mishra.
 711 Mctorch, a manifold optimization library for deep learning. *arXiv preprint arXiv:1810.01811*,
 712 2018.

713

714 Bamdev Mishra, NTV Satyadev, Hiroyuki Kasai, and Pratik Jawanpuria. Manifold optimization for
 715 non-linear optimal transport problems. *arXiv preprint arXiv:2103.00902*, 2021.

716

717 Yujie Mo, Zhihe Lu, Runpeng Yu, Xiaofeng Zhu, and Xinchao Wang. Revisiting self-supervised
 718 heterogeneous graph learning from spectral clustering perspective. *Advances in Neural Information*
 719 *Processing Systems*, 37:43133–43163, 2025.

720

721 Anindya Mondal, Jhony H Giraldo, Thierry Bouwmans, Ananda S Chowdhury, et al. Moving object
 722 detection for event-based vision using graph spectral clustering. In *Proceedings of the IEEE/CVF*
 723 *international conference on computer vision*, pp. 876–884, 2021.

724

725 Andrew Ng, Michael Jordan, and Yair Weiss. On spectral clustering: Analysis and an algorithm.
 726 *Advances in neural information processing systems*, 14, 2001.

727

728 Du Nguyen. Closed-form geodesics and optimization for riemannian logarithms of stiefel and flag
 729 manifolds. *Journal of Optimization Theory and Applications*, 194(1):142–166, 2022.

730

731 Feiping Nie, Chris Ding, Dijun Luo, and Heng Huang. Improved minmax cut graph clustering with
 732 nonnegative relaxation. In *Machine Learning and Knowledge Discovery in Databases: European*
 733 *Conference, ECML PKDD 2010, Barcelona, Spain, September 20-24, 2010, Proceedings, Part II*
 734 21, pp. 451–466. Springer, 2010.

735

736 Feiping Nie, Xiaoqian Wang, and Heng Huang. Clustering and projected clustering with adaptive
 737 neighbors. In *Proceedings of the 20th ACM SIGKDD international conference on Knowledge*
 738 *discovery and data mining*, pp. 977–986, 2014.

739

740 Feiping Nie, Xiaoqian Wang, Michael Jordan, and Heng Huang. The constrained laplacian rank algo-
 741 rithm for graph-based clustering. In *Proceedings of the AAAI conference on artificial intelligence*,
 742 volume 30, 2016.

743

744 Feiping Nie, Jingjing Xue, Danyang Wu, Rong Wang, Hui Li, and Xuelong Li. Coordinate descent
 745 method for k k-means. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 44(5):
 746 2371–2385, 2021.

747

748 Feiping Nie, Huimin Chen, Heng Huang, Chris HQ Ding, and Xuelong Li. Learning a subspace and
 749 clustering simultaneously with manifold regularized nonnegative matrix factorization. *Guidance,*
 750 *Navigation and Control*, 2024.

751

752 Michael L Overton and Robert S Womersley. Second derivatives for optimizing eigenvalues of
 753 symmetric matrices. *SIAM Journal on Matrix Analysis and Applications*, 16(3):697–718, 1995.

754

755 Peter Petersen. *Riemannian geometry*, volume 171. Springer, 2006.

756

757 Yazhou Ren, Jingyu Pu, Zhimeng Yang, Jie Xu, Guofeng Li, Xiaorong Pu, S Yu Philip, and Lifang
 758 He. Deep clustering: A comprehensive survey. *IEEE transactions on neural networks and learning*
 759 *systems*, 2024.

760

761 Jorma J Rissanen. Fisher information and stochastic complexity. *IEEE transactions on information*
 762 *theory*, 42(1):40–47, 1996.

756 Meitar Ronen, Shahaf E Finder, and Oren Freifeld. Deepdpm: Deep clustering with an unknown
 757 number of clusters. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
 758 *Recognition*, pp. 9861–9870, 2022.

759

760 Farid Saberi-Movahed, Kamal Berahman, Razieh Sheikhpoour, Yuefeng Li, and Shirui Pan. Nonnegative
 761 matrix factorization in dimensionality reduction: A survey. *arXiv preprint arXiv:2405.03615*,
 762 2024.

763 Hiroyuki Sato. *Riemannian optimization and its applications*, volume 670. Springer, 2021.

764

765 Hiroyuki Sato. Riemannian conjugate gradient methods: General framework and specific algorithms
 766 with convergence analyses. *SIAM Journal on Optimization*, 32(4):2690–2717, 2022.

767

768 Martin JA Schuetz, J Kyle Brubaker, and Helmut G Katzgraber. Combinatorial optimization with
 769 physics-inspired graph neural networks. *Nature Machine Intelligence*, 4(4):367–377, 2022.

770

771 Han Shen and Tianyi Chen. On penalty-based bilevel gradient descent method. In *International
 Conference on Machine Learning*, pp. 30992–31015. PMLR, 2023.

772

773 Dai Shi, Junbin Gao, Xia Hong, ST Boris Choy, and Zhiyong Wang. Coupling matrix manifolds
 774 assisted optimization for optimal transport problems. *Machine Learning*, 110:533–558, 2021.

775

776 Liangliang Shi, Zhaoqi Shen, and Junchi Yan. Double-bounded optimal transport for advanced
 777 clustering and classification. In *Proceedings of the AAAI Conference on Artificial Intelligence*,
 778 volume 38, pp. 14982–14990, 2024.

779

780 Nimita Shinde, Vishnu Narayanan, and James Saunderson. Memory-efficient approximation al-
 781 gorithms for max-k-cut and correlation clustering. *Advances in Neural Information Processing
 782 Systems*, 34:8269–8281, 2021.

783

784 Oleg Smirnov. Tensorflow riemopt: a library for optimization on riemannian manifolds. *arXiv
 785 preprint arXiv:2105.13921*, 2021.

786

787 Siti Noraini Sulaiman and Nor Ashidi Mat Isa. Adaptive fuzzy-k-means clustering algorithm for
 788 image segmentation. *IEEE Transactions on Consumer Electronics*, 56(4):2661–2668, 2010.

789

790 Yanfeng Sun, Junbin Gao, Xia Hong, Bamdev Mishra, and Baocai Yin. Heterogeneous tensor
 791 decomposition for clustering via manifold optimization. *IEEE transactions on pattern analysis
 792 and machine intelligence*, 38(3):476–489, 2015.

793

794 Yue Sun, Nicolas Flammarion, and Maryam Fazel. Escaping from saddle points on riemannian
 795 manifolds. *Advances in Neural Information Processing Systems*, 32, 2019.

796

797 Shingo Takemoto, Kazuki Naganuma, and Shunsuke Ono. Graph spatio-spectral total variation model
 798 for hyperspectral image denoising. *IEEE Geoscience and Remote Sensing Letters*, 19:1–5, 2022.

799

Ryan J Tibshirani. Dykstra’s algorithm, admm, and coordinate descent: Connections, insights, and
 800 extensions. *Advances in Neural Information Processing Systems*, 30, 2017.

801

James Townsend, Niklas Koep, and Sebastian Weichwald. Pymanopt: A python toolbox for opti-
 802 mization on manifolds using automatic differentiation. *Journal of Machine Learning Research*, 17
 803 (137):1–5, 2016.

804

Nilesh Tripuraneni, Nicolas Flammarion, Francis Bach, and Michael I Jordan. Averaging stochastic
 805 gradient descent on riemannian manifolds. In *Conference On Learning Theory*, pp. 650–687.
 806 PMLR, 2018.

807

Anton Tsitsulin, John Palowitch, Bryan Perozzi, and Emmanuel Müller. Graph clustering with graph
 808 neural networks. *Journal of Machine Learning Research*, 24(127):1–21, 2023.

809

Diego Valsesia, Giulia Fracastoro, and Enrico Magli. Deep graph-convolutional image denoising.
 810 *IEEE Transactions on Image Processing*, 29:8226–8237, 2020.

Nate Veldt. Cut-matching games for generalized hypergraph ratio cuts. In *Proceedings of the ACM
 811 Web Conference 2023*, pp. 694–704, 2023.

810 Nisheeth K Vishnoi. Geodesic convex optimization: Differentiation on manifolds, geodesics, and
 811 convexity. *arXiv preprint arXiv:1806.06373*, 2018.

812

813 Jie Wang, Haiping Lu, Konstantinos N Plataniotis, and Juwei Lu. Gaussian kernel optimization for
 814 pattern classification. *Pattern recognition*, 42(7):1237–1247, 2009.

815 Yangtao Wang, Xi Shen, Shell Xu Hu, Yuan Yuan, James L Crowley, and Dominique Vaufreydaz. Self-
 816 supervised transformers for unsupervised object discovery using normalized cut. In *Proceedings of*
 817 *the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 14543–14553, 2022.

818

819 Melanie Weber and Suvrit Sra. Riemannian optimization via frank-wolfe methods. *Mathematical*
 820 *Programming*, 199(1):525–556, 2023.

821

822 Zaiwen Wen and Wotao Yin. A feasible method for optimization with orthogonality constraints.
 823 *Mathematical Programming*, 142(1):397–434, 2013.

824

825 Fangyuan Xie, Jinghui Yuan, Feiping Nie, and Xuelong Li. Dual-bounded nonlinear optimal transport
 826 for size constrained min cut clustering. *arXiv preprint arXiv:2501.18143*, 2025.

827

828 Jinghui Yuan, Hao Chen, Renwei Luo, and Feiping Nie. A margin-maximizing fine-grained ensemble
 829 method. *arXiv preprint arXiv:2409.12849*, 2024a.

830

831 Jinghui Yuan, Weijin Jiang, Zhe Cao, Fangyuan Xie, Rong Wang, Feiping Nie, and Yuan Yuan.
 832 Achieving more with less: A tensor-optimization-powered ensemble method. *arXiv preprint*
 833 *arXiv:2408.02936*, 2024b.

834

835 Jinghui Yuan, Chusheng Zeng, Fangyuan Xie, Zhe Cao, Mulin Chen, Rong Wang, Feiping Nie,
 836 and Yuan Yuan. Doubly stochastic adaptive neighbors clustering via the marcus mapping. *arXiv*
 837 *preprint arXiv:2408.02932*, 2024c.

838

839 Alp Yurtsever and Suvrit Sra. Cccp is frank-wolfe in disguise. *Advances in Neural Information*
 840 *Processing Systems*, 35:35352–35364, 2022.

841

842 Chao Zhang, Xiaojun Chen, and Shiqian Ma. A riemannian smoothing steepest descent method for
 843 non-lipschitz optimization on embedded submanifolds of \mathbb{R}^n . *Mathematics of Operations Research*,
 844 49(3):1710–1733, 2024.

845

846 Xiaowei Zhao, Feiping Nie, Rong Wang, and Xuelong Li. Improving projected fuzzy k-means
 847 clustering via robust learning. *Neurocomputing*, 491:34–43, 2022.

848

849 Huasong Zhong, Jianlong Wu, Chong Chen, Jianqiang Huang, Minghua Deng, Liqiang Nie, Zhouchen
 850 Lin, and Xian-Sheng Hua. Graph contrastive clustering. In *Proceedings of the IEEE/CVF*
 851 *international conference on computer vision*, pp. 9224–9233, 2021.

852

853 Bingxin Zhou, Ruikun Li, Xuebin Zheng, Yu Guang Wang, and Junbin Gao. Graph denoising with
 854 framelet regularizers. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2024.

855

856 Shixiang Zhu, Liyan Xie, Minghe Zhang, Rui Gao, and Yao Xie. Distributionally robust weighted
 857 k-nearest neighbors. *Advances in Neural Information Processing Systems*, 35:29088–29100, 2022.

858

859 Wei Zhu, Feiping Nie, and Xuelong Li. Fast spectral clustering with efficient large graph construction.
 860 In *2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pp.
 861 2492–2496, 2017. doi: 10.1109/ICASSP.2017.7952605.

862

863 Xiaojing Zhu. A riemannian conjugate gradient method for optimization on the stiefel manifold.
 864 *Computational optimization and Applications*, 67:73–110, 2017.

864	CONTENTS	
865		
866		
867	1 Introduction	1
868		
869	2 Preliminaries	2
870		
871	3 Riemannian Toolbox	2
872		
873	3.1 Definition of the Relaxed Indicator Matrix Manifold	2
874	3.2 Riemannian Optimization Toolbox for the RIM Manifold	3
875		
876	3.3 Comparison Analysis of Time Complexity	5
877		
878	4 RIM Manifold for Graph Cut	5
879		
880	5 Experiments	6
881		
882	5.1 Experimental Setups	7
883	5.1.1 Experiment 1 Setup	7
884	5.1.2 Experiment 2 Setup	7
885		
886	5.1.3 Experiment 3 Setup	7
887	5.1.4 Experiment 4 Setup	8
888		
889	5.2 Experimental Results	8
890	5.2.1 Result of Experimental 1	8
891	5.2.2 Result of Experimental 2	8
892		
893	5.2.3 Result of Experimental 3	9
894	5.2.4 Result of Experimental 4	9
895		
896		
897	6 Limitations	9
898		
899	7 Conclusion	10
900		
901	8 Statement	11
902		
903		
904	Appendices	20
905		
906	A Proofs of Theorems	20
907		
908	A.1 Proof of Lemma 1	20
909	A.2 Proof of Lemma 2	20
910	A.3 Proof of Lemma 3	21
911		
912	A.4 Proof of Lemma 4	22
913		
914	A.5 Proof of Theorem 1	22
915	A.6 Proof of Theorem 2	23
916		
917	A.7 Proof of Theorem 3	25
	A.8 Proof of Theorem 4	26

918	A.9 Proof of Theorem 5	28
919	A.10 Proof of Theorem 6	29
920	A.11 Proof of Theorem 7	31
921	A.12 Proof of Theorem 8	33
922		
923		
924		
925	B Preliminaries	34
926	B.1 Notations	34
927	B.2 Introduction to Riemannian Optimization	35
928	B.3 Introduction to Related Manifolds	36
929	B.3.1 Single Stochastic Manifold	36
930	B.3.2 Doubly Stochastic Manifold	37
931	B.3.3 Stiefel Manifold	38
932	B.4 Manifold-based Machine Learning Algorithms	39
933	B.4.1 Algorithms on the Single Stochastic Manifold	39
934	B.4.2 Algorithms on the Double Stochastic Manifold	39
935	B.4.3 Algorithms on the Steifel Manifold	39
936	B.5 Other Related Work and Background Introduction	40
937		
938		
939		
940		
941		
942		
943	C Optimization Algorithms on the RIM Manifold	41
944	C.1 Gradient Descent on the RIM Manifold	41
945	C.2 Conjugate Gradient Method on the RIM Manifold	41
946	C.3 Trust Region Method on the RIM Manifold	41
947		
948		
949		
950	D Details of the Experimental Setup	43
951	D.1 Experiment 2 Setup	43
952	D.2 Experiment 3 Setup	43
953	D.3 Experiment 4 Setup	43
954	D.3.1 Clustering Accuracy (ACC)	44
955	D.3.2 Normalized Mutual Information (NMI)	44
956	D.3.3 Adjusted Rand Index (ARI)	45
957	D.3.4 Introduction of Real Datasets	45
958	D.3.5 How to Choose l and u	46
959		
960		
961		
962		
963	E Additional Experimental Results	47
964	E.1 Results of Experimental 1	47
965	E.2 Results of Experimental 2	47
966	E.3 Results of Experimental 3	49
967	E.4 Results of Experimental 4	49
968		
969		
970		
971	F RIM Manifold Equipped with Fisher Metric	51

972	F.1	Dimension and Tangent Space	51
973	F.2	Riemannian Gradient, Riemannian Connection and Riemannian Hessian	51
974	F.3	Retraction Mapping	52
975	F.4	Which to Use?	52
976			
977			
978	G	Explanation regarding details	53
979	G.1	Answer to the Question 1:	53
980	G.2	Answer to the Question 2:	53
981	G.3	Answer to the Question 3:	53
982			
983			
984			
985	H	Reference Code for RIM Manifold Riemannian Toolbox	54
986			
987			
988			
989			
990			
991			
992			
993			
994			
995			
996			
997			
998			
999			
1000			
1001			
1002			
1003			
1004			
1005			
1006			
1007			
1008			
1009			
1010			
1011			
1012			
1013			
1014			
1015			
1016			
1017			
1018			
1019			
1020			
1021			
1022			
1023			
1024			
1025			

1026 **A PROOFS OF THEOREMS**
 1027

1028 **A.1 PROOF OF LEMMA 1**
 1029

1030 Our relaxed indicator matrix set $\mathcal{M} = \{X \mid X1_c = 1_n, l < X^T 1_n < u, X > 0\}$ forms an embedded
 1031 submanifold of the Euclidean space, with $\dim \mathcal{M} = (n-1)c$. We refer to it as the Relaxed Indicator
 1032 Matrix Manifold.

1033
 1034 *Proof.* The set \mathcal{M} can be viewed as the intersection of three sets: $\mathcal{M} = \{X \mid X1_c = 1_n, l < X^T 1_n < u, X > 0\} = \Omega_1 \cap \Omega_2 \cap \Omega_3$, where $\Omega_1 = \{X \mid X > 0, X1_c = 1_n\}$, $\Omega_2 = \{X \mid X^T 1_n > l\}$, and $\Omega_3 = \{X \mid X^T 1_n < u\}$. Consider the differential of the local defining function for the set
 1035 Ω_1 , i.e.
 1036

$$1037 D(X1_c - 1_n)[V] = \lim_{t \rightarrow 0} \frac{(X + tV)1_c - 1_n - (X1_c - 1_n)}{t} = \lim_{t \rightarrow 0} \frac{tV1_c}{t} = V1_c \quad (23)$$

1040 Consider the null space of $D(X1_c - 1_n)[V]$, given by $\text{Ker}(D(X1_c - 1_n)[V]) = \{V \mid V1_c = 0\}$.
 1041 The dimension of this null space is

$$1042 \dim(\text{Ker}(D(X1_c - 1_n)[V])) = nc - c = (n-1)c \quad (24)$$

1043 In addition, since $\Omega_2 = \{X \mid X^T 1_n > l\}$ and $\Omega_3 = \{X \mid X^T 1_n < u\}$, take Ω_2 as an example. For
 1044 any directional vector U , there must exist $\delta_U > 0$ such that $(X + \delta_U U)^T 1_n > l$. Thus, both Ω_2
 1045 and Ω_3 are open sets. According to Theorem (Petersen, 2006), Ω_1 forms a manifold, and Ω_2 and
 1046 Ω_3 are open sets. The intersection of an open set with a manifold remains a manifold. Therefore,
 1047 $\mathcal{M} = \{X \mid X1_c = 1_n, l < X^T 1_n < u, X > 0\} = \Omega_1 \cap \Omega_2 \cap \Omega_3$ is still a manifold, and
 1048 $\dim(\mathcal{M}) = \dim(\text{Ker}(D(X1_c - 1_n)[V])) = (n-1)c$.
 1049

1050 We refer to \mathcal{M} as the Relaxed Indicator Matrix manifold, abbreviated as the RIM manifold.

1051 **A.2 PROOF OF LEMMA 2**
 1052

1053 By restricting the Euclidean inner product $\langle U, V \rangle = \sum_{i=1}^n \sum_{j=1}^c U_{ij} V_{ij}$ onto the RIM manifold
 1054 \mathcal{M} , the tangent space of \mathcal{M} at X is given by $T_X \mathcal{M} = \{U \mid U1_c = 0\}$. For any function \mathcal{H} , if its
 1055 Euclidean gradient is $\text{Grad} \mathcal{H}(F)$, the Riemannian gradient $\text{grad} \mathcal{H}(F)$ is expressed as following.
 1056

$$1057 \text{grad} \mathcal{H}(F) = \text{Grad} \mathcal{H}(F) - \frac{1}{c} \text{Grad} \mathcal{H}(F)1_c 1_c^T. \quad (25)$$

1058 *Proof.* According to the definition of tangent space,
 1059

$$1060 T_X \mathcal{M} = \text{Ker}(D(X1_c - 1_n)[U]) = \{U \mid U1_c = 0\} \quad (26)$$

1061 Let $\text{Grad} \mathcal{H}$ be the gradient of \mathcal{H} in the Euclidean space. Then, $\text{Grad} \mathcal{H} = \text{Grad} \mathcal{H}_{\parallel} + \text{Grad} \mathcal{H}_{\perp}$,
 1062 where $\text{Grad} \mathcal{H}_{\parallel}$ represents the component of $\text{Grad} \mathcal{H}$ parallel to $T_X \mathcal{M}$, and $\text{Grad} \mathcal{H}_{\perp}$ represents the
 1063 component perpendicular to $T_X \mathcal{M}$.
 1064

1065 By the definition of the Riemannian gradient,
 1066

$$1067 D \mathcal{H}[V] = \langle \text{Grad} \mathcal{H}, V \rangle = \langle \text{grad} \mathcal{H}, V \rangle_X, V \in T_X \mathcal{M} \quad (27)$$

1068 Here, $\langle \text{grad} \mathcal{H}, V \rangle_X$ denotes the inner product equipped on the manifold at X . When $\langle \text{grad} \mathcal{H}, V \rangle_X$
 1069 coincides with the Euclidean inner product, we have
 1070

$$1071 \langle \text{Grad} \mathcal{H}, V \rangle = \langle \text{Grad} \mathcal{H}_{\parallel}, V \rangle + \langle \text{Grad} \mathcal{H}_{\perp}, V \rangle = \langle \text{Grad} \mathcal{H}_{\parallel}, V \rangle = \langle \text{grad} \mathcal{H}, V \rangle_X \quad (28)$$

1072 for $V \in T_X \mathcal{M}$, since $\langle \text{Grad} \mathcal{H}_{\perp}, V \rangle = 0$ for $V \in T_X \mathcal{M}$. By the Ritz representation theorem, in this
 1073 case, $\text{grad} \mathcal{H}$ is the orthogonal projection of $\text{Grad} \mathcal{H}$ onto the tangent space. The next step is to solve
 1074 the optimization problem:
 1075

$$1076 \min_{U \in \{U \mid U1_c = 0\}} \mathcal{L} = \min_{U \in \{U \mid U1_c = 0\}} \|U - \text{Grad} \mathcal{H}\|_F^2 \quad (29)$$

1077 The Lagrangian function for the optimization problem is given by: $\mathcal{L} = \frac{1}{2} \|U - \text{Grad} \mathcal{H}\|_F^2 + \alpha^T (U1_c)$.
 1078 Taking the gradient with respect to U , we have:
 1079

$$1080 \nabla_U \mathcal{L} = U - \text{Grad} \mathcal{H} + \alpha 1_c^T = 0 \quad (30)$$

1080 Solving for U , we obtain $U = \text{Grad}\mathcal{H} - \alpha 1_c^T$. Since $U 1_c = 0$, substituting U gives $\text{Grad}\mathcal{H} 1_c - \alpha 1_c^T 1_c = \text{Grad}\mathcal{H} 1_c - c\alpha = 0$, which implies $\alpha = \frac{1}{c} \text{Grad}\mathcal{H} 1_c$. Therefore, the Riemannian gradient is following.

$$\text{grad}\mathcal{H} = \operatorname{argmin}_{U \in \{U | U1_c = 0\}} \|U - \text{Grad}\mathcal{H}\|_F^2 = \text{Grad}\mathcal{H} - \frac{1}{c} \text{Grad}\mathcal{H} 1_c 1_c^T \quad (31)$$

A.3 PROOF OF LEMMA 3

For the manifold \mathcal{M} , there exists a unique connection that is compatible with the inner product and ensures that the Riemannian Hessian mapping is self-adjoint. This connection is given by following. $\tilde{\nabla}$ is the Riemannian connection in Euclidean space.

$$\nabla_V U = \bar{\nabla}_V U - \frac{1}{c} \bar{\nabla}_V U \mathbf{1}_c \mathbf{1}_c^T. \quad (32)$$

Proof. First, we need to prove that the connection is compatible with the inner product, which means proving $W\langle U, V \rangle = \langle \nabla_W U, V \rangle + \langle U, \nabla_W V \rangle$. We have the following equation

$$\begin{aligned}
W\langle U, V \rangle &= D(\langle U, V \rangle)[W] = D \left(\sum_{i=1}^n \sum_{j=1}^n U_{ij} V_{ij} \right) [W] = \sum_{i=1}^n \sum_{j=1}^n D(U_{ij} V_{ij})[W] \\
&= \sum_{i=1}^n \sum_{j=1}^n (V_{ij} D(U_{ij})[W_{ij}] + U_{ij} D(V_{ij})[W_{ij}]) = \langle U, D(V)[W] \rangle + \langle D(U)[W], V \rangle \\
&= \langle U, D(V)[W] - \frac{1}{c} D(V)[W] \mathbf{1}_c \mathbf{1}_c^T \rangle + \langle D(U)[W] - \frac{1}{c} D(U)[W] \mathbf{1}_c \mathbf{1}_c^T, V \rangle \\
&\quad + \langle U, \frac{1}{c} D(V)[W] \mathbf{1}_c \mathbf{1}_c^T \rangle + \langle \frac{1}{c} D(U)[W] \mathbf{1}_c \mathbf{1}_c^T, V \rangle.
\end{aligned} \tag{33}$$

Since the standard inner product in Euclidean space is chosen, we have

$$\langle U, \frac{1}{c} D(V)[W]1_c 1_c^T \rangle = \frac{1}{c} \text{tr}(U^T D(V)[W]1_c 1_c^T) = \frac{1}{c} \text{tr}(D(V)[W]1_c 1_c^T U^T) \quad (34)$$

$$= \frac{1}{c} \text{tr}(D(V)[W]1_c(U1_c)^T) = 0 \quad (35)$$

The last step equals zero because $U \in T_X \mathcal{M}$, which implies that $U 1_c = 0$. In the Euclidean space, the connection $\bar{\nabla}_V U$ is defined as $D(U)[V]$. Furthermore, we have:

$$W \langle U, V \rangle = \langle U, D(V)[W] - \frac{1}{c} D(V)[W] \mathbf{1}_c \mathbf{1}_c^T \rangle + \langle D(U)[W] - \frac{1}{c} D(U)[W] \mathbf{1}_c \mathbf{1}_c^T, V \rangle \quad (36)$$

$$= \langle U, \bar{\nabla}_W V - \frac{1}{c} \bar{\nabla}_W V 1_c 1_c^T \rangle + \langle \bar{\nabla}_W U - \frac{1}{c} \bar{\nabla}_W U 1_c 1_c^T, V \rangle \quad (37)$$

$$= \langle U, \nabla_W V \rangle + \langle V, \nabla_W U \rangle \quad (38)$$

The second step is to prove that the Hessian map obtained from the connection is self-adjoint. That is, we need to prove $[U, V] = \nabla_U V - \nabla_V U$, where $[U, V]$ is the Lie bracket, and $[U, V]f = U(V(f)) - V(U(f))$, with f being a smooth scalar field on the manifold \mathcal{M} . U and V are tangent vectors of the RIM manifold \mathcal{M} , i.e., $U, V \in T_X \mathcal{M}$. Let \bar{U} and \bar{V} be smooth extensions of U and V in the neighborhood of \mathcal{M} , satisfying $\bar{U}|_{\mathcal{M}} = U$ and $\bar{V}|_{\mathcal{M}} = V$. We have $[\bar{U}, \bar{V}] = D\bar{V}[\bar{U}] - D\bar{U}[\bar{V}] = \bar{\nabla}_{\bar{U}}\bar{V} - \bar{\nabla}_{\bar{V}}\bar{U}$. Thus, we can prove that:

$$[U, V] \equiv [\bar{U}, \bar{V}]|_M \quad (39)$$

$$\equiv (\bar{\nabla}_{\bar{U}}\bar{V} - \bar{\nabla}_{\bar{V}}\bar{U})|_M \quad (40)$$

$$\equiv \text{Proj}_{\mathcal{M}}(\bar{\nabla}_{\bar{U}}\bar{V} - \bar{\nabla}_{\bar{V}}\bar{U})|_{\mathcal{M}} \quad (41)$$

$$= \bar{\nabla}_U V - \frac{1}{c} \bar{\nabla}_U V 1_c 1_c^T - \bar{\nabla}_V U + \frac{1}{c} \bar{\nabla}_V U 1_c 1_c^T \quad (42)$$

$$\equiv \nabla_U V - \nabla_V U. \quad (43)$$

1134 This equality, $(\bar{\nabla}_{\bar{U}}\bar{V} - \bar{\nabla}_{\bar{V}}\bar{U})|_{\mathcal{M}} = \text{Proj}_{\mathcal{M}}(\bar{\nabla}_{\bar{U}}\bar{V} - \bar{\nabla}_{\bar{V}}\bar{U})|_{\mathcal{M}}$, holds because $[U, V]$ is defined in
 1135 the tangent space of \mathcal{M} . Therefore, the expression $(\bar{\nabla}_{\bar{U}}\bar{V} - \bar{\nabla}_{\bar{V}}\bar{U})|_{\mathcal{M}}$ and its projection onto the
 1136 tangent space of \mathcal{M} must be equal.
 1137

1138 **A.4 PROOF OF LEMMA 4**

1140 For the manifold \mathcal{M} equipped with the connection $\nabla_V U = \bar{\nabla}_V U - \frac{1}{c} \bar{\nabla}_V U 1_c 1_c^T$, the Riemannian
 1141 Hessian mapping satisfies following.

1142 $\text{hess } \mathcal{H}[V] = \text{Hess } \mathcal{H}[V] - \frac{1}{c} \text{Hess } \mathcal{H}[V] 1_c 1_c^T. \quad (44)$

1145 *Proof.* The Riemannian Hessian is defined as

1146 $\text{hess } \mathcal{H}[U] = \nabla_U \text{grad } \mathcal{H} = \nabla_U \left(\text{Grad } \mathcal{H} - \frac{1}{c} \text{Grad } \mathcal{H} 1_c 1_c^T \right). \quad (45)$

1149 Using the definition of the Riemannian connection ∇ , we have

1150 $\text{hess } \mathcal{H}[U] = \nabla_U \text{grad } \mathcal{H} = D \left(\text{Grad } \mathcal{H} - \frac{1}{c} \text{Grad } \mathcal{H} 1_c 1_c^T \right) [U] \quad (46)$

1151 $= \lim_{t \rightarrow 0} \frac{\text{Grad } \mathcal{H}(X + tU) - \text{Grad } \mathcal{H}(X)}{t} - \lim_{t \rightarrow 0} \frac{\text{Grad } \mathcal{H}(X + tU) 1_c 1_c^T - \text{Grad } \mathcal{H}(X) 1_c 1_c^T}{ct} \quad (47)$

1152 $= \text{Hess } \mathcal{H}[V] - \frac{1}{c} \text{Hess } \mathcal{H}[V] 1_c 1_c^T \quad (48)$

1159 **A.5 PROOF OF THEOREM 1**

1160 Let $R_X(tV) = \text{argmin}_{F \in \mathcal{M}} \|F - (X + tV)\|_F^2$, $X \in \mathcal{M}$. Then

1161 $\text{argmin}_{F \in \mathcal{M}} \|F - (X + tV)\|_F^2 = \max(0, X + tV - \nu(t) 1_c^T - 1_n \omega^T(t) + 1_n \rho^T(t)) \quad (49)$

1162 where $\nu(t), \omega^T(t), \rho^T(t)$ are Lagrange multipliers. Moreover, there exists $\delta > 0$ such that for
 1163 $t \in (0, \delta)$, $-\nu(t) 1_c^T - 1_n \omega(t)^T + 1_n \rho(t)^T = 0$, and the Retraction satisfies the following. Where $\frac{D}{dt}$
 1164 denotes the Levi-Civita derivative.

1165 $R_X(0) = X, \quad \frac{d}{dt} R_X(tV)|_{t=0} = V, \quad \frac{D}{dt} R'_X(tV)|_{t=0} = 0 \quad (50)$

1166 Thus, $R_X(tV)$ is a geodesic.

1167 *Proof.* First, the Lagrangian dual function of the original problem is as follows:

1168 $\mathcal{L}(F, \nu, \omega, \rho) = \frac{1}{2} \|F - (X + tV)\|_F^2 - \nu^T(F 1_c - 1_n) - \omega^T(F^T 1_n - u) + \rho^T(l - F^T 1_n) \quad (51)$

1169 Where ν , ω , and ρ are the corresponding Lagrange multipliers, satisfying $\nu \geq 0, \omega \geq 0, \rho \geq 0$. Let
 1170 $\frac{\partial \mathcal{L}}{\partial F} = 0$, then we have the following formular:

1171 $\frac{\partial \mathcal{L}}{\partial F} = F - X + \nu 1_c^T + 1_n \omega^T - 1_n \rho^T - tV = 0, \quad (52)$

1172 That is, $F = X + tV - \nu 1_c^T - 1_n \omega^T + 1_n \rho^T$. Since F lies on the manifold \mathcal{M} and $F \geq 0$, the final
 1173 result is:

1174 $F^* = \text{argmin}_{F \in \mathcal{M}} \|F - (X + tV)\|_F^2 = \max(0, X + tV - \nu 1_c^T - 1_n \omega^T + 1_n \rho^T). \quad (53)$

1175 It can be proven that F^* satisfies the KKT conditions of the original problem. For different t , the
 1176 values of the Lagrange multipliers ν, ω, ρ vary, and they are functions of t : $\nu(t), \omega(t), \rho(t)$. The next
 1177 step is to prove the three properties of the second-order Retraction, $R_X(0) = X, \frac{d}{dt} R_X(tV)|_{t=0} = V, \frac{D}{dt} R'_X(tV)|_{t=0} = 0$. First, consider $R_X(0) = \text{argmin}_{F \in \mathcal{M}} \|F - X\|_F^2$.

1188 Since $X \in \mathcal{M}$, we have $R_X(0) = F^*(0) = X$. Additionally, since $F^*(0) = \max(0, X + tV - \nu 1_c^T - 1_n \omega^T + 1_n \rho^T)|_{t=0} = \max(0, X - \nu(0) 1_c^T - 1_n \omega(0)^T + 1_n \rho(0)^T)$. We know that
1189 $X = \max(0, X - \nu(0) 1_c^T - 1_n \omega(0)^T + 1_n \rho(0)^T)$.
1190

1191 According to the definition, we calculate:
1192

$$1193 \frac{d}{dt} R_X(tV)|_{t=0} = \lim_{t \rightarrow 0} \frac{F^*(t) - F^*(0)}{t} = \lim_{t \rightarrow 0} \frac{\max(0, X + tV - \nu 1_c^T - 1_n \omega^T + 1_n \rho^T) - F^*(0)}{t} \quad (54)$$

1197 Since $X \in \mathcal{M}$, we know that $X_{ij} > 0$, $X 1_c = 1_n$, and $l < X 1_n < u$. Furthermore, since $V \in$
1198 $T_X \mathcal{M}$, there exists a $\delta > 0$ such that for $t \in (0, \delta)$, we still have $(X + tV)_{ij} > 0$, $(X + tV) 1_c = 1_n$,
1199 and $l < (X + tV) 1_n < u$. This means that for $t \in (0, \delta)$, we have $R_X(tV) = \operatorname{argmin}_{F \in \mathcal{M}} \|F - (X + tV)\|_F^2$, and since $(X + tV) \in \mathcal{M}$, it follows that $R_X(tV) = F^*(t) = X + tV$. Therefore,
1200 we have:
1201

$$1202 \frac{d}{dt} R_X(tV)|_{t=0} = \lim_{t \rightarrow 0} \frac{F^*(t) - F^*(0)}{t} = \lim_{t \rightarrow 0} \frac{X + tV - X}{t} = V \quad (55)$$

1204 For $\frac{D}{dt} R'_X(tV)$, first consider $\frac{d}{dt} R'_X(tV)|_{t=0} = \lim_{t \rightarrow 0} \frac{1}{t} \left(\frac{d}{dt} F^*(t) - \frac{d}{dt} F^*(0) \right)$. Since there
1205 exists an interval $(0, \delta)$ such that $F^*(t) = \max(0, X + tV - \nu 1_c^T - 1_n \omega^T + 1_n \rho^T) =$
1206 $X + tV$, and within $(0, \delta)$, without loss of generality, we can assume that $\nu(t) 1_c^T -$
1207 $1_n \omega(t)^T + 1_n \rho(t)^T = 0$, and within this interval, $X + tV > 0$. Thus, within $(0, \delta)$,
1208 we have $\frac{d}{dt} \max(0, X + tV - \nu 1_c^T - 1_n \omega^T + 1_n \rho^T) = V$. Therefore, $\frac{d}{dt} R'_X(tV)|_{t=0} =$
1209 $\lim_{t \rightarrow 0} \frac{1}{t} (V - V) = 0$. Thus, the Levi-Civita derivative, compatible with the connection, is
1210 $\frac{D}{dt} R'_X(tV)|_{t=0} = 0$. This concludes the proof.
1211

1212 A.6 PROOF OF THEOREM 2

1214 $\mathcal{M} = \Omega_1 \cup \Omega_2 \cup \Omega_3$, where $\Omega_1 = \{X \mid X > 0, X 1_c = 1_n\}$, $\Omega_2 = \{X \mid X^T 1_n > l\}$, and
1215 $\Omega_3 = \{X \mid X^T 1_n < u\}$. The primal problem can be solved using the Dykstra's (Tibshirani, 2017;
1216 Boyle & Dykstra, 1986) algorithm by iteratively projecting onto Ω_1 , Ω_2 , and Ω_3 . Specifically:

1217 $\operatorname{Proj}_{\Omega_1}(X) = (X_{ij} + \eta_i)_+$, where η is determined by $\operatorname{Proj}_{\Omega_1}(X) 1_c = 1_n$.
1218

1219 $\operatorname{Proj}_{\Omega_2}(X)$ and $\operatorname{Proj}_{\Omega_3}(X)$ are defined similarly. For example,
1220

$$1221 \operatorname{Proj}_{\Omega_2}(X^j) = \begin{cases} X^j, & \text{if } (X^j)^T 1_n > l_j, \\ \frac{1}{n} (l_j - 1_n^T X^j) 1_n + X^j, & \text{if } (X^j)^T 1_n \leq l_j, \end{cases} \quad (56)$$

1224 where X^j is the j -th column of X , and l_j is the j -th element of the column vector l .
1225

1226 *Proof.* Consider first the orthogonal projection on Ω_1 , which is to solve the optimization problem:
1227 $F = \arg \min_{F \in \Omega_1} \|F - X\|_F^2$ where $\Omega_1 = \{X \mid X > 0, X 1_c = 1_n\}$. The Lagrange function for
1228 this problem, incorporating the equality constraint $X 1_c = 1_n$ and the inequality constraint $X > 0$, is:
1229

$$1230 \mathcal{L}(F, \eta, \Theta) = \frac{1}{2} \|F - X\|_F^2 - \eta^T (F 1_c - 1_n) - \sum_{i,j} \Theta_{ij} F_{ij} \quad (57)$$

1232 where $\eta \in \mathbb{R}^n$ are Lagrange multipliers for the equality constraints, and $\Theta_{ij} \geq 0$ are multipliers for
1233 the non-negativity constraints.

1234 Since the constraints are separable row-wise, we optimize each row F_i independently. The row-wise
1235 Lagrangian is $\mathcal{L}_i(F_i, \eta_i, \Theta_i) = \frac{1}{2} \|F_i - X_i\|_2^2 - \eta_i (F_i 1_c - 1) - \sum_j \Theta_{ij} F_{ij}$. Taking the gradient with
1236 respect to F_i and setting it to zero:
1237

$$1238 F_i - X_i - \eta_i 1_c^T - \Theta_i = 0 \Rightarrow F_i = X_i + \eta_i 1_c^T + \Theta_i \quad (58)$$

1239 By complementary slackness, $\Theta_{ij} F_{ij} = 0$. If $F_{ij} > 0$, then $\Theta_{ij} = 0$, implying $F_{ij} = X_{ij} + \eta_i$. If
1240 $F_{ij} = 0$, then $X_{ij} + \eta_i + \Theta_{ij} = 0$ with $\Theta_{ij} \geq 0$, hence $X_{ij} + \eta_i \leq 0$. Thus, the optimal solution is:
1241

$$1242 F_{ij}^* = \max(X_{ij} + \eta_i, 0) = (X_{ij} + \eta_i)_+ \quad (59)$$

1242 The multiplier η_i is determined by the equality constraint $F_i^* 1_c = 1 \rightarrow \sum_{j=1}^c (X_{ij} + \eta_i)_+ = 1$
 1243
 1244 For the projection onto Ω_2 , consider the optimization problem: $F^* = \operatorname{argmin}_{F \in \Omega_2} \|F - X\|_F^2$ where
 1245 $\Omega_2 = \{X \mid X^T 1_n > l\}$. For each column X^j , solve: $\min_{F^j} \|F^j - X^j\|_2^2 \quad \text{s.t.} \quad (F^j)^T 1_n > l_j$.

1246 If $(X^j)^T 1_n > l_j$, the constraint is already satisfied: $\operatorname{Proj}_{\Omega_2}(X^j) = X^j$
 1247

1248 If $(X^j)^T 1_n \leq l_j$, introduce the Lagrangian:
 1249

$$\mathcal{L}(F^j, \lambda) = \frac{1}{2} \|F^j - X^j\|_2^2 + \lambda(l_j - (F^j)^T 1_n), \quad \lambda \geq 0 \quad (60)$$

1250 Taking the gradient of F^j , we have the following:
 1251

$$\nabla_{F^j} \mathcal{L} = F^j - X^j - \lambda 1_n = 0 \quad \Rightarrow \quad F^j = X^j + \lambda 1_n \quad (61)$$

1252 Substitute into the binding constraint $(F^j)^T 1_n = l_j$:
 1253

$$(X^j + \lambda 1_n)^T 1_n = l_j \quad \Rightarrow \quad \lambda = \frac{1}{n}(l_j - (X^j)^T 1_n) \quad (62)$$

1254 Thus, the projection is:
 1255

$$\operatorname{Proj}_{\Omega_2}(X^j) = X^j + \frac{1}{n}(l_j - (X^j)^T 1_n) 1_n \quad (63)$$

1256 Combining both cases, we have that
 1257

$$\operatorname{Proj}_{\Omega_2}(X^j) = \begin{cases} X^j, & \text{if } (X^j)^T 1_n > l_j, \\ \frac{1}{n}(l_j - 1_n^T X^j) 1_n + X^j, & \text{if } (X^j)^T 1_n \leq l_j, \end{cases} \quad (64)$$

1258 Similarly, for the projection onto Ω_3 , we can follow the same procedure and obtain:
 1259

$$\operatorname{Proj}_{\Omega_3}(X^j) = \begin{cases} X^j, & \text{if } (X^j)^T 1_n < u_j, \\ \frac{1}{n}(u_j - 1_n^T X^j) 1_n + X^j, & \text{if } (X^j)^T 1_n \geq u_j, \end{cases} \quad (65)$$

1260 where X^j is the j -th column of X , and u_j is the j -th element of the column vector u .
 1261

1262 The ultimate goal is to perform an orthogonal projection onto the intersection of three convex sets, $\Omega_1, \Omega_2, \Omega_3$. This can be achieved using the von Neumann iterative projection theorem. However, the von Neumann iterative projection can only guarantee convergence to $\Omega_1 \cap \Omega_2 \cap \Omega_3$, but it does not ensure the orthogonal projection, i.e., the solution to the Retraction problem. To address this, we introduce Dykstras's projection algorithm, which performs a linear correction to the von Neumann projection algorithm at each step, ensuring that it achieves the orthogonal projection onto $\Omega_1 \cap \Omega_2 \cap \Omega_3$. The algorithm flowchart for Dykstras's projection algorithm for the intersection of d convex sets is shown below.
 1263

1264 **Algorithm 1:** Dykstras's Algorithm for Projection onto the Intersection of Convex Sets

1265 **Input:** Closed convex sets $\Omega_1, \Omega_2, \dots, \Omega_d$ and point $y \in \mathbb{R}^{n \times c}$

1266 **Output:** Sequence of iterates $u^{(k)}$ converging to the projection onto $\Omega_1 \cap \dots \cap \Omega_d$

1267 1 Initialize $u^{(0)} = y, z_1^{(0)} = \dots = z_d^{(0)} = 0$;

1268 2 **while** not converged **do**

1269 3 $u_0^{(k)} = u_d^{(k-1)}$;

1270 4 **for** $i = 1$ to d **do**

1271 5 $u_i^{(k)} = \operatorname{Proj}_{\Omega_i}(u_{i-1}^{(k)} + z_i^{(k-1)})$;

1272 6 $z_i^{(k)} = u_{i-1}^{(k)} + z_i^{(k-1)} - u_i^{(k)}$;

1273 7 **end**

1274 8 $k \leftarrow k + 1$;

1275 9 **end**

1276 10 **return** $u^{(k)}$;

1277 The algorithm iteratively performs $\operatorname{Proj}_{\Omega_1}(\cdot)$, $\operatorname{Proj}_{\Omega_2}(\cdot)$, and $\operatorname{Proj}_{\Omega_3}(\cdot)$, and at each step, a linear correction using $u^{(k)}$ is applied. This ensures the final result is the orthogonal projection onto the intersection $\Omega_1 \cap \Omega_2 \cap \Omega_3$.
 1278

1296

A.7 PROOF OF THEOREM 3

1297

1298 Solving the primal problem is equivalent to solving the following dual problem:

1299

1300

1301

1302 where ν , ω , and ρ are Lagrange multipliers. The partial derivatives of \mathcal{L} with respect to ν , ω , and ρ are known, and gradient ascent can be used solving ν , ω , and ρ . Finally, $R_X(tV)$ can be obtained using $\max(0, X + tV - \nu 1_c^T - 1_n \omega^T + 1_n \rho^T)$. The partial derivatives are following.

1304

1305

1306

1307

1308

1309

1310

1311

$$\begin{cases} \frac{\partial \mathcal{L}}{\partial \nu} = \max(0, X + tV - \nu 1_c^T - 1_n \omega^T + 1_n \rho^T) 1_c - 1_n \\ \frac{\partial \mathcal{L}}{\partial \omega} = \max(0, X + tV - \nu 1_c^T - 1_n \omega^T + 1_n \rho^T)^T 1_n - u \\ \frac{\partial \mathcal{L}}{\partial \rho} = -\max(0, X + tV - \nu 1_c^T - 1_n \omega^T + 1_n \rho^T)^T 1_n + l \end{cases} \quad (67)$$

1312

1313 *Proof.* According to the previous theorem, we know that

1314

$$F^* = \max(0, X + tV - \nu 1_c^T - 1_n \omega^T + 1_n \rho^T) \quad (68)$$

1315

1316

Substituting F^* into the Lagrangian function, we obtain

1317

1318

$$\mathcal{L}(\nu, \omega, \theta) = \frac{1}{2} \left\| \max(0, X + tV - \nu 1_c^T - 1_n \omega^T + 1_n \rho^T) - X - tV \right\|_F^2 \quad (69)$$

1319

$$+ \nu^T \max(0, X + tV - \nu 1_c^T - 1_n \omega^T + 1_n \rho^T) 1_c - \nu^T 1_n \quad (70)$$

1320

1321

$$+ \omega^T \max(0, X + tV - \nu 1_c^T - 1_n \omega^T + 1_n \rho^T)^T 1_n - \omega^T u \quad (71)$$

1322

$$- \rho^T \max(0, X + tV - \nu 1_c^T - 1_n \omega^T + 1_n \rho^T)^T 1_n + \rho^T l \quad (72)$$

1323

1324

Among the Lagrange multipliers ν, ω, ρ , we have $\omega \geq 0$ and $\rho \geq 0$.

1325

1326

* If $(X + tV - \nu 1_c^T - 1_n \omega^T + 1_n \rho^T) < 0$, then $\max(0, X + tV - \nu 1_c^T - 1_n \omega^T + 1_n \rho^T) = 0$, which further leads to

1327

1328

$$\mathcal{L}(\nu, \omega, \rho) = \frac{1}{2} \|X + tV\|_F^2 - \nu^T 1_n - \omega^T u + \rho^T l \quad (73)$$

1329

1330

At this point, a simple differentiation yields:

1331

1332

$$\frac{\partial}{\partial \nu} \mathcal{L}(\nu, \omega, \rho) = -1_n, \quad \frac{\partial}{\partial \omega} \mathcal{L}(\nu, \omega, \rho) = -u, \quad \frac{\partial}{\partial \rho} \mathcal{L}(\nu, \omega, \rho) = l \quad (74)$$

1333

1334

1335

1336

* If $(X + tV - \nu 1_c^T - 1_n \omega^T + 1_n \rho^T) \geq 0$, then $\max(0, X + tV - \nu 1_c^T - 1_n \omega^T + 1_n \rho^T) = X + tV - \nu 1_c^T - 1_n \omega^T + 1_n \rho^T$. It is worth noting that $\nu^T \max(0, X + tV - \nu 1_c^T - 1_n \omega^T + 1_n \rho^T) 1_c \in \mathbb{R}$ is a real number, that is,

1337

1338

1339

$$\nu^T \max(0, X + tV - \nu 1_c^T - 1_n \omega^T + 1_n \rho^T) 1_c \quad (75)$$

1340

1341

$$= \text{tr}(\nu^T \max(0, X + tV - \nu 1_c^T - 1_n \omega^T + 1_n \rho^T) 1_c) \quad (76)$$

1342

1343

$$= \text{tr}(\max(0, X + tV - \nu 1_c^T - 1_n \omega^T + 1_n \rho^T)^T 1_c) \quad (77)$$

At this point, we have

1344

1345

1346

1347

1348

1349

$$\mathcal{L}(\nu, \omega, \rho) = \frac{1}{2} \|\nu 1_c^T + 1_n \omega^T - 1_n \rho^T\|_F^2 - \langle \nu, 1_n \rangle - \langle \omega, u \rangle + \langle \rho, l \rangle \quad (79)$$

$$+ \langle X + tV - \nu 1_c^T - 1_n \omega^T + 1_n \rho^T, \nu 1_c^T + 1_n \omega^T - 1_n \rho^T \rangle \quad (80)$$

$$= \frac{1}{2} \|\nu 1_c^T + 1_n \omega^T - 1_n \rho^T\|_F^2 - \langle \nu, 1_n \rangle - \langle \omega, u \rangle + \langle \rho, l \rangle \quad (81)$$

$$+ \langle X + tV, \nu 1_c^T + 1_n \omega^T - 1_n \rho^T \rangle - \|\nu 1_c^T + 1_n \omega^T - 1_n \rho^T\|_F^2 \quad (82)$$

$$1350 = -\frac{1}{2} \|\nu 1_c^T + 1_n \omega^T - 1_n \rho^T\|_F^2 - \langle \nu, 1_n \rangle - \langle \omega, u \rangle \quad (83)$$

$$1352 + \langle \rho, l \rangle + \langle X + tV, \nu 1_c^T + 1_n \omega^T - 1_n \rho^T \rangle \quad (84)$$

1353 At this point, taking derivatives of the Lagrangian with respect to the multipliers ν, ω, ρ , we obtain

$$1355 \begin{cases} \frac{\partial \mathcal{L}}{\partial \nu} = (X + tV - \nu 1_c^T - 1_n \omega^T + 1_n \rho^T) 1_c - 1_n, \\ 1356 \frac{\partial \mathcal{L}}{\partial \omega} = (X + tV - \nu 1_c^T - 1_n \omega^T + 1_n \rho^T)^T 1_n - u, \\ 1357 \frac{\partial \mathcal{L}}{\partial \rho} = -(X + tV - \nu 1_c^T - 1_n \omega^T + 1_n \rho^T)^T 1_n + l. \end{cases} \quad (85)$$

1362 Finally, by consolidating the two cases, we obtain

$$1363 \begin{cases} \frac{\partial \mathcal{L}}{\partial \nu} = \max(0, X + tV - \nu 1_c^T - 1_n \omega^T + 1_n \rho^T) 1_c - 1_n, \\ 1364 \frac{\partial \mathcal{L}}{\partial \omega} = \max(0, X + tV - \nu 1_c^T - 1_n \omega^T + 1_n \rho^T)^T 1_n - u, \\ 1365 \frac{\partial \mathcal{L}}{\partial \rho} = -\max(0, X + tV - \nu 1_c^T - 1_n \omega^T + 1_n \rho^T)^T 1_n + l. \end{cases} \quad (86)$$

1370 After obtaining the gradient, the dual problem can be solved by a simple dual gradient ascent method.
1371 It should be noted that the multipliers ω and ρ have non-negative constraints, so projection onto the
1372 constraints is needed. Specifically, after each gradient ascent step, ω and ρ should be projected onto
1373 the non-negative constraint. Once ν , ω , and ρ are obtained, F^* can be derived using

$$1374 F^* = \max(0, X + tV - \nu 1_c^T - 1_n \omega^T + 1_n \rho^T) \quad (87)$$

1376 The algorithm flow is as follows:

Algorithm 2: Dual Gradient Projection Ascent Method

1379 **Input:** Initial values: ν_0, ω_0, ρ_0
1380 Step size $\kappa > 0$
1381 Constraints: $\omega \geq 0, \rho \geq 0$
1382 **Output:** Optimized multipliers: ν^*, ω^*, ρ^*

1 Initialize $\nu = \nu_0, \omega = \omega_0, \rho = \rho_0$;
2 **while** not converged **do**
3 **Compute Gradient:**
4 $\frac{\partial \mathcal{L}}{\partial \nu}, \frac{\partial \mathcal{L}}{\partial \omega}, \frac{\partial \mathcal{L}}{\partial \rho}$;
5 **Update multipliers:**
6 $\nu \leftarrow \nu + \kappa \cdot \frac{\partial \mathcal{L}}{\partial \nu}$;
7 $\omega \leftarrow \omega + \kappa \cdot \frac{\partial \mathcal{L}}{\partial \omega}$;
8 $\rho \leftarrow \rho + \kappa \cdot \frac{\partial \mathcal{L}}{\partial \rho}$;
9 **Project onto constraints:**
10 $\omega \leftarrow \max(0, \omega)$;
11 $\rho \leftarrow \max(0, \rho)$;
12 **end**
13 **return** Final values ν, ω, ρ ;

1396
1397 **A.8 PROOF OF THEOREM 4**

1398 The Sinkhorn-based Retraction is defined as

$$1399 R_X^s(tV) = \mathcal{S}(X \odot \exp(tV \oslash X)) = \text{diag}(p^*)(X \odot \exp(tV \oslash X)) \text{diag}(q^* \odot w^*) \quad (88)$$

1400 where p^*, q^*, w^* are vectors, $\exp(\cdot)$ denotes element-wise exponentiation, and $\text{diag}(\cdot)$ converts a
1401 vector into a diagonal matrix. The vectors p^*, q^*, w^* are obtained by iteratively updating the following

1404 equations:

$$\begin{cases} p^{(k+1)} = 1_n \oslash ((X \odot \exp(tV \oslash X)) (q^{(k)} \odot w^{(k)})), \\ q^{(k+1)} = \max \left(l \oslash ((X \odot \exp(tV \oslash X))^T p^{(k+1)} \odot w^{(k)}), 1_c \right), \\ w^{(k+1)} = \min \left(u \oslash ((X \odot \exp(tV \oslash X))^T p^{(k+1)} \odot q^{(k+1)}), 1_c \right). \end{cases} \quad (89)$$

1405 This iterative procedure ensures the mapping onto the RIM manifold. The solution $R_X^s(tV) =$
 1406 $\text{diag}(p^*)(X \odot \exp(tV \oslash X)) \text{diag}(q^* \odot w^*)$ is equivalent to solving the dual-bound optimal transport
 1407 problem (12) with an entropy regularization parameter of 1.

$$R_X^s(tV) = \underset{F \in \mathcal{M}}{\text{argmin}} \left\langle F, -\log(X \odot \exp(tV \oslash X)) \right\rangle + \delta \Big|_{\delta=1} \sum_{i=1}^n \sum_{j=1}^c (F_{ij} \log(F_{ij}) - F_{ij}) \quad (90)$$

1408 *Proof.* Introduce Lagrange multipliers $\eta \in \mathbb{R}^n$ (for equality $F1_c = 1_n$), and $\lambda, \nu \in \mathbb{R}^c, \lambda, \nu > 0$ (for
 1409 inequalities $F^T 1_n > l, F^T 1_n < u$). The Lagrangian is:

$$\begin{aligned} \mathcal{L}(F, \eta, \lambda, \nu) &= \left\langle F, -\log(X \odot \exp(tV \oslash X)) \right\rangle + \sum_{i,j} (F_{ij} \log(F_{ij}) - F_{ij}) \\ &\quad + \eta^T (F1_c - 1_n) + \lambda^T (l - F^T 1_n) + \nu^T (F^T 1_n - u). \end{aligned} \quad (91)$$

1410 Differentiate \mathcal{L} with respect to F_{ij} and set to zero, we have

$$-\log \left(X_{ij} \exp \left(\frac{tV_{ij}}{X_{ij}} \right) \right) + \log F_{ij} + \eta_i - \lambda_j + \nu_j = 0 \quad (92)$$

1411 Simplify using $\log(X_{ij} \exp(tV_{ij}/X_{ij})) = \log X_{ij} + tV_{ij}/X_{ij}$:

$$-X_{ij} - \frac{tV_{ij}}{X_{ij}} + \log F_{ij} + \eta_i - \lambda_j + \nu_j = 0 \quad (93)$$

1412 Solve for F_{ij} :

$$F_{ij}^* = X_{ij} \exp \left(\frac{tV_{ij}}{X_{ij}} - \eta_i + \lambda_j - \nu_j \right) = X_{ij} \exp \left(\frac{tV_{ij}}{X_{ij}} \right) e^{-\eta_i + \lambda_j - \nu_j} \quad (94)$$

1413 Since λ and ν are positive, we introduce the following variable substitutions:

$$\begin{cases} p = e^{-\eta}, \\ q = e^\lambda, \quad e^\lambda \geq 1_n, \\ w = e^{-\nu}, \quad e^{-\nu} \leq 1_n. \end{cases} \quad (95)$$

1414 Writing the component-wise form into matrix form, we have the following formula.

$$F^* = \text{diag}(p) (X \odot \exp(tV \oslash X)) \text{diag}(q \odot w). \quad (96)$$

1415 To construct the iterative format, we first consider the equality constraints. Substitute F into
 1416 $F1_c = 1_n$:

$$\text{diag}(p) (X \odot \exp(tV \oslash X)) \text{diag}(q \odot w) 1_c = 1_n \Rightarrow \text{diag}(p) (X \odot \exp(tV \oslash X)) (q \odot w) = 1_n \quad (97)$$

1417 Further, we can derive the iterative update formula for the row equality constraints.

$$p = 1_n \oslash ((X \odot \exp(tV \oslash X)) (q \odot w)) \Rightarrow p^{(k+1)} = 1_n \oslash ((X \odot \exp(tV \oslash X)) (q^{(k)} \odot w^{(k)})) \quad (98)$$

1418 Next, considering the column constraint $F^T 1_n > l$, substituting F , we obtain:

$$\text{diag}(q \odot w) (X \odot \exp(tV \oslash X))^T \text{diag}(p)^T 1_n > l \Rightarrow (q \odot w) \odot ((X \odot \exp(tV \oslash X))^T p) > l \quad (99)$$

1419 By the complementary slackness condition, we obtain:

$$\lambda_j [(q \odot w) \odot ((X \odot \exp(tV \oslash X))^T p) - l]_j = 0 \quad (100)$$

1458 At this point, we discuss the complementary slackness condition.
 1459

$$1460 \left\{ \begin{array}{l} [(q \odot w) \odot ((X \odot \exp(tV \otimes X))^T p)]_j \neq l_j, \quad \lambda_j = 0 \Rightarrow q_j = 1 \\ [(q \odot w) \odot ((X \odot \exp(tV \otimes X))^T p)]_j = l_j, \quad \Rightarrow q_j = \left(l \oslash ((X \odot \exp(tV \otimes X))^T p \odot w) \right)_j \end{array} \right. \quad (101)$$

1463 The element-wise iterative update formula is then derived as follows.
 1464

$$1465 q_j = \max \left(l \oslash ((X \odot \exp(tV \otimes X))^T p \odot w), 1_c \right)_j \quad (102)$$

$$1467 \Rightarrow q_j^{(k+1)} = \max \left(l \oslash ((X \odot \exp(tV \otimes X))^T p \odot w), 1_c \right)_j \quad (103)$$

$$1469 \Rightarrow q^{(k+1)} = \max \left(l \oslash ((X \odot \exp(tV \otimes X))^T p \odot w), 1_c \right) \quad (104)$$

1471 Considering the column constraint $F^T 1_n < u$, substituting F , we obtain:
 1472

$$1473 \text{diag}(q \odot w) (X \odot \exp(tV \otimes X))^T \text{diag}(p)^T 1_n < u \Rightarrow (q \odot w) \odot ((X \odot \exp(tV \otimes X))^T p) < u \quad (105)$$

1475 By the complementary slackness condition for upper bounds:
 1476

$$1477 \nu_j \left[u - (q \odot w) \odot ((X \odot \exp(tV \otimes X))^T p) \right]_j = 0 \quad (106)$$

1479 This leads to two cases:
 1480

$$1481 \left\{ \begin{array}{l} [(q \odot w) \odot ((X \odot \exp(tV \otimes X))^T p)]_j \neq u_j, \quad \nu_j = 0 \Rightarrow w_j = 1 \\ [(q \odot w) \odot ((X \odot \exp(tV \otimes X))^T p)]_j = u_j, \quad \Rightarrow w_j = \left(u \oslash ((X \odot \exp(tV \otimes X))^T p) \odot q \right)_j \end{array} \right. \quad (107)$$

1485 The element-wise update rule is then:
 1486

$$1487 w_j = \min \left(u \oslash ((X \odot \exp(tV \otimes X))^T p) \odot q \right)_j \quad (108)$$

$$1489 \Rightarrow w_j^{(k+1)} = \min \left(u \oslash ((X \odot \exp(tV \otimes X))^T p^{(k+1)}) \odot q^{(k+1)} \right)_j, \quad (109)$$

$$1491 \Rightarrow w^{(k+1)} = \min \left(u \oslash ((X \odot \exp(tV \otimes X))^T p^{(k+1)}) \odot q^{(k+1)} \right), \quad (110)$$

1493 The final update formula can be obtained as follows.
 1494

$$1495 \left\{ \begin{array}{l} p^{(k+1)} = 1_n \oslash ((X \odot \exp(tV \otimes X)) (q^{(k)} \odot w^{(k)})), \\ q^{(k+1)} = \max \left(l \oslash ((X \odot \exp(tV \otimes X))^T p^{(k+1)} \odot w^{(k)}) \right), \\ w^{(k+1)} = \min \left(u \oslash ((X \odot \exp(tV \otimes X))^T p^{(k+1)} \odot q^{(k+1)}) \right), \end{array} \right. \quad (111)$$

1499 It is easy to verify that the result derived from Sinkhorn is indeed a Retraction (Douik & Hassibi,
 1500 2019). It can be seen that the F obtained through the Retraction $R_X^s(tV)$ minimizes the inner
 1501 product with $\log(X \odot \exp(tV \otimes X))$ under the entropy regularization coefficient of 1. On one hand,
 1502 this entropy regularization is introduced merely to facilitate computation via the Sinkhorn theorem.
 1503 On the other hand, the regularization coefficient being 1 lacks practical significance. Moreover,
 1504 this Retraction is not a second-order Retraction, making its theoretical justification in terms of
 1505 convergence properties less rigorous compared to the norm-minimizing Retraction. Therefore, the
 1506 norm-minimizing Retraction is recommended.
 1507

A.9 PROOF OF THEOREM 5

1509 **Theorem 9.** The loss function for the Ratio Cut is given by $\mathcal{H}_r(F) = \text{tr}(F^T L F (F^T F)^{-1})$. Then,
 1510 the Euclidean gradient of the loss function with respect to F is:
 1511

$$1511 \text{Grad} \mathcal{H}_r(F) = 2 (L F (F^T F)^{-1} - F (F^T F)^{-1} (F^T L F) (F^T F)^{-1}) \quad (112)$$

Given the substitutions $(F^T F)^{-1} = J$ and $F^T L F = K$, the Euclidean Hessian map for the loss function is:

$$\text{Hess}\mathcal{H}_r[V] = 2(LVJ - LFJ(V^T F + F^T V)J - VJKJ + FJ(V^T F + F^T V)JKJ) \quad (113)$$

$$- FJ(V^T LF + F^T LV)J + FJKJ(V^T F + F^T V)J \quad (114)$$

Proof. Let the objective function be $\mathcal{H}_r(F) = \text{tr}(F^T L F J)$, where $J = (F^T F)^{-1}$. Apply a small perturbation δF to F , yielding the variation:

$$\delta\mathcal{H}_r = \text{tr}((\delta F^T)LFJ + F^T L(\delta F)J - F^T LFJ((\delta F^T)F + F^T(\delta F))J). \quad (115)$$

Using the cyclic property of the trace and symmetry (L is symmetric, J is symmetric), we simplify to:

$$\delta\mathcal{H}_r = 2\text{tr}(\delta F^T(LFJ - FJ(F^T LF)J)). \quad (116)$$

Thus, the Euclidean gradient is:

$$\text{Grad}\mathcal{H}_r(F) = 2(LFJ - FJ(F^T LF)J). \quad (117)$$

Apply the direction V to the gradient and compute the directional derivative:

$$\text{Hess}\mathcal{H}_r[V] = \frac{d}{dt}\text{Grad}\mathcal{H}_r(F + tV)\Big|_{t=0}. \quad (118)$$

Expanding the components:

- The derivative of LFJ gives $LVJ - LFJ(V^T F + F^T V)J$,
- The derivative of $-FJKJ$ yields:

$$-VJKJ - F \left[-J(V^T F + F^T V)JKJ + J(V^T LF + F^T LV)J + JKJ(V^T F + F^T V)J \right]. \quad (119)$$

Combining and simplifying:

$$\text{Hess}\mathcal{H}_r[V] = 2(LVJ - LFJ(V^T F + F^T V)J - VJKJ + FJ(V^T F + F^T V)JKJ - FJ(V^T LF + F^T LV)J). \quad (120)$$

Further, to obtain the Riemannian gradient and Riemannian Hessian mapping, the Euclidean gradient and Euclidean Hessian mapping from the above expressions can be projected onto the RIM manifold. This allows for the optimization of the Ratio Cut loss function on the RIM manifold.

A.10 PROOF OF THEOREM 6

Theorem 6. For any graph cut problem expressed as $\mathcal{H}(F) = \text{tr}((F^T L F)(F^T W F)^{-1})$, where W is any symmetric matrix, the Euclidean gradient $\text{Grad}\mathcal{H}(F)$ is bounded, and satisfies:

$$\|\text{Grad}\mathcal{H}(F)\|_{\otimes} \leq 2 \left(\frac{\|L\|_{\otimes} \sqrt{n}}{\alpha} + \frac{\|W\|_{\otimes} \|L\|_{\otimes} n^{3/2}}{\alpha^2} \right), \quad (121)$$

where

$$\alpha = \frac{\sigma_{\min}(W) \cdot l^2}{n}, \quad (122)$$

and $\sigma_{\min}(W)$ is the smallest singular value of the matrix W . This implies that $\mathcal{H}(F)$ is Lipschitz continuous.

Proof. The spectral norm of the matrix F , which is its largest singular value, satisfies:

$$\|F\|_{\otimes}^2 = \sigma_{\max}(F)^2 \leq \sum_{i=1}^n \|F_i\|_2^2 \leq n \cdot 1^2 = n, \quad (123)$$

therefore, $\|F\|_{\otimes} \leq \sqrt{n}$.

Let F^j be the j -th column of the matrix F . Given the constraint $F^\top 1_n > l$, the ℓ_1 -norm of F^j satisfies $\|F^j\|_1 = \sum_{i=1}^n F_{ij} > l$. By the Cauchy–Schwarz inequality, we have:

$$\|F^j\|_1 \leq \sqrt{n} \|F^j\|_2 \Rightarrow \|F^j\|_2 \geq \frac{\|F^j\|_1}{\sqrt{n}} \geq \frac{l}{\sqrt{n}}. \quad (124)$$

Next, we estimate a lower bound for the smallest singular value of the matrix $F^T WF$. For any unit vector $v \in \mathbb{R}^c$, we have:

$$\|Fv\|_2^2 \geq \sum_{j=1}^c v_j^2 \|F^j\|_2^2 \geq \frac{l^2}{n} \sum_{j=1}^c v_j^2 = \frac{l^2}{n}. \quad (125)$$

Therefore, the smallest singular value of the matrix F satisfies:

$$\sigma_{\min}(F) \geq \frac{l}{\sqrt{n}}. \quad (126)$$

Since W is a symmetric matrix, its singular values are the absolute values of its eigenvalues, i.e., $\sigma_i(W) = |\lambda_i(W)|$. Using the singular value inequality for matrix products, we have:

$$\sigma_{\min}(F^T WF) \geq \sigma_{\min}(F)^2 \cdot \sigma_{\min}(W). \quad (127)$$

Substituting the previously derived $\sigma_{\min}(F) \geq \frac{l}{\sqrt{n}}$, $\sigma_{\min}(W) = \min_i |\lambda_i(W)|$ we obtain

$$\sigma_{\min}(F^T WF) \geq \left(\frac{l}{\sqrt{n}} \right)^2 \cdot \sigma_{\min}(W) = \frac{l^2}{n} \cdot \sigma_{\min}(W). \quad (128)$$

Furthermore, the upper bound for the spectral norm of the inverse matrix can be estimated as:

$$\|(F^T WF)^{-1}\|_{\otimes} = \frac{1}{\sigma_{\min}(F^T WF)} \leq \frac{n}{\sigma_{\min}(W)l^2} \equiv \frac{1}{\alpha} \quad (129)$$

and the α can be presented as

$$\alpha = \frac{\sigma_{\min}(W)l^2}{n}. \quad (130)$$

Using the same proof method as in A.9, we provide the gradient expression for the general graph cut objective function as:

$$\text{Grad}\mathcal{H}(F) = 2 \left(LF(F^T WF)^{-1} - WF(F^T WF)^{-1}(F^T LF)(F^T WF)^{-1} \right), \quad (131)$$

and with the above technique, we can estimate its nuclear norm upper bound.

For $\|LF(F^T WF)^{-1}\|_{\otimes}$ Using the sub-multiplicativity of the spectral norm ($\|AB\|_{\otimes} \leq \|A\|_{\otimes} \cdot \|B\|_{\otimes}$):

$$\|LF(F^T WF)^{-1}\|_{\otimes} \leq \|L\|_{\otimes} \cdot \|F\|_{\otimes} \cdot \|(F^T WF)^{-1}\|_{\otimes} \quad (132)$$

Substituting the known upper bounds:

$$\|LF(F^T WF)^{-1}\|_{\otimes} \leq \|L\|_{\otimes} \cdot \|F\|_{\otimes} \cdot \|(F^T WF)^{-1}\|_{\otimes} = \|L\|_{\otimes} \cdot \|F\|_{\otimes} \cdot \frac{1}{\sigma_{\min}(F^T WF)} \quad (133)$$

$$\leq \|L\|_{\otimes} \cdot \|F\|_{\otimes} \cdot \frac{n}{\sigma_{\min}(W)l^2} = \frac{\|L\|_{\otimes} \cdot \|F\|_{\otimes}}{\alpha} \leq \frac{\|L\|_{\otimes} \cdot \sqrt{n}}{\alpha} \quad (134)$$

Next, we consider the second term $WF(F^T WF)^{-1}(F^T LF)(F^T WF)^{-1}$. This term can be decomposed into four parts, namely:

$$\|WF(F^T WF)^{-1}(F^T LF)(F^T WF)^{-1}\|_{\otimes} \leq \|WF\|_{\otimes} \cdot \|(F^T WF)^{-1}\|_{\otimes} \cdot \|F^T LF\|_{\otimes} \cdot \|(F^T WF)^{-1}\|_{\otimes} \quad (135)$$

For $\|WF\|_{\otimes}$, we have the following inequality:

$$\|WF\|_{\otimes} \leq \|W\|_{\otimes} \cdot \|F\|_{\otimes} \leq \|W\|_{\otimes} \cdot \sqrt{n}. \quad (136)$$

1620 For $\|F^T L F\|_{\mathbb{S}}$, we have the following inequality:
1621

$$1622 \|F^T L F\|_{\mathbb{S}} \leq \|F^T\|_{\mathbb{S}} \cdot \|L\|_{\mathbb{S}} \cdot \|F\|_{\mathbb{S}} = \|F\|_{\mathbb{S}} \cdot \|L\|_{\mathbb{S}} \cdot \|F\|_{\mathbb{S}} \leq \|L\|_{\mathbb{S}} \cdot n. \quad (137)$$

1623 Combining our estimates with the previous inequality, we obtain:
1624

$$1625 \|W F (F^T W F)^{-1} (F^T L F) (F^T W F)^{-1}\|_{\mathbb{S}} \quad (138)$$

$$1626 \leq \|W F\|_{\mathbb{S}} \cdot \|(F^T W F)^{-1}\|_{\mathbb{S}} \cdot \|F^T L F\|_{\mathbb{S}} \cdot \|(F^T W F)^{-1}\|_{\mathbb{S}} \quad (139)$$

$$1627 \leq \|W\|_{\mathbb{S}} \cdot \sqrt{n} \cdot \|L\|_{\mathbb{S}} \cdot n \cdot \left(\frac{1}{\sigma_{\min}(F^T W F)}\right)^2 \leq \|W\|_{\mathbb{S}} \cdot \sqrt{n} \cdot \|L\|_{\mathbb{S}} \cdot n \cdot \left(\frac{n}{\sigma_{\min}(W) l^2}\right)^2 \quad (140)$$

$$1630 = \frac{\|W\|_{\mathbb{S}} \cdot \|L\|_{\mathbb{S}} \cdot n^{7/2}}{\sigma_{\min}^2(W) l^4} = \frac{\|W\|_{\mathbb{S}} \cdot \|L\|_{\mathbb{S}} \cdot n^{3/2}}{\alpha^2}. \quad (141)$$

1633 In summary, we have
1634

$$1635 \|\text{Grad} \mathcal{H}(F)\|_{\mathbb{S}} \leq 2 \left(\frac{\|L\|_{\mathbb{S}} \sqrt{n}}{\alpha} + \frac{\|W\|_{\mathbb{S}} \|L\|_{\mathbb{S}} n^{3/2}}{\alpha^2} \right), \quad (142)$$

1637 where
1638

$$1639 \alpha = \frac{\sigma_{\min}(W) \cdot l^2}{n}. \quad (143)$$

1640 Since
1641

$$1642 \|\text{Grad} \mathcal{H}(F)\|_F \leq \sqrt{\min(n, c)} \|\text{Grad} \mathcal{H}(F)\|_{\mathbb{S}}, \quad (144)$$

1643 it follows that $\|\text{Grad} \mathcal{H}(F)\|_F$ is also bounded.
1644

In particular, for the Ratio Cut, we know that $W = I$ is the identity matrix. Therefore,
1645

$$1646 \|\text{Grad} \mathcal{H}_m(F)\|_{\mathbb{S}} \leq 2 \left(\frac{\|L\|_{\mathbb{S}} \sqrt{n}}{\alpha} + \frac{\|L\|_{\mathbb{S}} n^{3/2}}{\alpha^2} \right), \alpha = \frac{l^2}{n}. \quad (145)$$

1647 Furthermore, since
1648

$$1649 \text{grad} \mathcal{H}_r(F) = \text{Grad}_r \mathcal{H}(F) - \frac{1}{c} \text{Grad}_r \mathcal{H}(F) \mathbf{1}_c \mathbf{1}_c^T, \quad (146)$$

1651 it is clear that $\text{grad} \mathcal{H}_r(F)$ is also bounded. An obvious bound is given by
1652

$$1653 \|\text{grad} \mathcal{H}_r(F)\|_{\mathbb{S}} \leq \|\text{Grad} \mathcal{H}_r(F)\|_{\mathbb{S}} + \frac{1}{c} \left(\|\text{Grad} \mathcal{H}_r(F)\|_{\mathbb{S}} \cdot \|\mathbf{1}_c \mathbf{1}_c^T\|_{\mathbb{S}} \right), \quad (147)$$

1655 which leads to
1656

$$1657 \|\text{grad} \mathcal{H}_r(F)\|_{\mathbb{S}} \leq 2 \left(\frac{\|L\|_{\mathbb{S}} \sqrt{n}}{\alpha} + \frac{\|L\|_{\mathbb{S}} n^{3/2}}{\alpha^2} \right) + \frac{1}{c} \left(2 \left(\frac{\|L\|_{\mathbb{S}} \sqrt{n}}{\alpha} + \frac{\|L\|_{\mathbb{S}} n^{3/2}}{\alpha^2} \right) + \sqrt{nc} \right) \quad (148)$$

$$1660 = \left(2 + \frac{2}{c} \right) \left(\frac{\|L\|_{\mathbb{S}} \sqrt{n}}{\alpha} + \frac{\|L\|_{\mathbb{S}} n^{3/2}}{\alpha^2} \right) + \sqrt{\frac{n}{c}} \quad (149)$$

1662 where $\alpha = \frac{l^2}{n}$.
1663

1664 A.11 PROOF OF THEOREM 7

1666 **Theorem 7.** For a general graph cut problem expressed as $\mathcal{H}(F) = \text{tr}((F^T L F)(F^T W F)^{-1})$, where
1667 W is an arbitrary symmetric matrix, the problem is always Lipschitz smooth. Let the corresponding
1668 smoothness Lipschitz constant be Q . When applying Riemannian Gradient Descent (RIMRGD) on
1669 the RIM manifold with step size κ , if $\kappa \leq \frac{1}{Q}$, then $\mathcal{H}(F)$ converges to a critical point at a rate of
1670 $\mathcal{O}(\frac{1}{T})$, i.e.,
1671

$$1672 \min_{0 \leq k \leq T} \|\text{grad} \mathcal{H}(F^{(k)})\|^2 \leq \frac{2(\mathcal{H}(F^{(0)}) - \mathcal{H}(F^*))}{\kappa(T+1)}, \quad (150)$$

1673 where T is the total number of iterations, and $\mathcal{H}(F^*)$ is the global minimum of $\mathcal{H}(F)$.

1674 *Proof.* For a general graph cut problem, similar to Theorem A.9, the expression of the Euclidean
 1675 Hessian mapping can be given.
 1676

$$\text{Hess}\mathcal{H}[V] = 2(LVJ - LFJ\text{sym}(V^TWF)J - WVJKJ) \quad (151)$$

$$+ AFJ\text{sym}(V^TWF)JKJ - WFJ\text{sym}(V^TWF)J \quad (152)$$

$$+ WFJKJ\text{sym}(V^TWF)J) \quad (153)$$

1681 Where $(F^TWF)^{-1} = J$ and $F^TWF = K$, and $\text{sym}(\cdot)$ denotes the symmetrization operation.
 1682

1683 Similar to the previous discussion, we can decompose $\text{Hess}\mathcal{H}[V]$ into multiple parts:
 1684

$$\|\text{Hess}\mathcal{H}[V]\|_{\otimes} \leq 2(\|LVJ\|_{\otimes} + \|LFJ\text{sym}(V^TWF)J\|_{\otimes} + \|WVJKJ\|_{\otimes}) \quad (154)$$

$$+ \|AFJ\text{sym}(V^TWF)JKJ\|_{\otimes} + \|WFJ\text{sym}(V^TWF)J\|_{\otimes} \quad (155)$$

$$+ \|WFJKJ\text{sym}(V^TWF)J\|_{\otimes}) \quad (156)$$

1689 So the spectral norm of each part is bounded. It is not difficult to prove that the spectral norm of
 1690 $\text{Hess}\mathcal{H}[V]$ is also bounded. Furthermore, it can be shown that the Riemannian Hessian map $\text{hess}\mathcal{H}[V]$
 1691 is also bounded.
 1692

$$\|\text{hess}\mathcal{H}[V]\|_{\otimes} \leq \|\text{Hess}\mathcal{H}[V]\|_{\otimes} + \frac{1}{c}\|\text{Hess}\mathcal{H}[V]\|_{\otimes} \cdot \|1_c^T 1_c\|_{\otimes} \quad (157)$$

1695 Since Theorem A.5 has already proven that we can obtain geodesics using Dijkstra's algorithm, in
 1696 the subsequent proofs, we will directly assume the use of geodesics for the retraction process.
 1697

1698 Since the Riemannian Hessian map is bounded, let its upper bound be Q . Using the retraction
 1699 generated by the geodesic, we can expand the function $\mathcal{H}(F)$ as follows:
 1700

$$\mathcal{H}(R_F(V)) \leq \mathcal{H}(F) + \langle \text{grad}\mathcal{H}(F), V \rangle_F + \frac{Q}{2}\|V\|_F^2 \quad (158)$$

1703 In the Riemannian Gradient Descent method on the RIM manifold (RIMRGD), by choosing $V = -\kappa \text{grad} \mathcal{H}(F^{(k)})$, and substituting it into the upper bound, we obtain:
 1704

$$\mathcal{H}(F^{(k+1)}) \leq \mathcal{H}(F^{(k)}) - \kappa \|\text{grad} \mathcal{H}(F^{(k)})\|^2 + \frac{Q\kappa^2}{2} \|\text{grad} \mathcal{H}(F^{(k)})\|^2. \quad (159)$$

1708 When the step size $\kappa \leq \frac{1}{Q}$, it simplifies to:
 1709

$$\mathcal{H}(F^{(k+1)}) \leq \mathcal{H}(F^{(k)}) - \frac{\kappa}{2} \|\text{grad} \mathcal{H}(F^{(k)})\|^2. \quad (160)$$

1712 This indicates that at each iteration, the function value decreases by at least $\frac{\kappa}{2} \|\text{grad} \mathcal{H}(F^{(k)})\|^2$.
 1713 Summing the descent over the first k iterations yields:
 1714

$$\sum_{i=0}^k \frac{\kappa}{2} \|\text{grad} \mathcal{H}(F^{(i)})\|^2 \leq \mathcal{H}(F^{(0)}) - \mathcal{H}(F^{(k+1)}) \leq \mathcal{H}(F^{(0)}) - \mathcal{H}(F^*), \quad (161)$$

1718 where $\mathcal{H}(F^*)$ is the infimum of $\mathcal{H}(F)$. Since the right-hand side is bounded, the series
 1719 $\sum_{i=0}^{\infty} \|\text{grad} \mathcal{H}(F^{(i)})\|^2$ converges, and thus
 1720

$$\lim_{k \rightarrow \infty} \|\text{grad} \mathcal{H}(F^{(k)})\| = 0. \quad (162)$$

1723 From the inequality above, we obtain:
 1724

$$\min_{0 \leq k \leq T} \|\text{grad} \mathcal{H}(F^{(k)})\|^2 \leq \frac{2(\mathcal{H}(F^{(0)}) - \mathcal{H}(F^*))}{\kappa(T+1)} \quad (163)$$

1727 which implies a convergence rate of $O(\frac{1}{T})$.
 1728

In addition, since the algorithm in Manopt adopts the Wolfe step size, we further provide a convergence proof of RIMRGD under the Wolfe step-size scheme. Moreover, based on our experiments, it usually yields numerical results consistent with those obtained using the Armijo step size.

Condition 1. Equation (157) shows that the Riemannian Hessian $hess$ is bounded. Therefore, we have $hess(F) \leq Q$. According to Lemma 3.5 (Retraction L-smooth) in (Kasai et al., 2018), there exists $L > 0$ such that

$$f(x_{t+1}) \leq f(x) + \langle \text{grad } f(x), s \rangle + \frac{1}{2}L\|s\|^2, \quad x_{t+1} = R_x(s), \quad s \in T_x\mathcal{M}. \quad (164)$$

Condition 2. We adopt the Wolfe step size, i.e.,

$$\begin{aligned} f(x + \kappa d) &\leq f(x) + c_1 \cdot \kappa \langle \text{grad } f(x), d \rangle, \\ \langle \text{grad } f(x + \kappa d), d \rangle &\geq c_2 \langle \text{grad } f(x), d \rangle, \end{aligned} \quad (165)$$

where $0 < c_1 < c_2 < 1$ are hyperparameters.

Condition 3. The Ratio Cut loss is clearly lower bounded (according to the real interpretation of Ratio Cut).

Therefore, according to (Sato, 2021), the algorithm converges to a critical point.

A.12 PROOF OF THEOREM 8

Theorem 8. Suppose we have an objective function $\mathcal{H}(F)$ that is μ -strongly geodesically convex and Lipschitz smooth on the doubly-stochastic manifold $\{X|X > 0, X1_c = 1_n, X^T 1_n = r\}$. After relaxing it to the RIM manifold $\{X|X > 0, X1_c = 1_n, l < X^T 1_n < u\}$, let F_1^* be the optimal solution on the RIM manifold and F_2^* be the optimal solution on the original doubly stochastic manifold. Then we have:

$$\|F_1^* - F_2^*\| \leq \mathcal{O}\left(\frac{L}{\mu}\right) \cdot \max(\|r - l\|, \|u - r\|). \quad (166)$$

Proof. First, convexity is necessary. For a nonconvex problem no method can guarantee finding the global optimum, and moreover any locally optimal point may lie arbitrarily far from the global optimum, so no meaningful distance bound can be established.

Without loss of generality, assume $l < r < u$. In this case, F_2^* is also a feasible point on the RIM manifold, and we can view F_2^* as a perturbation of F_1^* on the RIM manifold. Therefore, the problem reduces to a sensitivity analysis of convex optimization under perturbations. By strong convexity, we have:

$$\mathcal{H}(F_2^*) \geq \mathcal{H}(F_1^*) + \langle \text{Grad } \mathcal{H}(F_1^*), F_2^* - F_1^* \rangle + \frac{\mu}{2} \|F_2^* - F_1^*\|^2. \quad (167)$$

Rearranging terms gives:

$$\frac{\mu}{2} \|F_2^* - F_1^*\|^2 \leq \mathcal{H}(F_2^*) - \mathcal{H}(F_1^*). \quad (168)$$

Define the magnitude of the perturbation as $\Delta = \max(\|r - l\|, \|u - r\|)$. By sensitivity analysis (Boyd & Vandenberghe, 2004), we obtain:

$$\frac{\mu}{2} \|F_1^* - F_2^*\|^2 \leq \mathcal{H}(F_2^*) - \mathcal{H}(F_1^*) \leq L \cdot \text{dist}(F_1^*, D) \quad (169)$$

where D is the perturbation set induced by relaxing the constraint on $X^T 1_c = r$, and $\text{dist}(F_1^*, D)$ denotes the maximum distance from F_1^* to the perturbation set D . The size of D scales proportionally with $\Delta^2 = (\max(\|r - l\|, \|u - r\|))^2$. This completes the proof.

1782
1783

B PRELIMINARIES

1784
1785

B.1 NOTATIONS

1786

Matrices are denoted by uppercase letters, while vectors are denoted by lowercase letters. Let $tr(\cdot)$ the trace of a matrix. 1_n denotes an n -dimensional column vector of all ones, and $Ind^{n \times c}$ represents the set of indicator matrices. If $F \in Ind^{n \times c}$, then $F \in \mathbb{R}^{n \times c}$ satisfies the property that each row contains exactly one element equal to 1, while all others are 0. The relaxed indicator matrix set is defined as $M = \{X \mid X1_c = 1_n, l < X^T 1_n < u, X > 0\}$, and we proved it can form a manifold \mathcal{M} . $T_X \mathcal{M}$ represents the tangent space of \mathcal{M} at X . $\langle \cdot, \cdot \rangle$ denotes the Euclidean inner product, while $\langle \cdot, \cdot \rangle_X$ denotes the inner product on the manifold at X . \mathcal{H} represents the objective function, $Grad \mathcal{H}$ denotes the Euclidean gradient of \mathcal{H} , and $grad \mathcal{H}$ denotes the Riemannian gradient of \mathcal{H} . $Hess \mathcal{H}(F)$ represents the Euclidean Hessian mapping, while $hess \mathcal{H}(F)$ represents the Riemannian Hessian mapping. R_X denotes the Retraction function at X , which generates a curve passing through X , and $R_X(tV)$ represents a curve on the manifold obtained via the Retraction function, satisfying $\frac{d}{dt} R_X(0) = V$. The connection in Euclidean space is denoted as $\bar{\nabla}_V U$, while the connection on the manifold is denoted as $\nabla_V U$. The differential mapping is represented as $D\mathcal{H}(F)[V]$. Specifically, a geodesic $\gamma(t)$ is a curve on the manifold that extremizes the distance between two points. If $\frac{D}{dt} \gamma'(t) = 0$, then $\gamma(t)$ is a geodesic. \mathcal{P} represents vector transport, which maps the tangent vector V at point X on the manifold to the tangent space $T_Y \mathcal{M}$ at another point Y .

1801

We have compiled all the symbols used in this paper in Table 7, where their specific meanings are explained. Additionally, all Riemannian optimization-related symbols used in this paper follow standard conventions in the field and can also be referenced in relevant textbooks.

1802

1803

1804

1805

Table 7: Notations.

Notation	Description
$Ind^{n \times c}$	The set of $n \times c$ indicator matrices
$1_n, 1_c$	All-ones column vectors of size n or c
L	Laplacian matrix
l, u	Lower and upper bounds of the column sum of the relaxed indicator matrix, both are c -dimensional column vectors
\mathcal{M}	A set that forms a manifold
$\langle \cdot, \cdot \rangle$	Inner product defined in Euclidean space, mapping two Euclidean vectors to a scalar
$\langle \cdot, \cdot \rangle_X$	Inner product defined on the tangent space of \mathcal{M} at X
$T_X \mathcal{M}$	Tangent space of the manifold \mathcal{M} at X , which is a linear space
\mathcal{H}	The objective function to be optimized
$Grad \mathcal{H}(F)$	Euclidean gradient of \mathcal{H} at F , i.e., the gradient in the embedding space
$grad \mathcal{H}(F)$	Riemannian gradient of \mathcal{H} at F
$\bar{\nabla}_V U$	Riemannian connection of the tangent vector field U along V in Euclidean space
$\nabla_V U$	Riemannian connection of the tangent vector field U along V on the manifold
$Hess \mathcal{H}[V]$	Riemannian Hessian mapping along tangent vector V in Euclidean space
$hess \mathcal{H}[V]$	Riemannian Hessian mapping along tangent vector V on the manifold
$R_X(tV)$	A curve on the manifold generated at X along the tangent vector tV
$\frac{d}{dt} R_X(tV)$	The derivative of $R_X(tV)$ at $t = 0$
$\frac{D}{dt} \gamma'(t) \Big _{t=0}$	Levi-Civita derivative of $\frac{d}{dt} \gamma(t)$ at $t = 0$, where $\frac{D}{dt} \gamma'(t) \Big _{t=0} = 0$ means $R_X(tV)$ generates a geodesic with parameter t
$\text{argmin}(\cdot)$	Returns the minimizer of an optimization problem
$\Omega_1, \Omega_2, \Omega_3$	Linear submanifolds that require projection
X_i	The i -th row of matrix X
X^j	The j -th column of matrix X
$\text{Proj}_{\Omega_i}(X^j)$	Orthogonal projection of the j -th column of matrix X onto the set Ω_i
$\max(a, b)$	Returns the maximum of a and b
$\min(a, b)$	Returns the minimum of a and b
\mathcal{L}	Lagrangian function for solving the optimization problem
$\ \cdot\ _F$	Frobenius norm of a matrix
$\nu(t), \omega(t), \rho(t)$	Lagrange multipliers in the optimization problem
$\frac{\partial \mathcal{L}}{\partial \nu}, \frac{\partial \mathcal{L}}{\partial \omega}, \frac{\partial \mathcal{L}}{\partial \rho}$	Partial derivatives of \mathcal{L} with respect to $\nu(t), \omega(t), \rho(t)$
$\exp(\cdot)$	Element-wise exponential function on a matrix
$\text{diag}(\cdot)$	Converts a vector into a diagonal matrix
$D\mathcal{H}(F)[V]$	The differential mapping of \mathcal{H} at F along V
$S(\cdot)$	Sinkhorn function that outputs a doubly stochastic matrix
\mathcal{P}	Maps the tangent vector V at point X on the manifold to the tangent space $T_Y \mathcal{M}$ at another point Y
$(\cdot)^\dagger$	Moore-Penrose pseudoinverse of a matrix
$tr(\cdot)$	Trace of a matrix
\oslash	Element-wise division
\odot	Hadamard product (element-wise multiplication)

1833

1834

1835

1836
1837

B.2 INTRODUCTION TO RIEMANNIAN OPTIMIZATION

1838
1839
1840
1841
1842
1843
1844

Riemannian optimization optimizes functions over Riemannian manifolds, which are smooth manifolds equipped with a metric that defines distance and angles (Meghwanshi et al., 2018). It extends classical optimization to non-Euclidean spaces by replacing the Euclidean gradient with the Riemannian gradient and so on. Introduced in the 1990s in control theory and signal processing (Edelman et al., 1998; Overton & Womersley, 1995), it has since been widely adopted in machine learning, computer vision, and data science due to its ability to handle geometric constraints (Carson et al., 2017; Khan & Maji, 2021; Boumal, 2023).

1845
1846
1847
1848
1849

The core idea is to respect the manifold’s geometry during optimization. Unlike classical methods that assume Euclidean space, Riemannian optimization accounts for curvature. Early methods used steepest descent, while later developments introduced second-order methods like Riemannian conjugate gradient and Newton methods for faster convergence. Recent advancements have expanded this framework to more complex manifolds, such as Stiefel manifold.

1850
1851
1852
1853
1854

The main advantage of Riemannian optimization lies in its ability to perform optimization directly on the manifold, ensuring that the constraints inherent to the problem are naturally respected. For example, in low-rank matrix factorization, the optimization occurs on the Stiefel manifold $\mathcal{S}t = \{X \in \mathbb{R}^{n \times k} \mid X^T X = I_k\}$, where I_k is the identity matrix of size k , naturally respecting the orthogonality constraints of the factor matrices.

1855
1856
1857
1858

In Riemannian submanifold of Euclidean space, the Riemannian gradient $\text{grad}\mathcal{H}(F)$ at a point $F \in \mathcal{M}$ is defined as the projection of the Euclidean gradient onto the tangent space of the manifold:

$$\text{grad}\mathcal{H}(F) = \text{Proj}_{T_F \mathcal{M}} \text{Grad}\mathcal{H}(F) \quad (170)$$

1859
1860

This ensures that the optimization process stays within the manifold, preserving its geometric structure.

1861
1862
1863

To solve optimization problems efficiently on manifolds, key operations include the Riemannian gradient, which is used in gradient-based methods. The gradient descent update rule is:

$$F^{(k+1)} = R_{F^{(k)}}(-\alpha^{(k)} \text{grad}\mathcal{H}(F^{(k)})) \quad (171)$$

1864
1865
1866
1867

where R_F is the Retraction map, and α_k is the step size at iteration k . The purpose of the Retraction is to update along a curve in the manifold in a specified direction.

1868
1869
1870

For second-order optimization, the Riemannian Hessian $\text{hess}\mathcal{H}(F)$ is needed. The Hessian captures the curvature of the manifold and provides more information about the local behavior of the function. The Riemannian Hessian is defined as:

$$\text{hess}\mathcal{H}(F)[V] = \nabla_V \text{grad}\mathcal{H}(F) \quad (172)$$

1871
1872
1873
1874

for any tangent vector $V \in T_F \mathcal{M}$, and is used in more sophisticated optimization algorithms to accelerate convergence.

1875
1876
1877

A geodesic is a curve that connects two points on a manifold with an extremal distance, are also important in Riemannian optimization. They are used to guide the optimization process along the manifold and are defined by the differential equation:

1878
1879

$$\frac{d^2}{dt^2} \gamma(t) + \Gamma(\gamma(t), \dot{\gamma}(t)) = 0 \quad (173)$$

1880
1881
1882

where Γ are the Christoffel symbols that encode the manifold’s curvature (Boumal, 2014; Smirnov, 2021).

1883
1884
1885

The Retraction map $R_X(tV)$ is used to map from the tangent space back onto the manifold after each iteration. A common Retraction map is the exponential map (Kochurov et al., 2020; Sun et al., 2019), which can generate a geodesic.

1886
1887
1888
1889

Riemannian optimization efficiently handles manifold structures, avoiding artificial constraints and leading to faster algorithms. Second-order methods like Riemannian conjugate gradient (RCG) and Newton methods further improve convergence by utilizing curvature information. The approach is versatile, extending to manifolds such as the Stiefel, Grassmannian, and the Relaxed Indicator Matrix (RIM) manifold, which generalizes both single and double stochastic manifolds.

1890 Overall, Riemannian optimization has become a crucial tool in solving large-scale, constrained
 1891 optimization problems, particularly in machine learning, computer vision, and robotics, due to its
 1892 ability to manage manifold-valued data and complex constraints.
 1893

1894 B.3 INTRODUCTION TO RELATED MANIFOLDS

1895
 1896 In this section, we will introduce the single stochastic manifold, the doubly stochastic manifold, and
 1897 the Stiefel manifold. For each of these manifolds, we will provide their basic definitions and discuss
 1898 optimization methods on these manifolds.

1899 B.3.1 SINGLE STOCHASTIC MANIFOLD

1900 The single stochastic manifold (Sun et al., 2015; Saberi-Movahed et al., 2024) consists of matrices
 1901 where each element is greater than zero and the row sums are equal to one, denoted as $\{X \mid X >$
 1902 $0, X1_c = 1_n\}$, with a dimension of $(n - 1)c$. The tangent space of a manifold \mathcal{M} at a point X is
 1903 given by $T_X \mathcal{M} = \{U \mid X1_c = 0\}$.
 1904

1905 In current research, the Fisher information metric is typically used as the inner product on the single
 1906 stochastic manifold \mathcal{M} , and is defined as:
 1907

$$1908 \langle U, V \rangle_X = \sum_i \sum_j \frac{U_{ij} V_{ij}}{X_{ij}}, \quad \forall U, V \in T_X \mathcal{M}, X \in \mathcal{M}. \quad (174)$$

1910 The Riemannian gradient $\text{grad } \mathcal{H}(F)$ is the projection of the Euclidean gradient $\text{Grad } \mathcal{H}(F)$:
 1911

$$1912 \text{grad } \mathcal{H}(F) = \text{Proj}_{T_F \mathcal{M}} (\text{Grad } \mathcal{H}(F) \odot F) \quad (175)$$

1913 where $\text{Proj}_{T_F \mathcal{M}}$ is the projection operator that projects vectors from the Euclidean space onto $T_F \mathcal{M}$.
 1914 Specifically, the projection is given by:

$$1915 \text{Proj}_{T_X \mathcal{M}}(Z) = Z - (\alpha 1_c^T) \odot X, \quad \alpha = Z1_c \in \mathbb{R}^n \quad (176)$$

1916 This projection operation involves matrix multiplication and element-wise operations, with a com-
 1917 plexity of $\mathcal{O}(nc)$.
 1918

1919 In the single stochastic manifold, the Retraction mapping $R_X(tV)$ is defined as:

$$1920 X_+ = R_X(tV) = (X \odot \exp(tV \oslash X)) \oslash (X \odot \exp(V \oslash X) 1_c 1_c^T),$$

1921 where the operation \odot denotes element-wise multiplication, and \oslash denotes element-wise division.
 1922 The time complexity of this operation involves element-wise computation and normalization, resulting
 1923 in a complexity of $\mathcal{O}(nc)$.
 1924

1925 In the embedded space, the connection is considered with the Fisher metric on the set $\{X \mid X > 0\}$.
 1926 According to the Koszul formula theorem, the unique connection in the embedded space is given by:
 1927

$$1928 \bar{\nabla}_U V = DV[U] - \frac{1}{2}(U \odot V) \oslash X \quad (177)$$

1929 Based on this, the unique connection on the manifold that makes the Riemannian Hessian mapping
 1930 self - adjoint is:
 1931

$$1932 \nabla_U V = \text{Proj}_{T_X \mathcal{M}} (\bar{\nabla}_U V) = \text{Proj}_{T_X \mathcal{M}} \left(DV[U] - \frac{1}{2}(U \odot V) \oslash X \right) \quad (178)$$

1933 When involving directional derivatives and projections, the complexity of the operation is $\mathcal{O}(nc)$.
 1934

1935 By computing the connection of the Riemannian gradient, one can obtain the Riemannian Hessian
 1936 mapping on the manifold. The Riemannian Hessian $\text{hess } \mathcal{H}(F)[V]$ is
 1937

$$1938 \text{hess } \mathcal{H}(F)[V] = \text{Proj}_{T_F \mathcal{M}} \left(D \text{grad } \mathcal{H}(F)[V] - \frac{1}{2}(V \odot \text{grad } \mathcal{H}(F)) \oslash F \right) \quad (179)$$

1939 where the computation of $D \text{grad } \mathcal{H}(F)[V]$ involves the Euclidean directional derivative:
 1940

$$1941 D \text{grad } \mathcal{H}(F)[V] = \text{DGrad } \mathcal{H}(F)[V] \odot F + \text{Grad } \mathcal{H}(F) \odot V - (\alpha 1_c^T) \odot V - (D\alpha[V] 1_c^T) \odot F \quad (180)$$

1942 where $\alpha = (\text{Grad } \mathcal{H}(F) \odot F) 1_c$. The time complexity of this computation involves higher-order
 1943 derivatives and projections, leading to a complexity of $\mathcal{O}(nc)$. Due to the complexity of the computa-
 1944 tion, the coefficient in front of $\mathcal{O}(nc)$ is large.

1944
1945

B.3.2 DOUBLY STOCHASTIC MANIFOLD

1946
1947
1948

The double stochastic manifold (Shi et al., 2021; Douik & Hassibi, 2019) refers to the set of matrices where each element is greater than 0, the row sums equal 1, and the column sums equal r . Specifically, the manifold is defined as:

1949
1950

$$\{X \mid X > 0, X1_c = 1_n, X^T 1_n = r\} \quad (181)$$

1951
1952
1953

with dimension $(n - 1)(c - 1)$. In fact, there are requirements for r . The more general definition is as follows.

1954
1955
1956

$$\{X \mid X > 0, X1_c = 1_n, X^T 1_n = r, r^T 1_c = 1_n^T X1_c\} \quad (182)$$

1957
1958
1959

where r is a general vector and the last condition ensures consistency of row and column sums. Generally, we simply denote it as (181). The tangent space of the manifold \mathcal{M} at X is:

1960
1961
1962
1963

$$T_X \mathcal{M} = \{U \mid X1_c = 0, X^T 1_n = 0\} \quad (183)$$

In current research, the Fisher information metric is also used as the inner product on the double stochastic manifold \mathcal{M} , defined as: $\langle U, V \rangle_X = \sum_i \sum_j \frac{U_{ij} V_{ij}}{X_{ij}}$, $\forall U, V \in T_X \mathcal{M}, X \in \mathcal{M}$. The Riemannian gradient on the double stochastic manifold is given by (n=c):

$$\begin{cases} \text{grad } \mathcal{H}(F) = \gamma - (\alpha 1_n^T + 1_n 1_n^T \gamma - 1_n \alpha^T F) \odot F, \\ \alpha = (I - FF^T)^\dagger (\gamma - F\gamma^T) 1_n, \quad \gamma = \text{Grad } \mathcal{H}(F) \odot F. \end{cases} \quad (184)$$

1964
1965
1966

Here, $(I - FF^T)^\dagger$ represents the Moore-Penrose pseudoinverse of an $n \times n$ matrix. Since computing the pseudoinverse requires at least $\mathcal{O}(n^3)$ operations, this method is impractical for large-scale datasets.

1967
1968
1969
1970
1971

The connection on the double stochastic manifold is defined as an embedded manifold, and in the embedding space, the connection is given by $\bar{\nabla}_U V = DV[U] - \frac{1}{2}(U \odot V) \odot X$. Further, the connection on the double stochastic manifold is given by $\text{Proj}_{T_X \mathcal{M}}(\bar{\nabla}_U V) = \text{Proj}_{T_X \mathcal{M}}(DV[U] - \frac{1}{2}(U \odot V) \odot X)$.

1972
1973

$\text{Proj}_{T_X \mathcal{M}}$ denotes the projection into the tangent space of the double stochastic manifold. The projection expression is:

1974
1975
1976

$$\begin{cases} \text{Proj}_{T_X \mathcal{M}}(Z) = Z - (\alpha 1_n^T + 1_n \beta) \odot X, \\ \alpha = (I - XX^T)^\dagger (Z - XZ^T) 1_n, \quad \beta = Z^T 1_n - X^T \alpha. \end{cases} \quad (185)$$

1977
1978
1979
1980

Indeed, the Riemannian Hessian mapping calculation in the referenced literature involves very complex expressions, including pseudoinverses and other operations with a time complexity of $\mathcal{O}(n^3)$, making it infeasible for large-scale datasets. In contrast, the proposed RIM manifold in this paper simplifies the calculation significantly, reducing the complexity to $\mathcal{O}(n)$.

1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994

The Riemannian Hessian is computed as follows:

$$\begin{aligned} \text{hess } \mathcal{H}(F)[V] &= \text{Proj}_{T_X \mathcal{M}} \left(\dot{\delta} - \frac{1}{2} (\delta \odot V) \odot F \right) \\ \alpha &= \epsilon (\gamma - F\gamma^T) 1_n \\ \beta &= \gamma^T 1_n - F^T \alpha \\ \gamma &= \text{Grad } \mathcal{H}(F) \odot F \\ \delta &= \gamma - (\alpha 1_n^T + 1_n \beta^T) \odot F \\ \epsilon &= (I - FF^T)^\dagger \\ \dot{\alpha} &= [\dot{\epsilon} (\gamma - F\gamma^T) + \epsilon (\dot{\gamma} - V\gamma - F\dot{\gamma}^T)] 1_n \\ \dot{\beta} &= \dot{\gamma}^T 1_n - V^T \alpha - F^T \dot{\alpha} \\ \dot{\gamma} &= \text{Hess } \mathcal{H}(F)[V] \odot F + \text{Grad } \mathcal{H}(F) \odot V \\ \dot{\delta} &= \dot{\gamma} - (\dot{\alpha} 1_n^T + 1_n \dot{\beta}^T) \odot F - (\alpha 1_n^T + 1_n \beta^T) \odot V \\ \dot{\epsilon} &= \epsilon (FV^T + VF^T) \epsilon \end{aligned} \quad (186)$$

1995
1996
1997

The Retraction map uses Sinkhorn to obtain the doubly stochastic matrix. The time complexity of optimization on the doubly stochastic manifold is large, with a constant term of $\mathcal{O}(n^3)$. The above formulas is suitable for the case where $n = c$. However, when $n \neq c$, the calculation formula differs slightly, but the time complexity remains the same.

1998
1999

B.3.3 STIEFEL MANIFOLD

2000 The Stiefel manifold (Jiang & Dai, 2015; Li et al., 2020; Zhu, 2017) is the set of all matrices whose
2001 columns are orthonormal, i.e.,

2002
$$\mathcal{S}t(n, c) = \{X \in \mathbb{R}^{n \times c} \mid X^T X = I\}. \quad (187)$$

2003 It can be proven that this set satisfies the requirements for a manifold, and the dimension of this
2004 manifold is given by:

2005
$$\dim(\mathcal{S}t(n, c)) = nc - \frac{c(c + 1)}{2}. \quad (188)$$

2007 At $X \in \mathcal{S}t$, the tangent space of the Stiefel manifold is given by:

2008
$$T_X \mathcal{S}t = \{Z \mid Z^T X + X^T Z = 0\}. \quad (189)$$

2009 Since the Stiefel manifold is an embedded submanifold of $\mathbb{R}^{n \times c}$, its Riemannian inner product is
2010 defined as the Euclidean inner product $\langle U, V \rangle_X = \sum_{ij} U_{ij} V_{ij}$.2012 The projection operator onto the tangent space $T_X \mathcal{S}t$ is given by:

2013
$$\begin{cases} \text{Proj}_{T_X \mathcal{S}t}(Z) = (\hat{W} - \hat{W}^T)X, \\ \hat{W} = ZX^T - \frac{1}{2}X(X^T ZX^T). \end{cases} \quad (190)$$

2015 Based on this, the Riemannian gradient can be directly obtained by projecting the gradient.

2017
$$\text{grad } \mathcal{H}(F) = \text{Proj}_{T_F \mathcal{S}t}(\text{Grad } \mathcal{H}(F)) = (\hat{W} - \hat{W}^T)F, \quad \hat{W} = \text{Grad } \mathcal{H}(F)F^T - \frac{1}{2}F(F^T \text{Grad } \mathcal{H}(F)F^T) \quad (191)$$

2019 To compute the Retraction on the Steifel manifold, the Cayley transform method is used, given by:

2020
$$Y(\alpha) = \left(I - \frac{\alpha}{2}W\right)^{-1} \left(I + \frac{\alpha}{2}W\right)X \quad (192)$$

2022 Where $W = \hat{W} - \hat{W}^T$, α is the length on the curve. However, the inversion of $\left(I - \frac{\alpha}{2}W\right)$ is
2023 computationally expensive. To address this, Li et al. (2020) further attempts to use an iterative
2024 approach to find the solution. The Retraction is obtained by iteratively solving the following equation:

2026
$$Y(\alpha) = X + \frac{\alpha}{2}W(X + Y(\alpha)) \quad (193)$$

2027 Even so, each iteration still requires multiple matrix multiplications, resulting in a relatively high
2028 computational cost.2030 To obtain the momentum gradient descent on the Riemannian manifold, it is necessary to define the
2031 vector transport, which moves a tangent vector $V_1 \in T_{X_1} \mathcal{S}t$ from the Steifel manifold at X_1 to the
2032 tangent space $T_{X_2} \mathcal{S}t$ at X_2 . This transport operation is denoted as:

2033
$$\mathcal{P} : T_{X_1} \mathcal{S}t \rightarrow T_{X_2} \mathcal{S}t, \quad \forall V_1 \in T_{X_1}, \mathcal{P}(V_1) \in T_{X_2} \mathcal{S}t. \quad (194)$$

2034 In fact, this transport operation is general in its definition for manifolds. For the Relaxed Indicator
2035 Matrix (RIM) manifold, $T_{X_1} \mathcal{M} = T_{X_2} \mathcal{M}$ for all $X_1, X_2 \in \mathcal{M}$, which means that the vector
2036 transport is simply $\mathcal{P}(V_1) = V_1$ in the RIM manifold. However, this property does not hold on the
2037 Steifel manifold. The transport formula on the Steifel manifold is given by:

2038
$$\mathcal{P}(V_1) = \text{Proj}_{T_{X_2} \mathcal{S}t}(V_1) = (\hat{W} - \hat{W}^T)X_2, \quad (195)$$

2040 where $\hat{W} = V_1 X_2^T - \frac{1}{2}X_2(X_2^T V_1 X_2)$, ensuring that the vector is properly projected into the tangent
2041 space at X_2 . This projection step ensures the transfer of the vector V_1 from the tangent space at X_1
2042 to the tangent space at X_2 on the Steifel manifold.2043 As for the computation of the connection and the Riemannian mapping matrix, although the literature
2044 does not provide explicit expressions, it can be proven that the expressions for the connection and
2045 Hessian map are as follows:

2046
$$\begin{cases} \nabla_U V = \text{Proj}_{T_{X_2} \mathcal{S}t}(DV[U]), \\ \text{hess } \mathcal{H}(F)[V] = \text{Proj}_{T_{X_2} \mathcal{S}t}(\text{Hess } \mathcal{H}(F)[V]). \end{cases} \quad (196)$$

2049 Using the above Riemannian toolbox, Riemannian optimization can be performed on the Steifel
2050 manifold. If the closed-form solution for the Retraction is directly computed, the time complexity
2051 is $\mathcal{O}(n^2 c)$. However, by using an iterative approach, the time complexity can be reduced to a large
constant factor of $\mathcal{O}(n^2)$.

2052
2053

B.4 MANIFOLD-BASED MACHINE LEARNING ALGORITHMS

2054
2055
2056
2057

In this section, we will introduce some classical machine learning algorithms defined on the Single stochastic, Double stochastic, and Steifel manifolds. In general, we assume the data matrix is Z , where $Z \in \mathbb{R}^{n \times k}$ with n samples and k features. Each row of Z represents a sample, and z_i denotes the i -th row of Z .

2058

2059

B.4.1 ALGORITHMS ON THE SINGLE STOCHASTIC MANIFOLD

2060
2061
2062
2063
2064

Fuzzy K-means (Fuzzy C-means, FCM) (Sulaiman & Isa, 2010) is an extension of the traditional K-means algorithm that allows data points to belong to multiple clusters with degrees of membership, rather than being strictly assigned to a single cluster. The core idea is to describe the relationship between data points and clusters through a membership matrix, which is suitable for clustering data with fuzzy boundaries.

2065
2066
2067
2068

Let the number of clusters be c , and the membership matrix $U \in \mathbb{R}^{c \times n}$, where u_{ij} represents the membership degree of the j -th data point in the i -th cluster. The cluster centers are denoted as $C = \{c_1, c_2, \dots, c_c\}$. The optimization goal is to minimize the following objective function:

2069
2070
2071

$$J(U, C) = \sum_{i=1}^c \sum_{j=1}^n u_{ij}^m \|z_j - c_i\|^2 \quad (197)$$

2072
2073
2074
2075
2076

The constraints are that the sum of the membership degrees for each data point equals 1: $\sum_{i=1}^c u_{ij} = 1$ ($\forall j = 1, 2, \dots, n$), and the membership degrees are non-negative: $u_{ij} \in [0, 1]$. Where $m > 1$ is the fuzziness coefficient, which controls the degree of fuzziness in the clustering and $\|z_j - c_i\|$ is the Euclidean distance between data point z_j and cluster center c_i . Thus, the final objective function and constraints can be written as:

2077
2078
2079
2080

$$\min J(U, C) \quad \text{s.t.} \quad U \in \{X \in \mathbb{R}^{c \times n} \mid X > 0, X^T 1_c = 1_n\}, C \in \mathbb{R}^{c \times k} \quad (198)$$

This optimization problem is defined over the Cartesian product of the single stochastic manifold and the Euclidean space, which still constitutes a form of a single stochastic manifold.

2081
2082

B.4.2 ALGORITHMS ON THE DOUBLE STOCHASTIC MANIFOLD

2083
2084

ANCM (Yuan et al., 2024c) is a method for solving constrained problems on the double stochastic manifold, which can achieve adaptive neighbor clustering. Its objective function is given by:

2085
2086
2087
2088

$$\begin{aligned} & \min_{S \in \mathbb{R}^{n \times n}} \sum_{i,j}^n \|z_i - z_j\|_2^2 S_{ij} + \alpha \|S\|_F^2 \\ & \text{s.t. } S^T 1_n = 1_n, 0 \leq s_{ij} \leq 1, S = S^T, \text{rank}(L_S) = n - c \end{aligned} \quad (199)$$

2089
2090
2091

where S is the similarity matrix, and S_{ij} represents the similarity between the i -th and j -th samples. The constraint can be written as:

2092
2093
2094
2095
2096

$$\{X \in \mathbb{R}^{n \times n} \mid X 1_n = 1_n, X^T 1_n = 1_n, X > 0\} \cap \{X \in \mathbb{R}^{n \times n} \mid X = X^T, L_S = n - c\} \quad (200)$$

where L_S is the Laplacian matrix corresponding to S , and $L_S = n - c$ implies that the learned S is naturally c -connected, leading to c clusters. Thus, this problem can be viewed as a constrained optimization problem on the double stochastic manifold.

2097
2098
2099
2100

B.4.3 ALGORITHMS ON THE STEIFEL MANIFOLD

2101
2102

The Min Cut (Fox et al., 2023) is a classic clustering method on the Steifel manifold, and its objective function and constraints are given by:

$$\min_F \text{tr}(F^T L F), \quad \text{s.t. } F \in \{F \in \mathbb{R}^{n \times c} \mid F^T F = I\} \quad (201)$$

2103
2104
2105

This optimization problem can be solved through eigenvalue decomposition. However, it requires approximately $\mathcal{O}(n^2 c)$ time complexity, and eigenvalue decomposition alone does not provide clustering results. Additional post-processing, such as using k-means, is required. Similarly, the derived classic methods such as Ratio Cut and Normalized Cut are also classic machine learning

2106 algorithms on the Steifel manifold. The expressions for Ratio Cut and Normalized Cut are as follows:
 2107

$$\begin{cases} \min_F \text{tr}(F^T L F (F^T F)^{-1}), & \text{s.t. } F \in \{F \in \mathbb{R}^{n \times c} \mid F^T F = I\} \\ \min_F \text{tr}(F^T L F (F^T D F)^{-1}), & \text{s.t. } F \in \{F \in \mathbb{R}^{n \times c} \mid F^T F = I\} \end{cases} \quad (202)$$

2108 In addition, algorithms such as MinMax Cut (Nie et al., 2010), Principal Component Analysis (PCA)
 2109 (Abdi & Williams, 2010), Robust PCA (Hubert et al., 2005), and others are also classic machine
 2110 learning algorithms defined on the Steifel manifold.
 2111

2114 B.5 OTHER RELATED WORK AND BACKGROUND INTRODUCTION

2116 In this section, we first review our contributions and then introduce other related work beyond
 2117 manifold optimization.
 2118

2119 As mentioned in our paper, there are currently three main approaches to relaxing the indicator matrix
 2120 (ours being the fourth). For the first three, the optimization methods themselves have seen little
 2121 change, but have instead been applied to different models. For example:
 2122

2123 The earliest approach relaxes to the singly stochastic manifold (Bezdek et al., 1979), which actually
 2124 has a history of more than 45 years. More recent applications in clustering include (Bao et al., 2024),
 2125 which employs momentum methods to solve the constraint, and Zhao et al. (2022), which introduces
 2126 auxiliary variables and updates via coordinate descent. The main drawback of this relaxation is its
 2127 inability to incorporate prior information about class sizes into the model.
 2128

2129 Another line of work relaxes to the Stiefel manifold, starting from (Ng et al., 2001), which spurred
 2130 the development of spectral graph theory and has now a history of about 20 years. The basic idea is
 2131 to construct forms like $\text{tr}(F^T L F)$ and perform spectral decomposition, as in (He et al., 2025). The
 2132 limitation here is that the resulting F lacks the interpretability of an indicator matrix, requiring a
 2133 subsequent K-Means step, with a computational complexity of $\mathcal{O}(n^3)$. Moreover, this approach also
 2134 cannot incorporate any class-related information.
 2135

2136 A more recent direction is doubly stochastic relaxation, with representative work Fetal et al. (2024),
 2137 which solves the problem via optimal transport, and Douik & Hassibi (2019), which adopts manifold
 2138 optimization. The challenge here is that the constraints can be overly strict and counterproductive to
 2139 the model, and manifold optimization still requires $\mathcal{O}(n^3)$.
 2140

2141 Some works in optimal transport are also related to ours. For example, Chapel et al. (2020) introduces
 2142 Partial Optimal Transport, which is a less strict form of optimal transport. This idea is similar to ours
 2143 in spirit; however, our algorithm is designed for arbitrary functions defined on manifolds, whereas
 2144 theirs focuses on classical linear problems.
 2145

2146 In addition, Benamou et al. (2014) shows that optimal transport problems can be solved using
 2147 Bregman Projections. This is close in spirit to the original motivation behind our Retraction design.
 2148 We further demonstrate that our Retraction corresponds to a geodesic, while also simplifying the
 2149 overall algorithmic procedure.
 2150

2160 C OPTIMIZATION ALGORITHMS ON THE RIM MANIFOLD
2161

2162 In this section, we will introduce three renowned Riemannian optimization algorithms that are utilized
2163 in this paper: the Riemannian Gradient Descent method, the Riemannian Conjugate Gradient method,
2164 and the Riemannian Trust-Region method. For each algorithm, we will present its fundamental
2165 concepts and provide pseudocode. For detailed implementations of these algorithms, one may refer
2166 to the open-source manifold optimization package, Manopt (Boumal et al., 2014).
2167

2168 C.1 GRADIENT DESCENT ON THE RIM MANIFOLD
2169

2170 The Gradient Descent on the RIM Manifold method generalizes the classical gradient descent in
2171 Euclidean space to Riemannian manifolds by replacing the traditional gradient with the Riemannian
2172 gradient, ensuring that the iterations remain on the manifold. The key idea is to utilize the manifold's
2173 geometric structure to adjust the gradient direction, and then use Retraction to map the updated
2174 point back onto the manifold. The process begins with initialization, where an initial point F_0 is
2175 chosen on the manifold, and a step size is chosen. In the next step, the Euclidean gradient of the
2176 objective function is computed at the current point $F^{(k)}$. Then, the Euclidean gradient is projected
2177 onto the tangent space of the manifold to obtain the Riemannian gradient, which involves adjusting
2178 the gradient by subtracting the normal component. The updated point is then computed along the
2179 Riemannian gradient direction, and Retraction (such as exponential mapping or projection) is used
2180 to ensure that the new point remains on the manifold. The process continues iteratively until the
2181 gradient norm or the change in the objective function becomes smaller than a predefined threshold.
2182 The reference pseudo code is in Algorithm 3.
2183

2184 C.2 CONJUGATE GRADIENT METHOD ON THE RIM MANIFOLD
2185

2186 The Conjugate Gradient Method on the RIM Manifold introduces conjugate directions to reduce the
2187 redundancy in search directions during iterations, thereby speeding up convergence by incorporating
2188 information from previous search directions. The core idea is to define and update conjugate directions
2189 on the manifold. The method begins with initialization, where the initial point F_0 is chosen, the
2190 initial Riemannian gradient g_0 is computed, and the initial search direction is set as $d_0 = -g_0$. Then,
2191 the optimal step size in the direction of d_k is determined through a line search, using conditions
2192 like Armijo's rule. The point is updated along d_k , and Retraction is applied to map it back onto the
2193 manifold. In the next step, the conjugate direction is updated using the current gradient g_{k+1} and the
2194 previous direction d_k , with formulas such as the Polak-Ribière method to compute the new conjugate
2195 direction d_{k+1} . On the RIM manifold, the transport of tangent vectors is equivalent to the vectors
2196 themselves. This property simplifies the process of the Riemannian Conjugate Gradient Method. The
2197 process is repeated until convergence is achieved. The reference pseudo code is in Algorithm 4.
2198

2199 C.3 TRUST REGION METHOD ON THE RIM MANIFOLD
2200

2201 The Trust Region Method on the RIM Manifold constructs a local quadratic model in each iteration
2202 and constrains the step size within a trust region to ensure stability. The trust region radius is
2203 dynamically adjusted to balance the accuracy of the model with the step size. The method starts
2204 with initialization, where the initial point F_0 and trust region radius Δ_0 are set. The Riemannian
2205 gradient g_k and the approximate Hessian H_k are computed at $F^{(k)}$. The next step involves solving
2206 the constrained quadratic optimization problem in the tangent space, given by:
2207

$$2208 \min_{d \in T_{F^{(k)}} \mathcal{M}, \|d\| \leq \Delta_k} \left(g_k^T d + \frac{1}{2} d^T H_k d \right) \quad (203)$$

2209 Following this, the method updates the point and adjusts the trust region radius Δ_k based on the ratio
2210 of the actual decrease in the objective function to the model's predicted decrease. Finally, Retraction is
2211 used to project the updated point back onto the manifold. This method is known for its strong stability
2212 and is particularly suited for highly nonlinear problems. However, it requires frequent Hessian
2213

2214 calculations, resulting in a high computational cost. The reference pseudo code is in Algorithm 5.

2215 **Algorithm 3:** Riemannian Gradient Descent Algorithm on RIM Manifold

2216 **Input:** RIM manifold $\mathcal{M} = \{X \mid X1_c = 1_n, l < X^T 1_n < u, X > 0\}$
 2217 Objective function $\mathcal{H}(F)$, Retraction $R_X(tV)$, transport \mathcal{P} . Initial point $F_0 \in \mathcal{M}$
 2218 **Output:** Sequence of iterates $\{F^{(k)}\}$ converging to a stationary point of \mathcal{H}

2219 1 Initialize $k = 0$ **while** not converged **do**
 2220 2 Compute Euclidean gradient $\text{Grad } \mathcal{H}(F^{(k)})$
 2221 3 Compute Riemannian gradient: $\text{grad } \mathcal{H}(F^{(k)}) = \text{Grad } \mathcal{H}(F^{(k)}) - \frac{1}{c} \text{Grad } \mathcal{H}(F^{(k)}) 1_c 1_c^T$
 2222 4 The line search step size: $\kappa^{(k)}$
 2223 5 Perform Retraction: $F^{(k+1)} = R_{F^{(k)}}(\kappa^{(k)} \text{grad } \mathcal{H}(F^{(k)}))$
 2224 6 $k \leftarrow k + 1$
 2225 7 **end**
 2226 8 **return** $F^{(k)}$

2227 **Algorithm 4:** Riemannian Conjugate Gradient Algorithm on RIM Manifold

2228 **Input:** RIM manifold $\mathcal{M} = \{X \mid X1_c = 1_n, l < X^T 1_n < u, X > 0\}$
 2229 Objective function $\mathcal{H}(F)$, Retraction $R_X(tV)$, Initial point $F_0 \in \mathcal{M}$.
 2230 **Output:** Sequence of iterates $\{F^{(k)}\}$ converging to a stationary point of \mathcal{H}

2231 1 Initialize $k = 0$;
 2232 2 Compute initial Riemannian gradient, $d_0 \leftarrow -\text{grad } \mathcal{H}(F^{(0)})$;
 2233 3 **while** not converged **do**
 2234 4 Compute line search step size $\kappa^{(k)}$
 2235 5 Perform Retraction: $F^{(k+1)} = R_{F^{(k)}}(\kappa^{(k)} d^{(k)})$
 2236 6 Compute new gradient $\text{grad } \mathcal{H}(F^{(k+1)})$
 2237 7 Compute the conjugate direction $d^{(k+1)} = -\text{grad } \mathcal{H}(F^{(k+1)}) + \beta^{(k)} \mathcal{P}(d^{(k)})$
 2238 8 Compute $\beta^{(k)}$: $\beta^{(k)} = \frac{\langle \text{grad } \mathcal{H}(F^{(k+1)}), \text{grad } \mathcal{H}(F^{(k+1)}) - \text{grad } \mathcal{H}(F^{(k)}) \rangle}{\langle \text{grad } \mathcal{H}(F^{(k)}), \text{grad } \mathcal{H}(F^{(k)}) \rangle}$
 2239 9 $k \leftarrow k + 1$
 2240 10 **end**
 2241 11 **return** $F^{(k)}$

2242 **Algorithm 5:** Riemannian Trust Region Algorithm on RIM Manifold

2243 **Input:** RIM manifold $\mathcal{M} = \{X \mid X1_c = 1_n, l < X^T 1_n < u, X > 0\}$
 2244 Objective function $\mathcal{H}(F)$, Retraction $R_X(tV)$, Initial point $F_0 \in \mathcal{M}$, Initial trust region radius Δ_0 .
 2245 **Output:** Sequence of iterates $\{F^{(k)}\}$ converging to a stationary point of \mathcal{H}

2246 1 Initialize $k = 0$ Initialize Δ_0 **while** not converged **do**
 2247 2 Compute Riemannian gradient $\text{grad } \mathcal{H}(F^{(k)})$
 2248 3 Compute the Riemannian Hessian $\text{hess } \mathcal{H}(F^{(k)})$
 2249 4 Solve the trust region subproblem: $\Delta^{(k)} = \arg \min_{\|d\| \leq \Delta_k} \mathcal{H}(F^{(k)} + d)$
 2250 5 Compute the step size $\kappa^{(k)}$ using a line search or heuristic method
 2251 6 Perform Retraction: $F^{(k+1)} = R_{F^{(k)}}(\kappa^{(k)} d^{(k)})$
 2252 7 Update the trust region radius Δ_{k+1} ;
 2253 8 $k \leftarrow k + 1$
 2254 9 **end**
 2255 10 **return** $F^{(k)}$

2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267

2268 **D DETAILS OF THE EXPERIMENTAL SETUP**
22692270 **D.1 EXPERIMENT 2 SETUP**
22712272 In the first problem of Experiment 2, due to the particularity of the manifold, it is known that
2273 the optimal solution on manifold \mathcal{M} is A , at which point the value of the objective function is 0.
2274 Therefore, by comparing the losses of different algorithms under various parameters, the one with the
2275 smallest loss is the optimal result.
22762277 **D.2 EXPERIMENT 3 SETUP**
22782279 For Experiment 3, we compared the cases when $l = u$ and $l \neq u$. For $l \neq u$, we set $l = 0.9 \lfloor \frac{n}{c} \rfloor$
2280 and $u = 1.1 \lfloor \frac{n}{c} \rfloor$. When $l = u$, the RIM manifold degenerates into the double stochastic manifold,
2281 and we can compare it with algorithms on the double stochastic manifold. When $l = 0.9 \lfloor \frac{n}{c} \rfloor$
2282 and $u = 1.1 \lfloor \frac{n}{c} \rfloor$, more general methods such as the Frank-Wolfe Algorithm (FWA) and Projected
2283 Gradient Descent (PGD) are used for comparison. For the case where the RIM manifold degenerates
2284 into the double stochastic manifold, we also compared the Riemannian Gradient Descent (DSRGD)
2285 and Riemannian Conjugate Gradient (DSRCG) on the double stochastic manifold. A brief introduction
2286 to these algorithms is provided as follows:
22872288

- The Frank-Wolfe algorithm (Xie et al., 2025) is a well-known method for solving nonlinear
2289 constrained optimization problems. The core idea is to find the direction within the constraint
2290 set that is closest to the negative gradient direction, and search and descend along this
2291 direction to optimize the objective function.
- The Projected Gradient Descent algorithm (Chen et al., 2021) is also a method for solving
2292 nonlinear constrained problems. The process involves searching along the gradient direction,
2293 and when leaving the constraint set, the point is projected back onto the constraint set.
- Riemannian optimization on the double stochastic manifold (Douik & Hassibi, 2019): This
2294 includes Double Stochastic Riemannian Gradient Descent, Double Stochastic Riemannian
2295 Conjugate Gradient methods. The algorithm process is similar to the RIM manifold methods,
2296 except that the Retraction and Riemannian gradient computation methods are different.
2297

2298 The PGD method differs greatly from Riemannian optimization methods, including the search
2299 direction. Projected Gradient Descent follows the Euclidean gradient, but the Euclidean gradient may
2300 contain irrelevant information on the constraint set. Riemannian optimization removes the redundant
2301 information and searches along the Riemannian gradient direction.
23022303 The Retraction process also differs; the projection process in Projected Gradient Descent may not be
2304 easy to compute and the result may not be unique, whereas Riemannian optimization can choose an
2305 appropriate Retraction process, which is faster and more convenient.
23062307 The generality is also different: Riemannian optimization not only has Riemannian descent but can
2308 also be naturally extended to methods like Riemannian Conjugate Gradient, Riemannian Coordinate
2309 Descent, etc., while Projected Gradient Descent has fewer such extensions.
23102311 The convergence properties differ as well; for example, Projected Gradient Descent typically requires
2312 convexity to converge to the global optimum, while Riemannian optimization only requires geodesic
2313 convexity, and there are cases where non-convex problems are geodesically convex.
23142315 We compared the final results obtained by optimizing with these algorithms and the total time required,
2316 and we organized the data into tables in the main text and appendix, along with visualizations through
2317 plotting.
23182319 **D.3 EXPERIMENT 4 SETUP**
23202321 For RIMRcut, we apply the same initialization as (Xie et al., 2025) and perform RIM optimization
2322 on Rcut based on the initialization. When applying the RIM manifold to the Rcut, we compare
2323 it with ten benchmark clustering algorithms across eight real-world datasets. These algorithms
2324 include KM-based methods, bipartite graph clustering techniques, and various balanced clustering

approaches. By solving the Ratio Cut problem on the RIM manifold, the clustering results are more balanced, as the number of samples within each cluster is constrained to a reasonable range. A detailed introduction to each algorithm is provided below.

- KM partitions data into predefined clusters by minimizing the sum of squared distances between data points and their corresponding cluster centers. It is simple but sensitive to initial centroids and struggles with non-spherical clusters.
- CDKM (Nie et al., 2021) improves KM by utilizing coordinate descent method to directly solve the discrete indicator matrix instead of alternative optimization. It could optimize the solution of KM further.
- Rcut minimizes the cut between two sets in a graph while considering the size of the sets, aiming to balance the partition.
- Ncut improves on Ratio-Cut by normalizing the cut, balancing the partition while considering the total graph weight. It's better suited for non-convex and unevenly distributed clusters.
- Nystrom (Chen et al., 2011) method approximates large kernel matrices using a subset of data, making spectral clustering scalable and efficient for large datasets.
- BKNC (Chen et al., 2022a) (Balanced K-Means with a Novel Constraint) extends K-Means by introducing a balance-aware regularizer, allowing flexible control over cluster balance. It is solved using an iterative optimization algorithm and achieves better balance and clustering performance than existing balanced K-Means variants.
- FCFC (Liu et al., 2018) is an efficient clustering algorithm that combines K-means with a balance penalty, ensuring flexible cluster sizes. It scales well to large datasets and outperforms existing methods in efficiency and clustering quality.
- FSC (Zhu et al., 2017) improves spectral clustering efficiency by using Balanced K-means based Hierarchical K-means (BKHK) to construct an anchor-based similarity graph. It achieves high performance on large-scale data.
- LSCR (Chen & Cai, 2011) randomly selects landmarks instead of using K-Means, making it faster but potentially less accurate than LSCK in capturing data structure.
- LSCK selects representative landmarks via K-Means to construct a smaller graph, reducing computational cost while preserving clustering quality.

To evaluate the clustering performance comprehensively, three metrics are applied, which are clustering accuracy (ACC), normalized mutual information (NMI) and adjusted rand index (ARI). The calculation of these three metrics are displayed below.

D.3.1 CLUSTERING ACCURACY (ACC)

Clustering Accuracy (Yuan et al., 2024a;b) measures the proportion of correctly clustered data points by aligning predicted cluster labels with ground truth labels. Since clustering algorithms do not inherently assign specific labels, a permutation mapping is applied, often using the Hungarian algorithm, to maximize alignment. The formula for ACC is:

$$\text{ACC} = \frac{\delta(\text{map}(\hat{y}_i), y_i)}{n} \quad (204)$$

where $\delta(a, b)$ is an indicator function defined as:

$$\delta(a, b) = \begin{cases} 1, & \text{if } a = b \\ 0, & \text{otherwise,} \end{cases} \quad (205)$$

Here, \hat{y}_i is the predicted label, y_i is the true label, n is the total number of data points, and $\text{map}(\hat{y}_i)$ is the permutation mapping function that aligns predicted labels with ground truth labels. ACC ranges from 0 to 1, with higher values indicating better clustering performance.

D.3.2 NORMALIZED MUTUAL INFORMATION (NMI)

Normalized Mutual Information (Zhong et al., 2021) quantifies the mutual dependence between clustering results and ground truth labels, normalized to account for differences in label distributions.

2376 It evaluates the overlap between clusters and true classes using information theory. Given predicted
 2377 partitions $\{\hat{C}_i\}_{i=1}^c$ and ground truth partitions $\{C_i\}_{i=1}^c$, NMI is calculated as:
 2378

$$2379 \text{NMI} = \frac{\sum_{i=1}^c \sum_{j=1}^c |\hat{C}_i \cap C_j| \log \frac{n|\hat{C}_i \cap C_j|}{|\hat{C}_i||C_j|}}{\sqrt{\left(\sum_{i=1}^c |\hat{C}_i| \log \frac{|\hat{C}_i|}{n}\right) \left(\sum_{j=1}^c |C_j| \log \frac{C_j}{n}\right)}} \quad (206)$$

2384 Here, $|\cdot|$ denotes the size of a set, and $\hat{C}_i \cap C_j$ represents the number of data points belonging to both
 2385 the i -th predicted cluster and the j -th ground truth class. NMI ranges from 0 to 1, where 1 indicates
 2386 perfect agreement between clustering results and ground truth. It is particularly effective in scenarios
 2387 with imbalanced class distributions.
 2388

2389 D.3.3 ADJUSTED RAND INDEX (ARI)

2391 The Adjusted Rand Index (Dang et al., 2021) measures the similarity between predicted clustering
 2392 and ground truth by comparing all pairs of samples and evaluating whether they are assigned to
 2393 the same cluster in both results. A contingency table H is first constructed, where each element
 2394 h_{ij} represents the number of samples in both predicted cluster \hat{C}_i and ground truth cluster C_j . The
 2395 formula for ARI is:

$$2396 \text{ARI}(\bar{C}, C) = \frac{\sum_{ij} \binom{n_{ij}}{2} - \left[\sum_i \binom{n^i}{2} \sum_j \binom{n^j}{2} \right] / \binom{n}{2}}{\frac{1}{2} \left[\sum_i \binom{n^i}{2} + \sum_j \binom{n^j}{2} \right] - \left[\sum_i \binom{n^i}{2} \sum_j \binom{n^j}{2} \right] / \binom{n}{2}} \quad (207)$$

2400 where $\binom{n_{ij}}{2} = \frac{n_{ij}(n_{ij}-1)}{2}$. ARI ranges from -1 to 1, where 1 indicates perfect clustering, 0 represents
 2401 random assignments, and negative values indicate worse-than-random clustering. ARI is robust to
 2402 differences in cluster sizes and does not favor a large number of clusters.
 2403

2404 D.3.4 INTRODUCTION OF REAL DATASETS

2405 The real-world datasets includes: COIL20, Digit, JAFFE, MSRA25, PalmData25, USPS20, Wave-
 2406 form21 and MnistData05. These datasets are selected for their diversity in data types (images,
 2407 waveforms, and biometric data) and their widespread use in benchmarking machine learning and
 2408 computer vision algorithms. They provide a comprehensive evaluation framework for testing the
 2409 robustness and generalization capabilities of the proposed methods. The detailed description of them
 2410 are displayed below.
 2411

- 2412 • The COIL20 dataset ¹ contains 1,440 images of 20 distinct objects, with each object
 2413 captured from different angles. Each image has 1,024 dimensions, making it suitable for
 2414 object recognition and clustering tasks.
- 2415 • The Digit dataset consists of 1,797 instances of handwritten digits, ranging from 0 to 9.
 2416 Each sample has 64 dimensions, representing low-resolution grayscale images.
- 2417 • The JAFFE dataset includes 213 facial expression images from 10 subjects, covering seven
 2418 basic emotions. Each image has 1,024 dimensions, making it suitable for facial expression
 2419 recognition and emotion analysis.
- 2420 • The MSRA25 dataset is a widely used benchmark for face recognition task. It consists of
 2421 1,799 grayscale face images, each resized to 16×16 pixels. The dataset includes 12 clusters,
 2422 representing different individuals or categories.
- 2423 • The PalmData25 ² dataset consists of 2,000 palmprint images, each with 256 dimensions. It
 2424 includes 100 clusters.
- 2425 • The USPS20 dataset is a subset of the USPS handwritten digit dataset, containing 1,854
 2426 instances. Each sample has 256 dimensions, representing grayscale images of digits.

2427 ¹<http://www.cad.zju.edu.cn/home/dengcai/Data/data.html>

2428 ²<https://www.scholat.com/xjhensz>

- The Waveform21 dataset ³ contains 2,746 instances of synthetic waveform data, each with 21 dimensions. It includes 3 clusters.
- The MnistData05 dataset is a subset of the MNIST dataset, containing 3,495 instances of handwritten digits. Each sample has 784 dimensions, representing 28×28 grayscale images. It is widely used for digit recognition, classification, and clustering tasks, providing a benchmark for evaluating machine learning models.

D.3.5 HOW TO CHOOSE l AND u

l and u are pivotal parameters within the RIM manifold. When the values of l and u are set to be equal, an approximation of the doubly stochastic manifold can be achieved. When l and u are not equal, their application to practical problems holds significant meaning, particularly in the context of unbalanced scenarios. For instance, in clustering tasks, the RIM manifold encompasses all indicator matrices, with l and u representing the minimum and maximum number of samples within each cluster, respectively. The magnitude of these parameters can be estimated based on the total number of samples and the known number of clusters. Alternatively, they may be assigned according to certain prior knowledge. However, it is noteworthy that in the absence of prior information, the values of l and u can be set within a broader range. In addition, a suitable choice of l and u can also be determined through multiple trials.

The parameter in RIM optimization is listed in Table 8.

Table 8: Values of l and u on different data sets for RIMRcut

Datasets	l	u
COIL20	[0.6*n/c]	[1.2*n/c]
Digit	[0.4*n/c]	[1.6*n/c]
JAFFE	[0.4*n/c]	[1.6*n/c]
MSRA25	[0.4*n/c]	[1.6*n/c]
PalmData25	[0.4*n/c]	[1.8*n/c]
USPS20	[0.6*n/c]	[2.0*n/c]
Waveform21	[0.4*n/c]	[1.8*n/c]
MnistData05	[0.8*n/c]	[1.4*n/c]

Subsequently, we will perform clustering using the data in this table and visualize the clustering results, as shown in Figure 7 and Figure 8.

Moreover, we acknowledge that precisely choosing l and u is a challenging task, as it is essentially equivalent to obtaining prior information about the dataset. Our study is conducted under the assumption that such prior information is available. Nevertheless, we also provide a possible way to estimate this prior knowledge, namely by running **K-Means**^{*} to approximate the cluster proportions. For instance, on the MnistData05 dataset, the estimation yields $(l, u) = (0.86 \times \frac{n}{c}, 1.22 \times \frac{n}{c})$, which is close to the values we selected. Among them, it is preferable to select a balanced K-Means variant (Chang et al., 2014) or a K-Means method equipped with balance regularization.

	COIL20	Digit	JAFFE	MSRA25	PalmData25	USPS20	Waveform21	MnistData05
(l, u) K-Means [*]	(0.41×, 1.47×)	(0.52×, 1.66×)	(0.24×, 1.59×)	(0.47×, 1.92×)	(0.33×, 1.85×)	(0.53×, 1.71×)	(0.72×, 1.36×)	(0.86×, 1.22×)
(l, u) Selected	(0.6×, 1.2×)	(0.4×, 1.6×)	(0.4×, 1.6×)	(0.4×, 1.6×)	(0.4×, 1.8×)	(0.6×, 2.0×)	(0.4×, 1.8×)	(0.8×, 1.4×)

Table 9: (l, u) values from datasets.

At the same time, although the algorithm is sensitive to (l, u) , the sensitivity is not high. Taking the MnistData05 dataset as an example, the performance metrics under different values of l and u are as follows. Here, $a \times$ denotes $a \times \frac{n}{c}$.

Table 10: Performance under different (l, u) values on the MnistData05 dataset.

(l, u)	(0×, 2×)	(0.3×, 1.7×)	(0.5×, 1.5×)	(0.6×, 1.4×)	(0.7×, 1.3×)	(0.8×, 1.4×)	(0.9×, 1.1×)
ACC	61.23	61.61	62.86	63.12	64.26	65.55	66.09
NMI	54.96	55.53	56.68	57.54	58.68	59.35	61.93
ARI	46.02	46.25	49.37	50.73	51.82	52.87	53.02

In addition, we also provide results showing how the accuracy varies with (l, u) across other datasets in Table 11.

³<http://archive.ics.uci.edu/datasets>

2484

Table 11: ACC metric under different (l, u) values on the other dataset.

(l, u)	$(0 \times, 2 \times)$	$(0.3 \times, 1.7 \times)$	$(0.5 \times, 1.5 \times)$	$(0.6 \times, 1.4 \times)$	$(0.7 \times, 1.3 \times)$	$(0.8 \times, 1.4 \times)$	$(0.9 \times, 1.1 \times)$
Waveform21	69.16	68.90	69.99	72.17	71.81	74.80	71.08
USPS20	68.99	70.39	67.53	68.28	65.16	65.70	68.23
PalmData25	87.10	86.15	87.70	86.60	91.05	89.45	91.10
MSRA25	54.92	55.09	55.86	56.97	57.42	55.59	61.09
IAFFE	86.38	92.95	96.71	96.71	96.71	96.71	92.95
Digit	78.46	81.52	84.14	82.47	79.74	80.80	77.90
COIL20	72.92	76.94	77.99	78.13	78.68	77.22	70.49

2490

E ADDITIONAL EXPERIMENTAL RESULTS

2492

In this section, we present additional experimental results to better demonstrate the advantages of the proposed algorithm.

2495

E.1 RESULTS OF EXPERIMENTAL 1

2498

Experiment 1 compares the running times of three Retraction methods under different matrix sizes. In Table 12, we compare the running times when l is not equal to u . The results that run the fastest under each set of experiments are highlighted in red. Additionally, for better visualization, we present a three-dimensional bar chart showing the performance of multiple Retraction methods, as illustrated in Figure 3. The experimental results reveal that when the matrix dimension is small, Sinkhorn outperforms the other two methods in terms of speed, while Dykstras shows an advantage when the matrix dimension is larger. This conclusion holds true both when l equals u and when l does not equal u . While the efficiency of dual method is always inferior than other methods.

2505

Table 12: Table of Execution Time when $l \neq u$ for Different Retraction Algorithms(s)

Row&Col	Dual					Sinkhorn					Dykstras							
	500	1000	3000	5000	7000	10000	500	1000	3000	5000	7000	10000	500	1000	3000	5000	7000	10000
5	0.015	0.025	0.056	0.083	0.109	0.140	0.001	0.004	0.017	0.042	0.085	0.166	0.011	0.005	0.011	0.018	0.027	0.037
10	0.020	0.039	0.082	0.111	0.145	0.183	0.001	0.003	0.017	0.042	0.081	0.179	0.009	0.005	0.015	0.022	0.031	0.044
50	0.053	0.106	0.763	1.353	1.934	2.738	0.001	0.005	0.021	0.056	0.109	0.226	0.006	0.010	0.022	0.038	0.052	0.072
100	0.014	0.156	1.556	2.747	3.948	5.675	0.002	0.005	0.029	0.079	0.149	0.288	0.009	0.012	0.030	0.054	0.071	0.100
500	0.060	0.119	7.296	12.208	17.021	23.773	0.006	0.014	0.114	0.305	0.577	1.119	0.018	0.032	0.089	0.157	0.207	0.299
1000	0.103	0.172	15.483	25.830	37.027	58.107	0.018	0.036	0.194	0.500	0.889	1.781	0.036	0.071	0.204	0.367	0.522	0.763

2511

Figure 3: Comparison of running time for different Retraction algorithms.

2530

E.2 RESULTS OF EXPERIMENTAL 2

2532

For the first question in Experiment 2, we compare the application of gradient descent, conjugate gradient, and trust-region methods on the RIM manifold. The value of cost function and running time of gradient descent and conjugate gradient on RIM manifold are display in Table 13 and 14. As can be seen from the two tables, regardless of the optimization method employed, the loss function values and running time of the RIM manifold approach are superior to those of the doubly stochastic manifold method. This advantage is attributed to the lower computational complexity of gradient

2538 Table 13: Cost and Time on the RIM Manifold and Doubly Stochastic Manifold(RGD).
2539

Row&Col	RIM Manifold						Doubly Stochastic Manifold					
	Cost			Time			Cost			Time		
Size	5000	7000	10000	5000	7000	10000	5000	7000	10000	5000	7000	10000
5	4.74E-14	1.14E-13	1.05E-13	1.233	0.974	1.225	4.96E-07	6.08E-07	9.01E-07	17.19	18.07	38.73
10	1.28E-13	4.48E-05	7.04E-15	0.864	2.686	1.311	1.22E-06	7.73E-07	2.39E-06	12.76	19.20	22.45
20	5.39E-14	1.09E-14	1.89E-13	0.779	1.266	1.914	3.07E-06	2.79E-06	5.46E-06	18.34	20.08	27.02
50	1.95E-13	8.12E-14	1.84E-13	1.442	2.780	2.663	3.71E-06	6.38E-06	9.27E-06	48.72	37.79	75.39
70	1.72E-13	4.47E-13	1.73E-13	2.350	2.811	4.356	7.91E-06	9.68E-06	1.82E-05	39.37	64.68	56.13
100	1.58E-15	1.12E-14	2.32E-13	3.086	3.242	4.126	1.37E-05	1.89E-05	2.99E-05	46.06	93.26	105.8

2546 and Hessian matrix calculations on the RIM manifold. For example, when the matrix size is 100 by
2547 10,000, for the RTR method, the running time is increased by approximately **200** times. For the RGD
2548 method, the time required is only one-twenty five of that for the doubly stochastic manifold. As for
2549 RCG method, the running time is increased by approximately **75** times. Meanwhile, optimization
2550 methods on RIM manifolds often yield solutions closer to zero (the ratio of losses can even reach
2551 **1E10**) compared to methods on doubly stochastic manifolds.

2553 The second issue pertains to the problem of image restoration. We introduced varying levels of noise
2554 into two images and then compared the visual outcomes of the RIM manifold-based method with
2555 those of the DSM-based method in restoring the original images from their noisy counterparts. The
2556 visual results are displayed in Figure 4, which also annotates the values of the parameter ξ . Regardless
2557 of the intensity of the noise, the images restored by the RIM method are clearer and retain better
2558 texture information.

2559 Table 14: Cost and Time on the RIM Manifold and Doubly Stochastic Manifold(RCG).
2560

Row&Col	RIM Manifold						Doubly Stochastic Manifold					
	Cost			Time			Cost			Time		
Size	5000	7000	10000	5000	7000	10000	5000	7000	10000	5000	7000	10000
5	3.74E-14	4.63E-13	1.20E-13	0.285	0.375	0.683	8.16E-10	7.78E-10	2.57E-09	4.624	10.22	15.42
10	6.22E-14	2.56E-13	4.92E-14	0.161	0.307	0.579	1.81E-09	2.71E-09	1.53E-09	6.230	11.29	13.96
20	1.03E-13	1.08E-13	1.52E-15	0.396	0.817	0.558	4.75E-09	3.53E-09	2.67E-09	11.91	16.91	17.13
50	5.69E-14	1.56E-13	2.51E-13	0.859	1.047	1.774	3.74E-09	5.49E-09	4.81E-09	30.11	45.33	58.19
70	2.22E-13	1.74E-13	6.37E-17	0.932	1.603	1.024	4.36E-09	2.52E-09	4.81E-09	46.83	73.80	60.49
100	4.21E-13	1.89E-15	1.61E-14	1.542	0.960	2.045	4.03E-09	5.01E-09	7.99E-09	55.70	81.65	158.7

2583 Figure 4: mage Denoising Results.
2584

Table 15: Time and Loss of Different Optimization Algorithms on Ratio Cut when $l \neq u$

Datasets&Methods	FWA		PGD		RIMRGD		RIMRCG		RIMRTR	
	Time	Cost	Time	Cost	Time	Cost	Time	Cost	Time	Cost
COIL20	6.220	3.908	6.061	0.7108	8.040	0.5306	2.601	0.494	15.97	0.588
Digit	5.878	0.389	6.063	0.817	7.355	0.652	1.443	0.755	13.92	0.661
JAFFE	0.257	0.207	1.019	0.294	0.116	1.110	0.260	0.154	3.741	0.103
MSRA25	6.238	0.253	6.444	0.048	9.123	0.037	9.787	0.000	15.95	0.033
PalmData25	77.69	16.40	71.73	3.299	25.54	0.984	5.635	6.686	19.05	12.78
USPS20	6.133	1.631	6.109	1.563	7.025	1.544	1.309	1.729	17.72	1.551
Waveform21	12.62	0.405	8.529	0.452	9.650	0.366	1.571	0.373	46.20	0.366
MnistData05	19.86	0.538	17.09	12.36	16.52	1.693	1.876	2.467	30.47	1.677

E.3 RESULTS OF EXPERIMENTAL 3

Experiment 3 compared the objective function values and running times of the rim manifold-based approach with other solution methods on real datasets when the objective function was the Ratio Cut. The results for the case where l equals u are shown in Table 5, while the results for l not equal to u are reported in Table 15. It can be observed that the RIMRCG method achieves the lowest running time on most datasets. Meanwhile, the RIMRGD method can reach the minimum in terms of loss. Furthermore, for each dataset, we have plotted the iteration curves of the objective function values against the number of iterations for various optimization methods. These are displayed in Figures 5 and 6, respectively. From the convergence curves in Figure 5, it is evident that the Rim manifold-based methods enable the objective to decrease more rapidly within a shorter number of iterations. In contrast, the descent curves of the PGD and DSRGD methods are more gradual. A similar experimental outcome is also presented in Figure 6.

Figure 5: Comparison of Loss Decrease for Optimization Algorithms on Real Datasets ($l = u$).Figure 6: Comparison of Loss Decrease for Optimization Algorithms on Real Datasets ($l \neq u$).

E.4 RESULTS OF EXPERIMENTAL 4

In this section, we mainly provide two supplementary materials. First, we verify whether Riemannian optimization on the RIM manifold ensures that the distribution of each column lies within the prescribed range. Second, we visualize the learned indicator matrix to examine whether each entry $F_{ij} \in [0, 1]$ is satisfied.

Figure 7 illustrates the column sum distributions of the relaxed indicator matrix obtained via Riemannian gradient descent (RIMRGD) on the RIM manifold for different datasets. The dashed lines represent the values of the upper bound u and lower bound l . As shown, all column sums eventually lie within the specified interval $[l, u]$.

Figure 7: Relaxed Indicator Matrix Column Sum Distribution Graph.

2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679

It is worth noting that, under the specified bounds $[l, u]$, not all bounds are necessarily active for every dataset. For instance, in the Digit dataset, the lower bound l is active, as the sum of the 8th column reaches the lower bound, while no column reaches the upper bound u . In contrast, for the MSRA25 dataset, the upper bound u is active, but the lower bound l is not. For some datasets like COIL20, neither the lower nor the upper bounds are active, possibly because the dataset naturally leads to a balanced partitioning.

Figure 8: Visualization of the Relaxed Indicator Matrix.

2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Figure 8 presents the visualization results of the relaxed indicator matrix. It can be observed that each element F_{ij} lies within the interval $[0, 1]$, and the indicator matrix exhibits a clear clustered structure. This structure indicates distinct clustering results, suggesting that learning on the relaxed indicator matrix manifold effectively captures the underlying structure of the graph.

2700 F RIM MANIFOLD EQUIPPED WITH FISHER METRIC 2701

2702 In this section, we will explain why we assign the Euclidean inner product to $\mathcal{M} = \{X | X1_c = 2703 1_n, l < X^T 1_n < u, X > 0\}$ instead of the currently more commonly used Fisher information metric.
2704 The RIM manifold is defined as $\mathcal{M} = \{X | X1_c = 1_n, l < X^T 1_n < u, X > 0\}$, where the row sums
2705 are equal to 1. Therefore, each element's rows on the RIM manifold can be considered as a probability
2706 distribution and can equip a Fisher information metric. Specifically, for each point X on the RIM
2707 manifold, there exists a tangent space $T_X \mathcal{M}$ which is a linear space. Previously, the Euclidean metric
2708 was equipped on this linear space, that is, $\forall U, V \in T_X \mathcal{M}, \langle U, V \rangle_X = \sum_{i=1}^n \sum_{j=1}^n U_{ij} V_{ij}$. This
2709 section will discuss the impact on optimization over the manifold when the Fisher information metric
2710 is equipped on $T_X \mathcal{M}$, that is,

$$2711 \forall U, V \in T_X \mathcal{M}, \langle U, V \rangle_X = \sum_{i=1}^n \sum_{j=1}^n \frac{U_{ij} V_{ij}}{X_{ij}} \quad (208)$$

2714 To distinguish it from the previous RIM manifold, we call the RIM manifold equipped with the Fisher
2715 information metric the Fisher RIM manifold, abbreviated as FRIM manifold.
2716

2717 F.1 DIMENSION AND TANGENT SPACE

2719 Regarding dimension and tangent space, their definitions depend only on the manifold itself and are
2720 independent of the metric equipped on it. Therefore, for the same set \mathcal{M} , whether it is equipped
2721 with the Euclidean metric or the Fisher information metric, it has the same dimension and tangent
2722 space. That is, both the RIM manifold and the FRIM manifold have a dimension of $(n - 1)c$, and the
2723 tangent space is $T_X \mathcal{M} = \{U | U1_c = 0\}$. The proof can be found in Theorem A.1
2724

2725 F.2 RIEMANNIAN GRADIENT, RIEMANNIAN CONNECTION AND RIEMANNIAN HESSIAN

2727 When the Fisher metric is assigned to $\{X \in \mathbb{R}^{n \times c} | X > 0\}$, the gradient of \mathcal{H} at X in $\{X \in 2728 \mathbb{R}^{n \times c} | X > 0\}$ is given by $\text{Grad} \mathcal{H} \odot X$, where $\text{Grad} \mathcal{H}$ is the Euclidean gradient. At this time, the
2729 FRIM manifold is a Riemannian embedded submanifold of $\{X \in \mathbb{R}^{n \times c} | X > 0\}$. The Riemannian
2730 gradient on the FRIM manifold is the orthogonal projection under the Fisher metric. The expression
2731 of this orthogonal projection is

$$2732 \text{Proj}_{T_X \mathcal{M}}(Z) = Z - (\alpha 1_c^T) \odot X, \quad \alpha = Z1_c \in \mathbb{R}^n \quad (209)$$

2734 The Riemannian connection on the FRIM manifold is the orthogonal projection of the connection
2735 under the Fisher metric, where the connection on $\{X \in \mathbb{R}^{n \times c} | X > 0\}$ can be expressed as

$$2736 \bar{\nabla}_U V = DV[U] - \frac{1}{2}(U \odot V) \odot X, \quad U, V \in \mathbb{R}^{n \times c} \quad (210)$$

2738 The Riemannian connection on the FRIM manifold is given by

$$2740 \begin{cases} \nabla_U V = \text{Proj}_{T_X \mathcal{M}}(\bar{\nabla}_U V) = \text{Proj}_{T_X \mathcal{M}}(DV[U] - \frac{1}{2}(U \odot V) \odot X) \\ 2741 U, V \in T_X \mathcal{M}, X \in \{X \in \mathbb{R}^{n \times c} | X > 0\} \end{cases} \quad (211)$$

2743 Furthermore, the Riemannian Hessian mapping is given by

$$2745 \text{hess } \mathcal{H}(X)[V] = \text{Proj}_{T_X \mathcal{M}} \left(D \text{grad } \mathcal{H}(X)[V] - \frac{1}{2}(V \odot \text{grad } \mathcal{H}(X)) \odot X \right) \quad (212)$$

2747 It can be seen that the Riemannian gradient, Riemannian connection and Riemannian Hessian on
2748 the FRIM manifold are the same as those on the single stochastic manifold equipped with the Fisher
2749 information metric. Since the FRIM manifold itself can be regarded as a Riemannian embedded
2750 submanifold of the single stochastic manifold, it is not surprising that these three Riemannian tools
2751 are the same as those on the single stochastic manifold. However, the existing Retraction mapping
2752 on the single stochastic manifold cannot be applied to the FRIM manifold, because it cannot be
2753 guaranteed that the curve generated by the Retraction mapping on the single stochastic manifold will
always lie on the FRIM manifold (it may violate the column constraint).

2754
2755

F.3 RETRACTION MAPPING

2756
2757
2758
2759
2760
2761
2762
2763
2764

Although the Retraction mapping on the single stochastic manifold cannot be used as the Retraction mapping on the FRIM manifold, the Retraction mapping on the RIM manifold proposed in this paper can naturally serve as the Retraction mapping on the FRIM manifold. That is, the FRIM manifold naturally has three Retraction methods respectively given by Theorems A.6, A.7 and A.8. However, Theorem A.5 indicates that the result obtained by Theorem A.6 is a geodesic on the RIM manifold. However, on the FRIM manifold, Theorem A.6 is not an orthogonal projection under the Fisher information metric, so the geodesic on the FRIM manifold cannot be obtained. That is to say, although the three methods in Theorems A.6, A.7 and A.8 can all be used as Retractions, none of them is a second-order Retraction.

2765
2766

F.4 WHICH TO USE?

2767
2768
2769
2770
2771
2772
2773
2774

Although there is also a set of Riemannian tools available on the FRIM manifold, according to the analysis above, the Riemannian toolbox under the RIM manifold and the Riemannian toolbox on the FRIM manifold have almost the same time complexity and can use the same Retraction. However, when using the Dykstras Retraction, a geodesic can be quickly obtained on the RIM manifold, while it is impossible to obtain a geodesic on the FRIM manifold, meaning a second-order Retraction cannot be achieved. This may have a certain impact on the convergence of the algorithm. Therefore, we recommend using the RIM manifold, which restricts the Euclidean inner product to the manifold rather than the Fisher information metric.

2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

2808 **G EXPLANATION REGARDING DETAILS**
2809

2810 In this section, we provide detailed answers to three questions raised by the community. These
2811 questions essentially represent the special techniques that enable the RIM manifold to operate at
2812 singularities.

2813

- **Question 1:** Why is projection chosen as the Retraction onto $\{X \mid X \geq 0, X1_n = 1_n, l \leq X^T 1_n \leq u\}$? What if strict inequalities are required?
- **Question 2:** For the RIM manifold $\{X \mid X > 0, X1_n = 1_n, l < X^T 1_n < u\}$, does it become an empty set when $l = u = r$? Why can the algorithm function normally?
- **Question 3:** How does it behave near the boundary of the RIM manifold?

2820 **G.1 ANSWER TO THE QUESTION 1:**
2821

2822 Choosing projection as the Retraction is partly due to its speed, but more importantly, due to its
2823 stability. When strict inequalities are required, the following analysis can be made:

2824

When $l \neq u$, one can always choose a sufficiently small ε such that the constraints effectively map.
2825 Specifically, given l and u , if we must require the resulting X to satisfy $\{X \mid X > 0, X1_n = 1_n, l < X^T 1_n < u\}$, we only need to pick an ε and project onto the set:

2826
$$\{X \mid X \geq 0 + \varepsilon, X1_n = 1_n, l + \varepsilon \leq X^T 1_n \leq u - \varepsilon\} \quad (213)$$

2827

Here, ε can be chosen to be very small, for example, $\varepsilon = 10^{-12}$ or even smaller than machine
2828 precision. This is also very easy to implement in the RIM toolbox: simply set $u' = u - \varepsilon$ and
2829 $l' = l + \varepsilon$, and then input (u', l') into the RIM toolbox. At the same time, the exact same method can
2830 be used to handle $\{X \mid X > 0\}$ and $\{X \mid X > 0 + \varepsilon\}$. In fact, when ε is sufficiently small, it does
2831 not affect the final result at all.

2832

When $l = u$, the advantage of choosing projection as the Retraction becomes even more apparent, as
2833 we will point out in Answer 2.

2834

Furthermore, it must be noted that in scenarios where the RIM manifold is typically used, such as
2835 machine learning, one usually does not need to care about whether values are taken at the boundary. In
2836 scenarios like classification and clustering, one typically only concerns themselves with the maximum
2837 or minimum elements of the Relaxed Indicator Matrix. From a numerical optimization perspective, a
2838 correction using an ε can yield significant acceleration, making it a worthwhile trade-off.

2843 **G.2 ANSWER TO THE QUESTION 2:**
2844

2845

When $l = u$, since the Retraction we actually adopt projects onto $\{X \mid X \geq 0, X1_n = 1_n, l \leq X^T 1_n \leq u\}$, which in this case means projecting onto:

2846
$$\{X \mid X \geq 0, X1_n = 1_n, X^T 1_n = r\} \quad (214)$$

2847

This is the reason why the RIM manifold is always able to obtain points on the doubly stochastic
2848 manifold when setting $l = u$.

2849

Moreover, considering the Riemannian gradient, this is equivalent to projecting the Euclidean gradient,
2850 causing components that deviate from the tangent direction to become zero. This is equivalent to a
2851 gradient projection method corrected by a Lagrange multiplier, which accelerates convergence.

2855 **G.3 ANSWER TO THE QUESTION 3:**
2856

2857

When $l \neq u$, we can always leverage the equivalence condition mentioned earlier. When considering
2858 the properties of the RIM manifold $\{X \mid X > 0, X1_n = 1_n, l < X^T 1_n < u\}$ near l and u ,
2859 it is always possible to slightly expand the boundaries, i.e., to consider the interior properties of
2860 $\{X \mid X > 0, X1_n = 1_n, l - \varepsilon < X^T 1_n < u + \varepsilon\}$. In particular, since the Retraction projects onto
2861 the boundary, we can always locate extreme points on the boundary, for instance, where $X^T 1_n = u$.

2862 **H REFERENCE CODE FOR RIM MANIFOLD RIEMANNIAN TOOLBOX**
2863

```

2864 function M = RIMfactory(n, c, row,upper,lower)
2865
2866     maxDSiters = min(1000, n*c);
2867     if size(row, 1) ~= n
2868         error('row should be a column vector of size n.');
2869     end
2870     if size(upper, 1) ~= c
2871         error('upper should be a column vector of size c.');
2872     end
2873     if size(lower, 1) ~= c
2874         error('lower should be a column vector of size c.');
2875     end
2876
2877     M.name = @() sprintf('%dx%d matrices with positive entries F1_c=1_n,1
2878         <F1_n<u', n, c);
2879     M.dim = @() (n-1)*c;
2880     M.hash = @(X) ['z' hashmd5(X(:))];
2881     M.lincomb = @matrixlincomb;
2882     M.zerovec = @(X) zeros(n, c);
2883     M.transp = @(X1, X2, d) ProjToTangent(d);
2884     M.vec = @(X, U) U(:);
2885     M.mat = @(X, u) reshape(u, n, c);
2886     M.vecmatareisometries = @() true;
2887     M.inner = @iproduct;
2888
2889     function ip = iproduct(X,eta, zeta)
2890         ip = sum((eta(:).*zeta(:)));
2891     end
2892     M.norm = @(X,eta) sqrt(M.inner(X,eta, eta));
2893     M.typicaldist = @() n+c;
2894     M.rand = @random;
2895     function X = random(X)
2896         Z = abs(randn(n, c));
2897         X = Dykstras(Z, row, lower, upper, maxDSiters);
2898     end
2899     M.randvec = @randomvec;
2900     function eta = randomvec(X)
2901         Z = randn(n, c);
2902         eta = ProjToTangent(Z);
2903     end
2904     M.proj = @projection;
2905     function etaproj = projection(X,eta)
2906         etaproj = ProjToTangent(eta);
2907     end
2908     M.tangent = M.proj;
2909     M.tangent2ambient = @(X,eta) eta;
2910     M.egrad2rgrad = @egrad2rgrad;
2911     function rgrad = egrad2rgrad(X,egrad)
2912         rgrad = ProjToTangent(egrad);
2913     end
2914     M.retr = @Retraction;
2915     function Y = Retraction(X, eta, t)
2916         if nargin < 3
2917             t = 1;
2918         end
2919         Y=Dykstras(X+t*eta, row, lower, upper, maxDSiters);
2920     end
2921     M.ehess2rhess = @ehess2rhess;
2922     function rhess = ehess2rhess(X, egrad, ehess, eta)
2923         rhess = ProjToTangent(ehess);
2924     end
2925 end

```

2916 In this section, we will provide reference code for the RIM manifold toolbox. Our code is compatible
 2917 with the well-known open-source manifold optimization toolbox Manopt (Boumal et al., 2014),
 2918 allowing the direct use of Manopt's algorithms to implement Riemannian optimization on the RIM
 2919 manifold. The first code block creates a factory named "RIM", which allows for the direct call to the
 2920 RIM factory to obtain the basic description of the RIM manifold, covering the essential information
 2921 about the manifold and the invocation of basic Riemannian operations.

2922 Dykstras algorithm is one of the methods for implementing Retraction. Its process involves iterative
 2923 projections and the condition for determining when to exit the loop.

```

2924
2925 function [P] = Dykstras(M, a, b_l, b_u, N)
2926     if b_l==b_u
2927         tol=1e-2;
2928     else
2929         tol=1e-1;
2930     end
2931     rng(1);
2932     [mn, mc] = size(M);
2933     P = M;
2934     z1 = zeros(mn, mc);
2935     z2 = zeros(mn, mc);
2936     z3 = zeros(mn, mc);

2937     for iter = 1:N
2938         for i = 1:mn
2939             prev_row = P(i, :) + z1(i, :);
2940             P(i, :) = EProjSimplex_new(prev_row, a(i));
2941             z1(i, :) = prev_row - P(i, :);
2942         end
2943
2944         for j = 1:mc
2945             prev_col = P(:, j) + z2(:, j);
2946             current_sum = sum(prev_col);
2947             if current_sum >= b_l(j)
2948                 z2(:, j) = 0;
2949                 P(:, j) = prev_col;
2950             else
2951                 delta = (b_l(j) - current_sum) / mn;
2952                 new_col = prev_col + delta * ones(mn, 1);
2953                 z2(:, j) = prev_col - new_col;
2954                 P(:, j) = new_col;
2955             end
2956
2957         for j = 1:mc
2958             prev_col = P(:, j) + z3(:, j);
2959             current_sum = sum(prev_col);
2960             if current_sum <= b_u(j)
2961                 z3(:, j) = 0;
2962                 P(:, j) = prev_col;
2963             else
2964                 delta = (b_u(j) - current_sum) / mn;
2965                 new_col = prev_col + delta * ones(mn, 1);
2966                 z3(:, j) = prev_col - new_col;
2967                 P(:, j) = new_col;
2968             end
2969         end
2970
2971         if norm(P*ones(mc,1)-a, 'fro') < tol && all(P(:)>=-tol)
2972             disp(['Converged at iteration: ', num2str(iter)]);
2973             break;
2974         end
2975     end
2976 
```

2970
 2971 In the Dykstras algorithm process, the first step is to project onto the simplex, where the projection
 2972 function is EProjSimplex_new. The code for this is provided below. During usage, you can create
 2973 a file named EProjSimplex_new and call the EProjSimplex_new algorithm in each iteration of the
 2974 Dykstras algorithm process.

```
2974 function [x ft] = EProjSimplex_new(v, k)
2975   if nargin < 2
2976     k = 1;
2977   end;
2978   ft=1;
2979   n = length(v);
2980   v0 = v-mean(v) + k/n;
2981   vmin = min(v0);
2982   if vmin < 0
2983     f = 1;
2984     lambda_m = 0;
2985     while abs(f) > 10^-10
2986       v1 = v0 - lambda_m;
2987       posidx = v1>0;
2988       npos = sum(posidx);
2989       g = -npos;
2990       f = sum(v1(posidx)) - k;
2991       lambda_m = lambda_m - f/g;
2992       ft=ft+1;
2993       if ft > 100
2994         x = max(v1,0);
2995         break;
2996       end;
2997     end;
2998     x = max(v1,0);
2999   else
3000     x = v0;
3001   end;
```

3002 The function ProjToTangent is a simple projection function onto the tangent space.

```
3003 function P = ProjToTangent (X)
3004   c=size(X,2);
3005   P=X-1/c*X*ones(c,c);
3006 end
```

3007
**When running the code, please create four separate MATLAB files for RIMfactory, Dykstras,
 EProjSimplex_new, and ProjToTangent, and place them in the manopt folder following this
 structure:**

```
3008 -manopt;
3009   --manifolds;
3010     ---multinomial;
3011       ----RIMfactory;
3012       ----Dykstras;
3013       ----EProjSimplex_new;
3014       ----ProjToTangent;
```

3015
Then you can call the functions in the general way as per manopt.

```
3016 RIM_manifold = RIMfactory(n,c,row,upper,lower);
3017 problem.M = RIM_manifold;
3018 problem.cost = @(X) ...;
3019 problem.egrad = @(X) ...; % Euclidean gradient
3020 [X_rim,~,info_rim,~] = steepestdescent(problem);
3021
3022
3023
```

Furthermore, we provide reference code for the dual gradient and Sinkhorn algorithms, which allow the Retraction operation to be performed in other ways. Overall, we still recommend using Dykstras algorithm under the Euclidean inner product for descent along the geodesics of the RIM manifold.

```

3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

function F = dual_gradient(Z, l, u, max_iter)
    [n, c] = size(Z);
    l = l(:);
    u = u(:);

    nu = ones(n, 1);
    omega = ones(c, 1);
    rho = ones(c, 1);

    step_size = .05;

    for iter = 1:max_iter
        term = Z - nu * ones(1, c) - ones(n, 1) * omega' + ones(n, 1) *
            rho';
        F_current = max(term, 0);

        grad_nu = F_current * ones(c, 1) - ones(n, 1);
        grad_omega = F_current' * ones(n, 1) - u;
        grad_rho = -F_current' * ones(n, 1)+1;

        nu = nu + step_size * grad_nu;
        omega = omega + step_size * grad_omega;
        rho = rho + step_size * grad_rho;

        omega = max(omega, 0);
        rho = max(rho, 0);
    end
    term = Z - nu * ones(1, c) - ones(n, 1) * omega' + ones(n, 1) * rho';
    F = max(term, 0);
end

function P = sinkR(X, a, l, u, N)
    rng(1)
    [n, c] = size(X);
    K = X;
    u_vec = ones(n, 1);
    q_vec = ones(c, 1);
    v_vec = ones(c, 1);

    for i = 1:N
        u_vec = a ./ (K * (q_vec .* v_vec));

        sum_P_t = sum((u_vec .* K), 1)';
        q_vec = max(l(:) ./ sum_P_t, ones(c, 1));

        sum_P_t = sum((u_vec .* K) .* q_vec', 1)';
        v_vec = min(u(:) ./ sum_P_t, ones(c, 1));

        P = diag(u_vec) * K * diag(q_vec .* v_vec);
        P_liehe = P'*ones(n,1);

        if norm(P*ones(c,1)-ones(n,1), 'fro') < 1e-2 && all(P(:)>=-1e-2)
            && all(P_liehe>=l-1e-2) && all(P_liehe<=u+1e-2)
            break;
        end
    end
end

```