
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

RIEMANNIAN OPTIMIZATION
ON RELAXED INDICATOR MATRIX MANIFOLD

Anonymous authors
Paper under double-blind review

ABSTRACT

The indicator matrix plays an important role in machine learning, but optimizing it
is an NP-hard problem. We propose a new relaxation of the indicator matrix and
compared with other existing relaxations, it can flexibly incorporate class informa-
tion. We prove that this relaxation forms a manifold, which we call the Relaxed
Indicator Matrix Manifold (RIM manifold). Based on Riemannian geometry, we
develop a Riemannian toolbox for optimization on the RIM manifold. Specifically,
we provide several methods of Retraction, including a fast Retraction method to
obtain geodesics. We point out that the RIM manifold is a generalization of the
double stochastic manifold, and it is much faster than existing methods on the
double stochastic manifold, which has a complexity of O(n3), while RIM mani-
fold optimization is O(n) and often yields better results. We conducted extensive
experiments, including image denoising, with millions of variables to support our
conclusion, and applied the RIM manifold to Ratio Cut, we provide a rigorous
convergence proof and achieve clustering results that outperform the state-of-the-art
methods. Our Code in Appendix H.

1 INTRODUCTION

Indicator matrices play a crucial role in machine learning (Mo et al., 2025; Li et al., 2024a; Tsit-
sulin et al., 2023), particularly in tasks such as clustering (Fan et al., 2022; Macgregor, 2024) and
classification (Shi et al., 2024). For a problem with n samples and c classes, the indicator matrix
F ∈ Indn×c, where Indn×c = {X ∈ Rn×c | Xij ∈ {0, 1}, X1c = 1n} and 1c is the column vector
of ones of size c. The optimization of indicator matrices, which can be seen as a 0-1 programming
problem, is NP-hard (Schuetz et al., 2022; Gasse et al., 2022). Therefore, finding efficient methods to
relax the indicator matrix for optimization is important.

Ng et al. (2001) relaxed the indicator matrix to the Steifel manifold, F ∈ {X | XTX = I},
where I is the identity matrix. This approach further developed spectral graph theory and led to the
formulation of classic algorithms such as spectral clustering (Balestriero & LeCun, 2022; Macgregor
& Sun, 2022). However, optimizing over the Steifel manifold always requires O(n3) operations
(Altmann et al., 2022), making it challenging to scale for large datasets, and it can only provide an
optimal solution for problems of the form tr(FTLF), while in clustering, the resulting F still needs
post-processing through methods like K-means (Li et al., 2015; Mondal et al., 2021). An alternative
relaxation is to make F onto the single stochastic manifold, F ∈ {X | X1c = 1n, X > 0} (Sun
et al., 2015), which gave rise to well-known algorithms like Fuzzy K-means (Ferraro, 2024; Borlea
et al., 2021). However, this approach has the drawback of not considering the total number of samples
per class, which can lead to empty clusters or imbalanced class distributions (Ikotun et al., 2023;
Hu et al., 2023). The most recent method is to relax the indicator matrix onto the double stochastic
manifold, i.e., F ∈ {X | X1c = 1n, X

T 1n = r,X > 0} (Fettal et al., 2024; Yuan et al., 2024c).
However, this approach also has significant drawbacks. The double stochastic manifold imposes
overly strict requirements on the columns of F , as it necessitates knowing the true distribution of
each class in the dataset as a prior, which is nearly impossible for unknown datasets. Additionally,
optimization over the double stochastic manifold is extremely challenging, still requiring O(n3) time
(Douik & Hassibi, 2019; 2018), making it almost infeasible for large-scale datasets.

To solve above questions, we propose a new relaxation method, where F ∈ {X | X1c = 1n, l <
XT 1n < u,X > 0}. In this approach, the constraints on the column sums are relaxed to lie within a

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

specified range. This allows us to flexibly incorporate as much prior knowledge as possible into the
model. When there is more prior knowledge, we can choose a tighter (l, u) interval. Conversely, we
can make it more relaxed. Specifically, when the column sums and the true distribution are known,
we can set l = u and l to the true distribution (In fact, this does not lead to the absence of solutions,
for further discussion, see Appendix G). When no prior knowledge is available, we can set l < 0 and
u > n, which means our relaxation is a generalization of both the single stochastic manifold and the
double stochastic manifold, offering a more adaptable framework.

We prove that the set of relaxed indicator matrices forms a manifold, which we call the Relaxed
Indicator Matrix Manifold (RIM manifold). Based on Riemannian geometry (Boumal, 2023; Fei
et al., 2025), we have developed a Riemannian optimization toolbox (Boumal et al., 2014; Townsend
et al., 2016) for running optimization on the RIM manifold. In particular, we provide three distinct
Retraction methods, including one that allows for fast computation of geodesics (Nguyen, 2022;
Jordan et al., 2022), enabling our algorithm to efficiently operate along the geodesic. Furthermore,
we demonstrate that our algorithm, compared to existing Riemannian optimization methods on the
double stochastic manifold, reduces the time complexity from O(n3) to O(n). Furthermore, we have
developed various Riemannian optimization algorithms that run on the RIM manifold.

We designed a series of large-scale experiments with millions of optimization variables to validate
our algorithm. These experiments include comparisons with state-of-the-art optimization algorithms
on both convex and non-convex problems like image denoising (Takemoto et al., 2022; Zhou et al.,
2024). In particular, we applied the Ratio Cut model (Veldt, 2023; Hagen & Kahng, 1992) to the RIM
manifold. When l = u, our algorithm is 70-200 times faster than those based on the double stochastic
manifold for large-scale problems with millions of variables, and it achieves lower loss results. In
general, the algorithms on the RIM manifold outperform the latest optimization algorithms in both
loss function values and time. Additionally, the Ratio Cut clustering metric on the RIM manifold
exceeds that of the latest clustering algorithms.

Overall, our contributions include:

• We propose a novel relaxation method for the indicator matrix, which allows for the full
utilization of varying levels of prior information from the dataset, and we proved that the
relaxed matrix forms a manifold.

• We develope a Riemannian optimization toolbox for manifolds, providing three Retraction
algorithms, including a fast method for obtaining geodesics on the RIM manifold. We also
demonstrated that the RIM manifold can replace methods on the double stochastic manifold,
reducing the time complexity from O(n3) to O(n).

• We conducte lots of experiments with millions of variables, demonstrating the speed and
efficiency of our algorithm. Our method outperforms the double stochastic manifold by
70-200 times in large-scale experiments, yielding better results and shorter time on various
problems compared to latest optimization methods. We apply the RIM manifold to Ratio
Cut and achieve superior clustering performance compared to the state-of-the-art methods.

2 PRELIMINARIES

The Preliminaries section consists of four parts: an introduction to the notations, a brief overview of
Riemannian optimization, and an introduction to the single stochastic manifold, double stochastic
manifold, and Steifel manifold, as well as machine learning methods on these manifolds. All the
notations used in this paper follows the standard conventions of Riemannian optimization, and
important symbols are introduced in the main text. Due to space limitations, the Preliminaries can be
found in Appendix B.

3 RIEMANNIAN TOOLBOX

3.1 DEFINITION OF THE RELAXED INDICATOR MATRIX MANIFOLD

The optimization of indicator matrix F ∈ Indn×c, where typically n� c, is an NP-hard optimization
problem. Three relaxation methods have already been introduced. The Steifel manifold F ∈ {X |

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

XTX = I} always requires O(n3) time complexity (Shustin & Avron, 2023) and can only yield
an analytical optimal solution in the form of tr(FTLF), while in clustering, the resulting F still
needs post-processing through methods like K-means. The single stochastic manifold F ∈ {X |
X1c = 1n, X > 0} does not impose any constraints on the column sums of F , which may lead to
empty or imbalanced classes and cannot incorporate column sum information into the model. The
double stochastic manifold F ∈ {X | X1c = 1n, X

T 1n = r,X > 0}, on the other hand, still has
a time complexity of O(n3), and the constraints on the column sums are too strict, often making it
impossible to obtain the sum of the column. Therefore, we propose a new relaxation method:

F ∈ {X | X1c = 1n, l < XT 1n < u,X > 0} (1)

Introducing l and u allows us to incorporate as much information as possible into the model. Ad-
ditionally, when l < 0 and u > n, our relaxation reduces to {X | X1c = 1n, X > 0}. When
u = l = r, our relaxation becomes {X | X1c = 1n, X

T 1n = r,X > 0}. Thus, our relaxation
generalizes the previously mentioned approaches. Importantly, our relaxation forms an embedded
submanifold of the Euclidean space.
Theorem 1. Our relaxed indicator matrix setM = {X | X1c = 1n, l < XT 1n < u,X > 0}
forms an embedded submanifold of the Euclidean space, with dimM = (n− 1)c. We refer to it as
the Relaxed Indicator Matrix Manifold. Proof in A.1

3.2 RIEMANNIAN OPTIMIZATION TOOLBOX FOR THE RIM MANIFOLD

In this section, we will establish an optimized Riemannian toolbox for the RIM manifold. To
transform the embedded submanifold (Zhang et al., 2024; Lee & Lee, 2012)M into a Riemannian
submanifold (Lee, 2018; Gulbahar, 2021), it is necessary to equipM with an inner product 〈·, ·〉X .
Mishra et al. (2021) adopt the Fisher information (Ly et al., 2017; Rissanen, 1996) metric for
manifolds. However, an alternative approach is to directly restrict the Euclidean inner product onto
the manifold. The reason for doing so is seen in F. This restriction allows for a straightforward
derivation of the Riemannian gradient (Huang & Wei, 2022) from the Euclidean gradient and the
method lies in enabling an intuitive and convenient Retraction mapping.
Theorem 2. By restricting the Euclidean inner product 〈U, V 〉 =

∑n
i=1

∑c
j=1 UijVij onto the RIM

manifoldM, the tangent space ofM at X is given by TXM = {U | U1c = 0}. For any function
H, if its Euclidean gradient is GradH(F), the Riemannian gradient gradH(F) is expressed as
following. Proof in A.2

gradH(F) = GradH(F)− 1

c
GradH(F)1c1

T
c . (2)

To further obtain second-order information of a function, it is necessary to equip the manifoldM
with a Riemannian connection (Epstein, 1975). We select the unique connection that ensures the
Riemannian Hessian hessH is symmetric and compatible with the inner product as the Riemannian
connection. The following theorem formalizes this:
Theorem 3. For the manifoldM, there exists a unique connection that is compatible with the inner
product and ensures that the Riemannian Hessian mapping is self-adjoint. This connection is given
by following. ∇̄ is the Riemannian connection in Euclidean space. Proof in A.3

∇V U = ∇̄V U −
1

c
∇̄V U1c1

T
c . (3)

The Riemannian Hessian mapping can be directly derived from the above Riemannian connection.
Theorem 4. For the manifold M equipped with the connection ∇V U , the Riemannian Hessian
mapping satisfies following. HessH is the Riemannian Hessian in Euclidean space. Proof in A.4

hessH[V] = HessH[V]− 1

c
HessH[V]1c1

T
c . (4)

A Retraction (Hu et al., 2020; Hosseini & Sra, 2015) is a mappingRX(tV) that maps from the tangent
space ofM at X to the manifoldM, i.e., RX(tV) : TXM→M. A Retraction is used to generate
a curve γ(t) = RX(tV), starting at X and moving in the initial direction given by V , allowing X to

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

move along the manifold. Specifically,RX(tV) should satisfyRX(0) = X and d
dtRX(tV)

∣∣
t=0

= V .
If Ddtγ

′(t)
∣∣
t=0

= 0, then γ(t) forms a geodesic, where D
dt represents the Levi-Civita derivative (Berz,

1996). Geodesics provide better convergence guarantees for optimization algorithms on manifolds
(Vishnoi, 2018). The following theorem presents a method for obtaining geodesics.
Theorem 5. Let RX(tV) = argminF∈M‖F − (X + tV)‖2F , X ∈M. Then

argminF∈M‖F − (X + tV)‖2F = max(0, X + tV − ν(t)1Tc − 1nω
T (t) + 1nρ

T (t)) (5)

where ν(t), ωT (t), ρT (t) are Lagrange multipliers. Moreover, there exists δ > 0 such that for
t ∈ (0, δ), −ν(t)1Tc − 1nω(t)T + 1nρ(t)T = 0, and the Retraction satisfies the following. Where D

dt
denotes the Levi-Civita derivative.

RX(0) = X,
d

dt
RX(tV)

∣∣
t=0

= V,
D

dt
R′X(tV)

∣∣
t=0

= 0 (6)

Thus, RX(tV) is a geodesic. Proof in A.5

The essence of solving the Retraction is to compute the orthogonal projection argminF∈M‖F − (X+
tV)‖2F , which can be addressed from two perspectives: the primal problem and the dual problem.
Theorem 6. M = Ω1 ∩ Ω2 ∩ Ω3, where Ω1 = {X | X > 0, X1c = 1n}, Ω2 = {X | XT 1n > l},
and Ω3 = {X | XT 1n < u}. The primal problem can be solved using the Dykstras (Tibshirani,
2017; Boyle & Dykstra, 1986) algorithm by iteratively projecting onto Ω1, Ω2, and Ω3. Specifically:

ProjΩ1
(X) =

(
Xij + ηi

)
+

, where η is determined by ProjΩ1
(X)1c = 1n.

ProjΩ2
(X) and ProjΩ3

(X) are defined similarly. For example,

ProjΩ2
(Xj) =

{
Xj , if (Xj)T 1n > lj ,
1
n (lj − 1TnX

j)1n +Xj , if (Xj)T 1n ≤ lj ,
(7)

where Xj is the j-th column of X , and lj is the j-th element of the column vector l. Proof in A.6

Another approach is the dual gradient ascent method. We have proven the following theorem.
Theorem 7. Solving the primal problem is equivalent to solving the following dual problem:

max
ω≥0,ρ≥0

L =
1

2
‖max(0, X + tV − ν1Tc − 1nω

T + 1nρ
T)‖2F − 〈ν, 1n〉 − 〈ω, u〉+ 〈ρ, l〉 (8)

where ν, ω, and ρ are Lagrange multipliers. The partial derivatives of L with respect to ν, ω, and ρ
are known, and gradient ascent can be used solving ν, ω, and ρ. Finally, RX(tV) can be obtained
using max(0, X + tV − ν1Tc − 1nω

T + 1nρ
T). The partial derivatives are following. Proof in A.7

∂L
∂ν

= max(0, X + tV − ν1Tc − 1nω
T + 1nρ

T)1c − 1n

∂L
∂ω

= max(0, X + tV − ν1Tc − 1nω
T + 1nρ

T)T 1n − u

∂L
∂ρ

= −max(0, X + tV − ν1Tc − 1nω
T + 1nρ

T)T 1n + l

(9)

Additionally, we propose a Retraction method based on a variant of the Sinkhorn algorithm (Xie
et al., 2025; Cuturi, 2013). This approach also attempts to map a matrix onto the RIM manifold using
two diagonal matrices. The following theorem illustrates this property. However, it is equivalent to
solving an optimal transport problem with an entropy regularization parameter, whose choice may
not be well justified.
Theorem 8. The Sinkhorn-based Retraction is defined as

RsX(tV) = S(X � exp(tV �X)) = diag(p∗)(X � exp(tV �X)) diag(q∗ � w∗) (10)
where p∗, q∗, w∗ are vectors, exp(·) denotes element-wise exponentiation, and diag(·) converts
a vector into a diagonal matrix. The vectors p∗, q∗, w∗ are obtained by iteratively updating the
following equations:

p(k+1) = 1n �
(
(X � exp(tV �X)) (q(k) � w(k))

)
,

q(k+1) = max
(
l �
(

(X � exp(tV �X))
T
p(k+1) � w(k)

)
, 1c

)
,

w(k+1) = min
(
u�

(
(X � exp(tV �X))

T
p(k+1) � q(k+1)

)
, 1c

)
.

(11)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 1: Time complexity comparison(n� c).
Operation RIM Manifold Doubly Stochastic Manifold Speedup factorAdditions Multiplications Total Additions Multiplications Total

Riemannian Gradient O(nc) O(n) O(n) O(n3) O(n3) O(n3) O(n2)
Retraction O(nc) O(nc) O(nc) O(nc) O(nc) O(nc) O(1)

Riemannian Hessian O(nc) O(n) O(n) O(n3) O(n3) O(n3) O(n2)

This iterative procedure ensures the mapping onto the RIM manifold. The solution RsX(tV) =
diag(p∗)(X�exp(tV �X)) diag(q∗�w∗) is equivalent to solving the dual-bound optimal transport
problem (12) with an entropy regularization parameter of 1. Proof in A.8.

RsX(tV) = argminF∈M
〈
F,− log(X � exp(tV �X))

〉
+ δ
∣∣
δ=1

n∑
i=1

c∑
j=1

(
Fij log(Fij)− Fij

)
(12)

Based on the Riemannian toolbox for the RIM manifold, we have developed Riemannian Gradient
Descent (RIMRGD), Riemannian Conjugate Gradient (RIMRCG), and Riemannian Trust-Region
(RIMRTR) methods on the RIM manifold. The algorithmic procedures are provided in Appendix C.

3.3 COMPARISON ANALYSIS OF TIME COMPLEXITY

When u = l, the RIM manifold reduces to the doubly stochastic manifold and provides a fast way for
solving problems on the doubly stochastic constraint. Existing optimization methods on the doubly
stochastic manifold are extremely time-consuming. This section provides a comparative analysis of
the time complexity between the RIM manifold and the doubly stochastic manifold.

First, we discuss the Riemannian gradient. The computation of the Riemannian gradient on
the RIM manifold is given by gradH(F) = GradH(F) − 1

c GradH(F)1c1
T
c . Here, the term

GradH(F)1c1
T
c involves summing each column, dividing by c, and then replicating it across c

columns. This requires 2nc additions and n divisions.

For the doubly stochastic manifold, the Riemannian gradient is (n = c):{
gradH(F) = γ −

(
α1Tn + 1n1

T
nγ − 1nα

TF
)
� F,

α =
(
I − FFT

)† (
γ − FγT

)
1n, γ = GradH(F)� F.

(13)

The term FFT ∈ Rn×n, and computing its pseudo-inverse (I−FFT)† requires at least n3 additions
or multiplications. Further computing the Riemannian gradient involves at least n3 operations. When
n 6= c, we need to solve a linear system of (n+ c) dimensions still takes O(n3) time (where n� c).

For the Retraction operation, the time complexity is O(nc), which scales linearly with the number
of variables. For the computation of the Riemannian Hessian, the RIM manifold also requires
only O(nc) additions and O(c) multiplications. In contrast, the Hessian mapping on the doubly
stochastic manifold has a highly complex expression (181), requiring at least O(n3) additions and
multiplications.

We summarize the time complexity in Table 1, including the complexity of each operation and the
speedup factor. We will conduct extensive experiments to verify the acceleration effect.

4 RIM MANIFOLD FOR GRAPH CUT

In this section, we apply the RIM manifold to graph cut problems, using Max Cut (Shinde et al.,
2021; Wang et al., 2022) and Ratio Cut (Chen et al., 2022b; Nie et al., 2024) as examples. Max Cut
and Ratio Cut are both well-known graph partitioning algorithms, and their loss functions are given
byHm(F) = −tr(FTSF) for the Max Cut, andHr(F) = tr(FTLF (FTF)−1) for the Ratio Cut.
S is the similarity matrix, and L is the Laplacian matrix (Nie et al., 2016; 2014). The constraint is
F ∈ Indn×c, and we relax this constraint on the RIM manifold.

First, the Euclidean gradient of −tr(FTSF) is Grad(−tr(FTSF)) = −SF , and its corresponding
Riemannian gradient is gradHm(F) = −SF+ 1

cSF1c1
T
c . According to Theorem 4, the Riemannian

Hessian expression is hessHm[V] = HessHm[V]− 1
c HessHm[V]1c1

T
c Moreover,because we know

that

HessHm[V] = lim
t→0

GradHm(F + tV)−GradHm(F)

t
= lim
t→0

−S(F + tV) + SF

t
= −SV (14)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Therefore, we show that hess
(
− tr(FTSF)

)
[V] can be represented as following:

hess
(
− tr(FTSF)

)
[V] = −SV +

1

c
SV 1c1

T
c (15)

Now we apply the RIM manifold to the Ratio Cut problem. Ratio Cut is an important graph
partitioning method with the objective function tr(FTLF (FTF)−1) , subject to F ∈ Indn×c. The
relaxed optimization problem is formulated as:

min
F∈M

tr(FTLF (FTF)−1), M = {X | X1c = 1n, l < XT 1n < u,X > 0} (16)

The following theorem provides the expressions for the Euclidean gradient and the Euclidean Hessian
map of the Ratio Cut.
Theorem 9. The loss function for the Ratio Cut is given by Hr(F) = tr(FTLF (FTF)−1). Then,
the Euclidean gradient of the loss function with respect to F is following. Proof in A.9

GradHr(F) = 2
(
LF (FTF)−1 − F (FTF)−1(FTLF)(FTF)−1

)
(17)

Given the substitutions (FTF)−1 = J and FTLF = K, the Euclidean Hessian map for the loss
function is:

HessHr[V] = 2
(
LV J − LFJ(V TF + FTV)J − V JKJ + FJ(V TF + FTV)JKJ (18)

− FJ(V TLF + FTLV)J + FJKJ(V TF + FTV)J
)

(19)

The above theorem provides the Euclidean gradient of Ratio Cut. Although computing (FTF)−1

requires inversion, where FTF ∈ Rc×c, the inversion complexity is onlyO(c3) and c� n. Next, we
will perform graph cut optimization on the RIM manifold, comparing the loss results and runtime with
various state-of-the-art algorithms, as well as evaluating the effectiveness of graph cut for clustering.

In addition, we provide convergence theorems for graph cut optimization on the RIM manifold
using Riemannian optimization techniques Proof in A.10 and A.11.

5 EXPERIMENTS

In this section, we will conduct extensive experiments to evaluate the performance of Riemannian
optimization on the RIM manifold and address several key questions of interest.

• Question 1: For the RIM manifold, this paper proposes three different Retraction methods.
Which method is the most efficient? Which Retraction is recommended for use?

• Question 2: When l = u, does the Riemannian optimization algorithm on the RIM manifold
outperform the Riemannian optimization algorithm on the doubly stochastic manifold in
terms of effectiveness and speed?

• Question 3: For non-convex optimization problems, we evaluate whether optimization on
the RIM manifold is faster or more effective compared to other state-of-the-art methods? As
examples, we consider a classic non-convex graph cut problem Ratio Cut.

• Question 4: When relaxing the graph cut problem onto the RIM manifold (followed by
discretization), can common clustering metrics(ACC,NMI,ARI) achieve better values?

5.1 EXPERIMENTAL SETUPS

5.1.1 EXPERIMENT 1 SETUP

To determine which of the three Retraction methods is more efficient, we randomly select a large
number of matrices V ∈ TXM, i.e., generate a large number of tangent vectors, and set t = 1.
Then, we apply the three Retraction methods to generate points on the RIM manifold M. To
ensure the experiment’s validity, we vary the matrix dimensions V ∈ Rn×c, where n takes values
from {500, 1000, 3000, 5000, 7000, 10000} and c takes values from {5, 10, 50, 100, 500, 1000}. The
lower and upper bounds are set as l = 0.9

⌊
n
c

⌋
and u = 1.1

⌊
n
c

⌋
, respectively, as well as l = u = n

c .
We then calculate the computation time for the three Retraction methods and compare them. For
large-scale problems, we recommend using the faster Retraction method. If the computation times
are nearly identical, we recommend using the norm-based Retraction, as it yields geodesics with
better properties.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

5.1.2 EXPERIMENT 2 SETUP

To answer the second question, we need to compare Riemannian optimization methods on the RIM
manifold with optimization methods on the doubly stochastic manifold under the condition l = u. To
this end, we design two optimization problems, including both convex and non-convex cases.

The first problem is a norm approximation problem. Specifically, we randomly generate a matrix
A ∈ Rn×c with sizes n ∈ {5000, 7000, 10000}, c ∈ {5, 10, 20, 50, 70, 100} and solve the following
optimization problem. We compare the runtime and loss function values of the two manifolds.

min
F∈M

‖F −A‖2F , M = {X | X1c = A1c, X
T 1n = AT 1c, X > 0} (20)

The second problem is an image denoising task based on the classical total variation (TV) regulariza-
tion model. The RIM-TV model is given by{

minF∈M
1
2‖F − Ã‖

2
F + ξ

∑
i,j

(
|Fi,j+1 − Fi,j |+ |Fi+1,j − Fi,j |

)
M = {X | X > 0, X1c = Ã1c, X

T 1n = ÃT 1n}
(21)

Here, ξ is the total variation (TV) regularization coefficient, A is the original image obtained from
the dataset, and Ã is the noisy image generated by adding Gaussian white noise to A. The image Aij
is in(0, 1), ξ is chosen from the set {0.3,0.7}, and the variance of the added Gaussian noise is chosen
from the set {0.3, 0.5, 0.9}. We will compare the speed and objective function values of the algorithm
when running on the RIM manifold versus the doubly stochastic manifold. More experimental details
can be found in Appendix D.1.

5.1.3 EXPERIMENT 3 SETUP

To answer the third question, we apply the RIM manifold to Ratio Cut and conduct experiments
on 8 real datasets (as shown in Appendix D.3.4). The values of l and u are set as l = u = n

c

and l = 0.9
⌊
n
c

⌋
, u = 1.1

⌊
n
c

⌋
, respectively. For l = u = n

c , we compare seven algorithms:
Riemannian Gradient Descent (RIMRGD), Riemannian Conjugate Gradient (RIMRCG), Riemannian
Trust Region (RIMRTR), Frank-Wolfe Algorithm (FWA) (Jaggi, 2013; Weber & Sra, 2023; Yurtsever
& Sra, 2022), Projected Gradient Descent (PGD) (Shen & Chen, 2023; Chen & Wainwright, 2015),
Riemannian Gradient Descent on the Double Stochastic Manifold (DSRGD) (Tripuraneni et al.,
2018), and Riemannian Conjugate Gradient on the Double Stochastic Manifold (DSRCG) (Sato,
2022). For l = 0.9

⌊
n
c

⌋
and u = 1.1

⌊
n
c

⌋
, we only compare RIMRGD, RIMRCG, RIMRTR, FWA,

and PGD. The optimization results of these algorithms are then compared. More experimental details
can be found in Appendix D.2.

5.1.4 EXPERIMENT 4 SETUP

To answer the fourth question, we compare the Ratio Cut algorithm on the RIM manifold with
ten clustering algorithms. We again choose 8 real datasets with different types, including images,
tables, waveforms, etc. (as shown in Appendix D.3.4), and conduct large-scale validation using 10
comparison algorithms (listed in D.3). We evaluate the clustering performance using three metrics:
clustering accuracy (ACC) (Yuan et al., 2024a;b), normalized mutual information (NMI) (Ren et al.,
2024), and adjusted Rand index (ARI) (Ronen et al., 2022). For the similarity matrix, we use the
k-nearest neighbor (k-NN) (Li et al., 2024b; Zhu et al., 2022) Gaussian kernel function (Wang
et al., 2009; Chen et al., 2021) and construct the Gaussian kernel function using the mean Euclidean
distance. For the parameter k, each comparison algorithm is tested by searching for the best value of
k within the range k = [8, 10, 12, 14, 16]. More experimental details can be found in Appendix D.3.

5.2 EXPERIMENTAL RESULTS

5.2.1 RESULT OF EXPERIMENTAL 1

The data for Experiment 1 when l = u is presented in Table 2. The horizontal axis indicates the
methods used, while the vertical axis represents the number of columns, and the horizontal axis
represents the number of rows of the experimental matrix. The table entries represent the time
required for Retraction, measured in seconds. The fastest method is highlighted in red. As observed,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Table of Execution Time when l = u for Different Retraction Algorithms(s)
Row&Col Dual Sinkhorn Dykstras

500 1000 3000 5000 7000 10000 500 1000 3000 5000 7000 10000 500 1000 3000 5000 7000 10000

5 0.012 0.024 0.054 0.084 0.108 0.140 0.004 0.009 0.048 0.132 0.169 0.499 0.006 0.007 0.011 0.019 0.028 0.038
10 0.022 0.036 0.075 0.112 0.141 0.188 0.002 0.006 0.036 0.087 0.166 0.343 0.006 0.005 0.014 0.023 0.031 0.043
50 0.074 0.095 0.791 1.307 1.886 2.766 0.002 0.008 0.043 0.125 0.228 0.474 0.005 0.008 0.023 0.039 0.053 0.074

100 0.012 0.174 1.597 2.962 3.831 5.710 0.003 0.008 0.056 0.140 0.288 0.580 0.006 0.010 0.031 0.060 0.072 0.106
500 0.054 0.122 8.597 14.32 20.16 23.77 0.013 0.030 0.237 0.629 1.155 2.265 0.016 0.033 0.096 0.168 0.223 0.318

1000 0.102 0.178 17.26 28.56 40.55 56.56 0.034 0.082 0.446 1.038 1.931 3.614 0.034 0.067 0.219 0.384 0.556 0.789

(a) Origin (b) Noisy Image (c) RIM Result (d) DS Result
Figure 1: Image Denoising Results, Noise Coefficient 0.3, ξ = 0.3.

when the matrix is small, the Sinkhorn method is faster. However, as the matrix size increases, the
Dykstras method shows significant advantages and produces the geodesic. Therefore, we recommend
using the Dykstras method to obtain the Retraction curve. More data can be found in Appendix E.1.

5.2.2 RESULT OF EXPERIMENTAL 2

Table 3 shows the time and final loss required by the Riemannian Trust Region method to solve convex
optimization problems of different scales. It can be seen that, for problems of varying sizes, the
RIMTRT significantly outperforms the DSTRT in both time consumption and final loss. Therefore,
we have highlighted the RIM manifold results in red. Data for the Riemannian Gradient Descent and
Riemannian Conjugate Gradient methods can be found in Table 10 and Table 11.

For the second part of the experiment, Figure 1 shows the comparison of denoising results using the
TV algorithm on the RIM manifold and the doubly stochastic manifold with a noise level of 0.3. In
this case, ξ = 0.3. On the RIM manifold, the running time was 29.77s, and the loss value decreased
to 1.05e5, while on the doubly stochastic manifold, the time was 85.33s, and the loss value was
1.17e5. By observing the images, it is evident that the image obtained using the doubly stochastic
manifold has noticeable noise when zoomed in, while the image on the RIM manifold is smoother.
Additional data and images can be found in Figure 4.

Table 3: Cost and Time on the RIM Manifold and Doubly Stochastic Manifold(RTR).
Row&Col RIM Manifold Doubly Stochastic Manifold

Cost Time Cost Time

Size 5000 7000 10000 5000 7000 10000 5000 7000 10000 5000 7000 10000

5 3.09E-23 8.28E-20 2.09E-20 0.265 0.355 0.516 4.38E-11 3.96E-10 2.89E-10 9.530 12.85 31.97
10 1.91E-20 9.58E-20 3.80E-20 0.283 0.464 0.690 1.91E-10 3.66E-10 4.12E-10 16.25 17.04 32.72
20 1.02E-19 1.22E-23 8.29E-19 0.366 0.562 0.691 9.49E-10 6.04E-10 1.17E-09 18.77 35.15 26.77
50 7.66E-20 2.13E-18 2.20E-20 0.602 0.844 1.087 3.08E-09 1.99E-09 1.57E-09 38.55 64.27 111.1
70 1.85E-20 2.84E-18 7.49E-19 0.791 0.983 1.352 2.59E-09 1.65E-09 3.18E-09 70.47 121.0 77.28

100 1.31E-19 5.04E-20 1.26E-17 0.990 1.324 1.721 1.78E-09 2.18E-09 2.83E-09 91.40 121.3 241.4

5.2.3 RESULT OF EXPERIMENTAL 3

When l = u, the time and loss for the seven comparison algorithms are presented in Table 4. We have
marked the algorithm names on the RIM manifold in blue, the shortest time in red, and the lowest
loss in bright red. It can be observed that the optimization algorithms on the RIM manifold achieved
most of the top positions. Figure 2 shows the loss decrease curves for some datasets. More results
can be found in Appendix E.3.

5.2.4 RESULT OF EXPERIMENTAL 4

For Experiment 4, Table 5 records the performance of 12 comparison algorithms across 8 real-world
datasets based on clustering accuracy (ACC), normalized mutual information (NMI), and adjusted
Rand index (ARI). Our algorithm is marked in blue, and the best-performing algorithm is marked

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 100 200 300 400 500 600
0

50

100

150

200

250

RIMRGD
RIMRCG
RIMRTR
PGD
FWA
DSRGD
DSRCG

(a) USPS20
0 100 200 300 400 500 600

20

40

60

80

100

120

140

160

180

200

RIMRGD
RIMRCG
RIMRTR
PGD
FWA
DSRGD
DSRCG

(b) JAFFE
0 100 200 300 400 500 600

0

10

20

30

40

50

60

70

RIMRGD
RIMRCG
RIMRTR
PGD
FWA
DSRGD
DSRCG

(c) MnistData05
0 100 200 300 400 500 600

0

10

20

30

40

50

60

RIMRGD
RIMRCG
RIMRTR
PGD
FWA
DSRGD
DSRCG

(d) waveform21
Figure 2: Comparison of Loss Decrease for Optimization Algorithms on Real Datasets.

Table 4: Time and Loss of Different Optimization Algorithms on Ratio Cut when l = u

Datasets&Methods DSRGD DSRCG FWA PGD RIMRGD RIMRCG RIMRTR
Time Cost Time Cost Time Cost Time Cost Time Cost Time Cost Time Cost

COIL20 8.978 28.17 11.90 28.41 10.49 41.12 6.967 31.53 1.145 24.83 0.685 27.46 14.20 22.48
Digit 8.650 2.751 11.87 2.312 9.196 0.492 6.077 0.953 7.058 0.942 0.886 1.319 13.73 1.089

JAFFE 2.224 30.06 2.774 60.16 0.303 29.39 2.725 44.35 0.149 29.56 0.119 29.92 1.982 28.94
MSRA25 9.901 2.775 11.94 2.249 9.687 1.845 6.954 1.221 2.221 1.636 1.957 1.009 17.74 1.070

PalmData25 43.39 737.1 54.48 1054 88.35 561.1 23.74 642.2 9.506 456.0 2.583 642.3 18.77 516.3
USPS20 9.238 25.52 12.65 23.58 10.37 16.76 6.842 17.32 5.257 16.46 0.735 19.91 12.59 16.31

Waveform21 11.16 4.328 13.76 3.313 17.81 2.457 8.645 2.392 4.094 2.385 1.237 2.434 8.508 2.390
MnistData05 18.16 6.834 23.60 4.894 26.29 0.619 14.96 2.520 16.43 2.126 1.724 3.325 35.93 2.154

in red. It can be observed that performing Ratio Cut on the RIM manifold leads to superior results
compared to the most advanced algorithms. More results can be found in Appendix E.4.

Table 5: Mean clustering performance of compared methods on real-world datasets.
Metric Method COIL20 Digit JAFFE MSRA25 PalmData25 USPS20 Waveform21 MnistData05

ACC

KM 53.44 58.33 72.16 49.33 70.32 55.51 50.38 53.86
CDKM 52.47 65.82 80.85 59.63 76.05 57.68 50.36 54.24

Rcut 78.14 74.62 84.51 56.84 87.03 57.83 51.93 62.80
Ncut 78.88 76.71 83.76 56.23 86.76 59.20 51.93 61.14

Nystrom 51.56 72.08 75.77 52.85 76.81 62.55 51.49 55.91
BKNC 57.11 60.92 93.76 65.47 86.74 62.76 51.51 52.00
FCFC 59.34 43.94 71.60 54.27 69.38 58.23 56.98 54.41
FSC 82.76 79.77 81.69 56.25 82.27 67.63 50.42 57.76

LSCR 65.67 78.14 91.97 53.82 58.25 63.07 56.19 57.15
LSCK 62.28 78.04 84.98 54.41 58.31 61.86 54.95 58.57

RIMRcut 79.72 82.53 96.71 56.64 90.85 70.28 74.80 65.55

NMI

KM 71.43 58.20 80.93 60.10 89.40 54.57 36.77 49.57
CDKM 71.16 63.64 87.48 63.83 91.94 55.92 36.77 49.23

Rcut 86.18 75.28 90.11 71.64 95.41 63.84 37.06 63.11
Ncut 86.32 76.78 89.87 71.50 95.26 64.46 37.06 63.22

Nystrom 66.11 70.13 82.53 57.77 93.09 59.00 36.95 48.53
BKNC 69.80 59.37 92.40 69.30 95.83 57.10 36.94 44.56
FCFC 74.05 38.33 80.30 63.34 89.47 55.71 22.89 48.75
FSC 91.45 80.98 90.43 70.60 94.62 74.75 36.76 58.33

LSCR 74.67 75.07 93.13 68.06 81.84 62.36 33.37 52.82
LSCK 74.02 76.53 87.89 67.97 81.70 65.23 36.92 59.14

RIMRcut 85.63 80.05 96.24 71.76 96.50 69.08 42.14 59.35

ARI

KM 50.81 45.80 66.83 34.66 65.06 43.57 25.56 37.18
CDKM 48.11 52.74 76.36 37.70 71.73 45.59 25.56 36.79

Rcut 73.73 65.81 81.70 46.35 84.76 51.99 25.31 51.32
Ncut 74.30 68.21 81.30 45.90 84.25 52.72 25.31 50.51

Nystrom 45.96 59.50 69.85 38.07 76.23 50.01 25.03 38.21
BKNC 49.96 48.98 87.96 54.78 85.56 48.43 25.02 32.89
FCFC 54.41 25.50 65.73 40.42 66.03 46.32 22.89 36.86
FSC 79.46 73.03 80.26 43.99 79.67 61.71 25.10 44.78

LSCR 57.68 67.21 86.76 43.31 48.70 52.64 25.12 41.46
LSCK 54.59 68.70 77.37 42.18 48.58 52.54 26.47 46.48

RIMRcut 73.98 75.01 93.32 46.82 88.49 56.06 42.89 52.87

6 CONCLUSION

This paper presents a new relaxation for indicator matrices and proves that it forms a Riemannian
manifold. We have constructed a Riemannian toolbox for optimization on the RIM manifold. In
particular, we introduce multiple methods for Retraction, including one that operates quickly along
the geodesic. The paper demonstrates that optimization on the RIM manifold is useful for machine
learining and it is a fast method O(n) that can replace the existing double stochastic manifold
optimization with a time complexity of O(n3). Through large-scale experiments from multiple
perspectives, we have proven the effectiveness and speed of optimization on the RIM manifold.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 STATEMENT

For the reproducibility of this paper, we have submitted the complete anonymized code with fixed
random seeds, as detailed in Appendix H. In addition, large language models (LLMs) were only used
for language polishing.

REFERENCES

Hervé Abdi and Lynne J Williams. Principal component analysis. Wiley interdisciplinary reviews:
computational statistics, 2(4):433–459, 2010.

Robert Altmann, Daniel Peterseim, and Tatjana Stykel. Energy-adaptive riemannian optimization on
the stiefel manifold. ESAIM: Mathematical Modelling and Numerical Analysis, 56(5):1629–1653,
2022.

Randall Balestriero and Yann LeCun. Contrastive and non-contrastive self-supervised learning
recover global and local spectral embedding methods. Advances in Neural Information Processing
Systems, 35:26671–26685, 2022.

Yichen Bao, Han Lu, and Quanxue Gao. Fuzzy k-means clustering without cluster centroids. arXiv
preprint arXiv:2404.04940, 2024.

Jean-David Benamou, Guillaume Carlier, Marco Cuturi, Luca Nenna, and Gabriel Peyré. Iterative
bregman projections for regularized transportation problems, 2014. URL https://arxiv.
org/abs/1412.5154.

Martin Berz. Calculus and numerics on levi-civita fields. Computational Differentiation: Techniques,
Applications, and Tools, (89):19–37, 1996.

James Bezdek, Robert Gunderson, Robert Ehrlich, and Tom Meloy. On the extension of fuzzy
k-means algorithms for detection of linear clusters. In 1978 IEEE Conference on Decision and
Control including the 17th Symposium on Adaptive Processes, pp. 1438–1443. IEEE, 1979.

Ioan-Daniel Borlea, Radu-Emil Precup, Alexandra-Bianca Borlea, and Daniel Iercan. A unified form
of fuzzy c-means and k-means algorithms and its partitional implementation. Knowledge-Based
Systems, 214:106731, 2021.

Nicolas Boumal. Optimization and estimation on manifolds. 2014.

Nicolas Boumal. An introduction to optimization on smooth manifolds. Cambridge University Press,
2023.

Nicolas Boumal, Bamdev Mishra, P-A Absil, and Rodolphe Sepulchre. Manopt, a matlab toolbox for
optimization on manifolds. The Journal of Machine Learning Research, 15(1):1455–1459, 2014.

James P Boyle and Richard L Dykstra. A method for finding projections onto the intersection of
convex sets in hilbert spaces. In Advances in Order Restricted Statistical Inference: Proceedings
of the Symposium on Order Restricted Statistical Inference held in Iowa City, Iowa, September
11–13, 1985, pp. 28–47. Springer, 1986.

Timothy Carson, Dustin G Mixon, Soledad Villar, and Rachel Ward. Manifold optimization for
k-means clustering. In 2017 International Conference on Sampling Theory and Applications
(SampTA), pp. 73–77. IEEE, 2017.

Laetitia Chapel, Mokhtar Z. Alaya, and Gilles Gasso. Partial optimal transport with applications on
positive-unlabeled learning, 2020. URL https://arxiv.org/abs/2002.08276.

Huimin Chen, Qianrong Zhang, Rong Wang, Feiping Nie, and Xuelong Li. A general soft-balanced
clustering framework based on a novel balance regularizer. Signal Processing, 198:108572, 2022a.

Wen-Yen Chen, Yangqiu Song, Hongjie Bai, Chih-Jen Lin, and Edward Y. Chang. Parallel spectral
clustering in distributed systems. IEEE Trans. Pattern Anal. Mach. Intel., 33(3):568–586, 2011.

10

https://arxiv.org/abs/1412.5154
https://arxiv.org/abs/1412.5154
https://arxiv.org/abs/2002.08276

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Xiaojun Chen, Zhicong Xiao, Feiping Nie, and Joshua Zhexue Huang. Finc: An efficient and effective
optimization method for normalized cut. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2022b.

Xinlei Chen and Deng Cai. Large scale spectral clustering with landmark-based representation.
In Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2011, San
Francisco, California, USA, August 7-11, 2011. AAAI Press, 2011.

Yifan Chen, Qi Zeng, Heng Ji, and Yun Yang. Skyformer: Remodel self-attention with gaussian
kernel and nystrom method. Advances in Neural Information Processing Systems, 34:2122–2135,
2021.

Yudong Chen and Martin J Wainwright. Fast low-rank estimation by projected gradient descent:
General statistical and algorithmic guarantees. arXiv preprint arXiv:1509.03025, 2015.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. Advances in neural
information processing systems, 26, 2013.

Zhiyuan Dang, Cheng Deng, Xu Yang, Kun Wei, and Heng Huang. Nearest neighbor matching for
deep clustering. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 13693–13702, 2021.

Ahmed Douik and Babak Hassibi. A riemannian approach for graph-based clustering by doubly
stochastic matrices. In 2018 IEEE Statistical Signal Processing Workshop (SSP), pp. 806–810.
IEEE, 2018.

Ahmed Douik and Babak Hassibi. Manifold optimization over the set of doubly stochastic matrices:
A second-order geometry. IEEE Transactions on Signal Processing, 67(22):5761–5774, 2019.

Alan Edelman, Tomás A Arias, and Steven T Smith. The geometry of algorithms with orthogonality
constraints. SIAM journal on Matrix Analysis and Applications, 20(2):303–353, 1998.

DBAd Epstein. Natural tensors on riemannian manifolds. Journal of Differential Geometry, 10(4):
631–645, 1975.

Jicong Fan, Yiheng Tu, Zhao Zhang, Mingbo Zhao, and Haijun Zhang. A simple approach to
automated spectral clustering. Advances in Neural Information Processing Systems, 35:9907–9921,
2022.

Yanhong Fei, Yingjie Liu, Chentao Jia, Zhengyu Li, Xian Wei, and Mingsong Chen. A survey of
geometric optimization for deep learning: from euclidean space to riemannian manifold. ACM
Computing Surveys, 57(5):1–37, 2025.

Maria Brigida Ferraro. Fuzzy k-means: history and applications. Econometrics and Statistics, 30:
110–123, 2024.

Chakib Fettal, lazhar labiod, and Mohamed Nadif. Graph cuts with arbitrary size constraints through
optimal transport. Transactions on Machine Learning Research, 2024. ISSN 2835-8856. URL
https://openreview.net/forum?id=UG7rtrsuaT.

Kyle Fox, Debmalya Panigrahi, and Fred Zhang. Minimum cut and minimum k-cut in hypergraphs
via branching contractions. ACM Transactions on Algorithms, 19(2):1–22, 2023.

Maxime Gasse, Simon Bowly, Quentin Cappart, Jonas Charfreitag, Laurent Charlin, Didier Chételat,
Antonia Chmiela, Justin Dumouchelle, Ambros Gleixner, Aleksandr M Kazachkov, et al. The
machine learning for combinatorial optimization competition (ml4co): Results and insights. In
NeurIPS 2021 competitions and demonstrations track, pp. 220–231. PMLR, 2022.

Mehmet Gulbahar. Qualar curvatures of pseudo riemannian manifolds and pseudo riemannian
submanifolds. AIMS Mathematics, 6(2):1366–1377, 2021.

Lars Hagen and Andrew B Kahng. New spectral methods for ratio cut partitioning and clustering.
IEEE transactions on computer-aided design of integrated circuits and systems, 11(9):1074–1085,
1992.

11

https://openreview.net/forum?id=UG7rtrsuaT

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Wei He, Shangzhi Zhang, Chun-Guang Li, Xianbiao Qi, Rong Xiao, and Jun Guo. Neural normalized
cut: A differential and generalizable approach for spectral clustering. Pattern Recognition, 164:
111545, 2025.

Reshad Hosseini and Suvrit Sra. Matrix manifold optimization for gaussian mixtures. Advances in
neural information processing systems, 28, 2015.

Haize Hu, Jianxun Liu, Xiangping Zhang, and Mengge Fang. An effective and adaptable k-means
algorithm for big data cluster analysis. Pattern Recognition, 139:109404, 2023.

Jiang Hu, Xin Liu, Zai-Wen Wen, and Ya-Xiang Yuan. A brief introduction to manifold optimization.
Journal of the Operations Research Society of China, 8:199–248, 2020.

Wen Huang and Ke Wei. Riemannian proximal gradient methods. Mathematical Programming, 194
(1):371–413, 2022.

Mia Hubert, Peter J Rousseeuw, and Karlien Vanden Branden. Robpca: a new approach to robust
principal component analysis. Technometrics, 47(1):64–79, 2005.

Abiodun M Ikotun, Absalom E Ezugwu, Laith Abualigah, Belal Abuhaija, and Jia Heming. K-means
clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big
data. Information Sciences, 622:178–210, 2023.

Martin Jaggi. Revisiting frank-wolfe: Projection-free sparse convex optimization. In International
conference on machine learning, pp. 427–435. PMLR, 2013.

Bo Jiang and Yu-Hong Dai. A framework of constraint preserving update schemes for optimization
on stiefel manifold. Mathematical Programming, 153(2):535–575, 2015.

Michael Jordan, Tianyi Lin, and Emmanouil-Vasileios Vlatakis-Gkaragkounis. First-order algorithms
for min-max optimization in geodesic metric spaces. Advances in Neural Information Processing
Systems, 35:6557–6574, 2022.

Hiroyuki Kasai, Hiroyuki Sato, and Bamdev Mishra. Riemannian stochastic recursive gradient
algorithm. In International conference on machine learning, pp. 2516–2524. PMLR, 2018.

Aparajita Khan and Pradipta Maji. Multi-manifold optimization for multi-view subspace clustering.
IEEE Transactions on Neural Networks and Learning Systems, 33(8):3895–3907, 2021.

Max Kochurov, Rasul Karimov, and Serge Kozlukov. Geoopt: Riemannian optimization in pytorch.
arXiv preprint arXiv:2005.02819, 2020.

John M Lee. Introduction to Riemannian manifolds, volume 2. Springer, 2018.

John M Lee and John M Lee. Submanifolds. Introduction to smooth manifolds, pp. 98–124, 2012.

Jing Li, Quanxue Gao, Qianqian Wang, Cheng Deng, and Deyan Xie. Label learning method based on
tensor projection. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, pp. 1599–1609, 2024a.

Jun Li, Li Fuxin, and Sinisa Todorovic. Efficient riemannian optimization on the stiefel manifold via
the cayley transform. arXiv preprint arXiv:2002.01113, 2020.

Shuai Li, Yingjie Zhang, Hongtu Zhu, Christina Wang, Hai Shu, Ziqi Chen, Zhuoran Sun, and Yanfeng
Yang. K-nearest-neighbor local sampling based conditional independence testing. Advances in
Neural Information Processing Systems, 36, 2024b.

Yeqing Li, Feiping Nie, Heng Huang, and Junzhou Huang. Large-scale multi-view spectral clustering
via bipartite graph. In Proceedings of the AAAI conference on artificial intelligence, volume 29,
2015.

Hongfu Liu, Ziming Huang, Qi Chen, Mingqin Li, Yun Fu, and Lintao Zhang. Fast clustering with
flexible balance constraints. In 2018 IEEE International Conference on Big Data (Big Data), pp.
743–750, 2018.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Alexander Ly, Maarten Marsman, Josine Verhagen, Raoul PPP Grasman, and Eric-Jan Wagenmakers.
A tutorial on fisher information. Journal of Mathematical Psychology, 80:40–55, 2017.

Peter Macgregor. Fast and simple spectral clustering in theory and practice. Advances in Neural
Information Processing Systems, 36, 2024.

Peter Macgregor and He Sun. A tighter analysis of spectral clustering, and beyond. In International
Conference on Machine Learning, pp. 14717–14742. PMLR, 2022.

Mayank Meghwanshi, Pratik Jawanpuria, Anoop Kunchukuttan, Hiroyuki Kasai, and Bamdev Mishra.
Mctorch, a manifold optimization library for deep learning. arXiv preprint arXiv:1810.01811,
2018.

Bamdev Mishra, NTV Satyadev, Hiroyuki Kasai, and Pratik Jawanpuria. Manifold optimization for
non-linear optimal transport problems. arXiv preprint arXiv:2103.00902, 2021.

Yujie Mo, Zhihe Lu, Runpeng Yu, Xiaofeng Zhu, and Xinchao Wang. Revisiting self-supervised
heterogeneous graph learning from spectral clustering perspective. Advances in Neural Information
Processing Systems, 37:43133–43163, 2025.

Anindya Mondal, Jhony H Giraldo, Thierry Bouwmans, Ananda S Chowdhury, et al. Moving object
detection for event-based vision using graph spectral clustering. In Proceedings of the IEEE/CVF
international conference on computer vision, pp. 876–884, 2021.

Andrew Ng, Michael Jordan, and Yair Weiss. On spectral clustering: Analysis and an algorithm.
Advances in neural information processing systems, 14, 2001.

Du Nguyen. Closed-form geodesics and optimization for riemannian logarithms of stiefel and flag
manifolds. Journal of Optimization Theory and Applications, 194(1):142–166, 2022.

Feiping Nie, Chris Ding, Dijun Luo, and Heng Huang. Improved minmax cut graph clustering with
nonnegative relaxation. In Machine Learning and Knowledge Discovery in Databases: European
Conference, ECML PKDD 2010, Barcelona, Spain, September 20-24, 2010, Proceedings, Part II
21, pp. 451–466. Springer, 2010.

Feiping Nie, Xiaoqian Wang, and Heng Huang. Clustering and projected clustering with adaptive
neighbors. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 977–986, 2014.

Feiping Nie, Xiaoqian Wang, Michael Jordan, and Heng Huang. The constrained laplacian rank algo-
rithm for graph-based clustering. In Proceedings of the AAAI conference on artificial intelligence,
volume 30, 2016.

Feiping Nie, Jingjing Xue, Danyang Wu, Rong Wang, Hui Li, and Xuelong Li. Coordinate descent
method for k k-means. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(5):
2371–2385, 2021.

Feiping Nie, Huimin Chen, Heng Huang, Chris HQ Ding, and Xuelong Li. Learning a subspace and
clustering simultaneously with manifold regularized nonnegative matrix factorization. Guidance,
Navigation and Control, 2024.

Michael L Overton and Robert S Womersley. Second derivatives for optimizing eigenvalues of
symmetric matrices. SIAM Journal on Matrix Analysis and Applications, 16(3):697–718, 1995.

Peter Petersen. Riemannian geometry, volume 171. Springer, 2006.

Yazhou Ren, Jingyu Pu, Zhimeng Yang, Jie Xu, Guofeng Li, Xiaorong Pu, S Yu Philip, and Lifang
He. Deep clustering: A comprehensive survey. IEEE transactions on neural networks and learning
systems, 2024.

Jorma J Rissanen. Fisher information and stochastic complexity. IEEE transactions on information
theory, 42(1):40–47, 1996.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Meitar Ronen, Shahaf E Finder, and Oren Freifeld. Deepdpm: Deep clustering with an unknown
number of clusters. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 9861–9870, 2022.

Farid Saberi-Movahed, Kamal Berahman, Razieh Sheikhpour, Yuefeng Li, and Shirui Pan. Nonnega-
tive matrix factorization in dimensionality reduction: A survey. arXiv preprint arXiv:2405.03615,
2024.

Hiroyuki Sato. Riemannian optimization and its applications, volume 670. Springer, 2021.

Hiroyuki Sato. Riemannian conjugate gradient methods: General framework and specific algorithms
with convergence analyses. SIAM Journal on Optimization, 32(4):2690–2717, 2022.

Martin JA Schuetz, J Kyle Brubaker, and Helmut G Katzgraber. Combinatorial optimization with
physics-inspired graph neural networks. Nature Machine Intelligence, 4(4):367–377, 2022.

Han Shen and Tianyi Chen. On penalty-based bilevel gradient descent method. In International
Conference on Machine Learning, pp. 30992–31015. PMLR, 2023.

Dai Shi, Junbin Gao, Xia Hong, ST Boris Choy, and Zhiyong Wang. Coupling matrix manifolds
assisted optimization for optimal transport problems. Machine Learning, 110:533–558, 2021.

Liangliang Shi, Zhaoqi Shen, and Junchi Yan. Double-bounded optimal transport for advanced
clustering and classification. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 14982–14990, 2024.

Nimita Shinde, Vishnu Narayanan, and James Saunderson. Memory-efficient approximation al-
gorithms for max-k-cut and correlation clustering. Advances in Neural Information Processing
Systems, 34:8269–8281, 2021.

Boris Shustin and Haim Avron. Riemannian optimization with a preconditioning scheme on the
generalized stiefel manifold. Journal of Computational and Applied Mathematics, 423:114953,
2023.

Oleg Smirnov. Tensorflow riemopt: a library for optimization on riemannian manifolds. arXiv
preprint arXiv:2105.13921, 2021.

Siti Noraini Sulaiman and Nor Ashidi Mat Isa. Adaptive fuzzy-k-means clustering algorithm for
image segmentation. IEEE Transactions on Consumer Electronics, 56(4):2661–2668, 2010.

Yanfeng Sun, Junbin Gao, Xia Hong, Bamdev Mishra, and Baocai Yin. Heterogeneous tensor
decomposition for clustering via manifold optimization. IEEE transactions on pattern analysis
and machine intelligence, 38(3):476–489, 2015.

Yue Sun, Nicolas Flammarion, and Maryam Fazel. Escaping from saddle points on riemannian
manifolds. Advances in Neural Information Processing Systems, 32, 2019.

Shingo Takemoto, Kazuki Naganuma, and Shunsuke Ono. Graph spatio-spectral total variation model
for hyperspectral image denoising. IEEE Geoscience and Remote Sensing Letters, 19:1–5, 2022.

Ryan J Tibshirani. Dykstra’s algorithm, admm, and coordinate descent: Connections, insights, and
extensions. Advances in Neural Information Processing Systems, 30, 2017.

James Townsend, Niklas Koep, and Sebastian Weichwald. Pymanopt: A python toolbox for opti-
mization on manifolds using automatic differentiation. Journal of Machine Learning Research, 17
(137):1–5, 2016.

Nilesh Tripuraneni, Nicolas Flammarion, Francis Bach, and Michael I Jordan. Averaging stochastic
gradient descent on riemannian manifolds. In Conference On Learning Theory, pp. 650–687.
PMLR, 2018.

Anton Tsitsulin, John Palowitch, Bryan Perozzi, and Emmanuel Müller. Graph clustering with graph
neural networks. Journal of Machine Learning Research, 24(127):1–21, 2023.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Nate Veldt. Cut-matching games for generalized hypergraph ratio cuts. In Proceedings of the ACM
Web Conference 2023, pp. 694–704, 2023.

Nisheeth K Vishnoi. Geodesic convex optimization: Differentiation on manifolds, geodesics, and
convexity. arXiv preprint arXiv:1806.06373, 2018.

Jie Wang, Haiping Lu, Konstantinos N Plataniotis, and Juwei Lu. Gaussian kernel optimization for
pattern classification. Pattern recognition, 42(7):1237–1247, 2009.

Yangtao Wang, Xi Shen, Shell Xu Hu, Yuan Yuan, James L Crowley, and Dominique Vaufreydaz. Self-
supervised transformers for unsupervised object discovery using normalized cut. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14543–14553, 2022.

Melanie Weber and Suvrit Sra. Riemannian optimization via frank-wolfe methods. Mathematical
Programming, 199(1):525–556, 2023.

Fangyuan Xie, Jinghui Yuan, Feiping Nie, and Xuelong Li. Dual-bounded nonlinear optimal transport
for size constrained min cut clustering. arXiv preprint arXiv:2501.18143, 2025.

Jinghui Yuan, Hao Chen, Renwei Luo, and Feiping Nie. A margin-maximizing fine-grained ensemble
method. arXiv preprint arXiv:2409.12849, 2024a.

Jinghui Yuan, Weijin Jiang, Zhe Cao, Fangyuan Xie, Rong Wang, Feiping Nie, and Yuan Yuan.
Achieving more with less: A tensor-optimization-powered ensemble method. arXiv preprint
arXiv:2408.02936, 2024b.

Jinghui Yuan, Chusheng Zeng, Fangyuan Xie, Zhe Cao, Mulin Chen, Rong Wang, Feiping Nie,
and Yuan Yuan. Doubly stochastic adaptive neighbors clustering via the marcus mapping. arXiv
preprint arXiv:2408.02932, 2024c.

Alp Yurtsever and Suvrit Sra. Cccp is frank-wolfe in disguise. Advances in Neural Information
Processing Systems, 35:35352–35364, 2022.

Chao Zhang, Xiaojun Chen, and Shiqian Ma. A riemannian smoothing steepest descent method for
non-lipschitz optimization on embedded submanifolds of r n. Mathematics of Operations Research,
49(3):1710–1733, 2024.

Xiaowei Zhao, Feiping Nie, Rong Wang, and Xuelong Li. Improving projected fuzzy k-means
clustering via robust learning. Neurocomputing, 491:34–43, 2022.

Huasong Zhong, Jianlong Wu, Chong Chen, Jianqiang Huang, Minghua Deng, Liqiang Nie, Zhouchen
Lin, and Xian-Sheng Hua. Graph contrastive clustering. In Proceedings of the IEEE/CVF
international conference on computer vision, pp. 9224–9233, 2021.

Bingxin Zhou, Ruikun Li, Xuebin Zheng, Yu Guang Wang, and Junbin Gao. Graph denoising with
framelet regularizers. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024.

Shixiang Zhu, Liyan Xie, Minghe Zhang, Rui Gao, and Yao Xie. Distributionally robust weighted
k-nearest neighbors. Advances in Neural Information Processing Systems, 35:29088–29100, 2022.

Wei Zhu, Feiping Nie, and Xuelong Li. Fast spectral clustering with efficient large graph construction.
In 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.
2492–2496, 2017. doi: 10.1109/ICASSP.2017.7952605.

Xiaojing Zhu. A riemannian conjugate gradient method for optimization on the stiefel manifold.
Computational optimization and Applications, 67:73–110, 2017.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

CONTENTS

1 Introduction 1

2 Preliminaries 2

3 Riemannian Toolbox 2

3.1 Definition of the Relaxed Indicator Matrix Manifold 2

3.2 Riemannian Optimization Toolbox for the RIM Manifold 3

3.3 Comparison Analysis of Time Complexity . 5

4 RIM Manifold for Graph Cut 5

5 Experiments 6

5.1 Experimental Setups . 6

5.1.1 Experiment 1 Setup . 6

5.1.2 Experiment 2 Setup . 7

5.1.3 Experiment 3 Setup . 7

5.1.4 Experiment 4 Setup . 7

5.2 Experimental Results . 7

5.2.1 Result of Experimental 1 . 7

5.2.2 Result of Experimental 2 . 8

5.2.3 Result of Experimental 3 . 8

5.2.4 Result of Experimental 4 . 8

6 Conclusion 9

7 Statement 10

Appendices 19

A Proofs of Theorems 19

A.1 Proof of Theorem 1 . 19

A.2 Proof of Theorem 2 . 19

A.3 Proof of Theorem 3 . 20

A.4 Proof of Theorem 4 . 21

A.5 Proof of Theorem 5 . 21

A.6 Proof of Theorem 6 . 22

A.7 Proof of Theorem 7 . 24

A.8 Proof of Theorem 8 . 25

A.9 Proof of Theorem 9 . 27

A.10 Proof of Theorem 10 . 28

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A.11 Proof of Theorem 11 . 30

B Preliminaries 33

B.1 Notations . 33

B.2 Introduction to Riemannian Optimization . 34

B.3 Introduction to Related Manifolds . 35

B.3.1 Single Stochastic Manifold . 35

B.3.2 Doubly Stochastic Manifold . 36

B.3.3 Stiefel Manifold . 37

B.4 Manifold-based Machine Learning Algorithms 38

B.4.1 Algorithms on the Single Stochastic Manifold 38

B.4.2 Algorithms on the Double Stochastic Manifold 38

B.4.3 Algorithms on the Steifel Manifold . 38

B.5 Other Related Work and Background Introduction 39

C Optimization Algorithms on the RIM Manifold 40

C.1 Gradient Descent on the RIM Manifold . 40

C.2 Conjugate Gradient Method on the RIM Manifold 40

C.3 Trust Region Method on the RIM Manifold . 40

D Details of the Experimental Setup 42

D.1 Experiment 2 Setup . 42

D.2 Experiment 3 Setup . 42

D.3 Experiment 4 Setup . 42

D.3.1 Clustering Accuracy (ACC) . 43

D.3.2 Normalized Mutual Information (NMI) 43

D.3.3 Adjusted Rand Index (ARI) . 44

D.3.4 Introduction of Real Datasets . 44

D.3.5 How to Choose l and u . 45

E Additional Experimental Results 46

E.1 Results of Experimental 1 . 46

E.2 Results of Experimental 2 . 46

E.3 Results of Experimental 3 . 47

E.4 Results of Experimental 4 . 48

F RIM Manifold Equipped with Fisher Metric 50

F.1 Dimension and Tangent Space . 50

F.2 Riemannian Gradient, Riemannian Connection and Riemannian Hessian 50

F.3 Retraction Mapping . 51

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

F.4 Which to Use? . 51

G Explanation regarding l = u 51

H Reference Code for RIM Manifold Riemannian Toolbox 52

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

A PROOFS OF THEOREMS

A.1 PROOF OF THEOREM 1

Our relaxed indicator matrix setM = {X | X1c = 1n, l < XT 1n < u,X > 0} forms an embedded
submanifold of the Euclidean space, with dimM = (n− 1)c. We refer to it as the Relaxed Indicator
Matrix Manifold.

Proof. The set M can be viewed as the intersection of three sets: M = {X | X1c = 1n, l <
XT 1n < u,X > 0} = Ω1 ∩Ω2 ∩Ω3, where Ω1 = {X | X > 0, X1c = 1n}, Ω2 = {X | XT 1n >
l}, and Ω3 = {X | XT 1n < u}. Consider the differential of the local defining function for the set
Ω1, i.e.

D(X1c − 1n)[V] = lim
t→0

(X + tV)1c − 1n − (X1c − 1n)

t
= lim
t→0

tV 1c
t

= V 1c (22)

Consider the null space of D(X1c − 1n)[V], given by Ker(D(X1c − 1n)[V]) = {V | V 1c = 0}.
The dimension of this null space is

dim(Ker(D(X1c − 1n)[V])) = nc− c = (n− 1)c (23)

In addition, since Ω2 = {X | XT 1n > l} and Ω3 = {X | XT 1n < u}, take Ω2 as an example. For
any directional vector U , there must exist δU > 0 such that (X + δUU)T 1n > l. Thus, both Ω2

and Ω3 are open sets. According to Theorem (Petersen, 2006), Ω1 forms a manifold, and Ω2 and
Ω3 are open sets. The intersection of an open set with a manifold remains a manifold. Therefore,
M = {X | X1c = 1n, l < XT 1n < u,X > 0} = Ω1 ∩ Ω2 ∩ Ω3 is still a manifold, and
dim(M) = dim(Ker(D(X1c − 1n)[V])) = (n− 1)c.

We refer toM as the Relaxed Indicator Matrix manifold, abbreviated as the RIM manifold.

A.2 PROOF OF THEOREM 2

By restricting the Euclidean inner product 〈U, V 〉 =
∑n
i=1

∑c
j=1 UijVij onto the RIM manifold

M, the tangent space ofM at X is given by TXM = {U | U1c = 0}. For any function H, if its
Euclidean gradient is GradH(F), the Riemannian gradient gradH(F) is expressed as following.

gradH(F) = GradH(F)− 1

c
GradH(F)1c1

T
c . (24)

Proof. According to the definition of tangent space,

TXM = Ker(D(X1c − 1n)[U]) = {U | U1c = 0} (25)

Let GradH be the gradient of H in the Euclidean space. Then, GradH = GradH‖ + GradH⊥,
where GradH‖ represents the component of GradH parallel to TXM, and GradH⊥ represents the
component perpendicular to TXM.

By the definition of the Riemannian gradient,

DH[V] = 〈GradH, V 〉 = 〈gradH, V 〉X , V ∈ TXM (26)

Here, 〈gradH, V 〉X denotes the inner product equipped on the manifold at X . When 〈gradH, V 〉X
coincides with the Euclidean inner product, we have

〈GradH, V 〉 = 〈GradH‖, V 〉+ 〈GradH⊥, V 〉 = 〈GradH‖, V 〉 = 〈gradH, V 〉X (27)

for V ∈ TXM, since 〈GradH⊥, V 〉 = 0 for V ∈ TXM. By the Ritz representation theorem, in this
case, gradH is the orthogonal projection of GradH onto the tangent space. The next step is to solve
the optimization problem:

min
U∈{U |U1c=0}

L = min
U∈{U |U1c=0}

‖U − GradH‖2F (28)

The Lagrangian function for the optimization problem is given by: L = 1
2‖U−GradH‖2F +αT (U1c).

Taking the gradient with respect to U , we have:

∇UL = U − GradH+ α1Tc = 0 (29)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Solving for U , we obtainU = GradH − α1Tc .. Since U1c = 0, substituting U gives GradH1c −
α1Tc 1c = GradH1c − cα = 0, which implies α = 1

cGradH1c. Therefore, the Riemannian gradient
is following.

gradH = argminU∈{U |U1c=0}‖U − GradH‖2F = GradH− 1

c
GradH1c1

T
c (30)

A.3 PROOF OF THEOREM 3

For the manifoldM, there exists a unique connection that is compatible with the inner product and
ensures that the Riemannian Hessian mapping is self-adjoint. This connection is given by following.
∇̄ is the Riemannian connection in Euclidean space.

∇V U = ∇̄V U −
1

c
∇̄V U1c1

T
c . (31)

Proof. First, we need to prove that the connection is compatible with the inner product, which means
proving W 〈U, V 〉 = 〈∇WU, V 〉+ 〈U,∇WV 〉. We have the following equation

W 〈U, V 〉 = D(〈U, V 〉)[W] = D

 n∑
i=1

n∑
j=1

UijVij

 [W] =

n∑
i=1

n∑
j=1

D(UijVij)[W]

=

n∑
i=1

n∑
j=1

(VijD(Uij)[Wij] + UijD(Vij)[Wij]) = 〈U,D(V)[W]〉+ 〈D(U)[W], V 〉

= 〈U,D(V)[W]− 1

c
D(V)[W]1c1

T
c 〉+ 〈D(U)[W]− 1

c
D(U)[W]1c1

T
c , V 〉

+ 〈U, 1

c
D(V)[W]1c1

T
c 〉+ 〈1

c
D(U)[W]1c1

T
c , V 〉.

(32)
Since the standard inner product in Euclidean space is chosen, we have

〈U, 1

c
D(V)[W]1c1

T
c 〉 =

1

c
tr(UTD(V)[W]1c1

T
c) =

1

c
tr(D(V)[W]1c1

T
c U

T) (33)

=
1

c
tr(D(V)[W]1c(U1c)

T) = 0 (34)

The last step equals zero because U ∈ TXM, which implies that U1c = 0. In the Euclidean space,
the connection ∇̄V U is defined as D(U)[V]. Furthermore, we have:

W 〈U, V 〉 = 〈U,D(V)[W]− 1

c
D(V)[W]1c1

T
c 〉+ 〈D(U)[W]− 1

c
D(U)[W]1c1

T
c , V 〉 (35)

= 〈U, ∇̄WV −
1

c
∇̄WV 1c1

T
c 〉+ 〈∇̄WU −

1

c
∇̄WU1c1

T
c , V 〉 (36)

= 〈U,∇WV 〉+ 〈V,∇WU〉 (37)

The second step is to prove that the Hessian map obtained from the connection is self-adjoint. That
is, we need to prove [U, V] = ∇UV − ∇V U, where [U, V] is the Lie bracket, and [U, V]f =
U(V (f))− V (U(f)). with f being a smooth scalar field on the manifoldM. U and V are tangent
vectors of the RIM manifold M, i.e., U, V ∈ TXM. Let Ū and V̄ be smooth extensions of U
and V in the neighborhood of M, satisfying Ū |M = U and V̄ |M = V . We have [Ū , V̄] =
DV̄ [Ū]−DŪ [V̄] = ∇̄Ū V̄ − ∇̄V̄ Ū . Thus, we can prove that:

[U, V] = [Ū , V̄]|M (38)

=
(
∇̄Ū V̄ − ∇̄V̄ Ū

)
|M (39)

= ProjM
(
∇̄Ū V̄ − ∇̄V̄ Ū

)
|M (40)

= ∇̄UV −
1

c
∇̄UV 1c1

T
c − ∇̄V U +

1

c
∇̄V U1c1

T
c (41)

= ∇UV −∇V U. (42)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

This equality,
(
∇̄Ū V̄ − ∇̄V̄ Ū

)
|M = ProjM

(
∇̄Ū V̄ − ∇̄V̄ Ū

)
|M, holds because [U, V] is defined in

the tangent space ofM. Therefore, the expression
(
∇̄Ū V̄ − ∇̄V̄ Ū

)
|M and its projection onto the

tangent space ofM must be equal.

A.4 PROOF OF THEOREM 4

For the manifoldM equipped with the connection ∇V U = ∇̄V U − 1
c ∇̄V U1c1

T
c , the Riemannian

Hessian mapping satisfies following.

hessH[V] = HessH[V]− 1

c
HessH[V]1c1

T
c . (43)

Proof. The Riemannian Hessian is defined as

hessH[U] = ∇U gradH = ∇U
(

GradH− 1

c
GradH1c1

T
c

)
. (44)

Using the definition of the Riemannian connection∇, we have

hessH[U] = ∇U gradH = D

(
GradH− 1

c
GradH1c1

T
c

)
[U] (45)

= lim
t→0

GradH(X + tU)−GradH(X)

t
− lim
t→0

GradH(X + tU)1c1
T
c −GradH(X)1c1

T
c

ct
(46)

= HessH[V]− 1

c
HessH[V]1c1

T
c (47)

A.5 PROOF OF THEOREM 5

Let RX(tV) = argminF∈M‖F − (X + tV)‖2F , X ∈M. Then

argminF∈M‖F − (X + tV)‖2F = max(0, X + tV − ν(t)1Tc − 1nω
T (t) + 1nρ

T (t)) (48)

where ν(t), ωT (t), ρT (t) are Lagrange multipliers. Moreover, there exists δ > 0 such that for
t ∈ (0, δ), −ν(t)1Tc − 1nω(t)T + 1nρ(t)T = 0, and the Retraction satisfies the following. Where D

dt
denotes the Levi-Civita derivative.

RX(0) = X,
d

dt
RX(tV)

∣∣
t=0

= V,
D

dt
R′X(tV)

∣∣
t=0

= 0 (49)

Thus, RX(tV) is a geodesic.

Proof. First, the Lagrangian dual function of the original problem is as follows:

L(F, ν, ω, ρ) =
1

2
‖F − (X + tV)‖2F − νT (F1c − 1n)− ωT (FT 1n − u) + ρT (l − FT 1n) (50)

Where ν, ω, and ρ are the corresponding Lagrange multipliers, satisfying ν ≥ 0, ω ≥ 0, ρ ≥ 0. Let
∂L
∂F = 0, then we have the following formular:

∂L
∂F

= F −X + ν1Tc + 1nω
T − 1nρ

T − tV = 0, (51)

That is, F = X + tV − ν1Tc − 1nω
T + 1nρ

T . Since F lies on the manifoldM and F ≥ 0, the final
result is:

F ∗ = argminF∈M‖F − (X + tV)‖2F = max
(
0, X + tV − ν1Tc − 1nω

T + 1nρ
T
)
. (52)

It can be proven that F ∗ satisfies the KKT conditions of the original problem. For different t, the
values of the Lagrange multipliers ν, ω, ρ vary, and they are functions of t: ν(t), ω(t), ρ(t). The next
step is to prove the three properties of the second-order Retraction, RX(0) = X, ddtRX(tV)

∣∣
t=0

=

V, DdtR
′
X(tV)

∣∣
t=0

= 0. First, consider RX(0) = argminF∈M‖F −X‖2F .

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Since X ∈ M, we have RX(0) = F ∗(0) = X . Additionally, since F ∗(0) = max
(
0, X +

tV − ν1Tc − 1nω
T + 1nρ

T
)∣∣
t=0

= max
(
0, X − ν(0)1Tc − 1nω(0)T + 1nρ(0)T

)
. We know that

X = max
(
0, X − ν(0)1Tc − 1nω(0)T + 1nρ(0)T

)
.

According to the definition, we calculate:

d

dt
RX(tV)|t=0 = lim

t→0

F ∗(t)− F ∗(0)

t
= lim
t→0

max
(
0, X + tV − ν1Tc − 1nω

T + 1nρ
T
)
− F ∗(0)

t
(53)

Since X ∈ M, we know that Xij > 0, X1c = 1n, and l < X1n < u. Furthermore, since V ∈
TXM, there exists a δ > 0 such that for t ∈ (0, δ), we still have (X + tV)ij > 0, (X + tV)1c = 1n,
and l < (X + tV)1n < u. This means that for t ∈ (0, δ), we have RX(tV) = argminF∈M‖F −
(X + tV)‖2F , and since (X + tV) ∈ M, it follows that RX(tV) = F ∗(t) = X + tV . Therefore,
we have:

d

dt
RX(tV)|t=0 = lim

t→0

F ∗(t)− F ∗(0)

t
= lim
t→0

X + tV −X
t

= V (54)

For D
dtR

′
X(tV), first consider d

dtR
′
X(tV)|t=0 = limt→0

1
t

(
d
dtF

∗(t)− d
dtF

∗(0)
)
. Since there

exists an interval (0, δ) such that F ∗(t) = max
(
0, X + tV − ν1Tc − 1nω

T + 1nρ
T
)

=

X + tV , and within (0, δ), without loss of generality, we can assume that ν(t)1Tc −
1nω(t)T + 1nρ(t)T = 0, and within this interval, X + tV > 0. Thus, within (0, δ),
we have d

dt max
(
0, X + tV − ν1Tc − 1nω

T + 1nρ
T
)

= V. Therefore, d
dtR

′
X(tV)|t=0 =

limt→0
1
t (V − V) = 0. Thus, the Levi-Civita derivative, compatible with the connection, is

D
dtR

′
X(tV)|t=0 = 0. This concludes the proof.

A.6 PROOF OF THEOREM 6

M = Ω1 ∪ Ω2 ∪ Ω3, where Ω1 = {X | X > 0, X1c = 1n}, Ω2 = {X | XT 1n > l}, and
Ω3 = {X | XT 1n < u}. The primal problem can be solved using the Dykstras (Tibshirani, 2017;
Boyle & Dykstra, 1986) algorithm by iteratively projecting onto Ω1, Ω2, and Ω3. Specifically:

ProjΩ1
(X) =

(
Xij + ηi

)
+

, where η is determined by ProjΩ1
(X)1c = 1n.

ProjΩ2
(X) and ProjΩ3

(X) are defined similarly. For example,

ProjΩ2
(Xj) =

{
Xj , if (Xj)T 1n > lj ,
1
n (lj − 1TnX

j)1n +Xj , if (Xj)T 1n ≤ lj ,
(55)

where Xj is the j-th column of X , and lj is the j-th element of the column vector l.

Proof. Consider first the orthogonal projection on Ω1, which is to solve the optimization problem:
F = arg minF∈Ω1 ‖F −X‖2F where Ω1 = {X | X > 0, X1c = 1n}. The Lagrange function for
this problem, incorporating the equality constraint X1c = 1n and the inequality constraint X > 0, is:

L(F, η,Θ) =
1

2
‖F −X‖2F − ηT (F1c − 1n)−

∑
i,j

ΘijFij (56)

where η ∈ Rn are Lagrange multipliers for the equality constraints, and Θij ≥ 0 are multipliers for
the non-negativity constraints.

Since the constraints are separable row-wise, we optimize each row Fi independently. The row-wise
Lagrangian is Li(Fi, ηi,Θi) = 1

2‖Fi−Xi‖22− ηi(Fi1c− 1)−
∑
j ΘijFij . Taking the gradient with

respect to Fi and setting it to zero:

Fi −Xi − ηi1Tc −Θi = 0 ⇒ Fi = Xi + ηi1
T
c + Θi (57)

By complementary slackness, ΘijFij = 0. If Fij > 0, then Θij = 0, implying Fij = Xij + ηi. If
Fij = 0, then Xij + ηi + Θij = 0 with Θij ≥ 0, hence Xij + ηi ≤ 0. Thus, the optimal solution is:

F ∗ij = max(Xij + ηi, 0) = (Xij + ηi)+ (58)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

The multiplier ηi is determined by the equality constraint F ∗i 1c = 1→
∑c
j=1(Xij + ηi)+ = 1

For the projection onto Ω2, consider the optimization problem: F ∗ = argminF∈Ω2
‖F −X‖2F where

Ω2 = {X | XT 1n > l}. For each column Xj , solve: minF j ‖F j −Xj‖22 s.t. (F j)T 1n > lj .

If (Xj)T 1n > lj , the constraint is already satisfied: ProjΩ2
(Xj) = Xj

If (Xj)T 1n ≤ lj , introduce the Lagrangian:

L(F j , λ) =
1

2
‖F j −Xj‖22 + λ

(
lj − (F j)T 1n

)
, λ ≥ 0 (59)

Taking the gradient of F j , we have the following:

∇F jL = F j −Xj − λ1n = 0 ⇒ F j = Xj + λ1n (60)

Substitute into the binding constraint (F j)T 1n = lj :

(Xj + λ1n)T 1n = lj ⇒ λ =
1

n

(
lj − (Xj)T 1n

)
(61)

Thus, the projection is:

ProjΩ2
(Xj) = Xj +

1

n

(
lj − (Xj)T 1n

)
1n (62)

Combining both cases, we have that

ProjΩ2
(Xj) =

{
Xj , if (Xj)T 1n > lj ,
1
n (lj − 1TnX

j)1n +Xj , if (Xj)T 1n ≤ lj ,
(63)

Similarly, for the projection onto Ω3, we can follow the same procedure and obtain:

ProjΩ3
(Xj) =

{
Xj , if (Xj)T 1n < uj ,
1
n (uj − 1TnX

j)1n +Xj , if (Xj)T 1n ≥ uj ,
(64)

where Xj is the j-th column of X , and uj is the j-th element of the column vector u.

The ultimate goal is to perform an orthogonal projection onto the intersection of three con-
vex sets, Ω1,Ω2,Ω3. This can be achieved using the von Neumann iterative projection the-
orem. However, the von Neumann iterative projection can only guarantee convergence to
Ω1 ∩ Ω2 ∩ Ω3, but it does not ensure the orthogonal projection, i.e., the solution to the
Retraction problem. To address this, we introduce Dykstras’s projection algorithm, which
performs a linear correction to the von Neumann projection algorithm at each step, ensur-
ing that it achieves the orthogonal projection onto Ω1 ∩ Ω2 ∩ Ω3. The algorithm flowchart
for Dykstras’s projection algorithm for the intersection of d convex sets is shown below.

Algorithm 1: Dykstras’s Algorithm for Projection onto the Intersection of Convex Sets
Input: Closed convex sets Ω1,Ω2, . . . ,Ωd and point y ∈ Rn×c
Output: Sequence of iterates u(k) converging to the projection onto Ω1 ∩ · · · ∩ Ωd

1 Initialize u(0) = y, z(0)
1 = · · · = z

(0)
d = 0;

2 while not converged do
3 u

(k)
0 = u

(k−1)
d ;

4 for i = 1 to d do
5 u

(k)
i = ProjΩi

(u
(k)
i−1 + z

(k−1)
i);

6 z
(k)
i = u

(k)
i−1 + z

(k−1)
i − u(k)

i ;
7 end
8 k ← k + 1;
9 end

10 return u(k);

The algorithm iteratively performs ProjΩ1
(·), ProjΩ2

(·), and ProjΩ3
(·), and at each step, a linear

correction using u(k) is applied. This ensures the final result is the orthogonal projection onto the
intersection Ω1 ∩ Ω2 ∩ Ω3.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

A.7 PROOF OF THEOREM 7

Solving the primal problem is equivalent to solving the following dual problem:

max
ω≥0,ρ≥0

L =
1

2
‖max(0, X + tV − ν1Tc − 1nω

T + 1nρ
T)‖2F − 〈ν, 1n〉 − 〈ω, u〉+ 〈ρ, l〉 (65)

where ν, ω, and ρ are Lagrange multipliers. The partial derivatives of L with respect to ν, ω, and ρ
are known, and gradient ascent can be used solving ν, ω, and ρ. Finally, RX(tV) can be obtained
using max(0, X + tV − ν1Tc − 1nω

T + 1nρ
T). The partial derivatives are following.

∂L
∂ν

= max(0, X + tV − ν1Tc − 1nω
T + 1nρ

T)1c − 1n

∂L
∂ω

= max(0, X + tV − ν1Tc − 1nω
T + 1nρ

T)T 1n − u

∂L
∂ρ

= −max(0, X + tV − ν1Tc − 1nω
T + 1nρ

T)T 1n + l

(66)

Proof. According to the previous theorem, we know that

F ∗ = max
(
0, X + tV − ν1Tc − 1nω

T + 1nρ
T
)

(67)

Substituting F ∗ into the Lagrangian function, we obtain

L(ν, ω, θ) =
1

2

∥∥max
(
0, X + tV − ν1Tc − 1nω

T + 1nρ
T
)
−X − tV

∥∥2

F
(68)

+ νT max
(
0, X + tV − ν1Tc − 1nω

T + 1nρ
T
)
1c − νT 1n (69)

+ ωT max
(
0, X + tV − ν1Tc − 1nω

T + 1nρ
T
)T

1n − ωTu (70)

− ρT max
(
0, X + tV − ν1Tc − 1nω

T + 1nρ
T
)T

1n + ρT l (71)

Among the Lagrange multipliers ν, ω, ρ, we have ω ≥ 0 and ρ ≥ 0.

? If
(
X + tV − ν1Tc − 1nω

T + 1nρ
T
)
< 0, then max

(
0, X + tV − ν1Tc − 1nω

T + 1nρ
T
)

= 0,
which further leads to

L(ν, ω, ρ) =
1

2
‖X + tV ‖2F − νT 1n − ωTu+ ρT l (72)

At this point, a simple differentiation yields:

∂

∂ν
L(ν, ω, ρ) = −1n,

∂

∂ω
L(ν, ω, ρ) = −u, ∂

∂ρ
L(ν, ω, ρ) = l (73)

? If
(
X + tV − ν1Tc − 1nω

T + 1nρ
T
)
≥ 0, then max

(
0, X + tV − ν1Tc − 1nω

T + 1nρ
T
)

= X +

tV −ν1Tc −1nω
T +1nρ

T . It is worth noting that νT max
(
0, X+tV −ν1Tc −1nω

T +1nρ
T
)
1c ∈ R

is a real number, that is,

νT max
(
0, X + tV − ν1Tc − 1nω

T + 1nρ
T)1c (74)

= tr
(
νT max

(
0, X + tV − ν1Tc − 1nω

T + 1nρ
T)1c) (75)

= tr
(
max

(
0, X + tV − ν1Tc − 1nω

T + 1nρ
T)T ν1Tc) (76)

=
〈
max

(
0, X + tV − ν1Tc − 1nω

T + 1nρ
T), ν1Tc 〉. (77)

At this point, we have

L(ν, ω, ρ) =
1

2

∥∥ν1Tc + 1nω
T − 1nρ

T
∥∥2

F
− 〈ν, 1n〉 − 〈ω, u〉+ 〈ρ, l〉 (78)

+
〈
X + tV − ν1Tc − 1nω

T + 1nρ
T , ν1Tc + 1nω

T − 1nρ
T
〉

(79)

=
1

2

∥∥ν1Tc + 1nω
T − 1nρ

T
∥∥2

F
− 〈ν, 1n〉 − 〈ω, u〉+ 〈ρ, l〉 (80)

+
〈
X + tV, ν1Tc + 1nω

T − 1nρ
T
〉
−
∥∥ν1Tc + 1nω

T − 1nρ
T
∥∥2

F
(81)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

= −1

2

∥∥ν1Tc + 1nω
T − 1nρ

T
∥∥2

F
− 〈ν, 1n〉 − 〈ω, u〉 (82)

+ 〈ρ, l〉+
〈
X + tV, ν1Tc + 1nω

T − 1nρ
T
〉

(83)

At this point, taking derivatives of the Lagrangian with respect to the multipliers ν, ω, ρ, we obtain

∂L
∂ν

= (X + tV − ν1Tc − 1nω
T + 1nρ

T)1c − 1n,

∂L
∂ω

= (X + tV − ν1Tc − 1nω
T + 1nρ

T)T 1n − u,

∂L
∂ρ

= −(X + tV − ν1Tc − 1nω
T + 1nρ

T)T 1n + l.

(84)

Finally, by consolidating the two cases, we obtain

∂L
∂ν

= max(0, X + tV − ν1Tc − 1nω
T + 1nρ

T)1c − 1n,

∂L
∂ω

= max(0, X + tV − ν1Tc − 1nω
T + 1nρ

T)T 1n − u,

∂L
∂ρ

= −max(0, X + tV − ν1Tc − 1nω
T + 1nρ

T)T 1n + l.

(85)

After obtaining the gradient, the dual problem can be solved by a simple dual gradient ascent method.
It should be noted that the multipliers ω and ρ have non-negative constraints, so projection onto the
constraints is needed. Specifically, after each gradient ascent step, ω and ρ should be projected onto
the non-negative constraint. Once ν, ω, and ρ are obtained, F ∗ can be derived using

F ∗ = max
(
0, X + tV − ν1Tc − 1nω

T + 1nρ
T
)

(86)

The algorithm flow is as follows:

Algorithm 2: Dual Gradient Projection Ascent Method
Input: Initial values: ν0, ω0, ρ0

Step size κ > 0
Constraints: ω ≥ 0, ρ ≥ 0
Output: Optimized multipliers: ν∗, ω∗, ρ∗

1 Initialize ν = ν0, ω = ω0, ρ = ρ0;
2 while not converged do
3 Compute Gradient:;
4

∂L
∂ν , ∂L∂ω , ∂L∂ρ ;

5 Update multipliers:;
6 ν ← ν + κ · ∂L∂ν ;
7 ω ← ω + κ · ∂L∂ω ;
8 ρ← ρ+ κ · ∂L∂ρ ;
9 Project onto constraints:;

10 ω ← max(0, ω);
11 ρ← max(0, ρ);
12 end
13 return Final values ν, ω, ρ;

A.8 PROOF OF THEOREM 8

The Sinkhorn-based Retraction is defined as

RsX(tV) = S(X � exp(tV �X)) = diag(p∗)(X � exp(tV �X)) diag(q∗ � w∗) (87)

where p∗, q∗, w∗ are vectors, exp(·) denotes element-wise exponentiation, and diag(·) converts a
vector into a diagonal matrix. The vectors p∗, q∗, w∗ are obtained by iteratively updating the following

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

equations: 
p(k+1) = 1n �

(
(X � exp(tV �X)) (q(k) � w(k))

)
,

q(k+1) = max
(
l �
(

(X � exp(tV �X))
T
p(k+1) � w(k)

)
, 1c

)
,

w(k+1) = min
(
u�

(
(X � exp(tV �X))

T
p(k+1) � q(k+1)

)
, 1c

)
.

(88)

This iterative procedure ensures the mapping onto the RIM manifold. The solution RsX(tV) =
diag(p∗)(X�exp(tV �X)) diag(q∗�w∗) is equivalent to solving the dual-bound optimal transport
problem (12) with an entropy regularization parameter of 1.

RsX(tV) = argminF∈M
〈
F,− log(X�exp(tV �X))

〉
+δ
∣∣
δ=1

n∑
i=1

c∑
j=1

(
Fij log(Fij)−Fij

)
(89)

Proof. Introduce Lagrange multipliers η ∈ Rn (for equality F1c = 1n), and λ, ν ∈ Rc,λ, ν > 0 (for
inequalities FT 1n > l, FT 1n < u). The Lagrangian is:

L(F, η, λ, ν) =
〈
F,− log(X � exp(tV �X))

〉
+
∑
i,j

(
Fij log(Fij)− Fij

)
+ ηT (F1c − 1n) + λT (l − FT 1n) + νT (FT 1n − u).

(90)

Differentiate L with respect to Fij and set to zero, we have

− log

(
Xij exp

(
tVij
Xij

))
+ logFij + ηi − λj + νj = 0 (91)

Simplify using log(Xij exp(tVij/Xij)) = logXij + tVij/Xij :

−Xij −
tVij
Xij

+ logFij + ηi − λj + νj = 0 (92)

Solve for Fij :

F ∗ij = Xij exp

(
tVij
Xij
− ηi + λj − νj

)
= Xij exp

(
tVij
Xij

)
e−ηi+λj−νj (93)

Since λ and ν are positive, we introduce the following variable substitutions:
p = e−η,

q = eλ, eλ ≥ 1n,

w = e−ν , e−ν ≤ 1n.

(94)

Writing the component-wise form into matrix form, we have the following formula.

F ∗ = diag(p) (X � exp(tV �X)) diag(q � w). (95)

To construct the iterative format, we first consider the equality constraints. Substitute F into
F1c = 1n:

diag(p) (X � exp(tV �X)) diag(q � w)1c = 1n ⇒ diag(p) (X � exp(tV �X)) (q � w) = 1n
(96)

Further, we can derive the iterative update formula for the row equality constraints.

p = 1n � ((X � exp(tV �X)) (q � w))⇒ p(k+1) = 1n �
(

(X � exp(tV �X)) (q(k) � w(k))
)

(97)
Next, considering the column constraint FT 1n > l, substituting F , we obtain:

diag(q � w) (X � exp(tV �X))
T

diag(p)T 1n > l⇒ (q � w)�
(

(X � exp(tV �X))
T
p
)
> l
(98)

By the complementary slackness condition, we obtain:

λj
[
(q � w)�

(
(X � exp(tV �X))T p

)
− l
]
j

= 0 (99)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

At this point, we discuss the complementary slackness condition.
[
(q � w)�

(
(X � exp(tV �X))T p

)]
j
6= lj , λj = 0⇒ qj = 1[

(q � w)�
(
(X � exp(tV �X))T p

)]
j

= lj , ⇒ qj =
(
l �
(

(X � exp(tV �X))
T
p� w

))
j

(100)
The element-wise iterative update formula is then derived as follows.

qj = max
(
l �
(

(X � exp(tV �X))
T
p� w

)
, 1c

)
j

(101)

⇒q(k+1)
j = max

(
l �
(

(X � exp(tV �X))
T
p� w

)
, 1c

)
j

(102)

⇒q(k+1) = max
(
l �
(

(X � exp(tV �X))
T
p� w

)
, 1c

)
(103)

Considering the column constraint FT 1n < u, substituting F , we obtain:

diag(q�w) (X � exp(tV �X))
T

diag(p)T 1n < u⇒ (q�w)�
(

(X � exp(tV �X))
T
p
)
< u

(104)

By the complementary slackness condition for upper bounds:

νj

[
u− (q � w)�

(
(X � exp(tV �X))

T
p
)]
j

= 0 (105)

This leads to two cases:
[
(q � w)�

(
(X � exp(tV �X))

T
p
)]
j
6= uj , νj = 0⇒ wj = 1[

(q � w)�
(

(X � exp(tV �X))
T
p
)]
j

= uj , ⇒ wj =
(
u�

((
(X � exp(tV �X))

T
p
)
� q
))

j

(106)

The element-wise update rule is then:

wj = min
(
u�

((
(X � exp(tV �X))

T
p
)
� q
)
, 1c

)
j

(107)

⇒w(k+1)
j = min

(
u�

((
(X � exp(tV �X))

T
p(k+1)

)
� q(k+1)

)
, 1c

)
j

(108)

⇒w(k+1) = min
(
u�

((
(X � exp(tV �X))

T
p(k+1)

)
� q(k+1)

)
, 1c

)
(109)

The final update formula can be obtained as follows.
p(k+1) = 1n �

(
(X � exp(tV �X)) (q(k) � w(k))

)
,

q(k+1) = max
(
l �
(

(X � exp(tV �X))
T
p(k+1) � w(k)

)
, 1c

)
,

w(k+1) = min
(
u�

(
(X � exp(tV �X))

T
p(k+1) � q(k+1)

)
, 1c

)
.

(110)

It is easy to verify that the result derived from Sinkhorn is indeed a Retraction (Douik & Hassibi,
2019). It can be seen that the F obtained through the Retraction RsX(tV) minimizes the inner
product with log(X � exp(tV �X)) under the entropy regularization coefficient of 1. On one hand,
this entropy regularization is introduced merely to facilitate computation via the Sinkhorn theorem.
On the other hand, the regularization coefficient being 1 lacks practical significance. Moreover,
this Retraction is not a second-order Retraction, making its theoretical justification in terms of
convergence properties less rigorous compared to the norm-minimizing Retraction. Therefore, the
norm-minimizing Retraction is recommended.

A.9 PROOF OF THEOREM 9

Theorem 9. The loss function for the Ratio Cut is given byHr(F) = tr(FTLF (FTF)−1). Then,
the Euclidean gradient of the loss function with respect to F is:

GradHr(F) = 2
(
LF (FTF)−1 − F (FTF)−1(FTLF)(FTF)−1

)
(111)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Given the substitutions (FTF)−1 = J and FTLF = K, the Euclidean Hessian map for the loss
function is:

HessHr[V] = 2
(
LV J − LFJ(V TF + FTV)J − V JKJ + FJ(V TF + FTV)JKJ (112)

− FJ(V TLF + FTLV)J + FJKJ(V TF + FTV)J
)

(113)

Proof. Let the objective function beHr(F) = tr(FTLFJ), where J = (FTF)−1. Apply a small
perturbation δF to F , yielding the variation:

δHr = tr
(
(δFT)LFJ + FTL(δF)J − FTLFJ

(
(δFT)F + FT (δF)

)
J
)
. (114)

Using the cyclic property of the trace and symmetry (L is symmetric, J is symmetric), we simplify
to:

δHr = 2 tr
(
δFT

(
LFJ − FJ(FTLF)J

))
. (115)

Thus, the Euclidean gradient is:

GradHr(F) = 2
(
LFJ − FJ(FTLF)J

)
. (116)

Apply the direction V to the gradient and compute the directional derivative:

HessHr[V] =
d

dt
GradHr(F + tV)

∣∣∣
t=0

. (117)

Expanding the components:

• The derivative of LFJ gives LV J − LFJ(V TF + FTV)J ,

• The derivative of −FJKJ yields:

−V JKJ − F
[
−J(V TF + FTV)JKJ + J(V TLF + FTLV)J + JKJ(V TF + FTV)J

]
.

(118)

Combining and simplifying:

HessHr[V] = 2
(
LV J−LFJ(V TF+FTV)J−V JKJ+FJ(V TF+FTV)JKJ−FJ(V TLF+FTLV)J

)
.

(119)
Further, to obtain the Riemannian gradient and Riemannian Hessian mapping, the Euclidean gradient
and Euclidean Hessian mapping from the above expressions can be projected onto the RIM manifold.
This allows for the optimization of the Ratio Cut loss function on the RIM manifold.

A.10 PROOF OF THEOREM 10

Theorem 10. For any graph cut problem expressed asH(F) = tr((FTLF)(FTWF)−1), where W
is any symmetric matrix, the Euclidean gradient GradH(F) is bounded, and satisfies:

‖GradH(F)‖s ≤ 2

(
‖L‖s

√
n

α
+
‖W‖s‖L‖sn3/2

α2

)
, (120)

where

α =
σmin(W) · l2

n
, (121)

and σmin(W) is the smallest singular value of the matrix W . This implies that H(F) is Lipschitz
continuous.

Proof. The spectral norm of the matrix F , which is its largest singular value, satisfies:

‖F‖2s = σmax(F)2 ≤
n∑
i=1

‖Fi‖22 ≤ n · 12 = n, (122)

therefore, ‖F‖s ≤
√
n.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Let F j be the j-th column of the matrix F . Given the constraint F>1n > l, the `1-norm of F j
satisfies ‖F j‖1 =

∑n
i=1 Fij > l. By the Cauchy–Schwarz inequality, we have:

‖F j‖1 ≤
√
n‖F j‖2 ⇒ ‖F j‖2 ≥

‖F j‖1√
n
≥ l√

n
. (123)

Next, we estimate a lower bound for the smallest singular value of the matrix FTWF . For any unit
vector v ∈ Rc, we have:

‖Fv‖22 ≥
c∑
j=1

v2
j ‖F j‖22 ≥

l2

n

c∑
j=1

v2
j =

l2

n
. (124)

Therefore, the smallest singular value of the matrix F satisfies:

σmin(F) ≥ l√
n
. (125)

Since W is a symmetric matrix, its singular values are the absolute values of its eigenvalues, i.e.,
σi(W) = |λi(W)|. Using the singular value inequality for matrix products, we have:

σmin(FTWF) ≥ σmin(F)2 · σmin(W). (126)

Substituting the previously derived σmin(F) ≥ l√
n
, σmin(W) = mini |λi(W)| we obtain

σmin(FTWF) ≥
(

l√
n

)2

· σmin(W) =
l2

n
· σmin(W). (127)

Furthermore, the upper bound for the spectral norm of the inverse matrix can be estimated as:

‖(FTWF)−1‖s =
1

σmin(FTWF)
≤ n

σmin(W)l2
≡ 1

α
(128)

and the α can be presented as

α =
σmin(W)l2

n
. (129)

Using the same proof method as in A.9, we provide the gradient expression for the general graph cut
objective function as:

GradH(F) = 2
(
LF (FTWF)−1 −WF (FTWF)−1(FTLF)(FTWF)−1

)
, (130)

and with the above technique, we can estimate its nuclear norm upper bound.

For ‖LF (FTWF)−1‖s Using the sub-multiplicativity of the spectral norm (‖AB‖s ≤ ‖A‖s ·
‖B‖s):

‖LF (FTWF)−1‖s ≤ ‖L‖s · ‖F‖s · ‖(FTWF)−1‖s (131)

Substituting the known upper bounds:

‖LF (FTWF)−1‖s ≤ ‖L‖s · ‖F‖s · ‖(FTWF)−1‖s = ‖L‖s · ‖F‖s ·
1

σmin(FTWF)
(132)

≤ ‖L‖s · ‖F‖s ·
n

σmin(W)l2
=
‖L‖s · ‖F‖s

α
≤ ‖L‖s ·

√
n

α
(133)

Next, we consider the second term WF (FTWF)−1(FTLF)(FTWF)−1. This term can be decom-
posed into four parts, namely:

‖WF (FTWF)−1(FTLF)(FTWF)−1‖s ≤ ‖WF‖s·‖(FTWF)−1‖s·‖FTLF‖s·‖(FTWF)−1‖s
(134)

For ‖WF‖s, we have the following inequality:

‖WF‖s ≤ ‖W‖s · ‖F‖s ≤ ‖W‖s ·
√
n. (135)

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

For ‖FTLF‖s, we have the following inequality:

‖FTLF‖s ≤ ‖FT ‖s · ‖L‖s · ‖F‖s = ‖F‖s · ‖L‖s · ‖F‖s ≤ ‖L‖s · n. (136)

Combining our estimates with the previous inequality, we obtain:

‖WF (FTWF)−1(FTLF)(FTWF)−1‖s (137)

≤ ‖WF‖s · ‖(FTWF)−1‖s · ‖FTLF‖s · ‖(FTWF)−1‖s (138)

≤ ‖W‖s ·
√
n · ‖L‖s · n ·

(1

σmin(FTWF)

)2 ≤ ‖W‖s · √n · ‖L‖s · n · (n

σmin(W)l2
)2
(139)

=
‖W‖s · ‖L‖s · n7/2

σ2
min(W)l4

=
‖W‖s · ‖L‖s · n3/2

α2
. (140)

In summary, we have

‖GradH(F)‖s ≤ 2

(
‖L‖s

√
n

α
+
‖W‖s‖L‖sn3/2

α2

)
, (141)

where

α =
σmin(W) · l2

n
. (142)

Since
‖GradH(F)‖F ≤

√
min(n, c) ‖GradH(F)‖s , (143)

it follows that ‖GradH(F)‖F is also bounded.

In particular, for the Ratio Cut, we know that W = I is the identity matrix. Therefore,

‖GradHm(F)‖s ≤ 2

(
‖L‖s

√
n

α
+
‖L‖sn3/2

α2

)
, α =

l2

n
. (144)

Furthermore, since

gradHr(F) = GradrH(F)− 1

c
GradrH(F)1c1

T
c , (145)

it is clear that gradHr(F) is also bounded. An obvious bound is given by

‖gradHr(F)‖s ≤ ‖GradHr(F)‖s +
1

c

(
‖GradHr(F)‖s ·

∥∥1c1
T
c

∥∥
s

)
, (146)

which leads to

‖gradHr(F)‖s ≤ 2

(
‖L‖s

√
n

α
+
‖L‖sn3/2

α2

)
+

1

c

(
2

(
‖L‖s

√
n

α
+
‖L‖sn3/2

α2

)
+
√
nc

)
(147)

= (2 +
2

c
)

(
‖L‖s

√
n

α
+
‖L‖sn3/2

α2

)
+

√
n

c
(148)

where α = l2

n .

A.11 PROOF OF THEOREM 11

Theorem 11. For a general graph cut problem expressed as H(F) = tr((FTLF)(FTWF)−1),
where W is an arbitrary symmetric matrix, the problem is always Lipschitz smooth. Let the cor-
responding smoothness Lipschitz constant be Q. When applying Riemannian Gradient Descent
(RIMRGD) on the RIM manifold with step size κ, if κ ≤ 1

Q , thenH(F) converges to a critical point
at a rate of O(1

T), i.e.,

min
0≤k≤T

∥∥∥grad H(F (k))
∥∥∥2

≤
2
(
H(F (0))−H(F ∗)

)
κ(T + 1)

, (149)

where T is the total number of iterations, andH(F ∗) is the global minimum ofH(F).

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Proof. For a general graph cut problem, similar to Theorem A.9, the expression of the Euclidean
Hessian mapping can be given.

HessH[V] = 2
(
LV J − LFJsym(V TWF)J −WV JKJ (150)

+AFJsym(V TWF)JKJ −WFJsym(V TWF)J (151)

+WFJKJsym(V TWF)J
)

(152)

Where (FTWF)−1 = J and FTLF = K, and sym(·) denotes the symmetrization operation.

Similar to the previous discussion, we can decompose HessH[V] into multiple parts:

||HessH[V]||s ≤ 2
(
||LV J ||s + ||LFJsym(V TWF)J ||s + ||WV JKJ ||s (153)

+ ||AFJsym(V TWF)JKJ ||s + ||WFJsym(V TWF)J ||s (154)

+ ||WFJKJsym(V TWF)J ||s
)

(155)

So the spectral norm of each part is bounded. It is not difficult to prove that the spectral norm of
HessH[V] is also bounded. Furthermore, it can be shown that the Riemannian Hessian map hessH[V]
is also bounded.

||hessH[V]||s ≤ ||HessH[V]||s +
1

c
||HessH[V]||s · ||1Tc 1c||s (156)

Since Theorem A.5 has already proven that we can obtain geodesics using Dijkstra’s algorithm, in
the subsequent proofs, we will directly assume the use of geodesics for the retraction process.

Since the Riemannian Hessian map is bounded, let its upper bound be Q. Using the retraction
generated by the geodesic, we can expand the functionH(F) as follows:

H(RF (V)) ≤ H(F) + 〈gradH(F), V 〉F +
Q

2
‖V ‖2F (157)

In the Riemannian Gradient Descent method on the RIM manifold (RIMRGD), by choosing V =
−κ gradH(F (k)), and substituting it into the upper bound, we obtain:

H(F (k+1)) ≤ H(F (k))− κ‖gradH(F (k))‖2 +
Qκ2

2
‖gradH(F (k))‖2. (158)

When the step size κ ≤ 1
Q , it simplifies to:

H(F (k+1)) ≤ H(F (k))− κ

2
‖gradH(F (k))‖2. (159)

This indicates that at each iteration, the function value decreases by at least κ
2 ‖gradH(F (k))‖2.

Summing the descent over the first k iterations yields:

k∑
i=0

κ

2
‖gradH(F (i))‖2 ≤ H(F (0))−H(F (k+1)) ≤ H(F (0))−H(F ∗), (160)

where H(F ∗) is the infimum of H(F). Since the right-hand side is bounded, the series∑∞
i=0 ‖gradH(F (i))‖2 converges, and thus

lim
k→∞

‖gradH(F (k))‖ = 0. (161)

From the inequality above, we obtain:

min
0≤k≤T

‖gradH(F (k))‖2 ≤ 2(H(F (0))−H(F ∗))

κ(T + 1)
(162)

which implies a convergence rate of O
(

1
T

)
.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

In addition, since the algorithm in Manopt adopts the Wolfe step size, we further provide a conver-
gence proof of RIMRGD under the Wolfe step-size scheme. Moreover, based on our experiments, it
usually yields numerical results consistent with those obtained using the Armijo step size.

Condition 1. Equation (156) shows that the Riemannian Hessian hess is bounded. Therefore, we
have hess(F) ≤ Q. According to Lemma 3.5 (Retraction L-smooth) in (Kasai et al., 2018), there
exists L > 0 such that

f(xt+1) ≤ f(x) + 〈grad f(x), s〉+ 1
2L‖s‖

2, xt+1 = Rx(s), s ∈ TxM. (163)

Condition 2. We adopt the Wolfe step size, i.e.,

f(x+ κd) ≤ f(x) + c1 · κ 〈grad f(x), d〉,
〈grad f(x+ κd), d〉 ≥ c2 〈grad f(x), d〉, (164)

where 0 < c1 < c2 < 1 are hyperparameters.

Condition 3. The Ratio Cut loss is clearly lower bounded (according to the real interpretation of
Ratio Cut).

Therefore, according to (Sato, 2021), the algorithm converges to a critical point.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

B PRELIMINARIES

B.1 NOTATIONS

Matrices are denoted by uppercase letters, while vectors are denoted by lowercase letters. Let tr(·)
the trace of a matrix. 1n denotes an n-dimensional column vector of all ones, and Indn×c represents
the set of indicator matrices. If F ∈ Indn×c, then F ∈ Rn×c satisfies the property that each row
contains exactly one element equal to 1, while all others are 0. The relaxed indicator matrix set is
defined as M = {X | X1c = 1n, l < XT 1n < u,X > 0}, and we proved it can form a manifold
M. TXM represents the tangent space ofM at X . 〈·, ·〉 denotes the Euclidean inner product, while
〈·, ·〉X denotes the inner product on the manifold at X . H represents the objective function, GradH
denotes the Euclidean gradient ofH, and gradH denotes the Riemannian gradient ofH. HessH(F)
represents the Euclidean Hessian mapping, while hessH(F) represents the Riemannian Hessian
mapping. RX denotes the Retraction function at X , which generates a curve passing through X ,
and RX(tV) represents a curve on the manifold obtained via the Retraction function, satisfying
d
dtRX(0) = V . The connection in Euclidean space is denoted as ∇̄V U , while the connection on the
manifold is denoted as ∇V U . The differential mapping is represented as DH(F)[V]. Specifically,
a geodesic γ(t) is a curve on the manifold that extremizes the distance between two points. If
D
dtγ
′(t) = 0, then γ(t) is a geodesic. P represents vector transport, which maps the tangent vector V

at point X on the manifold to the tangent space TYM at another point Y .

We have compiled all the symbols used in this paper in Table 6, where their specific meanings are
explained. Additionally, all Riemannian optimization-related symbols used in this paper follow
standard conventions in the field and can also be referenced in relevant textbooks.

Table 6: Notations.

Notation Description

Indn×c The set of n× c indicator matrices
1n, 1c All-ones column vectors of size n or c
L Laplacian matrix
l, u Lower and upper bounds of the column sum of the relaxed indicator matrix, both are c-dimensional column vectors
M A set that forms a manifold
< ·, · > Inner product defined in Euclidean space, mapping two Euclidean vectors to a scalar
< ·, · >X Inner product defined on the tangent space ofM at X
TXM Tangent space of the manifoldM at X , which is a linear space
H The objective function to be optimized
GradH(F) Euclidean gradient ofH at F , i.e., the gradient in the embedding space
gradH(F) Riemannian gradient ofH at F

∇̄V U Riemannian connection of the tangent vector field U along V in Euclidean space
∇V U Riemannian connection of the tangent vector field U along V on the manifold
HessH[V] Riemannian Hessian mapping along tangent vector V in Euclidean space
hessH[V] Riemannian Hessian mapping along tangent vector V on the manifold
RX(tV) A curve on the manifold generated at X along the tangent vector tV
d
dtRX(tV)

∣∣
t=0

The derivative of RX(tV) at t = 0
D
dtγ
′(t)
∣∣
t=0

Levi-Civita derivative of d
dtγ(t) at t = 0, where D

dtγ
′(t)
∣∣
t=0

= 0 means RX(tV) generates a geodesic with parameter t

argmin(·) Returns the minimizer of an optimization problem
Ω1, Ω2, Ω3 Linear submanifolds that require projection
Xi The i-th row of matrix X
Xj The j-th column of matrix X
ProjΩi

(Xj) Orthogonal projection of the j-th column of matrix X onto the set Ωi
max(a, b) Returns the maximum of a and b
min(a, b) Returns the minimum of a and b
L Lagrangian function for solving the optimization problem
|| · ||F Frobenius norm of a matrix
ν(t), ω(t), ρ(t) Lagrange multipliers in the optimization problem
∂L
∂ν ,

∂L
∂ω ,

∂L
∂ρ Partial derivatives of L with respect to ν(t), ω(t), ρ(t)

exp(·) Element-wise exponential function on a matrix

diag(·) Converts a vector into a diagonal matrix
DH(F)[V] The differential mapping ofH at F along V
S(·) Sinkhorn function that outputs a doubly stochastic matrix
P Maps the tangent vector V at point X on the manifold to the tangent space TYM at another point Y
(·)† Moore-Penrose pseudoinverse of a matrix
tr(·) Trace of a matrix
� Element-wise division
� Hadamard product (element-wise multiplication)

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

B.2 INTRODUCTION TO RIEMANNIAN OPTIMIZATION

Riemannian optimization optimizes functions over Riemannian manifolds, which are smooth mani-
folds equipped with a metric that defines distance and angles (Meghwanshi et al., 2018). It extends
classical optimization to non-Euclidean spaces by replacing the Euclidean gradient with the Rieman-
nian gradient and so on. Introduced in the 1990s in control theory and signal processing (Edelman
et al., 1998; Overton & Womersley, 1995), it has since been widely adopted in machine learning,
computer vision, and data science due to its ability to handle geometric constraints (Carson et al.,
2017; Khan & Maji, 2021; Boumal, 2023).

The core idea is to respect the manifold’s geometry during optimization. Unlike classical methods
that assume Euclidean space, Riemannian optimization accounts for curvature. Early methods
used steepest descent, while later developments introduced second-order methods like Riemannian
conjugate gradient and Newton methods for faster convergence. Recent advancements have expanded
this framework to more complex manifolds, such as Stiefel manifold.

The main advantage of Riemannian optimization lies in its ability to perform optimization directly
on the manifold, ensuring that the constraints inherent to the problem are naturally respected. For
example, in low-rank matrix factorization, the optimization occurs on the Stiefel manifold St =
{X ∈ Rn×k | XTX = Ik}, where Ik is the identity matrix of size k, naturally respecting the
orthogonality constraints of the factor matrices.

In Riemannian submanifold of Euclidean space, the Riemannian gradient gradH(F) at a point
F ∈M is defined as the projection of the Euclidean gradient onto the tangent space of the manifold:

gradH(F) = ProjTFMGradH(F) (165)

This ensures that the optimization process stays within the manifold, preserving its geometric
structure.

To solve optimization problems efficiently on manifolds, key operations include the Riemannian
gradient, which is used in gradient-based methods. The gradient descent update rule is:

F (k+1) = RF (k)(−α(k)gradH(F (k))) (166)

where RF is the Retraction map, and αk is the step size at iteration k. The purpose of the Retraction
is to update along a curve in the manifold in a specified direction.

For second-order optimization, the Riemannian Hessian hessH(F) is needed. The Hessian captures
the curvature of the manifold and provides more information about the local behavior of the function.
The Riemannian Hessian is defined as:

hessH(F)[V] = ∇V gradH(F) (167)

for any tangent vector V ∈ TFM, and is used in more sophisticated optimization algorithms to
accelerate convergence.

A geodesic is a curve that connects two points on a manifold with an extremal distance, are also
important in Riemannian optimization. They are used to guide the optimization process along the
manifold and are defined by the differential equation:

d2

dt2
γ(t) + Γ(γ(t), γ̇(t)) = 0 (168)

where Γ are the Christoffel symbols that encode the manifold’s curvature (Boumal, 2014; Smirnov,
2021).

The Retraction map RX(tV) is used to map from the tangent space back onto the manifold after each
iteration. A common Retraction map is the exponential map (Kochurov et al., 2020; Sun et al., 2019),
which can generate a geodesic.

Riemannian optimization efficiently handles manifold structures, avoiding artificial constraints and
leading to faster algorithms. Second-order methods like Riemannian conjugate gradient (RCG) and
Newton methods further improve convergence by utilizing curvature information. The approach is
versatile, extending to manifolds such as the Stiefel, Grassmannian, and the Relaxed Indicator Matrix
(RIM) manifold, which generalizes both single and double stochastic manifolds.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Overall, Riemannian optimization has become a crucial tool in solving large-scale, constrained
optimization problems, particularly in machine learning, computer vision, and robotics, due to its
ability to manage manifold-valued data and complex constraints.

B.3 INTRODUCTION TO RELATED MANIFOLDS

In this section, we will introduce the single stochastic manifold, the doubly stochastic manifold, and
the Stiefel manifold. For each of these manifolds, we will provide their basic definitions and discuss
optimization methods on these manifolds.

B.3.1 SINGLE STOCHASTIC MANIFOLD

The single stochastic manifold (Sun et al., 2015; Saberi-Movahed et al., 2024) consists of matrices
where each element is greater than zero and the row sums are equal to one, denoted as {X | X >
0, X1c = 1n}, with a dimension of (n − 1)c. The tangent space of a manifoldM at a point X is
given by TXM = {U | X1c = 0}.
In current research, the Fisher information metric is typically used as the inner product on the single
stochastic manifoldM, and is defined as:

< U, V >X=
∑
i

∑
j

UijVij
Xij

, ∀U, V ∈ TXM, X ∈M. (169)

The Riemannian gradient gradH(F) is the projection of the Euclidean gradient GradH(F):
gradH(F) = ProjTFM (GradH(F)� F) (170)

where ProjTFM is the projection operator that projects vectors from the Euclidean space onto TFM.
Specifically, the projection is given by:

ProjTXM(Z) = Z − (α1Tc)�X, α = Z1c ∈ Rn (171)
This projection operation involves matrix multiplication and element-wise operations, with a com-
plexity of O(nc).

In the single stochastic manifold, the Retraction mapping RX(tV) is defined as:

X+ = RX(tV) = (X � exp (tV �X))�
(
X � exp (V �X) 1c1

T
c

)
,

where the operation � denotes element-wise multiplication, and � denotes element-wise division.
The time complexity of this operation involves element-wise computation and normalization, resulting
in a complexity of O(nc).

In the embedded space, the connection is considered with the Fisher metric on the set {X|X > 0}.
According to the Koszul formula theorem, the unique connection in the embedded space is given by:

∇̄UV = DV [U]− 1

2
(U � V)�X (172)

Based on this, the unique connection on the manifold that makes the Riemannian Hessian mapping
self - adjoint is:

∇UV = ProjTXM
(
∇̄UV

)
= ProjTXM

(
DV [U]− 1

2
(U � V)�X

)
(173)

When involving directional derivatives and projections, the complexity of the operation is O(nc).

By computing the connection of the Riemannian gradient, one can obtain the Riemannian Hessian
mapping on the manifold. The Riemannian Hessian hessH(F)[V] is

hessH(F)[V] = ProjTFM

(
D gradH(F)[V]− 1

2
(V � gradH(F))� F

)
(174)

where the computation of D gradH(F)[V] involves the Euclidean directional derivative:

D gradH(F)[V] = DGradH(F)[V]�F+GradH(F)�V −(α1Tc)�V −(Dα[V]1Tc)�F (175)
where α = (GradH(F) � F)1c. The time complexity of this computation involves higher-order
derivatives and projections, leading to a complexity of O(nc). Due to the complexity of the computa-
tion, the coefficient in front of O(nc) is large.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

B.3.2 DOUBLY STOCHASTIC MANIFOLD

The double stochastic manifold (Shi et al., 2021; Douik & Hassibi, 2019) refers to the set of matrices
where each element is greater than 0, the row sums equal 1, and the column sums equal r. Specifically,
the manifold is defined as:

{X | X > 0, X1c = 1n, X
T 1n = r} (176)

with dimension (n− 1)(c− 1). In fact, there are requirements for r. The more general definition is
as follows.

{X | X > 0, X1c = 1n, X
T 1n = r, rT 1c = 1TnX1c} (177)

where r is a general vector and the last condition ensures consistency of row and column sums.
Generally, we simply denote it as (176). The tangent space of the manifoldM at X is:

TXM = {U | X1c = 0, XT 1n = 0} (178)

In current research, the Fisher information metric is also used as the inner product on the double
stochastic manifoldM, defined as: 〈U, V 〉X =

∑
i

∑
j
UijVij

Xij
, ∀U, V ∈ TXM, X ∈ M. The

Riemannian gradient on the double stochastic manifold is given by (n=c):{
gradH(F) = γ −

(
α1Tn + 1n1Tnγ − 1nα

TF
)
� F,

α =
(
I − FFT

)† (
γ − FγT

)
1n, γ = GradH(F)� F.

(179)

Here, (I −FFT)† represents the Moore-Penrose pseudoinverse of an n×n matrix. Since computing
the pseudoinverse requires at least O(n3) operations, this method is impractical for large-scale
datasets.

The connection on the double stochastic manifold is defined as an embedded manifold, and
in the embedding space, the connection is given by ∇̄UV = DV [U] − 1

2 (U � V) � X .
Further, the connection on the double stochastic manifold is given by ProjTXM(∇̄UV) =

ProjTXM
(
DV [U]− 1

2 (U � V)�X
)
.

ProjTXM denotes the projection into the tangent space of the double stochastic manifold. The
projection expression is:{

ProjTXM(Z) = Z −
(
α1Tn + 1nβ

)
�X,

α =
(
I −XXT

)† (
Z −XZT

)
1n, β = ZT 1n −XTα.

(180)

Indeed, the Riemannian Hessian mapping calculation in the referenced literature involves very
complex expressions, including pseudoinverses and other operations with a time complexity of
O(n3), making it infeasible for large-scale datasets. In contrast, the proposed RIM manifold in this
paper simplifies the calculation significantly, reducing the complexity to O(n).

The Riemannian Hessian is computed as follows:

hessH(F)[V] = ProjTXM

(
δ̇ − 1

2 (δ � V)� F
)

α = ε
(
γ − FγT

)
1n

β = γT 1n − FTα
γ = GradH(F)� F
δ = γ −

(
α1Tn + 1nβ

T
)
� F

ε =
(
I − FFT

)†
α̇ =

[
ε̇
(
γ − FγT

)
+ ε
(
γ̇ − V γ − F γ̇T

)]
1n

β̇ = γ̇T 1n − V Tα− FT α̇
γ̇ = HessH(F)[V]� F + GradH(F)� V
δ̇ = γ̇ −

(
α̇1Tn + 1nβ̇

T
)
� F −

(
α1Tn + 1nβ

T
)
� V

ε̇ = ε
(
FV T + V FT

)
ε

(181)

The Retraction map uses Sinkhorn to obtain the doubly stochastic matrix. The time complexity of
optimization on the doubly stochastic manifold is large, with a constant term of O(n3). The aboved
formulas is suitable for the case where n = c. However, when n 6= c, the calculation formula differs
slightly, but the time complexity remains the same.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

B.3.3 STIEFEL MANIFOLD

The Stiefel manifold (Jiang & Dai, 2015; Li et al., 2020; Zhu, 2017) is the set of all matrices whose
columns are orthonormal, i.e.,

St(n, c) = {X ∈ Rn×c | XTX = I}. (182)
It can be proven that this set satisfies the requirements for a manifold, and the dimension of this
manifold is given by:

dim(St(n, c)) = nc− c(c+ 1)

2
. (183)

At X ∈ St, the tangent space of the Stiefel manifold is given by:
TXSt = {Z | ZTX +XTZ = 0}. (184)

Since the Stiefel manifold is an embedded submanifold of Rn×c, its Riemannian inner product is
defined as the Euclidean inner product 〈U, V 〉X =

∑
ij UijVij .

The projection operator onto the tangent space TXSt is given by:{
ProjTXSt(Z) = (Ŵ − ŴT)X,

Ŵ = ZXT − 1
2X(XTZXT).

(185)

Based on this, the Riemannian gradient can be directly obtained by projecting the gradient.

gradH(F) = ProjTFSt(GradH(F)) = (Ŵ − ŴT)F, Ŵ = GradH(F)FT − 1

2
F (FT GradH(F)FT)

(186)
To compute the Retraction on the Steifel manifold, the Cayley transform method is used, given by:

Y (α) =
(
I − α

2
W
)−1 (

I +
α

2
W
)
X (187)

Where W = Ŵ − ŴT , α is the length on the curve. However, the inversion of
(
I − α

2W
)

is
computationally expensive. To address this, Li et al. (2020) further attempts to use an iterative
approach to find the solution. The Retraction is obtained by iteratively solving the following equation:

Y (α) = X +
α

2
W (X + Y (α)) (188)

Even so, each iteration still requires multiple matrix multiplications, resulting in a relatively high
computational cost.

To obtain the momentum gradient descent on the Riemannian manifold, it is necessary to define the
vector transport, which moves a tangent vector V1 ∈ TX1St from the Steifel manifold at X1 to the
tangent space TX2

St at X2. This transport operation is denoted as:
P : TX1St→ TX2St, ∀V1 ∈ TX1 ,P(V1) ∈ TX2St. (189)

In fact, this transport operation is general in its definition for manifolds. For the Relaxed Indicator
Matrix (RIM) manifold, TX1M = TX2M for all X1, X2 ∈ M, which means that the vector
transport is simply P(V1) = V1 in the RIM manifold. However, this property does not hold on the
Steifel manifold. The transport formula on the Steifel manifold is given by:

P(V1) = ProjTX2
St(V1) = (Ŵ − ŴT)X2, (190)

where Ŵ = V1X
T
2 − 1

2X2(XT
2 V1X2), ensuring that the vector is properly projected into the tangent

space at X2. This projection step ensures the transfer of the vector V1 from the tangent space at X1

to the tangent space at X2 on the Steifel manifold.

As for the computation of the connection and the Riemannian mapping matrix, although the literature
does not provide explicit expressions, it can be proven that the expressions for the connection and
Hessian map are as follows:{

∇UV = ProjTX2
St(DV [U]),

hessH(F)[V] = ProjTX2
St(HessH(F)[V]).

(191)

Using the above Riemannian toolbox, Riemannian optimization can be performed on the Steifel
manifold. If the closed-form solution for the Retraction is directly computed, the time complexity
is O(n3). However, by using an iterative approach, the time complexity can be reduced to a large
constant factor of O(n2).

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

B.4 MANIFOLD-BASED MACHINE LEARNING ALGORITHMS

In this section, we will introduce some classical machine learning algorithms defined on the Single
stochastic, Double stochastic, and Steifel manifolds. In general, we assume the data matrix is Z,
where Z ∈ Rn×k with n samples and k features. Each row of Z represents a sample, and zi denotes
the i-th row of Z.

B.4.1 ALGORITHMS ON THE SINGLE STOCHASTIC MANIFOLD

Fuzzy K-means (Fuzzy C-means, FCM) (Sulaiman & Isa, 2010) is an extension of the traditional
K-means algorithm that allows data points to belong to multiple clusters with degrees of membership,
rather than being strictly assigned to a single cluster. The core idea is to describe the relationship
between data points and clusters through a membership matrix, which is suitable for clustering data
with fuzzy boundaries.

Let the number of clusters be c, and the membership matrix U ∈ Rc×n, where uij represents the
membership degree of the j-th data point in the i-th cluster. The cluster centers are denoted as
C = {c1, c2, ..., cc}. The optimization goal is to minimize the following objective function:

J(U,C) =

c∑
i=1

n∑
j=1

umij‖zj − ci‖2 (192)

The constraints are that the sum of the membership degrees for each data point equals 1:
∑c
i=1 uij =

1 (∀j = 1, 2, ..., n), and the membership degrees are non-negative: uij ∈ [0, 1]. Where m > 1 is
the fuzziness coefficient, which controls the degree of fuzziness in the clustering and ‖zj − ci‖ is the
Euclidean distance between data point zj and cluster center ci. Thus, the final objective function and
constraints can be written as:

min J(U,C) s.t. U ∈ {X ∈ Rc×n | X > 0, XT 1c = 1n}, C ∈ Rc×k (193)

This optimization problem is defined over the Cartesian product of the single stochastic manifold and
the Euclidean space, which still constitutes a form of a single stochastic manifold.

B.4.2 ALGORITHMS ON THE DOUBLE STOCHASTIC MANIFOLD

ANCMM (Yuan et al., 2024c) is a method for solving constrained problems on the double stochastic
manifold, which can achieve adaptive neighbor clustering. Its objective function is given by:

min
S∈Rn×n

n∑
i,j

‖zi − zj‖22 Sij + α‖S‖2F

s.t. ST 1n = 1n, 0 ≤ sij ≤ 1, S = ST , rank(LS) = n− c

(194)

where S is the similarity matrix, and Sij represents the similarity between the i-th and j-th samples.
The constraint can be written as:

{X ∈ Rn×n | X1n = 1n, X
T 1n = 1n, X > 0} ∩ {X ∈ Rn×n | X = XT , LS = n− c} (195)

where LS is the Laplacian matrix corresponding to S, and LS = n − c implies that the learned S
is naturally c-connected, leading to c clusters. Thus, this problem can be viewed as a constrained
optimization problem on the double stochastic manifold.

B.4.3 ALGORITHMS ON THE STEIFEL MANIFOLD

The Min Cut (Fox et al., 2023) is a classic clustering method on the Steifel manifold, and its objective
function and constraints are given by:

min
F

tr(FTLF), s.t.F ∈ {F ∈ Rn×c | FTF = I} (196)

This optimization problem can be solved through eigenvalue decomposition. However, it requires ap-
proximately O(n3) time complexity, and eigenvalue decomposition alone does not provide clustering
results. Additional post-processing, such as using k-means, is required. Similarly, the derived classic

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

methods such as Ratio Cut and Normalized Cut are also classic machine learning algorithms on the
Steifel manifold. The expressions for Ratio Cut and Normalized Cut are as follows:{

minF tr(FTLF (FTF)−1), s.t.F ∈ {F ∈ Rn×c | FTF = I}
minF tr(FTLF (FTDF)−1), s.t.F ∈ {F ∈ Rn×c | FTF = I} (197)

In addition, algorithms such as MinMax Cut (Nie et al., 2010), Principal Component Analysis (PCA)
(Abdi & Williams, 2010), Robust PCA (Hubert et al., 2005), and others are also classic machine
learning algorithms defined on the Steifel manifold.

B.5 OTHER RELATED WORK AND BACKGROUND INTRODUCTION

In this section, we first review our contributions and then introduce other related work beyond
manifold optimization.

As mentioned in our paper, there are currently three main approaches to relaxing the indicator matrix
(ours being the fourth). For the first three, the optimization methods themselves have seen little
change, but have instead been applied to different models. For example:

The earliest approach relaxes to the singly stochastic manifold (Bezdek et al., 1979), which actually
has a history of more than 45 years. More recent applications in clustering include (Bao et al., 2024),
which employs momentum methods to solve the constraint, and Zhao et al. (2022), which introduces
auxiliary variables and updates via coordinate descent. The main drawback of this relaxation is its
inability to incorporate prior information about class sizes into the model.

Another line of work relaxes to the Stiefel manifold, starting from (Ng et al., 2001), which spurred
the development of spectral graph theory and has now a history of about 20 years. The basic idea is
to construct forms like tr(FTLF) and perform spectral decomposition, as in (He et al., 2025). The
limitation here is that the resulting F lacks the interpretability of an indicator matrix, requiring a
subsequent K-Means step, with a computational complexity of O(n3). Moreover, this approach also
cannot incorporate any class-related information.

A more recent direction is doubly stochastic relaxation, with representative work Fettal et al. (2024),
which solves the problem via optimal transport, and Douik & Hassibi (2019), which adopts manifold
optimization. The challenge here is that the constraints can be overly strict and counterproductive to
the model, and manifold optimization still requires O(n3).

Some works in optimal transport are also related to ours. For example, Chapel et al. (2020) introduces
Partial Optimal Transport, which is a less strict form of optimal transport. This idea is similar to ours
in spirit; however, our algorithm is designed for arbitrary functions defined on manifolds, whereas
theirs focuses on classical linear problems.

In addition, Benamou et al. (2014) shows that optimal transport problems can be solved using
Bregman Projections. This is close in spirit to the original motivation behind our Retraction design.
We further demonstrate that our Retraction corresponds to a geodesic, while also simplifying the
overall algorithmic procedure.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

C OPTIMIZATION ALGORITHMS ON THE RIM MANIFOLD

In this section, we will introduce three renowned Riemannian optimization algorithms that are utilized
in this paper: the Riemannian Gradient Descent method, the Riemannian Conjugate Gradient method,
and the Riemannian Trust-Region method. For each algorithm, we will present its fundamental
concepts and provide pseudocode. For detailed implementations of these algorithms, one may refer
to the open-source manifold optimization package, Manopt (Boumal et al., 2014).

C.1 GRADIENT DESCENT ON THE RIM MANIFOLD

The Gradient Descent on the RIM Manifold method generalizes the classical gradient descent in
Euclidean space to Riemannian manifolds by replacing the traditional gradient with the Riemannian
gradient, ensuring that the iterations remain on the manifold. The key idea is to utilize the manifold’s
geometric structure to adjust the gradient direction, and then use Retraction to map the updated
point back onto the manifold. The process begins with initialization, where an initial point F0 is
chosen on the manifold, and a step size is chosen. In the next step, the Euclidean gradient of the
objective function is computed at the current point F (k). Then, the Euclidean gradient is projected
onto the tangent space of the manifold to obtain the Riemannian gradient, which involves adjusting
the gradient by subtracting the normal component. The updated point is then computed along the
Riemannian gradient direction, and Retraction (such as exponential mapping or projection) is used
to ensure that the new point remains on the manifold. The process continues iteratively until the
gradient norm or the change in the objective function becomes smaller than a predefined threshold.
The reference pseudo code is in Algorithm 3.

C.2 CONJUGATE GRADIENT METHOD ON THE RIM MANIFOLD

The Conjugate Gradient Method on the RIM Manifold introduces conjugate directions to reduce the
redundancy in search directions during iterations, thereby speeding up convergence by incorporating
information from previous search directions. The core idea is to define and update conjugate directions
on the manifold. The method begins with initialization, where the initial point F0 is chosen, the
initial Riemannian gradient g0 is computed, and the initial search direction is set as d0 = −g0. Then,
the optimal step size in the direction of dk is determined through a line search, using conditions
like Armijo’s rule. The point is updated along dk, and Retraction is applied to map it back onto the
manifold. In the next step, the conjugate direction is updated using the current gradient gk+1 and the
previous direction dk, with formulas such as the Polak-Ribière method to compute the new conjugate
direction dk+1. On the RIM manifold, the transport of tangent vectors is equivalent to the vectors
themselves. This property simplifies the process of the Riemannian Conjugate Gradient Method. The
process is repeated until convergence is achieved. The reference pseudo code is in Algorithm 4.

C.3 TRUST REGION METHOD ON THE RIM MANIFOLD

The Trust Region Method on the RIM Manifold constructs a local quadratic model in each iteration
and constrains the step size within a trust region to ensure stability. The trust region radius is
dynamically adjusted to balance the accuracy of the model with the step size. The method starts
with initialization, where the initial point F0 and trust region radius ∆0 are set. The Riemannian
gradient gk and the approximate Hessian Hk are computed at F (k). The next step involves solving
the constrained quadratic optimization problem in the tangent space, given by:

min
d∈T

F (k)M,‖d‖≤∆k

(
gTk d+

1

2
dTHkd

)
(198)

Following this, the method updates the point and adjusts the trust region radius ∆k based on the ratio
of the actual decrease in the objective function to the model’s predicted decrease. Finally, Retraction is
used to project the updated point back onto the manifold. This method is known for its strong stability
and is particularly suited for highly nonlinear problems. However, it requires frequent Hessian

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

calculations, resulting in a high computational cost. The reference pseudo code is in Algorithm 5.

Algorithm 3: Riemannian Gradient Descent Algorithm on RIM Manifold

Input: RIM manifoldM = {X | X1c = 1n, l < XT 1n < u,X > 0}
Objective functionH(F), Retraction RX(tV), transport P . Initial point F0 ∈M
Output: Sequence of iterates {F (k)} converging to a stationary point ofH

1 Initialize k = 0 while not converged do
2 Compute Euclidean gradient GradH(F (k))

3 Compute Riemannian gradient: gradH(F (k)) = GradH(F (k))− 1
c GradH(F (k))1c1

T
c

4 The line search step size: κ(k)

5 Perform Retraction: F (k+1) = RF (k)(κ(k) gradH(F (k)))
6 k ← k + 1
7 end
8 return F (k)

Algorithm 4: Riemannian Conjugate Gradient Algorithm on RIM Manifold

Input: RIM manifoldM = {X | X1c = 1n, l < XT 1n < u,X > 0}
Objective functionH(F), Retraction RX(tV), Initial point F0 ∈M.
Output: Sequence of iterates {F (k)} converging to a stationary point ofH

1 Initialize k = 0;
2 Compute initial Riemannian gradient, d0 ← − gradH(F (0));
3 while not converged do
4 Compute line search step size κ(k)

5 Perform Retraction: F (k+1) = RF (k)(κ(k)d(k))

6 Compute new gradient gradH(F (k+1))

7 Compute the conjugate direction d(k+1) = − gradH(F (k+1)) + β(k)P(d(k))

8 Compute β(k): β(k) = 〈gradH(F (k+1)),gradH(F (k+1))−gradH(F (k))〉
〈gradH(F (k)),gradH(F (k))〉

9 k ← k + 1
10 end
11 return F (k)

Algorithm 5: Riemannian Trust Region Algorithm on RIM Manifold

Input: RIM manifoldM = {X | X1c = 1n, l < XT 1n < u,X > 0}
Objective functionH(F), Retraction RX(tV), Initial point F0 ∈M, Initial trust region radius ∆0.
Output: Sequence of iterates {F (k)} converging to a stationary point ofH

1 Initialize k = 0 Initialize ∆0 while not converged do
2 Compute Riemannian gradient gradH(F (k))

3 Compute the Riemannian Hessian hessH(F (k))

4 Solve the trust region subproblem: ∆(k) = arg min‖d‖≤∆k
H(F (k) + d)

5 Compute the step size κ(k) using a line search or heuristic method
6 Perform Retraction: F (k+1) = RF (k)(κ(k)d(k))
7 Update the trust region radius ∆k+1;
8 k ← k + 1
9 end

10 return F (k)

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

D DETAILS OF THE EXPERIMENTAL SETUP

D.1 EXPERIMENT 2 SETUP

In the first problem of Experiment 2, due to the particularity of the manifold, it is known that
the optimal solution on manifoldM is A, at which point the value of the objective function is 0.
Therefore, by comparing the losses of different algorithms under various parameters, the one with the
smallest loss is the optimal result.

D.2 EXPERIMENT 3 SETUP

For Experiment 3, we compared the cases when l = u and l 6= u. For l 6= u, we set l = 0.9
⌊
n
c

⌋
and u = 1.1

⌊
n
c

⌋
. When l = u, the RIM manifold degenerates into the double stochastic manifold,

and we can compare it with algorithms on the double stochastic manifold. When l = 0.9
⌊
n
c

⌋
and u = 1.1

⌊
n
c

⌋
, more general methods such as the Frank-Wolfe Algorithm (FWA) and Projected

Gradient Descent (PGD) are used for comparison. For the case where the RIM manifold degenerates
into the double stochastic manifold, we also compared the Riemannian Gradient Descent (DSRGD)
and Riemannian Conjugate Gradient (DSRCG) on the double stochastic manifold. A brief introduction
to these algorithms is provided as follows:

• The Frank-Wolfe algorithm (Xie et al., 2025) is a well-known method for solving nonlinear
constrained optimization problems. The core idea is to find the direction within the constraint
set that is closest to the negative gradient direction, and search and descend along this
direction to optimize the objective function.

• The Projected Gradient Descent algorithm (Chen et al., 2021) is also a method for solving
nonlinear constrained problems. The process involves searching along the gradient direction,
and when leaving the constraint set, the point is projected back onto the constraint set.

• Riemannian optimization on the double stochastic manifold (Douik & Hassibi, 2019): This
includes Double Stochastic Riemannian Gradient Descent, Double Stochastic Riemannian
Conjugate Gradient methods. The algorithm process is similar to the RIM manifold methods,
except that the Retraction and Riemannian gradient computation methods are different.

The PGD method differs greatly from Riemannian optimization methods, including the search
direction. Projected Gradient Descent follows the Euclidean gradient, but the Euclidean gradient may
contain irrelevant information on the constraint set. Riemannian optimization removes the redundant
information and searches along the Riemannian gradient direction.

The Retraction process also differs; the projection process in Projected Gradient Descent may not be
easy to compute and the result may not be unique, whereas Riemannian optimization can choose an
appropriate Retraction process, which is faster and more convenient.

The generality is also different: Riemannian optimization not only has Riemannian descent but can
also be naturally extended to methods like Riemannian Conjugate Gradient, Riemannian Coordinate
Descent, etc., while Projected Gradient Descent has fewer such extensions.

The convergence properties differ as well; for example, Projected Gradient Descent typically requires
convexity to converge to the global optimum, while Riemannian optimization only requires geodesic
convexity, and there are cases where non-convex problems are geodesically convex.

We compared the final results obtained by optimizing with these algorithms and the total time required,
and we organized the data into tables in the main text and appendix, along with visualizations through
plotting.

D.3 EXPERIMENT 4 SETUP

For RIMRcut, we apply the same initialization as (Xie et al., 2025) and perform RIM optimization
on Rcut based on the initialization. When applying the RIM manifold to the Rcut, we compare
it with ten benchmark clustering algorithms across eight real-world datasets. These algorithms
include KM-based methods, bipartite graph clustering techniques, and various balanced clustering

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

approaches. By solving the Ratio Cut problem on the RIM manifold, the clustering results are more
balanced, as the number of samples within each cluster is constrained to a reasonable range. A
detailed introduction to each algorithm is provided below.

• KM partitions data into predefined clusters by minimizing the sum of squared distances
between data points and their corresponding cluster centers. It is simple but sensitive to
initial centroids and struggles with non-spherical clusters.

• CDKM (Nie et al., 2021) improves KM by utilizing coordinate descent method to directly
solve the discrete indicator matrix instead of alternative optimization. It could optimize the
solution of KM further.

• Rcut minimizes the cut between two sets in a graph while considering the size of the sets,
aiming to balance the partition.

• Ncut improves on Ratio-Cut by normalizing the cut, balancing the partition while considering
the total graph weight. It’s better suited for non-convex and unevenly distributed clusters.

• Nystrom (Chen et al., 2011) method approximates large kernel matrices using a subset of
data, making spectral clustering scalable and efficient for large datasets.

• BKNC (Chen et al., 2022a) (Balanced K-Means with a Novel Constraint) extends K-Means
by introducing a balance-aware regularizer, allowing flexible control over cluster balance. It
is solved using an iterative optimization algorithm and achieves better balance and clustering
performance than existing balanced K-Means variants.

• FCFC (Liu et al., 2018) is an efficient clustering algorithm that combines K-means with
a balance penalty, ensuring flexible cluster sizes. It scales well to large datasets and
outperforms existing methods in efficiency and clustering quality.

• FSC (Zhu et al., 2017) improves spectral clustering efficiency by using Balanced K-means
based Hierarchical K-means (BKHK) to construct an anchor-based similarity graph. It
achieves high performance on large-scale data.

• LSCR (Chen & Cai, 2011) randomly selects landmarks instead of using K-Means, making
it faster but potentially less accurate than LSCK in capturing data structure.

• LSCK selects representative landmarks via K-Means to construct a smaller graph, reducing
computational cost while preserving clustering quality.

To evaluate the clustering performance comprehensively, three metrics are applied, which are clus-
tering accuracy (ACC), normalized mutual information (NMI) and adjusted rand index (ARI). The
calculation of these three metrics are displayed below.

D.3.1 CLUSTERING ACCURACY (ACC)

Clustering Accuracy (Yuan et al., 2024a;b) measures the proportion of correctly clustered data
points by aligning predicted cluster labels with ground truth labels. Since clustering algorithms do
not inherently assign specific labels, a permutation mapping is applied, often using the Hungarian
algorithm, to maximize alignment. The formula for ACC is:

ACC =
δ(map(ŷi), yi)

n
(199)

where δ(a, b) is an indicator function defined as:

δ(a, b) =

{
1, if a = b

0, otherwise,
(200)

Here, ŷi is the predicted label, yi is the true label, n is the total number of data points, and map(ŷi) is
the permutation mapping function that aligns predicted labels with ground truth labels. ACC ranges
from 0 to 1, with higher values indicating better clustering performance.

D.3.2 NORMALIZED MUTUAL INFORMATION (NMI)

Normalized Mutual Information (Zhong et al., 2021) quantifies the mutual dependence between
clustering results and ground truth labels, normalized to account for differences in label distributions.

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

It evaluates the overlap between clusters and true classes using information theory. Given predicted
partitions ˆ{Ci}

c

i=1 and ground truth partitions {Ci}ci=1, NMI is calculated as:

NMI =

∑c
i=1

∑c
j=1

∣∣∣Ĉi ∩ Cj∣∣∣ log
n|Ĉi∩Cj|
|Ĉi||Cj |√(∑c

i=1

∣∣∣Ĉi∣∣∣ log
|Ĉi|
n

)(∑c
j=1 |Cj | log

Cj

n

) (201)

Here, | · | denotes the size of a set, and Ĉi ∩Cj represents the number of data points belonging to both
the i-th predicted cluster and the j-th ground truth class. NMI ranges from 0 to 1, where 1 indicates
perfect agreement between clustering results and ground truth. It is particularly effective in scenarios
with imbalanced class distributions.

D.3.3 ADJUSTED RAND INDEX (ARI)

The Adjusted Rand Index (Dang et al., 2021) measures the similarity between predicted clustering
and ground truth by comparing all pairs of samples and evaluating whether they are assigned to
the same cluster in both results. A contingency table H is first constructed, where each element
hij represents the number of samples in both predicted cluster Ĉi and ground truth cluster Cj . The
formula for ARI is:

ARI(C̄, C) =

∑
ij

(
nij

2

)
−
[∑

i

(
ni

2

)∑
j

(
nj

2

)]
/
(
n
2

)
1
2

[∑
i

(
ni

2

)
+
∑
j

(
nj

2

)]
−
[∑

i

(
ni

2

)∑
j

(
nj

2

)]
/
(
n
2

) (202)

where
(
nij

2

)
=

nij(nij−1)
2 . ARI ranges from -1 to 1, where 1 indicates perfect clustering, 0 represents

random assignments, and negative values indicate worse-than-random clustering. ARI is robust to
differences in cluster sizes and does not favor a large number of clusters.

D.3.4 INTRODUCTION OF REAL DATASETS

The real-world datasets includes: COIL20, Digit, JAFFE, MSRA25, PalmData25, USPS20, Wave-
form21 and MnistData05. These datasets are selected for their diversity in data types (images,
waveforms, and biometric data) and their widespread use in benchmarking machine learning and
computer vision algorithms. They provide a comprehensive evaluation framework for testing the
robustness and generalization capabilities of the proposed methods. The detailed description of them
are displayed below.

• The COIL20 dataset 1 contains 1,440 images of 20 distinct objects, with each object
captured from different angles. Each image has 1,024 dimensions, making it suitable for
object recognition and clustering tasks.

• The Digit dataset consists of 1,797 instances of handwritten digits, ranging from 0 to 9.
Each sample has 64 dimensions, representing low-resolution grayscale images.

• The JAFFE dataset includes 213 facial expression images from 10 subjects, covering seven
basic emotions. Each image has 1,024 dimensions, making it suitable for facial expression
recognition and emotion analysis.

• The MSRA25 dataset is a widely used benchmark for face recognition task. It consists of
1,799 grayscale face images, each resized to 16×16 pixels. The dataset includes 12 clusters,
representing different individuals or categories.

• The PalmData25 2 dataset consists of 2,000 palmprint images, each with 256 dimensions. It
includes 100 clusters.

• The USPS20 dataset is a subset of the USPS handwritten digit dataset, containing 1,854
instances. Each sample has 256 dimensions, representing grayscale images of digits.

1http://www.cad.zju.edu.cn/home/dengcai/Data/data.html
2https://www.scholat.com/xjchensz

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

• The Waveform21 dataset 3 contains 2,746 instances of synthetic waveform data, each with
21 dimensions. It includes 3 clusters.

• The MnistData05 dataset is a subset of the MNIST dataset, containing 3,495 instances
of handwritten digits. Each sample has 784 dimensions, representing 28×28 grayscale
images. It is widely used for digit recognition, classification, and clustering tasks, providing
a benchmark for evaluating machine learning models.

D.3.5 HOW TO CHOOSE l AND u

l and u are pivotal parameters within the RIM manifold. When the values of l and u are set to be
equal, an approximation of the doubly stochastic manifold can be achieved. When l and u are not
equal, their application to practical problems holds significant meaning, particularly in the context of
unbalanced scenarios. For instance, in clustering tasks, the RIM manifold encompasses all indicator
matrices, with l and u representing the minimum and maximum number of samples within each
cluster, respectively. The magnitude of these parameters can be estimated based on the total number
of samples and the known number of clusters. Alternatively, they may be assigned according to
certain prior knowledge. However, it is noteworthy that in the absence of prior information, the values
of l and u can be set within a broader range. In addition, a suitable choice of l and u can also be
determined through multiple trials.

The parameter in RIM optimization is listed in Table 7.

Table 7: Values of l and u on different data sets for RIMRcut
Datasets l u
COIL20 [0.6*n/c] [1.2*n/c]

Digit [0.4*n/c] [1.6*n/c]
JAFFE [0.4*n/c] [1.6*n/c]

MSRA25 [0.4*n/c] [1.6*n/c]
PalmData25 [0.4*n/c] [1.8*n/c]

USPS20 [0.6*n/c] [2.0*n/c]
Waveform21 [0.4*n/c] [1.8*n/c]
MnistData05 [0.8*n/c] [1.4*n/c]

Subsequently, we will perform clustering using the data in this table and visualize the clustering
results, as shown in Figure 7 and Figure 8.

Moreover, we acknowledge that precisely choosing l and u is a challenging task, as it is essentially
equivalent to obtaining prior information about the dataset. Our study is conducted under the
assumption that such prior information is available. Nevertheless, we also provide a possible way to
estimate this prior knowledge, namely by running K-Means to approximate the cluster proportions.
For instance, on the MnistData05 dataset, the estimation yields (l, u) = (0.86× n

c , 1.22× n
c), which

is close to the values we selected.

At the same time, although the algorithm is sensitive to (l, u), the sensitivity is not high. Taking the
MnistData05 dataset as an example, the performance metrics under different values of l and u are as
follows. Here, a× denotes a× n

c .

Table 8: Performance under different (l, u) values on the MnistData05 dataset.
(l, u) (0×, 2×) (0.3×, 1.7×) (0.5×, 1.5×) (0.6×, 1.4×) (0.7×, 1.3×) (0.8×, 1.4×) (0.9×, 1.1×)
ACC 61.23 61.61 62.86 63.12 64.26 65.55 66.09
NMI 54.96 55.53 56.68 57.54 58.68 59.35 61.93
ARI 46.02 46.25 49.37 50.73 51.82 52.87 53.02

3http://archive.ics.uci.edu/datasets

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

E ADDITIONAL EXPERIMENTAL RESULTS

In this section, we present additional experimental results to better demonstrate the advantages of the
proposed algorithm.

E.1 RESULTS OF EXPERIMENTAL 1

Experiment 1 compares the running times of three Retraction methods under different matrix sizes. In
Table 9, we compare the running times when l is not equal to u. The results that run the fastest under
each set of experiments are highlighted in red. Additionally, for better visualization, we present a
three-dimensional bar chart showing the performance of multiple Retraction methods, as illustrated
in Figure 3. The experimental results reveal that when the matrix dimension is small, Sinkhorn
outperforms the other two methods in terms of speed, while Dykstras shows an advantage when the
matrix dimension is larger. This conclusion holds true both when l equals u and when l does not
equal u. While the efficiency of dual method is always inferior than other methods.

Table 9: Table of Execution Time when l 6= u for Different Retraction Algorithms(s)
Row&Col Dual Sinkhorn Dykstras

500 1000 3000 5000 7000 10000 500 1000 3000 5000 7000 10000 500 1000 3000 5000 7000 10000

5 0.015 0.025 0.056 0.083 0.109 0.140 0.001 0.004 0.017 0.042 0.085 0.166 0.011 0.005 0.011 0.018 0.027 0.037
10 0.020 0.039 0.082 0.111 0.145 0.183 0.001 0.003 0.017 0.042 0.081 0.179 0.009 0.005 0.015 0.022 0.031 0.044
50 0.053 0.106 0.763 1.353 1.934 2.738 0.001 0.005 0.021 0.056 0.109 0.226 0.006 0.010 0.022 0.038 0.052 0.072
100 0.014 0.156 1.556 2.747 3.948 5.675 0.002 0.005 0.029 0.079 0.149 0.288 0.009 0.012 0.030 0.054 0.071 0.100
500 0.060 0.119 7.296 12.208 17.021 23.773 0.006 0.014 0.114 0.305 0.577 1.119 0.018 0.032 0.089 0.157 0.207 0.299

1000 0.103 0.172 15.483 25.830 37.027 58.107 0.018 0.036 0.194 0.500 0.889 1.781 0.036 0.071 0.204 0.367 0.522 0.763

0

20

10000 1000

Ti
m

e
(s

) 40

7000 500 5000

60

100 3000

50 10 1000 5 500

(a) Dual (l = u)

0
10000

2

1000
Ti

m
e

(s
)

7000 500 5000

4

100 3000

50 10 1000 5 500

(b) Sinkhorn (l = u)

0

0.2

10000

0.4

1000

Ti
m

e
(s

)

7000

0.6

500 5000 100 3000

50 10 1000 5 500

(c) Dykstras (l = u)

0

20

10000 1000

Ti
m

e
(s

) 40

7000 500 5000

60

100 3000

50 10 1000 5 500

(d) Dual (l 6= u)

0
10000

1

1000
Ti

m
e

(s
)

7000 500 5000

2

100 3000

50 10 1000 5 500

(e) Sinkhorn (l 6= u)

0

0.2

10000 1000

0.4

Ti
m

e
(s

)

7000 500

0.6

5000 100 3000

50 10 1000 5 500

(f) Dykstras (l 6= u)
Figure 3: Comparison of running time for different Retraction algorithms.

E.2 RESULTS OF EXPERIMENTAL 2

For the first question in Experiment 2, we compare the application of gradient descent, conjugate
gradient, and trust-region methods on the RIM manifold. The value of cost function and running
time of gradient descent and conjugate gradient on RIM manifold are display in Table 10 and 11. As
can be seen from the two tables, regardless of the optimization method employed, the loss function
values and running time of the RIM manifold approach are superior to those of the doubly stochastic
manifold method. This advantage is attributed to the lower computational complexity of gradient
and Hessian matrix calculations on the RIM manifold. For example, when the matrix size is 100 by
10,000, for the RTR method, the running time is increased by approximately 200 times. For the RGD
method, the time required is only one-twenty five of that for the doubly stochastic manifold. As for
RCG method, the running time is increased by approximately 75 times. Meanwhile, optimization
methods on RIM manifolds often yield solutions closer to zero (the ratio of losses can even reach
1E10) compared to methods on doubly stochastic manifolds.

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

Table 10: Cost and Time on the RIM Manifold and Doubly Stochastic Manifold(RGD).

Row&Col RIM Manifold Doubly Stochastic Manifold
Cost Time Cost Time

Size 5000 7000 10000 5000 7000 10000 5000 7000 10000 5000 7000 10000

5 4.74E-14 1.14E-13 1.05E-13 1.233 0.974 1.225 4.96E-07 6.08E-07 9.01E-07 17.19 18.07 38.73
10 1.28E-13 4.48E-05 7.04E-15 0.864 2.686 1.311 1.22E-06 7.73E-07 2.39E-06 12.76 19.20 22.45
20 5.39E-14 1.09E-14 1.89E-13 0.779 1.266 1.914 3.07E-06 2.79E-06 5.46E-06 18.34 20.08 27.02
50 1.95E-13 8.12E-14 1.84E-13 1.442 2.780 2.663 3.71E-06 6.38E-06 9.27E-06 48.72 37.79 75.39
70 1.72E-13 4.47E-13 1.73E-13 2.350 2.811 4.356 7.91E-06 9.68E-06 1.82E-05 39.37 64.68 56.13
100 1.58E-15 1.12E-14 2.32E-13 3.086 3.242 4.126 1.37E-05 1.89E-05 2.99E-05 46.06 93.26 105.8

The second issue pertains to the problem of image restoration. We introduced varying levels of noise
into two images and then compared the visual outcomes of the RIM manifold-based method with
those of the DSM-based method in restoring the original images from their noisy counterparts. The
visual results are displayed in Figure 4, which also annotates the values of the parameter ξ. Regardless
of the intensity of the noise, the images restored by the RIM method are clearer and retain better
texture information.

Table 11: Cost and Time on the RIM Manifold and Doubly Stochastic Manifold(RCG).

Row&Col RIM Manifold Doubly Stochastic Manifold
Cost Time Cost Time

Size 5000 7000 10000 5000 7000 10000 5000 7000 10000 5000 7000 10000

5 3.74E-14 4.63E-13 1.20E-13 0.285 0.375 0.683 8.16E-10 7.78E-10 2.57E-09 4.624 10.22 15.42
10 6.22E-14 2.56E-13 4.92E-14 0.161 0.307 0.579 1.81E-09 2.71E-09 1.53E-09 6.230 11.29 13.96
20 1.03E-13 1.08E-13 1.52E-15 0.396 0.817 0.558 4.75E-09 3.53E-09 2.67E-09 11.91 16.91 17.13
50 5.69E-14 1.56E-13 2.51E-13 0.859 1.047 1.774 3.74E-09 5.49E-09 4.81E-09 30.11 45.33 58.19
70 2.22E-13 1.74E-13 6.37E-17 0.932 1.603 1.024 4.36E-09 2.52E-09 4.81E-09 46.83 73.80 60.49
100 4.21E-13 1.89E-15 1.61E-14 1.542 0.960 2.045 4.03E-09 5.01E-09 7.99E-09 55.70 81.65 158.7

(a) noise=0.3 (b) DSM,ξ=0.3 (c) RIM,ξ=0.3 (d) noise=0.5 (e) DSM,ξ=0.5 (f) RIM,ξ=0.5

(g) noise=0.9 (h) DSM,ξ=0.7 (i) RIM,ξ=0.7 (j) noise=0.3 (k) DSM,ξ=0.3 (l) RIM,ξ=0.3

(m) noise=0.5 (n) DSM,ξ=0.3 (o) RIM,ξ=0.3 (p) noise=0.9 (q) DSM,ξ=0.7 (r) RIM,ξ=0.7
Figure 4: mage Denoising Results.

E.3 RESULTS OF EXPERIMENTAL 3

Experiment 3 compared the objective function values and running times of the rim manifold-based
approach with other solution methods on real datasets when the objective function was the Ratio
Cut. The results for the case where l equals u are shown in Table 4, while the results for l not equal
to u are reported in Table 12. It can be observed that the RIMRCG method achieves the lowest
running time on most datasets. Meanwhile, the RIMRGD method can reach the minimum in terms
of loss. Furthermore, for each dataset, we have plotted the iteration curves of the objective function

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

Table 12: Time and Loss of Different Optimization Algorithms on Ratio Cut when l 6= u

Datasets&Methods FWA PGD RIMRGD RIMRCG RIMRTR
Time Cost Time Cost Time Cost Time Cost Time Cost

COIL20 6.220 3.908 6.061 0.7108 8.040 0.5306 2.601 0.494 15.97 0.588
Digit 5.878 0.389 6.063 0.817 7.355 0.652 1.443 0.755 13.92 0.661

JAFFE 0.257 0.207 1.019 0.294 0.116 1.110 0.260 0.154 3.741 0.103
MSRA25 6.238 0.253 6.444 0.048 9.123 0.037 9.787 0.000 15.95 0.033

PalmData25 77.69 16.40 71.73 3.299 25.54 0.984 5.635 6.686 19.05 12.78
USPS20 6.133 1.631 6.109 1.563 7.025 1.544 1.309 1.729 17.72 1.551

Waveform21 12.62 0.405 8.529 0.452 9.650 0.366 1.571 0.373 46.20 0.366
MnistData05 19.86 0.538 17.09 12.36 16.52 1.693 1.876 2.467 30.47 1.677

values against the number of iterations for various optimization methods. These are displayed in
Figures 5 and 6, respectively. From the convergence curves in Figure 5, it is evident that the Rim
manifold-based methods enable the objective to decrease more rapidly within a shorter number of
iterations. In contrast, the descent curves of the PGD and DSRGD methods are more gradual. A
similar experimental outcome is also presented in Figure 6.

0 100 200 300 400 500 600
0

50

100

150

200

250

300

350

400

450

RIMRGD
RIMRCG
RIMRTR
PGD
FWA
DSRGD
DSRCG

(a) COIL20
0 100 200 300 400 500 600

0

10

20

30

40

50

60

70

RIMRGD
RIMRCG
RIMRTR
PGD
FWA
DSRGD
DSRCG

(b) Digit
0 100 200 300 400 500 600

0

50

100

150

200

250

300

RIMRGD
RIMRCG
RIMRTR
PGD
FWA
DSRGD
DSRCG

(c) MSRA25

0 100 200 300 400 500 600
400

600

800

1000

1200

1400

1600

1800

2000

2200

RIMRGD
RIMRCG
RIMRTR
PGD
FWA
DSRGD
DSRCG

(d) PalmData25
Figure 5: Comparison of Loss Decrease for Optimization Algorithms on Real Datasets (l = u).

0 100 200 300 400 500 600
0

20

40

60

80

100

120

RIMRGD
RIMRCG
RIMRTR
PGD
FWA

(a) COIL20
0 100 200 300 400 500 600

0

10

20

30

40

50

60

RIMRGD
RIMRCG
RIMRTR
PGD
FWA

(b) Digit
0 100 200 300 400 500 600

0

10

20

30

40

50

60

RIMRGD
RIMRCG
RIMRTR
PGD
FWA

(c) JAFFE
0 100 200 300 400 500 600

0

10

20

30

40

50

60

70

80

RIMRGD
RIMRCG
RIMRTR
PGD
FWA

(d) MSRA25

0 100 200 300 400 500 600
0

100

200

300

400

500

600

RIMRGD
RIMRCG
RIMRTR
PGD
FWA

(e) PamlData25
0 100 200 300 400 500 600

0

10

20

30

40

50

60

70

RIMRGD
RIMRCG
RIMRTR
PGD
FWA

(f) USPS20
0 100 200 300 400 500 600

0

2

4

6

8

10

12

14

16

18

RIMRGD
RIMRCG
RIMRTR
PGD
FWA

(g) Waveform21
0 100 200 300 400 500 600

0

10

20

30

40

50

60

RIMRGD
RIMRCG
RIMRTR
PGD
FWA

(h) MnistData05
Figure 6: Comparison of Loss Decrease for Optimization Algorithms on Real Datasets (l 6= u).

E.4 RESULTS OF EXPERIMENTAL 4

In this section, we mainly provide two supplementary materials. First, we verify whether Riemannian
optimization on the RIM manifold ensures that the distribution of each column lies within the
prescribed range. Second, we visualize the learned indicator matrix to examine whether each entry
Fij ∈ [0, 1] is satisfied.

Figure 7 illustrates the column sum distributions of the relaxed indicator matrix obtained via Rie-
mannian gradient descent (RIMRGD) on the RIM manifold for different datasets. The dashed lines
represent the values of the upper bound u and lower bound l. As shown, all column sums eventually
lie within the specified interval [l, u].

It is worth noting that, under the specified bounds [l, u], not all bounds are necessarily active for every
dataset. For instance, in the Digit dataset, the lower bound l is active, as the sum of the 8th column
reaches the lower bound, while no column reaches the upper bound u. In contrast, for the MSRA25
dataset, the upper bound u is active, but the lower bound l is not. For some datasets like COIL20,
neither the lower nor the upper bounds are active, possibly because the dataset naturally leads to a
balanced partitioning.

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

0 5 10 15 20
Cluster indices

0

10

20

30

40

50

60

70

80

90

Th
e

co
lu

m
n

su
m

 o
f F

(a) COIL20

1 2 3 4 5 6 7 8 9 10
Cluster indices

0

50

100

150

200

250

300

Th
e

co
lu

m
n

su
m

 o
f F

(b) Digit

1 2 3 4 5 6 7 8 9 10
Cluster indices

0

5

10

15

20

25

30

35

Th
e

co
lu

m
n

su
m

 o
f F

(c) JAFFE

1 2 3 4 5 6 7 8 9 10 11 12
Cluster indices

0

50

100

150

200

250

Th
e

co
lu

m
n

su
m

 o
f F

(d) MSRA25

0 20 40 60 80 100
Cluster indices

0

5

10

15

20

25

30

35

40

Th
e

co
lu

m
n

su
m

 o
f F

(e) PamlData25

1 2 3 4 5 6 7 8 9 10
Cluster indices

0

50

100

150

200

250

300

350

400

Th
e

co
lu

m
n

su
m

 o
f F

(f) USPS20

1 2 3
Cluster indices

0

200

400

600

800

1000

1200

1400

1600

1800

Th
e

co
lu

m
n

su
m

 o
f F

(g) Waveform21

1 2 3 4 5 6 7 8 9 10
Cluster indices

0

50

100

150

200

250

300

350

400

450

500

Th
e

co
lu

m
n

su
m

 o
f F

(h) MnistData05
Figure 7: Relaxed Indicator Matrix Column Sum Distribution Graph.

Sorted Cluster Probability Heatmap

5 10 15 20
Cluster Index

200

400

600

800

1000

1200

1400

Sa
m

pl
e

In
de

x

0

0.2

0.4

0.6

0.8

1

(a) COIL20

Sorted Cluster Probability Heatmap

2 4 6 8 10
Cluster Index

200

400

600

800

1000

1200

1400

1600

Sa
m

pl
e

In
de

x

0

0.2

0.4

0.6

0.8

1

(b) Digit

Sorted Cluster Probability Heatmap

2 4 6 8 10
Cluster Index

50

100

150

200

Sa
m

pl
e

In
de

x

0

0.2

0.4

0.6

0.8

1

(c) JAFFE

Sorted Cluster Probability Heatmap

2 4 6 8 10 12
Cluster Index

200

400

600

800

1000

1200

1400

1600

Sa
m

pl
e

In
de

x

0

0.2

0.4

0.6

0.8

1

(d) MSRA25
Sorted Cluster Probability Heatmap

20 40 60 80 100
Cluster Index

500

1000

1500

2000

Sa
m

pl
e

In
de

x

0

0.2

0.4

0.6

0.8

1

(e) PamlData25

Sorted Cluster Probability Heatmap

2 4 6 8 10
Cluster Index

200

400

600

800

1000

1200

1400

1600

1800

Sa
m

pl
e

In
de

x

0

0.2

0.4

0.6

0.8

1

(f) USPS20

Sorted Cluster Probability Heatmap

0.5 1 1.5 2 2.5 3 3.5
Cluster Index

500

1000

1500

2000

2500

Sa
m

pl
e

In
de

x

0

0.2

0.4

0.6

0.8

1

(g) Waveform21

Sorted Cluster Probability Heatmap

2 4 6 8 10
Cluster Index

500

1000

1500

2000

2500

3000

Sa
m

pl
e

In
de

x

0

0.2

0.4

0.6

0.8

1

(h) MnistData05
Figure 8: Visualization of the Relaxed Indicator Matrix.

Figure 8 presents the visualization results of the relaxed indicator matrix. It can be observed that each
element Fij lies within the interval [0, 1], and the indicator matrix exhibits a clear clustered structure.
This structure indicates distinct clustering results, suggesting that learning on the relaxed indicator
matrix manifold effectively captures the underlying structure of the graph.

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2026

F RIM MANIFOLD EQUIPPED WITH FISHER METRIC

In this section, we will explain why we assign the Euclidean inner product toM = {X|X1c =
1n, l < XT 1n < u,X > 0} instead of the currently more commonly used Fisher information metric.
The RIM manifold is defined asM = {X|X1c = 1n, l < XT 1n < u,X > 0}, where the row sums
are equal to 1. Therefore, each element’s rows on the RIM manifold can be considered as a probability
distribution and can equip a Fisher information metric. Specifically, for each point X on the RIM
manifold, there exists a tangent space TXM which is a linear space. Previously, the Euclidean metric
was equipped on this linear space, that is, ∀U, V ∈ TXM, < U, V >X=

∑n
i=1

∑n
j=1 UijVij . This

section will discuss the impact on optimization over the manifold when the Fisher information metric
is equipped on TXM, that is,

∀U, V ∈ TXM, < U, V >X=

n∑
i=1

n∑
j=1

UijVij
Xij

(203)

To distinguish it from the previous RIM manifold, we call the RIM manifold equipped with the Fisher
information metric the Fisher RIM manifold, abbreviated as FRIM manifold.

F.1 DIMENSION AND TANGENT SPACE

Regarding dimension and tangent space, their definitions depend only on the manifold itself and are
independent of the metric equipped on it. Therefore, for the same setM, whether it is equipped
with the Euclidean metric or the Fisher information metric, it has the same dimension and tangent
space. That is, both the RIM manifold and the FRIM manifold have a dimension of (n− 1)c, and the
tangent space is TXM = {U | U1c = 0}. The proof can be found in Theorem A.1

F.2 RIEMANNIAN GRADIENT, RIEMANNIAN CONNECTION AND RIEMANNIAN HESSIAN

When the Fisher metric is assigned to {X ∈ Rn×c|X > 0}, the gradient of H at X in {X ∈
Rn×c|X > 0} is given by GradH �X , where GradH is the Euclidean gradient. At this time, the
FRIM manifold is a Riemannian embedded submanifold of {X ∈ Rn×c|X > 0}. The Riemannian
gradient on the FRIM manifold is the orthogonal projection under the Fisher metric. The expression
of this orthogonal projection is

ProjTXM(Z) = Z − (α1Tc)�X, α = Z1c ∈ Rn (204)

The Riemannian connection on the FRIM manifold is the orthogonal projection of the connection
under the Fisher metric, where the connection on {X ∈ Rn×c|X > 0} can be expressed as

∇̄UV = DV [U]− 1

2
(U � V)�X, U, V ∈ Rn×c (205)

The Riemannian connection on the FRIM manifold is given by{
∇UV = ProjTXM

(
∇̄UV

)
= ProjTXM

(
DV [U]− 1

2 (U � V)�X
)

U, V ∈ TXM, X ∈ {X ∈ Rn×c|X > 0} (206)

Furthermore, the Riemannian Hessian mapping is given by

hessH(X)[V] = ProjTXM

(
D gradH(X)[V]− 1

2
(V � gradH(X))�X

)
(207)

It can be seen that the Riemannian gradient, Riemannian connection and Riemannian Hessian on
the FRIM manifold are the same as those on the single stochastic manifold equipped with the Fisher
information metric. Since the FRIM manifold itself can be regarded as a Riemannian embedded
submanifold of the single stochastic manifold, it is not surprising that these three Riemannian tools
are the same as those on the single stochastic manifold. However, the existing Retraction mapping
on the single stochastic manifold cannot be applied to the FRIM manifold, because it cannot be
guaranteed that the curve generated by the Retraction mapping on the single stochastic manifold will
always lie on the FRIM manifold (it may violate the column constraint).

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2026

F.3 RETRACTION MAPPING

Although the Retraction mapping on the single stochastic manifold cannot be used as the Retraction
mapping on the FRIM manifold, the Retraction mapping on the RIM manifold proposed in this
paper can naturally serve as the Retraction mapping on the FRIM manifold. That is, the FRIM
manifold naturally has three Retraction methods respectively given by Theorems A.6, A.7 and A.8.
However, Theorem A.5 indicates that the result obtained by Theorem A.6 is a geodesic on the RIM
manifold. However, on the FRIM manifold, Theorem A.6 is not an orthogonal projection under the
Fisher information metric, so the geodesic on the FRIM manifold cannot be obtained. That is to say,
although the three methods in Theorems A.6, A.7 and A.8 can all be used as Retractions, none of
them is a second-order Retraction.

F.4 WHICH TO USE?

Although there is also a set of Riemannian tools available on the FRIM manifold, according to the
analysis above, the Riemannian toolbox under the RIM manifold and the Riemannian toolbox on the
FRIM manifold have almost the same time complexity and can use the same Retraction. However,
when using the Dykstras Retraction, a geodesic can be quickly obtained on the RIM manifold, while
it is impossible to obtain a geodesic on the FRIM manifold, meaning a second-order Retraction
cannot be achieved. This may have a certain impact on the convergence of the algorithm. Therefore,
we recommend using the RIM manifold, which restricts the Euclidean inner product to the manifold
rather than the Fisher information metric.

G EXPLANATION REGARDING l = u

We are very pleased that you are interested in the intrinsic principles of the RIM manifold. During
the community’s use of the RIM manifold, we have received related issues in which users asked: when
l = u, the RIM manifold theoretically seems to degenerate into an empty set. They further wondered
what ingenious techniques in the RIM manifold algorithm allow it to still function effectively. We are
glad to provide an answer here.

In fact, it is precisely our design that effectively avoids this situation, and the algorithm can efficiently
converge to the doubly stochastic manifold

{X ∈ Rn×n | X1n = 1n, X
T 1n = 1n, X > 0}. (208)

The effectiveness of the algorithm comes from our deliberately designed retraction. Taking projection
onto Ω2 as an example, computing 1

n (lj − 1TnX
j)1n +Xj essentially projects each column of X

onto {(Xj)T 1n ≥ lj}.
It can be seen that, regardless of the values taken by l and u, the computation of the Riemannian
gradient and other formulas are completely unaffected. With our specially designed retraction, when
l = u = r, projection is carried out respectively onto Ω2 = {XT 1n = r}, Ω3 = {XT 1n = r}.
Thus, the retraction essentially projects onto {XT 1n = r} ∩ {X1n = 1n}, that is, a retraction onto
the doubly stochastic manifold. In this way, our algorithm can elegantly converge to the doubly
stochastic manifold.

Moreover, considering the practical use of the relaxed indicator matrix, taking Ω2 as an example,
there is no essential difference between {XT 1n > l} and {XT 1n ≥ l}. If one is concerned about
obtaining points on the boundary, it suffices to simply set l′ = l + ε, with ε < 10−12, and run the
RIM manifold on {XT 1n > l′}.

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2026

H REFERENCE CODE FOR RIM MANIFOLD RIEMANNIAN TOOLBOX

function M = RIMfactory(n, c, row,upper,lower)

maxDSiters = min(1000, n*c);
if size(row, 1) ~= n

error('row should be a column vector of size n.');
end
if size(upper, 1) ~= c

error('upper should be a column vector of size c.');
end
if size(lower, 1) ~= c

error('lower should be a column vector of size c.');
end

M.name = @() sprintf('%dx%d matrices with positive entries F1_c=1_n,l
<F1_n<u', n, c);

M.dim = @() (n-1)*c;
M.hash = @(X) ['z' hashmd5(X(:))];
M.lincomb = @matrixlincomb;
M.zerovec = @(X) zeros(n, c);
M.transp = @(X1, X2, d) ProjToTangent(d);
M.vec = @(X, U) U(:);
M.mat = @(X, u) reshape(u, n, c);
M.vecmatareisometries = @() true;
M.inner = @iproduct;

function ip = iproduct(X,eta, zeta)
ip = sum((eta(:).*zeta(:)));

end
M.norm = @(X,eta) sqrt(M.inner(X,eta, eta));
M.typicaldist = @() n+c;
M.rand = @random;
function X = random(X)

Z = abs(randn(n, c));
X = Dykstras(Z, row, lower, upper, maxDSiters);

end
M.randvec = @randomvec;
function eta = randomvec(X)

Z = randn(n, c);
eta = ProjToTangent(Z);

end
M.proj = @projection;
function etaproj = projection(X,eta)

etaproj = ProjToTangent(eta);
end
M.tangent = M.proj;
M.tangent2ambient = @(X,eta) eta;
M.egrad2rgrad = @egrad2rgrad;
function rgrad = egrad2rgrad(X,egrad)

rgrad = ProjToTangent(egrad);
end
M.retr = @Retraction;
function Y = Retraction(X, eta, t)

if nargin < 3
t = 1;

end
Y=Dykstras(X+t*eta, row, lower, upper, maxDSiters);

end
M.ehess2rhess = @ehess2rhess;
function rhess = ehess2rhess(X, egrad, ehess, eta)

rhess = ProjToTangent(ehess);
end

end

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2026

In this section, we will provide reference code for the RIM manifold toolbox. Our code is compatible
with the well-known open-source manifold optimization toolbox Manopt (Boumal et al., 2014),
allowing the direct use of Manopt’s algorithms to implement Riemannian optimization on the RIM
manifold. The first code block creates a factory named "RIM", which allows for the direct call to the
RIM factory to obtain the basic description of the RIM manifold, covering the essential information
about the manifold and the invocation of basic Riemannian operations.

Dykstras algorithm is one of the methods for implementing Retraction. Its process involves iterative
projections and the condition for determining when to exit the loop.

function [P] = Dykstras(M, a, b_l, b_u, N)
if b_l==b_u

tol=1e-2;
else

tol=1e-1;
end
rng(1);
[mn, mc] = size(M);
P = M;
z1 = zeros(mn, mc);
z2 = zeros(mn, mc);
z3 = zeros(mn, mc);

for iter = 1:N
for i = 1:mn

prev_row = P(i, :) + z1(i, :);
P(i, :) = EProjSimplex_new(prev_row, a(i));
z1(i, :) = prev_row - P(i, :);

end

for j = 1:mc
prev_col = P(:, j) + z2(:, j);
current_sum = sum(prev_col);
if current_sum >= b_l(j)

z2(:, j) = 0;
P(:, j) = prev_col;

else
delta = (b_l(j) - current_sum) / mn;
new_col = prev_col + delta * ones(mn, 1);
z2(:, j) = prev_col - new_col;
P(:, j) = new_col;

end
end

for j = 1:mc
prev_col = P(:, j) + z3(:, j);
current_sum = sum(prev_col);
if current_sum <= b_u(j)

z3(:, j) = 0;
P(:, j) = prev_col;

else
delta = (b_u(j) - current_sum) / mn;
new_col = prev_col + delta * ones(mn, 1);
z3(:, j) = prev_col - new_col;
P(:, j) = new_col;

end
end

if norm(P*ones(mc,1)-a, 'fro') < tol && all(P(:)>=-tol)
disp(['Converged at iteration: ', num2str(iter)]);
break;

end
end

end

53

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2026

In the Dykstras algorithm process, the first step is to project onto the simplex, where the projection
function is EProjSimplex_new. The code for this is provided below. During usage, you can create
a file named EProjSimplex_new and call the EProjSimplex_new algorithm in each iteration of the
Dykstras algorithm process.

function [x ft] = EProjSimplex_new(v, k)
if nargin < 2

k = 1;
end;
ft=1;
n = length(v);
v0 = v-mean(v) + k/n;
vmin = min(v0);
if vmin < 0

f = 1;
lambda_m = 0;
while abs(f) > 10^-10

v1 = v0 - lambda_m;
posidx = v1>0;
npos = sum(posidx);
g = -npos;
f = sum(v1(posidx)) - k;
lambda_m = lambda_m - f/g;
ft=ft+1;
if ft > 100

x = max(v1,0);
break;

end;
end;
x = max(v1,0);

else
x = v0;

end;

The function ProjToTangent is a simple projection function onto the tangent space.

function P = ProjToTangent(X)
c=size(X,2);
P=X-1/c*X*ones(c,c);

end

When running the code, please create four separate MATLAB files for RIMfactory, Dykstras,
EProjSimplex_new, and ProjToTangent, and place them in the manopt folder following this
structure:
-manopt;
--manifolds;

---multinomial;
----RIMfactory;
----Dykstras;
----EProjSimplex_new;
----ProjToTangent;

Then you can call the functions in the general way as per manopt.
RIM_manifold = RIMfactory(n,c,row,upper,lower);
problem.M = RIM_manifold;
problem.cost = @(X) ...;
problem.egrad = @(X) ...; % Euclidean gradient
[X_rim,~,info_rim,~] = steepestdescent(problem);

54

2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2026

Furthermore, we provide reference code for the dual gradient and Sinkhorn algorithms, which allow
the Retraction operation to be performed in other ways. Overall, we still recommend using Dykstras
algorithm under the Euclidean inner product for descent along the geodesics of the RIM manifold.

function F = dual_gradient(Z, l, u, max_iter)
[n, c] = size(Z);
l = l(:);
u = u(:);

nu = ones(n, 1);
omega = ones(c, 1);
rho = ones(c, 1);

step_size = .05;

for iter = 1:max_iter
term = Z - nu * ones(1, c) - ones(n, 1) * omega' + ones(n, 1) *

rho';
F_current = max(term, 0);

grad_nu = F_current * ones(c, 1) - ones(n, 1);
grad_omega = F_current' * ones(n, 1) - u;
grad_rho = -F_current' * ones(n, 1)+l;

nu = nu + step_size * grad_nu;
omega = omega + step_size * grad_omega;
rho = rho + step_size * grad_rho;

omega = max(omega, 0);
rho = max(rho, 0);

end
term = Z - nu * ones(1, c) - ones(n, 1) * omega' + ones(n, 1) * rho';
F = max(term, 0);

end

function P = sinkR(X, a, l, u, N)
rng(1)
[n, c] = size(X);
K = X;
u_vec = ones(n, 1);
q_vec = ones(c, 1);
v_vec = ones(c, 1);

for i = 1:N
u_vec = a ./ (K * (q_vec .* v_vec));

sum_P_t = sum((u_vec .* K), 1)';
q_vec = max(l(:) ./ sum_P_t, ones(c, 1));

sum_P_t = sum((u_vec .* K) .* q_vec', 1)';
v_vec = min(u(:) ./ sum_P_t, ones(c, 1));

P = diag(u_vec) * K * diag(q_vec .* v_vec);
P_liehe = P'*ones(n,1);

if norm(P*ones(c,1)-ones(n,1), 'fro') < 1e-2 && all(P(:)>=-1e-2)
&& all(P_liehe>=l-1e-2) && all(P_liehe<=u+1e-2)
break;

end
end

end

55

	Introduction
	Preliminaries
	Riemannian Toolbox
	Definition of the Relaxed Indicator Matrix Manifold
	Riemannian Optimization Toolbox for the RIM Manifold
	Comparison Analysis of Time Complexity

	RIM Manifold for Graph Cut
	Experiments
	Experimental Setups
	Experiment 1 Setup
	Experiment 2 Setup
	Experiment 3 Setup
	Experiment 4 Setup

	Experimental Results
	Result of Experimental 1
	Result of Experimental 2
	Result of Experimental 3
	Result of Experimental 4

	Conclusion
	Statement
	Appendices
	Proofs of Theorems
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 5
	Proof of Theorem 6
	Proof of Theorem 7
	Proof of Theorem 8
	Proof of Theorem 9
	Proof of Theorem 10
	Proof of Theorem 11

	Preliminaries
	Notations
	Introduction to Riemannian Optimization
	Introduction to Related Manifolds
	Single Stochastic Manifold
	Doubly Stochastic Manifold
	Stiefel Manifold

	Manifold-based Machine Learning Algorithms
	Algorithms on the Single Stochastic Manifold
	Algorithms on the Double Stochastic Manifold
	Algorithms on the Steifel Manifold

	Other Related Work and Background Introduction

	Optimization Algorithms on the RIM Manifold
	Gradient Descent on the RIM Manifold
	Conjugate Gradient Method on the RIM Manifold
	Trust Region Method on the RIM Manifold

	Details of the Experimental Setup
	Experiment 2 Setup
	Experiment 3 Setup
	Experiment 4 Setup
	Clustering Accuracy (ACC)
	Normalized Mutual Information (NMI)
	Adjusted Rand Index (ARI)
	Introduction of Real Datasets
	How to Choose l and u

	Additional Experimental Results
	Results of Experimental 1
	Results of Experimental 2
	Results of Experimental 3
	Results of Experimental 4

	RIM Manifold Equipped with Fisher Metric
	Dimension and Tangent Space
	Riemannian Gradient, Riemannian Connection and Riemannian Hessian
	Retraction Mapping
	Which to Use?

	Explanation regarding l = u
	Reference Code for RIM Manifold Riemannian Toolbox

