RIEMANNIAN OPTIMIZATION ON RELAXED INDICATOR MATRIX MANIFOLD

Anonymous authorsPaper under double-blind review

000

001

002003004

010 011

012

013

014

015

016

017

018

019

021

024

025 026

027 028

029

031

033

034

037

040

041

042

043

044

046

047

048

051

052

ABSTRACT

The indicator matrix plays an important role in machine learning, but optimizing it is an NP-hard problem. We propose a new relaxation of the indicator matrix and compared with other existing relaxations, it can flexibly incorporate class information. We prove that this relaxation forms a manifold, which we call the Relaxed Indicator Matrix Manifold (RIM manifold). Based on Riemannian geometry, we develop a Riemannian toolbox for optimization on the RIM manifold. Specifically, we provide several methods of Retraction, including a fast Retraction method to obtain geodesics. We point out that the RIM manifold is a generalization of the double stochastic manifold, and it is much faster than existing methods on the double stochastic manifold, which has a complexity of $\mathcal{O}(n^3)$, while RIM manifold optimization is $\mathcal{O}(n)$ and often yields better results. We conducted extensive experiments, including image denoising, with millions of variables to support our conclusion, and applied the RIM manifold to Ratio Cut, we provide a rigorous convergence proof and achieve clustering results that outperform the state-of-the-art methods. Our Code in Appendix H.

1 Introduction

Indicator matrices play a crucial role in machine learning (Mo et al., 2025; Li et al., 2024a; Tsitsulin et al., 2023), particularly in tasks such as clustering (Fan et al., 2022; Macgregor, 2024) and classification (Shi et al., 2024). For a problem with n samples and c classes, the indicator matrix $F \in \operatorname{Ind}^{n \times c}$, where $\operatorname{Ind}^{n \times c} = \{X \in \mathbb{R}^{n \times c} \mid X_{ij} \in \{0,1\}, X1_c = 1_n\}$ and 1_c is the column vector of ones of size c. The optimization of indicator matrices, which can be seen as a 0-1 programming problem, is NP-hard (Schuetz et al., 2022; Gasse et al., 2022). Therefore, finding efficient methods to relax the indicator matrix for optimization is important.

Ng et al. (2001) relaxed the indicator matrix to the Steifel manifold, $F \in \{X \mid X^T X = I\}$, where I is the identity matrix. This approach further developed spectral graph theory and led to the formulation of classic algorithms such as spectral clustering (Balestriero & LeCun, 2022; Macgregor & Sun, 2022). However, optimizing over the Steifel manifold always requires $\mathcal{O}(n^3)$ operations (Altmann et al., 2022), making it challenging to scale for large datasets, and it can only provide an optimal solution for problems of the form $tr(F^T L F)$, while in clustering, the resulting F still needs post-processing through methods like K-means (Li et al., 2015; Mondal et al., 2021). An alternative relaxation is to make F onto the single stochastic manifold, $F \in \{X \mid X1_c = 1_n, X > 0\}$ (Sun et al., 2015), which gave rise to well-known algorithms like Fuzzy K-means (Ferraro, 2024; Borlea et al., 2021). However, this approach has the drawback of not considering the total number of samples per class, which can lead to empty clusters or imbalanced class distributions (Ikotun et al., 2023; Hu et al., 2023). The most recent method is to relax the indicator matrix onto the double stochastic manifold, i.e., $F \in \{X \mid X1_c = 1_n, X^T1_n = r, X > 0\}$ (Fettal et al., 2024; Yuan et al., 2024c). However, this approach also has significant drawbacks. The double stochastic manifold imposes overly strict requirements on the columns of F, as it necessitates knowing the true distribution of each class in the dataset as a prior, which is nearly impossible for unknown datasets. Additionally, optimization over the double stochastic manifold is extremely challenging, still requiring $\mathcal{O}(n^3)$ time (Douik & Hassibi, 2019; 2018), making it almost infeasible for large-scale datasets.

To solve above questions, we propose a new relaxation method, where $F \in \{X \mid X1_c = 1_n, l < X^T1_n < u, X > 0\}$. In this approach, the constraints on the column sums are relaxed to lie within a

specified range. This allows us to flexibly incorporate as much prior knowledge as possible into the model. When there is more prior knowledge, we can choose a tighter (l,u) interval. Conversely, we can make it more relaxed. Specifically, when the column sums and the true distribution are known, we can set l=u and l to the true distribution (In fact, this does not lead to the absence of solutions, for further discussion, see Appendix G). When no prior knowledge is available, we can set l<0 and u>n, which means our relaxation is a generalization of both the single stochastic manifold and the double stochastic manifold, offering a more adaptable framework.

We prove that the set of relaxed indicator matrices forms a manifold, which we call the Relaxed Indicator Matrix Manifold (RIM manifold). Based on Riemannian geometry (Boumal, 2023; Fei et al., 2025), we have developed a Riemannian optimization toolbox (Boumal et al., 2014; Townsend et al., 2016) for running optimization on the RIM manifold. In particular, we provide three distinct Retraction methods, including one that allows for fast computation of geodesics (Nguyen, 2022; Jordan et al., 2022), enabling our algorithm to efficiently operate along the geodesic. Furthermore, we demonstrate that our algorithm, compared to existing Riemannian optimization methods on the double stochastic manifold, reduces the time complexity from $\mathcal{O}(n^3)$ to $\mathcal{O}(n)$. Furthermore, we have developed various Riemannian optimization algorithms that run on the RIM manifold.

We designed a series of large-scale experiments with millions of optimization variables to validate our algorithm. These experiments include comparisons with state-of-the-art optimization algorithms on both convex and non-convex problems like image denoising (Takemoto et al., 2022; Zhou et al., 2024). In particular, we applied the Ratio Cut model (Veldt, 2023; Hagen & Kahng, 1992) to the RIM manifold. When l=u, our algorithm is 70-200 times faster than those based on the double stochastic manifold for large-scale problems with millions of variables, and it achieves lower loss results. In general, the algorithms on the RIM manifold outperform the latest optimization algorithms in both loss function values and time. Additionally, the Ratio Cut clustering metric on the RIM manifold exceeds that of the latest clustering algorithms.

Overall, our contributions include:

- We propose a novel relaxation method for the indicator matrix, which allows for the full
 utilization of varying levels of prior information from the dataset, and we proved that the
 relaxed matrix forms a manifold.
- We develope a Riemannian optimization toolbox for manifolds, providing three Retraction algorithms, including a fast method for obtaining geodesics on the RIM manifold. We also demonstrated that the RIM manifold can replace methods on the double stochastic manifold, reducing the time complexity from $\mathcal{O}(n^3)$ to $\mathcal{O}(n)$.
- We conducte lots of experiments with millions of variables, demonstrating the speed and
 efficiency of our algorithm. Our method outperforms the double stochastic manifold by
 70-200 times in large-scale experiments, yielding better results and shorter time on various
 problems compared to latest optimization methods. We apply the RIM manifold to Ratio
 Cut and achieve superior clustering performance compared to the state-of-the-art methods.

2 PRELIMINARIES

The Preliminaries section consists of four parts: an introduction to the notations, a brief overview of Riemannian optimization, and an introduction to the single stochastic manifold, double stochastic manifold, and Steifel manifold, as well as machine learning methods on these manifolds. All the notations used in this paper follows the standard conventions of Riemannian optimization, and important symbols are introduced in the main text. Due to space limitations, the Preliminaries can be found in Appendix B.

3 RIEMANNIAN TOOLBOX

3.1 DEFINITION OF THE RELAXED INDICATOR MATRIX MANIFOLD

The optimization of indicator matrix $F \in \operatorname{Ind}^{n \times c}$, where typically $n \gg c$, is an NP-hard optimization problem. Three relaxation methods have already been introduced. The Steifel manifold $F \in \{X \mid A\}$

 $X^TX=I\}$ always requires $\mathcal{O}(n^3)$ time complexity (Shustin & Avron, 2023) and can only yield an analytical optimal solution in the form of $\operatorname{tr}(F^TLF)$, while in clustering, the resulting F still needs post-processing through methods like K-means. The single stochastic manifold $F\in\{X\mid X1_c=1_n,X>0\}$ does not impose any constraints on the column sums of F, which may lead to empty or imbalanced classes and cannot incorporate column sum information into the model. The double stochastic manifold $F\in\{X\mid X1_c=1_n,X^T1_n=r,X>0\}$, on the other hand, still has a time complexity of $\mathcal{O}(n^3)$, and the constraints on the column sums are too strict, often making it impossible to obtain the sum of the column. Therefore, we propose a new relaxation method:

$$F \in \{X \mid X1_c = 1_n, l < X^T 1_n < u, X > 0\}$$
(1)

Introducing l and u allows us to incorporate as much information as possible into the model. Additionally, when l < 0 and u > n, our relaxation reduces to $\{X \mid X1_c = 1_n, X > 0\}$. When u = l = r, our relaxation becomes $\{X \mid X1_c = 1_n, X^T1_n = r, X > 0\}$. Thus, our relaxation generalizes the previously mentioned approaches. Importantly, our relaxation forms an embedded submanifold of the Euclidean space.

Theorem 1. Our relaxed indicator matrix set $\mathcal{M} = \{X \mid X1_c = 1_n, l < X^T1_n < u, X > 0\}$ forms an embedded submanifold of the Euclidean space, with dim $\mathcal{M} = (n-1)c$. We refer to it as the Relaxed Indicator Matrix Manifold. Proof in A.1

3.2 RIEMANNIAN OPTIMIZATION TOOLBOX FOR THE RIM MANIFOLD

In this section, we will establish an optimized Riemannian toolbox for the RIM manifold. To transform the embedded submanifold (Zhang et al., 2024; Lee & Lee, 2012) \mathcal{M} into a Riemannian submanifold (Lee, 2018; Gulbahar, 2021), it is necessary to equip \mathcal{M} with an inner product $\langle \cdot, \cdot \rangle_X$. Mishra et al. (2021) adopt the Fisher information (Ly et al., 2017; Rissanen, 1996) metric for manifolds. However, an alternative approach is to directly restrict the Euclidean inner product onto the manifold. The reason for doing so is seen in F. This restriction allows for a straightforward derivation of the Riemannian gradient (Huang & Wei, 2022) from the Euclidean gradient and the method lies in enabling an intuitive and convenient Retraction mapping.

Theorem 2. By restricting the Euclidean inner product $\langle U, V \rangle = \sum_{i=1}^n \sum_{j=1}^c U_{ij} V_{ij}$ onto the RIM manifold \mathcal{M} , the tangent space of \mathcal{M} at X is given by $T_X \mathcal{M} = \{U \mid U1_c = 0\}$. For any function \mathcal{H} , if its Euclidean gradient is $\operatorname{Grad} \mathcal{H}(F)$, the Riemannian gradient $\operatorname{grad} \mathcal{H}(F)$ is expressed as following. Proof in A.2

$$\operatorname{grad} \mathcal{H}(F) = \operatorname{Grad} \mathcal{H}(F) - \frac{1}{c} \operatorname{Grad} \mathcal{H}(F) 1_{c} 1_{c}^{T}. \tag{2}$$

To further obtain second-order information of a function, it is necessary to equip the manifold \mathcal{M} with a Riemannian connection (Epstein, 1975). We select the unique connection that ensures the Riemannian Hessian hess \mathcal{H} is symmetric and compatible with the inner product as the Riemannian connection. The following theorem formalizes this:

Theorem 3. For the manifold \mathcal{M} , there exists a unique connection that is compatible with the inner product and ensures that the Riemannian Hessian mapping is self-adjoint. This connection is given by following. ∇ is the Riemannian connection in Euclidean space. Proof in A.3

$$\nabla_V U = \bar{\nabla}_V U - \frac{1}{c} \bar{\nabla}_V U \mathbf{1}_c \mathbf{1}_c^T. \tag{3}$$

The Riemannian Hessian mapping can be directly derived from the above Riemannian connection.

Theorem 4. For the manifold \mathcal{M} equipped with the connection $\nabla_V U$, the Riemannian Hessian mapping satisfies following. Hess \mathcal{H} is the Riemannian Hessian in Euclidean space. Proof in A.4

hess
$$\mathcal{H}[V] = \text{Hess } \mathcal{H}[V] - \frac{1}{c} \text{Hess } \mathcal{H}[V] \mathbf{1}_c \mathbf{1}_c^T.$$
 (4)

A Retraction (Hu et al., 2020; Hosseini & Sra, 2015) is a mapping $R_X(tV)$ that maps from the tangent space of \mathcal{M} at X to the manifold \mathcal{M} , i.e., $R_X(tV):T_X\mathcal{M}\to\mathcal{M}$. A Retraction is used to generate a curve $\gamma(t)=R_X(tV)$, starting at X and moving in the initial direction given by V, allowing X to

move along the manifold. Specifically, $R_X(tV)$ should satisfy $R_X(0) = X$ and $\frac{d}{dt}R_X(tV)\big|_{t=0} = V$. If $\frac{D}{dt}\gamma'(t)\big|_{t=0} = 0$, then $\gamma(t)$ forms a geodesic, where $\frac{D}{dt}$ represents the Levi-Civita derivative (Berz, 1996). Geodesics provide better convergence guarantees for optimization algorithms on manifolds (Vishnoi, 2018). The following theorem presents a method for obtaining geodesics.

Theorem 5. Let $R_X(tV) = argmin_{F \in \mathcal{M}} ||F - (X + tV)||_F^2$, $X \in \mathcal{M}$. Then

$$argmin_{F \in \mathcal{M}} \|F - (X + tV)\|_F^2 = \max(0, X + tV - \nu(t)1_c^T - 1_n \omega^T(t) + 1_n \rho^T(t))$$
 (5)

where $\nu(t), \omega^T(t), \rho^T(t)$ are Lagrange multipliers. Moreover, there exists $\delta > 0$ such that for $t \in (0, \delta), -\nu(t)1_c^T - 1_n\omega(t)^T + 1_n\rho(t)^T = 0$, and the Retraction satisfies the following. Where $\frac{D}{dt}$ denotes the Levi-Civita derivative.

$$R_X(0) = X, \quad \frac{d}{dt} R_X(tV)\big|_{t=0} = V, \quad \frac{D}{dt} R'_X(tV)\big|_{t=0} = 0$$
 (6)

Thus, $R_X(tV)$ is a geodesic. Proof in A.5

The essence of solving the Retraction is to compute the orthogonal projection $\operatorname{argmin}_{F \in \mathcal{M}} \|F - (X + tV)\|_F^2$, which can be addressed from two perspectives: the primal problem and the dual problem.

Theorem 6. $\mathcal{M} = \Omega_1 \cap \Omega_2 \cap \Omega_3$, where $\Omega_1 = \{X \mid X > 0, X1_c = 1_n\}$, $\Omega_2 = \{X \mid X^T1_n > l\}$, and $\Omega_3 = \{X \mid X^T1_n < u\}$. The primal problem can be solved using the Dykstras (Tibshirani, 2017; Boyle & Dykstra, 1986) algorithm by iteratively projecting onto Ω_1 , Ω_2 , and Ω_3 . Specifically:

$$Proj_{\Omega_1}(X) = (X_{ij} + \eta_i)_+$$
, where η is determined by $Proj_{\Omega_1}(X)1_c = 1_n$.

 $\operatorname{Proj}_{\Omega_2}(X)$ and $\operatorname{Proj}_{\Omega_3}(X)$ are defined similarly. For example,

$$Proj_{\Omega_2}(X^j) = \begin{cases} X^j, & \text{if } (X^j)^T 1_n > l_j, \\ \frac{1}{n} (l_j - 1_n^T X^j) 1_n + X^j, & \text{if } (X^j)^T 1_n \le l_j, \end{cases}$$
(7)

where X^j is the j-th column of X, and l_j is the j-th element of the column vector l. Proof in A.6

Another approach is the dual gradient ascent method. We have proven the following theorem.

Theorem 7. Solving the primal problem is equivalent to solving the following dual problem:

$$\max_{\omega > 0, \rho > 0} \mathcal{L} = \frac{1}{2} \| \max(0, X + tV - \nu \mathbf{1}_c^T - \mathbf{1}_n \omega^T + \mathbf{1}_n \rho^T) \|_F^2 - \langle \nu, \mathbf{1}_n \rangle - \langle \omega, u \rangle + \langle \rho, l \rangle$$
(8)

where ν , ω , and ρ are Lagrange multipliers. The partial derivatives of \mathcal{L} with respect to ν , ω , and ρ are known, and gradient ascent can be used solving ν , ω , and ρ . Finally, $R_X(tV)$ can be obtained using $\max(0, X + tV - \nu 1_c^T - 1_n \omega^T + 1_n \rho^T)$. The partial derivatives are following. Proof in A.7

$$\begin{cases}
\frac{\partial \mathcal{L}}{\partial \nu} = \max(0, X + tV - \nu \mathbf{1}_c^T - \mathbf{1}_n \omega^T + \mathbf{1}_n \rho^T) \mathbf{1}_c - \mathbf{1}_n \\
\frac{\partial \mathcal{L}}{\partial \omega} = \max(0, X + tV - \nu \mathbf{1}_c^T - \mathbf{1}_n \omega^T + \mathbf{1}_n \rho^T)^T \mathbf{1}_n - u \\
\frac{\partial \mathcal{L}}{\partial \rho} = -\max(0, X + tV - \nu \mathbf{1}_c^T - \mathbf{1}_n \omega^T + \mathbf{1}_n \rho^T)^T \mathbf{1}_n + l
\end{cases} \tag{9}$$

Additionally, we propose a Retraction method based on a variant of the Sinkhorn algorithm (Xie et al., 2025; Cuturi, 2013). This approach also attempts to map a matrix onto the RIM manifold using two diagonal matrices. The following theorem illustrates this property. However, it is equivalent to solving an optimal transport problem with an entropy regularization parameter, whose choice may not be well justified.

Theorem 8. The Sinkhorn-based Retraction is defined as

$$R_X^s(tV) = \mathcal{S}(X \odot \exp(tV \odot X)) = \operatorname{diag}(p^*)(X \odot \exp(tV \odot X)) \operatorname{diag}(q^* \odot w^*)$$
 (10)

where p^*, q^*, w^* are vectors, $\exp(\cdot)$ denotes element-wise exponentiation, and $\operatorname{diag}(\cdot)$ converts a vector into a diagonal matrix. The vectors p^*, q^*, w^* are obtained by iteratively updating the following equations:

$$\begin{cases}
p^{(k+1)} = 1_n \oslash \left((X \odot \exp(tV \oslash X)) \left(q^{(k)} \odot w^{(k)} \right) \right), \\
q^{(k+1)} = \max \left(l \oslash \left((X \odot \exp(tV \oslash X))^T p^{(k+1)} \odot w^{(k)} \right), 1_c \right), \\
w^{(k+1)} = \min \left(u \oslash \left((X \odot \exp(tV \oslash X))^T p^{(k+1)} \odot q^{(k+1)} \right), 1_c \right).
\end{cases} (11)$$

Table 1: Time complexity comparison $(n \gg c)$.

Operation		RIM Manifold			y Stochastic Manif	fold	Speedup factor
Operation	Additions	Multiplications	Total	Additions	Multiplications	Total	Speedup factor
Riemannian Gradient	O(nc)	$\mathcal{O}(n)$	$\mathcal{O}(n)$	$O(n^3)$	$O(n^3)$	$\mathcal{O}(n^3)$	$O(n^2)$
Retraction	O(nc)	O(nc)	$\mathcal{O}(nc)$	O(nc)	O(nc)	$\mathcal{O}(nc)$	$\mathcal{O}(1)$
Riemannian Hessian	O(nc)	$\mathcal{O}(n)$	$\mathcal{O}(n)$	$O(n^3)$	$O(n^3)$	$\mathcal{O}(n^3)$	$\mathcal{O}(n^2)$

This iterative procedure ensures the mapping onto the RIM manifold. The solution $R_X^s(tV) = \operatorname{diag}(p^*)(X \odot \exp(tV \odot X)) \operatorname{diag}(q^* \odot w^*)$ is equivalent to solving the dual-bound optimal transport problem (12) with an entropy regularization parameter of 1. Proof in A.8.

$$R_X^s(tV) = \operatorname{argmin}_{F \in \mathcal{M}} \left\langle F, -\log(X \odot \exp(tV \oslash X)) \right\rangle + \delta \Big|_{\delta = 1} \sum_{i=1}^n \sum_{j=1}^c \left(F_{ij} \log(F_{ij}) - F_{ij} \right) \tag{12}$$

Based on the Riemannian toolbox for the RIM manifold, we have developed Riemannian Gradient Descent (RIMRGD), Riemannian Conjugate Gradient (RIMRCG), and Riemannian Trust-Region (RIMRTR) methods on the RIM manifold. The algorithmic procedures are provided in Appendix C.

3.3 COMPARISON ANALYSIS OF TIME COMPLEXITY

When u=l, the RIM manifold reduces to the doubly stochastic manifold and provides a fast way for solving problems on the doubly stochastic constraint. Existing optimization methods on the doubly stochastic manifold are extremely time-consuming. This section provides a comparative analysis of the time complexity between the RIM manifold and the doubly stochastic manifold.

First, we discuss the Riemannian gradient. The computation of the Riemannian gradient on the RIM manifold is given by $\operatorname{grad} \mathcal{H}(F) = \operatorname{Grad} \mathcal{H}(F) - \frac{1}{c}\operatorname{Grad} \mathcal{H}(F)1_c1_c^T$. Here, the term $\operatorname{Grad} \mathcal{H}(F)1_c1_c^T$ involves summing each column, dividing by c, and then replicating it across c columns. This requires 2nc additions and n divisions.

For the doubly stochastic manifold, the Riemannian gradient is (n = c):

$$\begin{cases}
\operatorname{grad} \mathcal{H}(F) = \gamma - \left(\alpha \mathbf{1}_n^T + \mathbf{1}_n \mathbf{1}_n^T \gamma - \mathbf{1}_n \alpha^T F\right) \odot F, \\
\alpha = \left(I - F F^T\right)^{\dagger} \left(\gamma - F \gamma^T\right) \mathbf{1}_n, \quad \gamma = \operatorname{Grad} \mathcal{H}(F) \odot F.
\end{cases} \tag{13}$$

The term $FF^T \in \mathbb{R}^{n \times n}$, and computing its pseudo-inverse $(I - FF^T)^\dagger$ requires at least n^3 additions or multiplications. Further computing the Riemannian gradient involves at least n^3 operations. When $n \neq c$, we need to solve a linear system of (n+c) dimensions still takes $\mathcal{O}(n^3)$ time (where $n \gg c$).

For the Retraction operation, the time complexity is $\mathcal{O}(nc)$, which scales linearly with the number of variables. For the computation of the Riemannian Hessian, the RIM manifold also requires only $\mathcal{O}(nc)$ additions and $\mathcal{O}(c)$ multiplications. In contrast, the Hessian mapping on the doubly stochastic manifold has a highly complex expression (181), requiring at least $\mathcal{O}(n^3)$ additions and multiplications.

We summarize the time complexity in Table 1, including the complexity of each operation and the speedup factor. We will conduct extensive experiments to verify the acceleration effect.

4 RIM MANIFOLD FOR GRAPH CUT

In this section, we apply the RIM manifold to graph cut problems, using Max Cut (Shinde et al., 2021; Wang et al., 2022) and Ratio Cut (Chen et al., 2022b; Nie et al., 2024) as examples. Max Cut and Ratio Cut are both well-known graph partitioning algorithms, and their loss functions are given by $\mathcal{H}_m(F) = -tr(F^TSF)$ for the Max Cut, and $\mathcal{H}_r(F) = tr(F^TLF(F^TF)^{-1})$ for the Ratio Cut. S is the similarity matrix, and L is the Laplacian matrix (Nie et al., 2016; 2014). The constraint is $F \in \operatorname{Ind}^{n \times c}$, and we relax this constraint on the RIM manifold.

First, the Euclidean gradient of $-tr(F^TSF)$ is $\operatorname{Grad}(-tr(F^TSF)) = -SF$, and its corresponding Riemannian gradient is $\operatorname{grad}\mathcal{H}_m(F) = -SF + \frac{1}{c}SF1_c1_c^T$. According to Theorem 4, the Riemannian Hessian expression is $\operatorname{hess}\mathcal{H}_m[V] = \operatorname{Hess}\mathcal{H}_m[V] - \frac{1}{c}\operatorname{Hess}\mathcal{H}_m[V]1_c1_c^T$ Moreover,because we know that

$$\operatorname{Hess} \mathcal{H}_m[V] = \lim_{t \to 0} \frac{\operatorname{Grad} \mathcal{H}_m(F + tV) - \operatorname{Grad} \mathcal{H}_m(F)}{t} = \lim_{t \to 0} \frac{-S(F + tV) + SF}{t} = -SV \qquad (14)$$

Therefore, we show that hess $(-tr(F^TSF))[V]$ can be represented as following:

$$\operatorname{hess}\left(-tr(F^{T}SF)\right)[V] = -SV + \frac{1}{c}SV1_{c}1_{c}^{T}$$
(15)

Now we apply the RIM manifold to the Ratio Cut problem. Ratio Cut is an important graph partitioning method with the objective function $\operatorname{tr}(F^TLF(F^TF)^{-1})$, subject to $F \in \operatorname{Ind}^{n \times c}$. The relaxed optimization problem is formulated as:

$$\min_{F \in \mathcal{M}} \operatorname{tr}(F^T L F (F^T F)^{-1}), \quad \mathcal{M} = \{ X \mid X 1_c = 1_n, l < X^T 1_n < u, X > 0 \}$$
(16)

The following theorem provides the expressions for the Euclidean gradient and the Euclidean Hessian map of the Ratio Cut.

Theorem 9. The loss function for the Ratio Cut is given by $\mathcal{H}_r(F) = tr(F^T L F (F^T F)^{-1})$. Then, the Euclidean gradient of the loss function with respect to F is following. Proof in A.9

$$Grad\mathcal{H}_r(F) = 2\left(LF(F^TF)^{-1} - F(F^TF)^{-1}(F^TLF)(F^TF)^{-1}\right)$$
 (17)

Given the substitutions $(F^TF)^{-1} = J$ and $F^TLF = K$, the Euclidean Hessian map for the loss function is:

$$Hess\mathcal{H}_r[V] = 2(LVJ - LFJ(V^TF + F^TV)J - VJKJ + FJ(V^TF + F^TV)JKJ$$
 (18)

$$-FJ(V^{T}LF + F^{T}LV)J + FJKJ(V^{T}F + F^{T}V)J)$$
(19)

The above theorem provides the Euclidean gradient of Ratio Cut. Although computing $(F^TF)^{-1}$ requires inversion, where $F^TF \in \mathbb{R}^{c \times c}$, the inversion complexity is only $\mathcal{O}(c^3)$ and $c \ll n$. Next, we will perform graph cut optimization on the RIM manifold, comparing the loss results and runtime with various state-of-the-art algorithms, as well as evaluating the effectiveness of graph cut for clustering.

In addition, we provide **convergence theorems for graph cut** optimization on the RIM manifold using Riemannian optimization techniques Proof in A.10 and A.11.

5 EXPERIMENTS

In this section, we will conduct extensive experiments to evaluate the performance of Riemannian optimization on the RIM manifold and address several key questions of interest.

- **Question 1:** For the RIM manifold, this paper proposes three different Retraction methods. Which method is the most efficient? Which Retraction is recommended for use?
- Question 2: When l=u, does the Riemannian optimization algorithm on the RIM manifold outperform the Riemannian optimization algorithm on the doubly stochastic manifold in terms of effectiveness and speed?
- **Question 3:** For non-convex optimization problems, we evaluate whether optimization on the RIM manifold is faster or more effective compared to other state-of-the-art methods? As examples, we consider a classic non-convex graph cut problem Ratio Cut.
- **Question 4:** When relaxing the graph cut problem onto the RIM manifold (followed by discretization), can common clustering metrics(ACC,NMI,ARI) achieve better values?

5.1 EXPERIMENTAL SETUPS

5.1.1 EXPERIMENT 1 SETUP

To determine which of the three Retraction methods is more efficient, we randomly select a large number of matrices $V \in T_X \mathcal{M}$, i.e., generate a large number of tangent vectors, and set t=1. Then, we apply the three Retraction methods to generate points on the RIM manifold \mathcal{M} . To ensure the experiment's validity, we vary the matrix dimensions $V \in \mathbb{R}^{n \times c}$, where n takes values from $\{500, 1000, 3000, 5000, 7000, 10000\}$ and c takes values from $\{5, 10, 50, 100, 500, 1000\}$. The lower and upper bounds are set as $l = 0.9 \left\lfloor \frac{n}{c} \right\rfloor$ and $u = 1.1 \left\lfloor \frac{n}{c} \right\rfloor$, respectively, as well as $l = u = \frac{n}{c}$. We then calculate the computation time for the three Retraction methods and compare them. For large-scale problems, we recommend using the faster Retraction method. If the computation times are nearly identical, we recommend using the norm-based Retraction, as it yields geodesics with better properties.

5.1.2 EXPERIMENT 2 SETUP

To answer the second question, we need to compare Riemannian optimization methods on the RIM manifold with optimization methods on the doubly stochastic manifold under the condition l=u. To this end, we design two optimization problems, including both convex and non-convex cases.

The first problem is a norm approximation problem. Specifically, we randomly generate a matrix $A \in \mathbb{R}^{n \times c}$ with sizes $n \in \{5000, 7000, 10000\}, c \in \{5, 10, 20, 50, 70, 100\}$ and solve the following optimization problem. We compare the runtime and loss function values of the two manifolds.

$$\min_{F \subset \mathcal{M}} \|F - A\|_F^2, \quad \mathcal{M} = \{X \mid X 1_c = A 1_c, X^T 1_n = A^T 1_c, X > 0\}$$
 (20)

The second problem is an image denoising task based on the classical total variation (TV) regularization model. The RIM-TV model is given by

$$\begin{cases}
\min_{F \in \mathcal{M}} \frac{1}{2} \|F - \tilde{A}\|_F^2 + \xi \sum_{i,j} \left(|F_{i,j+1} - F_{i,j}| + |F_{i+1,j} - F_{i,j}| \right) \\
\mathcal{M} = \{X \mid X > 0, X1_c = \tilde{A}1_c, X^T 1_n = \tilde{A}^T 1_n \}
\end{cases}$$
(21)

Here, ξ is the total variation (TV) regularization coefficient, A is the original image obtained from the dataset, and \tilde{A} is the noisy image generated by adding Gaussian white noise to A. The image A_{ij} is in(0,1), ξ is chosen from the set {0.3,0.7}, and the variance of the added Gaussian noise is chosen from the set {0.3,0.5,0.9}. We will compare the speed and objective function values of the algorithm when running on the RIM manifold versus the doubly stochastic manifold. More experimental details can be found in Appendix D.1.

5.1.3 EXPERIMENT 3 SETUP

To answer the third question, we apply the RIM manifold to Ratio Cut and conduct experiments on 8 real datasets (as shown in Appendix D.3.4). The values of l and u are set as $l=u=\frac{n}{c}$ and $l=0.9\left\lfloor\frac{n}{c}\right\rfloor$, $u=1.1\left\lfloor\frac{n}{c}\right\rfloor$, respectively. For $l=u=\frac{n}{c}$, we compare seven algorithms: Riemannian Gradient Descent (RIMRGD), Riemannian Conjugate Gradient (RIMRCG), Riemannian Trust Region (RIMRTR), Frank-Wolfe Algorithm (FWA) (Jaggi, 2013; Weber & Sra, 2023; Yurtsever & Sra, 2022), Projected Gradient Descent (PGD) (Shen & Chen, 2023; Chen & Wainwright, 2015), Riemannian Gradient Descent on the Double Stochastic Manifold (DSRGD) (Tripuraneni et al., 2018), and Riemannian Conjugate Gradient on the Double Stochastic Manifold (DSRCG) (Sato, 2022). For $l=0.9\left\lfloor\frac{n}{c}\right\rfloor$ and $u=1.1\left\lfloor\frac{n}{c}\right\rfloor$, we only compare RIMRGD, RIMRCG, RIMRTR, FWA, and PGD. The optimization results of these algorithms are then compared. More experimental details can be found in Appendix D.2.

5.1.4 EXPERIMENT 4 SETUP

To answer the fourth question, we compare the Ratio Cut algorithm on the RIM manifold with ten clustering algorithms. We again choose 8 real datasets with different types, including images, tables, waveforms, etc. (as shown in Appendix D.3.4), and conduct large-scale validation using 10 comparison algorithms (listed in D.3). We evaluate the clustering performance using three metrics: clustering accuracy (ACC) (Yuan et al., 2024a;b), normalized mutual information (NMI) (Ren et al., 2024), and adjusted Rand index (ARI) (Ronen et al., 2022). For the similarity matrix, we use the k-nearest neighbor (k-NN) (Li et al., 2024b; Zhu et al., 2022) Gaussian kernel function (Wang et al., 2009; Chen et al., 2021) and construct the Gaussian kernel function using the mean Euclidean distance. For the parameter k, each comparison algorithm is tested by searching for the best value of k within the range k = [8, 10, 12, 14, 16]. More experimental details can be found in Appendix D.3.

5.2 EXPERIMENTAL RESULTS

5.2.1 RESULT OF EXPERIMENTAL 1

The data for Experiment 1 when l=u is presented in Table 2. The horizontal axis indicates the methods used, while the vertical axis represents the number of columns, and the horizontal axis represents the number of rows of the experimental matrix. The table entries represent the time required for Retraction, measured in seconds. The fastest method is highlighted in **red**. As observed,

Table 2: Table of Execution Time when l = u for Different Retraction Algorithms(s)

Row&Col	Dual						Sinkhorn					1		Dyk	stras			
Row&Coi	500	1000	3000	5000	7000	10000	500	1000	3000	5000	7000	10000	500	1000	3000	5000	7000	10000
5	0.012	0.024	0.054	0.084	0.108	0.140	0.004	0.009	0.048	0.132	0.169	0.499	0.006	0.007	0.011	0.019	0.028	0.038
10	0.022	0.036	0.075	0.112	0.141	0.188	0.002	0.006	0.036	0.087	0.166	0.343	0.006	0.005	0.014	0.023	0.031	0.043
50	0.074	0.095	0.791	1.307	1.886	2.766	0.002	0.008	0.043	0.125	0.228	0.474	0.005	0.008	0.023	0.039	0.053	0.074
100	0.012	0.174	1.597	2.962	3.831	5.710	0.003	0.008	0.056	0.140	0.288	0.580	0.006	0.010	0.031	0.060	0.072	0.106
500	0.054	0.122	8.597	14.32	20.16	23.77	0.013	0.030	0.237	0.629	1.155	2.265	0.016	0.033	0.096	0.168	0.223	0.318
1000	0.102	0.178	17.26	28.56	40.55	56.56	0.034	0.082	0.446	1.038	1.931	3.614	0.034	0.067	0.219	0.384	0.556	0.789

(a) Origin

(b) Noisy Image

(c) RIM Result

(d) DS Result

Figure 1: Image Denoising Results, Noise Coefficient 0.3, $\xi = 0.3$.

when the matrix is small, the Sinkhorn method is faster. However, as the matrix size increases, the Dykstras method shows significant advantages and produces the geodesic. Therefore, we recommend using the Dykstras method to obtain the Retraction curve. More data can be found in Appendix E.1.

5.2.2 RESULT OF EXPERIMENTAL 2

Table 3 shows the time and final loss required by the Riemannian Trust Region method to solve convex optimization problems of different scales. It can be seen that, for problems of varying sizes, the RIMTRT significantly outperforms the DSTRT in both time consumption and final loss. Therefore, we have highlighted the RIM manifold results in **red**. Data for the Riemannian Gradient Descent and Riemannian Conjugate Gradient methods can be found in Table 10 and Table 11.

For the second part of the experiment, Figure 1 shows the comparison of denoising results using the TV algorithm on the RIM manifold and the doubly stochastic manifold with a noise level of 0.3. In this case, $\xi = 0.3$. On the RIM manifold, the running time was **29.77s**, and the loss value decreased to **1.05e5**, while on the doubly stochastic manifold, the time was **85.33s**, and the loss value was **1.17e5**. By observing the images, it is evident that the image obtained using the doubly stochastic manifold has noticeable noise when zoomed in, while the image on the RIM manifold is smoother. Additional data and images can be found in Figure 4.

Table 3: Cost and Time on the RIM Manifold and Doubly Stochastic Manifold(RTR).

Row&Col]	RIM Manif	old			Doubly Stochastic Manifold					
Rowacoi		Cost			Time			Cost	Time			
Size	5000	7000	10000	5000	7000	10000	5000	7000	10000	5000	7000	10000
5	3.09E-23	8.28E-20	2.09E-20	0.265	0.355	0.516	4.38E-11	3.96E-10	2.89E-10	9.530	12.85	31.97
10	1.91E-20	9.58E-20	3.80E-20	0.283	0.464	0.690	1.91E-10	3.66E-10	4.12E-10	16.25	17.04	32.72
20	1.02E-19	1.22E-23	8.29E-19	0.366	0.562	0.691	9.49E-10	6.04E-10	1.17E-09	18.77	35.15	26.77
50	7.66E-20	2.13E-18	2.20E-20	0.602	0.844	1.087	3.08E-09	1.99E-09	1.57E-09	38.55	64.27	111.1
70	1.85E-20	2.84E-18	7.49E-19	0.791	0.983	1.352	2.59E-09	1.65E-09	3.18E-09	70.47	121.0	77.28
100	1.31E-19	5.04E-20	1.26E-17	0.990	1.324	1.721	1.78E-09	2.18E-09	2.83E-09	91.40	121.3	241.4

5.2.3 RESULT OF EXPERIMENTAL 3

When l = u, the time and loss for the seven comparison algorithms are presented in Table 4. We have marked the algorithm names on the RIM manifold in blue, the shortest time in **red**, and the lowest loss in bright red. It can be observed that the optimization algorithms on the RIM manifold achieved most of the top positions. Figure 2 shows the loss decrease curves for some datasets. More results can be found in Appendix E.3.

5.2.4 RESULT OF EXPERIMENTAL 4

For Experiment 4, Table 5 records the performance of 12 comparison algorithms across 8 real-world datasets based on clustering accuracy (ACC), normalized mutual information (NMI), and adjusted Rand index (ARI). Our algorithm is marked in blue, and the best-performing algorithm is marked

Table 4: Time and Loss of Different Optimization Algorithms on Ratio Cut when l=u

				-				0	-					
Datasets&Methods	DSF	RGD	DSF	RCG	FV	VA	PC	GD	RIM	RGD	RIM	RCG	RIM	IRTR
Datasets&Methods	Time	Cost												
COIL20	8.978	28.17	11.90	28.41	10.49	41.12	6.967	31.53	1.145	24.83	0.685	27.46	14.20	22.48
Digit	8.650	2.751	11.87	2.312	9.196	0.492	6.077	0.953	7.058	0.942	0.886	1.319	13.73	1.089
JAFFE	2.224	30.06	2.774	60.16	0.303	29.39	2.725	44.35	0.149	29.56	0.119	29.92	1.982	28.94
MSRA25	9.901	2.775	11.94	2.249	9.687	1.845	6.954	1.221	2.221	1.636	1.957	1.009	17.74	1.070
PalmData25	43.39	737.1	54.48	1054	88.35	561.1	23.74	642.2	9.506	456.0	2.583	642.3	18.77	516.3
USPS20	9.238	25.52	12.65	23.58	10.37	16.76	6.842	17.32	5.257	16.46	0.735	19.91	12.59	16.31
Waveform21	11.16	4.328	13.76	3.313	17.81	2.457	8.645	2.392	4.094	2.385	1.237	2.434	8.508	2.390
MnistData05	18.16	6.834	23.60	4.894	26.29	0.619	14.96	2.520	16.43	2.126	1.724	3.325	35.93	2.154

in **red**. It can be observed that performing Ratio Cut on the RIM manifold leads to superior results compared to the most advanced algorithms. More results can be found in Appendix E.4.

Table 5: Mean clustering performance of compared methods on real-world datasets.

Metric	Method	COIL20	Digit	JAFFE	MSRA25	PalmData25	USPS20	Waveform21	MnistData05
	KM	53.44	58.33	72.16	49.33	70.32	55.51	50.38	53.86
	CDKM	52.47	65.82	80.85	59.63	76.05	57.68	50.36	54.24
	Rcut	78.14	74.62	84.51	56.84	87.03	57.83	51.93	62.80
	Ncut	78.88	76.71	83.76	56.23	86.76	59.20	51.93	61.14
	Nystrom	51.56	72.08	75.77	52.85	76.81	62.55	51.49	55.91
	BKNC	57.11	60.92	93.76	65.47	86.74	62.76	51.51	52.00
ACC	FCFC	59.34	43.94	71.60	54.27	69.38	58.23	56.98	54.41
	FSC	82.76	79.77	81.69	56.25	82.27	67.63	50.42	57.76
	LSCR	65.67	78.14	91.97	53.82	58.25	63.07	56.19	57.15
	LSCK	62.28	78.04	84.98	54.41	58.31	61.86	54.95	58.57
	RIMRcut	79.72	82.53	96.71	56.64	90.85	70.28	74.80	65.55
	KM	71.43	58.20	80.93	60.10	89.40	54.57	36.77	49.57
	CDKM	71.16	63.64	87.48	63.83	91.94	55.92	36.77	49.23
	Rcut	86.18	75.28	90.11	71.64	95.41	63.84	37.06	63.11
	Ncut	86.32	76.78	89.87	71.50	95.26	64.46	37.06	63.22
	Nystrom	66.11	70.13	82.53	57.77	93.09	59.00	36.95	48.53
NMI	BKNC	69.80	59.37	92.40	69.30	95.83	57.10	36.94	44.56
INIVII	FCFC	74.05	38.33	80.30	63.34	89.47	55.71	22.89	48.75
	FSC	91.45	80.98	90.43	70.60	94.62	74.75	36.76	58.33
	LSCR	74.67	75.07	93.13	68.06	81.84	62.36	33.37	52.82
	LSCK	74.02	76.53	87.89	67.97	81.70	65.23	36.92	59.14
	RIMRcut	85.63	80.05	96.24	71.76	96.50	69.08	42.14	59.35
	KM	50.81	45.80	66.83	34.66	65.06	43.57	25.56	37.18
	CDKM	48.11	52.74	76.36	37.70	71.73	45.59	25.56	36.79
	Rcut	73.73	65.81	81.70	46.35	84.76	51.99	25.31	51.32
	Ncut	74.30	68.21	81.30	45.90	84.25	52.72	25.31	50.51
	Nystrom	45.96	59.50	69.85	38.07	76.23	50.01	25.03	38.21
ARI	BKNC	49.96	48.98	87.96	54.78	85.56	48.43	25.02	32.89
AIXI	FCFC	54.41	25.50	65.73	40.42	66.03	46.32	22.89	36.86
	FSC	79.46	73.03	80.26	43.99	79.67	61.71	25.10	44.78
	LSCR	57.68	67.21	86.76	43.31	48.70	52.64	25.12	41.46
	LSCK	54.59	68.70	77.37	42.18	48.58	52.54	26.47	46.48
	RIMRcut	73.98	75.01	93.32	46.82	88.49	56.06	42.89	52.87

6 Conclusion

This paper presents a new relaxation for indicator matrices and proves that it forms a Riemannian manifold. We have constructed a Riemannian toolbox for optimization on the RIM manifold. In particular, we introduce multiple methods for Retraction, including one that operates quickly along the geodesic. The paper demonstrates that optimization on the RIM manifold is useful for machine learning and it is a fast method $\mathcal{O}(n)$ that can replace the existing double stochastic manifold optimization with a time complexity of $\mathcal{O}(n^3)$. Through large-scale experiments from multiple perspectives, we have proven the effectiveness and speed of optimization on the RIM manifold.

7 STATEMENT

For the reproducibility of this paper, we have submitted the complete anonymized code with fixed random seeds, as detailed in Appendix H. In addition, large language models (LLMs) were only used for language polishing.

REFERENCES

- Hervé Abdi and Lynne J Williams. Principal component analysis. *Wiley interdisciplinary reviews: computational statistics*, 2(4):433–459, 2010.
- Robert Altmann, Daniel Peterseim, and Tatjana Stykel. Energy-adaptive riemannian optimization on the stiefel manifold. *ESAIM: Mathematical Modelling and Numerical Analysis*, 56(5):1629–1653, 2022.
- Randall Balestriero and Yann LeCun. Contrastive and non-contrastive self-supervised learning recover global and local spectral embedding methods. *Advances in Neural Information Processing Systems*, 35:26671–26685, 2022.
- Yichen Bao, Han Lu, and Quanxue Gao. Fuzzy k-means clustering without cluster centroids. *arXiv* preprint arXiv:2404.04940, 2024.
- Jean-David Benamou, Guillaume Carlier, Marco Cuturi, Luca Nenna, and Gabriel Peyré. Iterative bregman projections for regularized transportation problems, 2014. URL https://arxiv.org/abs/1412.5154.
- Martin Berz. Calculus and numerics on levi-civita fields. *Computational Differentiation: Techniques, Applications, and Tools*, (89):19–37, 1996.
- James Bezdek, Robert Gunderson, Robert Ehrlich, and Tom Meloy. On the extension of fuzzy k-means algorithms for detection of linear clusters. In 1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes, pp. 1438–1443. IEEE, 1979.
- Ioan-Daniel Borlea, Radu-Emil Precup, Alexandra-Bianca Borlea, and Daniel Iercan. A unified form of fuzzy c-means and k-means algorithms and its partitional implementation. *Knowledge-Based Systems*, 214:106731, 2021.
- Nicolas Boumal. Optimization and estimation on manifolds. 2014.
- Nicolas Boumal. An introduction to optimization on smooth manifolds. Cambridge University Press, 2023.
- Nicolas Boumal, Bamdev Mishra, P-A Absil, and Rodolphe Sepulchre. Manopt, a matlab toolbox for optimization on manifolds. *The Journal of Machine Learning Research*, 15(1):1455–1459, 2014.
- James P Boyle and Richard L Dykstra. A method for finding projections onto the intersection of convex sets in hilbert spaces. In *Advances in Order Restricted Statistical Inference: Proceedings of the Symposium on Order Restricted Statistical Inference held in Iowa City, Iowa, September 11–13, 1985*, pp. 28–47. Springer, 1986.
- Timothy Carson, Dustin G Mixon, Soledad Villar, and Rachel Ward. Manifold optimization for k-means clustering. In 2017 International Conference on Sampling Theory and Applications (SampTA), pp. 73–77. IEEE, 2017.
- Laetitia Chapel, Mokhtar Z. Alaya, and Gilles Gasso. Partial optimal transport with applications on positive-unlabeled learning, 2020. URL https://arxiv.org/abs/2002.08276.
- Huimin Chen, Qianrong Zhang, Rong Wang, Feiping Nie, and Xuelong Li. A general soft-balanced clustering framework based on a novel balance regularizer. *Signal Processing*, 198:108572, 2022a.
- Wen-Yen Chen, Yangqiu Song, Hongjie Bai, Chih-Jen Lin, and Edward Y. Chang. Parallel spectral clustering in distributed systems. *IEEE Trans. Pattern Anal. Mach. Intel.*, 33(3):568–586, 2011.

- Xiaojun Chen, Zhicong Xiao, Feiping Nie, and Joshua Zhexue Huang. Finc: An efficient and effective optimization method for normalized cut. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2022b.
- Xinlei Chen and Deng Cai. Large scale spectral clustering with landmark-based representation.
 In Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2011, San Francisco, California, USA, August 7-11, 2011. AAAI Press, 2011.
 - Yifan Chen, Qi Zeng, Heng Ji, and Yun Yang. Skyformer: Remodel self-attention with gaussian kernel and nystrom method. *Advances in Neural Information Processing Systems*, 34:2122–2135, 2021.
 - Yudong Chen and Martin J Wainwright. Fast low-rank estimation by projected gradient descent: General statistical and algorithmic guarantees. *arXiv preprint arXiv:1509.03025*, 2015.
 - Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. *Advances in neural information processing systems*, 26, 2013.
 - Zhiyuan Dang, Cheng Deng, Xu Yang, Kun Wei, and Heng Huang. Nearest neighbor matching for deep clustering. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 13693–13702, 2021.
 - Ahmed Douik and Babak Hassibi. A riemannian approach for graph-based clustering by doubly stochastic matrices. In 2018 IEEE Statistical Signal Processing Workshop (SSP), pp. 806–810. IEEE, 2018.
 - Ahmed Douik and Babak Hassibi. Manifold optimization over the set of doubly stochastic matrices: A second-order geometry. *IEEE Transactions on Signal Processing*, 67(22):5761–5774, 2019.
 - Alan Edelman, Tomás A Arias, and Steven T Smith. The geometry of algorithms with orthogonality constraints. *SIAM journal on Matrix Analysis and Applications*, 20(2):303–353, 1998.
 - DBAd Epstein. Natural tensors on riemannian manifolds. *Journal of Differential Geometry*, 10(4): 631–645, 1975.
 - Jicong Fan, Yiheng Tu, Zhao Zhang, Mingbo Zhao, and Haijun Zhang. A simple approach to automated spectral clustering. *Advances in Neural Information Processing Systems*, 35:9907–9921, 2022.
 - Yanhong Fei, Yingjie Liu, Chentao Jia, Zhengyu Li, Xian Wei, and Mingsong Chen. A survey of geometric optimization for deep learning: from euclidean space to riemannian manifold. *ACM Computing Surveys*, 57(5):1–37, 2025.
 - Maria Brigida Ferraro. Fuzzy k-means: history and applications. *Econometrics and Statistics*, 30: 110–123, 2024.
 - Chakib Fettal, lazhar labiod, and Mohamed Nadif. Graph cuts with arbitrary size constraints through optimal transport. *Transactions on Machine Learning Research*, 2024. ISSN 2835-8856. URL https://openreview.net/forum?id=UG7rtrsuaT.
 - Kyle Fox, Debmalya Panigrahi, and Fred Zhang. Minimum cut and minimum k-cut in hypergraphs via branching contractions. *ACM Transactions on Algorithms*, 19(2):1–22, 2023.
 - Maxime Gasse, Simon Bowly, Quentin Cappart, Jonas Charfreitag, Laurent Charlin, Didier Chételat, Antonia Chmiela, Justin Dumouchelle, Ambros Gleixner, Aleksandr M Kazachkov, et al. The machine learning for combinatorial optimization competition (ml4co): Results and insights. In *NeurIPS 2021 competitions and demonstrations track*, pp. 220–231. PMLR, 2022.
 - Mehmet Gulbahar. Qualar curvatures of pseudo riemannian manifolds and pseudo riemannian submanifolds. *AIMS Mathematics*, 6(2):1366–1377, 2021.
 - Lars Hagen and Andrew B Kahng. New spectral methods for ratio cut partitioning and clustering. *IEEE transactions on computer-aided design of integrated circuits and systems*, 11(9):1074–1085, 1992.

- Wei He, Shangzhi Zhang, Chun-Guang Li, Xianbiao Qi, Rong Xiao, and Jun Guo. Neural normalized cut: A differential and generalizable approach for spectral clustering. *Pattern Recognition*, 164: 111545, 2025.
 - Reshad Hosseini and Suvrit Sra. Matrix manifold optimization for gaussian mixtures. *Advances in neural information processing systems*, 28, 2015.
 - Haize Hu, Jianxun Liu, Xiangping Zhang, and Mengge Fang. An effective and adaptable k-means algorithm for big data cluster analysis. *Pattern Recognition*, 139:109404, 2023.
 - Jiang Hu, Xin Liu, Zai-Wen Wen, and Ya-Xiang Yuan. A brief introduction to manifold optimization. *Journal of the Operations Research Society of China*, 8:199–248, 2020.
 - Wen Huang and Ke Wei. Riemannian proximal gradient methods. *Mathematical Programming*, 194 (1):371–413, 2022.
 - Mia Hubert, Peter J Rousseeuw, and Karlien Vanden Branden. Robpca: a new approach to robust principal component analysis. *Technometrics*, 47(1):64–79, 2005.
 - Abiodun M Ikotun, Absalom E Ezugwu, Laith Abualigah, Belal Abuhaija, and Jia Heming. K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data. *Information Sciences*, 622:178–210, 2023.
 - Martin Jaggi. Revisiting frank-wolfe: Projection-free sparse convex optimization. In *International conference on machine learning*, pp. 427–435. PMLR, 2013.
 - Bo Jiang and Yu-Hong Dai. A framework of constraint preserving update schemes for optimization on stiefel manifold. *Mathematical Programming*, 153(2):535–575, 2015.
 - Michael Jordan, Tianyi Lin, and Emmanouil-Vasileios Vlatakis-Gkaragkounis. First-order algorithms for min-max optimization in geodesic metric spaces. *Advances in Neural Information Processing Systems*, 35:6557–6574, 2022.
 - Hiroyuki Kasai, Hiroyuki Sato, and Bamdev Mishra. Riemannian stochastic recursive gradient algorithm. In *International conference on machine learning*, pp. 2516–2524. PMLR, 2018.
 - Aparajita Khan and Pradipta Maji. Multi-manifold optimization for multi-view subspace clustering. *IEEE Transactions on Neural Networks and Learning Systems*, 33(8):3895–3907, 2021.
 - Max Kochurov, Rasul Karimov, and Serge Kozlukov. Geoopt: Riemannian optimization in pytorch. *arXiv preprint arXiv:2005.02819*, 2020.
- John M Lee. *Introduction to Riemannian manifolds*, volume 2. Springer, 2018.
- John M Lee and John M Lee. Submanifolds. *Introduction to smooth manifolds*, pp. 98–124, 2012.
- Jing Li, Quanxue Gao, Qianqian Wang, Cheng Deng, and Deyan Xie. Label learning method based on tensor projection. In *Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pp. 1599–1609, 2024a.
- Jun Li, Li Fuxin, and Sinisa Todorovic. Efficient riemannian optimization on the stiefel manifold via the cayley transform. *arXiv preprint arXiv:2002.01113*, 2020.
- Shuai Li, Yingjie Zhang, Hongtu Zhu, Christina Wang, Hai Shu, Ziqi Chen, Zhuoran Sun, and Yanfeng Yang. K-nearest-neighbor local sampling based conditional independence testing. *Advances in Neural Information Processing Systems*, 36, 2024b.
- Yeqing Li, Feiping Nie, Heng Huang, and Junzhou Huang. Large-scale multi-view spectral clustering via bipartite graph. In *Proceedings of the AAAI conference on artificial intelligence*, volume 29, 2015.
- Hongfu Liu, Ziming Huang, Qi Chen, Mingqin Li, Yun Fu, and Lintao Zhang. Fast clustering with flexible balance constraints. In 2018 IEEE International Conference on Big Data (Big Data), pp. 743–750, 2018.

- Alexander Ly, Maarten Marsman, Josine Verhagen, Raoul PPP Grasman, and Eric-Jan Wagenmakers. A tutorial on fisher information. *Journal of Mathematical Psychology*, 80:40–55, 2017.
 - Peter Macgregor. Fast and simple spectral clustering in theory and practice. *Advances in Neural Information Processing Systems*, 36, 2024.
 - Peter Macgregor and He Sun. A tighter analysis of spectral clustering, and beyond. In *International Conference on Machine Learning*, pp. 14717–14742. PMLR, 2022.
 - Mayank Meghwanshi, Pratik Jawanpuria, Anoop Kunchukuttan, Hiroyuki Kasai, and Bamdev Mishra. Mctorch, a manifold optimization library for deep learning. *arXiv preprint arXiv:1810.01811*, 2018.
 - Bamdev Mishra, NTV Satyadev, Hiroyuki Kasai, and Pratik Jawanpuria. Manifold optimization for non-linear optimal transport problems. *arXiv preprint arXiv:2103.00902*, 2021.
 - Yujie Mo, Zhihe Lu, Runpeng Yu, Xiaofeng Zhu, and Xinchao Wang. Revisiting self-supervised heterogeneous graph learning from spectral clustering perspective. *Advances in Neural Information Processing Systems*, 37:43133–43163, 2025.
 - Anindya Mondal, Jhony H Giraldo, Thierry Bouwmans, Ananda S Chowdhury, et al. Moving object detection for event-based vision using graph spectral clustering. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 876–884, 2021.
 - Andrew Ng, Michael Jordan, and Yair Weiss. On spectral clustering: Analysis and an algorithm. *Advances in neural information processing systems*, 14, 2001.
 - Du Nguyen. Closed-form geodesics and optimization for riemannian logarithms of stiefel and flag manifolds. *Journal of Optimization Theory and Applications*, 194(1):142–166, 2022.
 - Feiping Nie, Chris Ding, Dijun Luo, and Heng Huang. Improved minmax cut graph clustering with nonnegative relaxation. In *Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2010, Barcelona, Spain, September 20-24, 2010, Proceedings, Part II 21*, pp. 451–466. Springer, 2010.
 - Feiping Nie, Xiaoqian Wang, and Heng Huang. Clustering and projected clustering with adaptive neighbors. In *Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining*, pp. 977–986, 2014.
 - Feiping Nie, Xiaoqian Wang, Michael Jordan, and Heng Huang. The constrained laplacian rank algorithm for graph-based clustering. In *Proceedings of the AAAI conference on artificial intelligence*, volume 30, 2016.
 - Feiping Nie, Jingjing Xue, Danyang Wu, Rong Wang, Hui Li, and Xuelong Li. Coordinate descent method for *k* k-means. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 44(5): 2371–2385, 2021.
 - Feiping Nie, Huimin Chen, Heng Huang, Chris HQ Ding, and Xuelong Li. Learning a subspace and clustering simultaneously with manifold regularized nonnegative matrix factorization. *Guidance*, *Navigation and Control*, 2024.
 - Michael L Overton and Robert S Womersley. Second derivatives for optimizing eigenvalues of symmetric matrices. *SIAM Journal on Matrix Analysis and Applications*, 16(3):697–718, 1995.
 - Peter Petersen. Riemannian geometry, volume 171. Springer, 2006.
 - Yazhou Ren, Jingyu Pu, Zhimeng Yang, Jie Xu, Guofeng Li, Xiaorong Pu, S Yu Philip, and Lifang He. Deep clustering: A comprehensive survey. *IEEE transactions on neural networks and learning systems*, 2024.
 - Jorma J Rissanen. Fisher information and stochastic complexity. *IEEE transactions on information theory*, 42(1):40–47, 1996.

- Meitar Ronen, Shahaf E Finder, and Oren Freifeld. Deepdpm: Deep clustering with an unknown number of clusters. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 9861–9870, 2022.
 - Farid Saberi-Movahed, Kamal Berahman, Razieh Sheikhpour, Yuefeng Li, and Shirui Pan. Nonnegative matrix factorization in dimensionality reduction: A survey. *arXiv preprint arXiv:2405.03615*, 2024.
 - Hiroyuki Sato. Riemannian optimization and its applications, volume 670. Springer, 2021.
 - Hiroyuki Sato. Riemannian conjugate gradient methods: General framework and specific algorithms with convergence analyses. *SIAM Journal on Optimization*, 32(4):2690–2717, 2022.
 - Martin JA Schuetz, J Kyle Brubaker, and Helmut G Katzgraber. Combinatorial optimization with physics-inspired graph neural networks. *Nature Machine Intelligence*, 4(4):367–377, 2022.
 - Han Shen and Tianyi Chen. On penalty-based bilevel gradient descent method. In *International Conference on Machine Learning*, pp. 30992–31015. PMLR, 2023.
 - Dai Shi, Junbin Gao, Xia Hong, ST Boris Choy, and Zhiyong Wang. Coupling matrix manifolds assisted optimization for optimal transport problems. *Machine Learning*, 110:533–558, 2021.
 - Liangliang Shi, Zhaoqi Shen, and Junchi Yan. Double-bounded optimal transport for advanced clustering and classification. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pp. 14982–14990, 2024.
 - Nimita Shinde, Vishnu Narayanan, and James Saunderson. Memory-efficient approximation algorithms for max-k-cut and correlation clustering. *Advances in Neural Information Processing Systems*, 34:8269–8281, 2021.
 - Boris Shustin and Haim Avron. Riemannian optimization with a preconditioning scheme on the generalized stiefel manifold. *Journal of Computational and Applied Mathematics*, 423:114953, 2023.
 - Oleg Smirnov. Tensorflow riemopt: a library for optimization on riemannian manifolds. *arXiv* preprint arXiv:2105.13921, 2021.
 - Siti Noraini Sulaiman and Nor Ashidi Mat Isa. Adaptive fuzzy-k-means clustering algorithm for image segmentation. *IEEE Transactions on Consumer Electronics*, 56(4):2661–2668, 2010.
 - Yanfeng Sun, Junbin Gao, Xia Hong, Bamdev Mishra, and Baocai Yin. Heterogeneous tensor decomposition for clustering via manifold optimization. *IEEE transactions on pattern analysis and machine intelligence*, 38(3):476–489, 2015.
 - Yue Sun, Nicolas Flammarion, and Maryam Fazel. Escaping from saddle points on riemannian manifolds. *Advances in Neural Information Processing Systems*, 32, 2019.
 - Shingo Takemoto, Kazuki Naganuma, and Shunsuke Ono. Graph spatio-spectral total variation model for hyperspectral image denoising. *IEEE Geoscience and Remote Sensing Letters*, 19:1–5, 2022.
 - Ryan J Tibshirani. Dykstra's algorithm, admm, and coordinate descent: Connections, insights, and extensions. *Advances in Neural Information Processing Systems*, 30, 2017.
- James Townsend, Niklas Koep, and Sebastian Weichwald. Pymanopt: A python toolbox for optimization on manifolds using automatic differentiation. *Journal of Machine Learning Research*, 17 (137):1–5, 2016.
- Nilesh Tripuraneni, Nicolas Flammarion, Francis Bach, and Michael I Jordan. Averaging stochastic gradient descent on riemannian manifolds. In *Conference On Learning Theory*, pp. 650–687. PMLR, 2018.
 - Anton Tsitsulin, John Palowitch, Bryan Perozzi, and Emmanuel Müller. Graph clustering with graph neural networks. *Journal of Machine Learning Research*, 24(127):1–21, 2023.

- Nate Veldt. Cut-matching games for generalized hypergraph ratio cuts. In *Proceedings of the ACM Web Conference 2023*, pp. 694–704, 2023.
- Nisheeth K Vishnoi. Geodesic convex optimization: Differentiation on manifolds, geodesics, and convexity. *arXiv preprint arXiv:1806.06373*, 2018.
 - Jie Wang, Haiping Lu, Konstantinos N Plataniotis, and Juwei Lu. Gaussian kernel optimization for pattern classification. *Pattern recognition*, 42(7):1237–1247, 2009.
 - Yangtao Wang, Xi Shen, Shell Xu Hu, Yuan Yuan, James L Crowley, and Dominique Vaufreydaz. Self-supervised transformers for unsupervised object discovery using normalized cut. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 14543–14553, 2022.
 - Melanie Weber and Suvrit Sra. Riemannian optimization via frank-wolfe methods. *Mathematical Programming*, 199(1):525–556, 2023.
 - Fangyuan Xie, Jinghui Yuan, Feiping Nie, and Xuelong Li. Dual-bounded nonlinear optimal transport for size constrained min cut clustering. *arXiv* preprint arXiv:2501.18143, 2025.
 - Jinghui Yuan, Hao Chen, Renwei Luo, and Feiping Nie. A margin-maximizing fine-grained ensemble method. *arXiv preprint arXiv:2409.12849*, 2024a.
 - Jinghui Yuan, Weijin Jiang, Zhe Cao, Fangyuan Xie, Rong Wang, Feiping Nie, and Yuan Yuan. Achieving more with less: A tensor-optimization-powered ensemble method. *arXiv preprint arXiv:2408.02936*, 2024b.
 - Jinghui Yuan, Chusheng Zeng, Fangyuan Xie, Zhe Cao, Mulin Chen, Rong Wang, Feiping Nie, and Yuan Yuan. Doubly stochastic adaptive neighbors clustering via the marcus mapping. *arXiv* preprint arXiv:2408.02932, 2024c.
 - Alp Yurtsever and Suvrit Sra. Cccp is frank-wolfe in disguise. *Advances in Neural Information Processing Systems*, 35:35352–35364, 2022.
 - Chao Zhang, Xiaojun Chen, and Shiqian Ma. A riemannian smoothing steepest descent method for non-lipschitz optimization on embedded submanifolds of r n. *Mathematics of Operations Research*, 49(3):1710–1733, 2024.
 - Xiaowei Zhao, Feiping Nie, Rong Wang, and Xuelong Li. Improving projected fuzzy k-means clustering via robust learning. *Neurocomputing*, 491:34–43, 2022.
 - Huasong Zhong, Jianlong Wu, Chong Chen, Jianqiang Huang, Minghua Deng, Liqiang Nie, Zhouchen Lin, and Xian-Sheng Hua. Graph contrastive clustering. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 9224–9233, 2021.
 - Bingxin Zhou, Ruikun Li, Xuebin Zheng, Yu Guang Wang, and Junbin Gao. Graph denoising with framelet regularizers. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2024.
 - Shixiang Zhu, Liyan Xie, Minghe Zhang, Rui Gao, and Yao Xie. Distributionally robust weighted k-nearest neighbors. *Advances in Neural Information Processing Systems*, 35:29088–29100, 2022.
 - Wei Zhu, Feiping Nie, and Xuelong Li. Fast spectral clustering with efficient large graph construction. In 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2492–2496, 2017. doi: 10.1109/ICASSP.2017.7952605.
 - Xiaojing Zhu. A riemannian conjugate gradient method for optimization on the stiefel manifold. *Computational optimization and Applications*, 67:73–110, 2017.

3.2 Riemannian Optimization Toolbox for the RIM Manifold 3.3 Comparison Analysis of Time Complexity 4 RIM Manifold for Graph Cut 5 Experiments 5.1 Experimental Setups 5.1.1 Experiment 1 Setup 5.1.2 Experiment 2 Setup 5.1.3 Experiment 3 Setup 5.1.4 Experiment 4 Setup 5.1. Experiment 4 Setup 5.1. Experimental Results 5.2.1 Result of Experimental 1 5.2.2 Result of Experimental 2 5.2.3 Result of Experimental 3 5.2.4 Result of Experimental 4 6 Conclusion 7 Statement Appendices A Proofs of Theorems A.1 Proof of Theorem 1 A.2 Proof of Theorem 2 A.3 Proof of Theorem 3 A.4 Proof of Theorem 4 A.5 Proof of Theorem 5 A.6 Proof of Theorem 5 A.6 Proof of Theorem 6	1	Intr	oduction
3.1 Definition of the Relaxed Indicator Matrix Manifold 3.2 Riemannian Optimization Toolbox for the RIM Manifold 3.3 Comparison Analysis of Time Complexity 4 RIM Manifold for Graph Cut 5 Experiments 5.1 Experimental Setups 5.1.1 Experiment 1 Setup 5.1.2 Experiment 2 Setup 5.1.3 Experiment 3 Setup 5.1.4 Experiment 4 Setup 5.1.5 Experimental Results 5.2.1 Result of Experimental 1 5.2.2 Result of Experimental 2 5.2.3 Result of Experimental 3 5.2.4 Result of Experimental 4 6 Conclusion 7 Statement Appendices A Proofs of Theorems A.1 Proof of Theorem 1 A.2 Proof of Theorem 3 A.4 Proof of Theorem 4 A.5 Proof of Theorem 5 A.6 Proof of Theorem 6 A.7 Proof of Theorem 7	2	Prel	iminaries
3.2 Riemannian Optimization Toolbox for the RIM Manifold 3.3 Comparison Analysis of Time Complexity 4 RIM Manifold for Graph Cut 5 Experiments 5.1 Experimental Setups 5.1.1 Experiment 1 Setup 5.1.2 Experiment 2 Setup 5.1.3 Experiment 3 Setup 5.1.4 Experiment 4 Setup 5.1.5 Experiment 4 Setup 5.1.6 Experimental Results 5.2.1 Result of Experimental 1 5.2.2 Result of Experimental 2 5.2.3 Result of Experimental 3 5.2.4 Result of Experimental 4 6 Conclusion 7 Statement Appendices A Proof of Theorems A.1 Proof of Theorem 1 A.2 Proof of Theorem 2 A.3 Proof of Theorem 3 A.4 Proof of Theorem 4 A.5 Proof of Theorem 5 A.6 Proof of Theorem 6 A.7 Proof of Theorem 6 A.7 Proof of Theorem 7	3	Rier	nannian Toolbox
3.3 Comparison Analysis of Time Complexity 4 RIM Manifold for Graph Cut 5 Experiments 5.1 Experimental Setups 5.1.1 Experiment 1 Setup 5.1.2 Experiment 2 Setup 5.1.3 Experiment 3 Setup 5.1.4 Experiment 4 Setup 5.1.4 Experiment 4 Setup 5.2 Experimental Results 5.2.1 Result of Experimental 1 5.2.2 Result of Experimental 2 5.2.3 Result of Experimental 3 5.2.4 Result of Experimental 4 6 Conclusion 7 Statement Appendices A Proof of Theorem 1 A.2 Proof of Theorem 2 A.3 Proof of Theorem 3 A.4 Proof of Theorem 4 A.5 Proof of Theorem 5 A.6 Proof of Theorem 6 A.7 Proof of Theorem 7		3.1	Definition of the Relaxed Indicator Matrix Manifold
4 RIM Manifold for Graph Cut 5 Experiments 5.1 Experimental Setups 5.1.1 Experiment 1 Setup 5.1.2 Experiment 2 Setup 5.1.3 Experiment 3 Setup 5.1.4 Experiment 4 Setup 5.1 Experimental Results 5.2.1 Result of Experimental 1 5.2.2 Result of Experimental 2 5.2.3 Result of Experimental 3 5.2.4 Result of Experimental 4 6 Conclusion 7 Statement Appendices A Proof of Theorems A.1 Proof of Theorem 1 A.2 Proof of Theorem 2 A.3 Proof of Theorem 3 A.4 Proof of Theorem 4 A.5 Proof of Theorem 4 A.5 Proof of Theorem 6 A.7 Proof of Theorem 7		3.2	Riemannian Optimization Toolbox for the RIM Manifold
5 Experiments 5.1 Experimental Setups 5.1.1 Experiment 1 Setup 5.1.2 Experiment 2 Setup 5.1.3 Experiment 3 Setup 5.1.4 Experiment 4 Setup 5.2 Experimental Results 5.2.1 Result of Experimental 1 5.2.2 Result of Experimental 2 5.2.3 Result of Experimental 3 5.2.4 Result of Experimental 4 6 Conclusion 7 Statement Appendices A Proofs of Theorems A.1 Proof of Theorem 1 A.2 Proof of Theorem 2 A.3 Proof of Theorem 3 A.4 Proof of Theorem 4 A.5 Proof of Theorem 5 A.6 Proof of Theorem 6 A.7 Proof of Theorem 7		3.3	Comparison Analysis of Time Complexity
5.1 Experimental Setups 5.1.1 Experiment 1 Setup 5.1.2 Experiment 2 Setup 5.1.3 Experiment 3 Setup 5.1.4 Experiment 4 Setup 5.2 Experimental Results 5.2.1 Result of Experimental 1 5.2.2 Result of Experimental 2 5.2.3 Result of Experimental 3 5.2.4 Result of Experimental 4 6 Conclusion 7 Statement Appendices A Proofs of Theorems A.1 Proof of Theorem 1 A.2 Proof of Theorem 2 A.3 Proof of Theorem 3 A.4 Proof of Theorem 4 A.5 Proof of Theorem 5 A.6 Proof of Theorem 6 A.7 Proof of Theorem 7	4	RIM	I Manifold for Graph Cut
5.1.1 Experiment 1 Setup 5.1.2 Experiment 2 Setup 5.1.3 Experiment 3 Setup 5.1.4 Experiment 4 Setup 5.2 Experimental Results 5.2.1 Result of Experimental 1 5.2.2 Result of Experimental 2 5.2.3 Result of Experimental 3 5.2.4 Result of Experimental 4 6 Conclusion 7 Statement Appendices A Proofs of Theorems A.1 Proof of Theorem 1 A.2 Proof of Theorem 2 A.3 Proof of Theorem 3 A.4 Proof of Theorem 4 A.5 Proof of Theorem 4 A.5 Proof of Theorem 5 A.6 Proof of Theorem 6 A.7 Proof of Theorem 7	5	Exp	eriments
5.1.2 Experiment 2 Setup . 5.1.3 Experiment 3 Setup . 5.1.4 Experiment 4 Setup . 5.2 Experimental Results . 5.2.1 Result of Experimental 1 . 5.2.2 Result of Experimental 2 . 5.2.3 Result of Experimental 3 . 5.2.4 Result of Experimental 4 . 6 Conclusion . 7 Statement . Appendices . A Proof of Theorem 1 . A.2 Proof of Theorem 2 . A.3 Proof of Theorem 3 . A.4 Proof of Theorem 4 . A.5 Proof of Theorem 5 . A.6 Proof of Theorem 6 . A.7 Proof of Theorem 7 .		5.1	Experimental Setups
5.1.3 Experiment 3 Setup 5.1.4 Experiment 4 Setup 5.2 Experimental Results 5.2.1 Result of Experimental 1 5.2.2 Result of Experimental 2 5.2.3 Result of Experimental 3 5.2.4 Result of Experimental 4 6 Conclusion 7 Statement Appendices A Proofs of Theorems A.1 Proof of Theorem 1 A.2 Proof of Theorem 2 A.3 Proof of Theorem 3 A.4 Proof of Theorem 4 A.5 Proof of Theorem 5 A.6 Proof of Theorem 6 A.7 Proof of Theorem 7			5.1.1 Experiment 1 Setup
5.1.4 Experiment 4 Setup 5.2 Experimental Results 5.2.1 Result of Experimental 1 5.2.2 Result of Experimental 2 5.2.3 Result of Experimental 3 5.2.4 Result of Experimental 4 6 Conclusion 7 Statement Appendices A Proofs of Theorems A.1 Proof of Theorem 1 A.2 Proof of Theorem 2 A.3 Proof of Theorem 3 A.4 Proof of Theorem 4 A.5 Proof of Theorem 5 A.6 Proof of Theorem 6 A.7 Proof of Theorem 7			5.1.2 Experiment 2 Setup
5.2 Experimental Results 5.2.1 Result of Experimental 1 5.2.2 Result of Experimental 2 5.2.3 Result of Experimental 3 5.2.4 Result of Experimental 4 6 Conclusion 7 Statement Appendices A Proofs of Theorems A.1 Proof of Theorem 1 A.2 Proof of Theorem 2 A.3 Proof of Theorem 3 A.4 Proof of Theorem 4 A.5 Proof of Theorem 5 A.6 Proof of Theorem 6 A.7 Proof of Theorem 7			5.1.3 Experiment 3 Setup
5.2.1 Result of Experimental 1 5.2.2 Result of Experimental 2 5.2.3 Result of Experimental 3 5.2.4 Result of Experimental 4 6 Conclusion 7 Statement Appendices A Proofs of Theorems A.1 Proof of Theorem 1 A.2 Proof of Theorem 2 A.3 Proof of Theorem 3 A.4 Proof of Theorem 4 A.5 Proof of Theorem 5 A.6 Proof of Theorem 6 A.7 Proof of Theorem 7			5.1.4 Experiment 4 Setup
5.2.2 Result of Experimental 2 5.2.3 Result of Experimental 3 5.2.4 Result of Experimental 4 6 Conclusion 7 Statement Appendices A Proofs of Theorems A.1 Proof of Theorem 1 A.2 Proof of Theorem 2 A.3 Proof of Theorem 3 A.4 Proof of Theorem 4 A.5 Proof of Theorem 5 A.6 Proof of Theorem 6 A.7 Proof of Theorem 7		5.2	Experimental Results
5.2.3 Result of Experimental 3 5.2.4 Result of Experimental 4 6 Conclusion 7 Statement Appendices A Proofs of Theorems A.1 Proof of Theorem 1 A.2 Proof of Theorem 2 A.3 Proof of Theorem 3 A.4 Proof of Theorem 4 A.5 Proof of Theorem 5 A.6 Proof of Theorem 6 A.7 Proof of Theorem 7			5.2.1 Result of Experimental 1
5.2.4 Result of Experimental 4 6 Conclusion 7 Statement Appendices A Proofs of Theorems A.1 Proof of Theorem 1 A.2 Proof of Theorem 2 A.3 Proof of Theorem 3 A.4 Proof of Theorem 4 A.5 Proof of Theorem 5 A.6 Proof of Theorem 6 A.7 Proof of Theorem 7			5.2.2 Result of Experimental 2
6 Conclusion 7 Statement Appendices A Proofs of Theorems A.1 Proof of Theorem 1 A.2 Proof of Theorem 2 A.3 Proof of Theorem 3 A.4 Proof of Theorem 4 A.5 Proof of Theorem 5 A.6 Proof of Theorem 6 A.7 Proof of Theorem 7			5.2.3 Result of Experimental 3
7 Statement Appendices A Proofs of Theorems A.1 Proof of Theorem 1 A.2 Proof of Theorem 2 A.3 Proof of Theorem 3 A.4 Proof of Theorem 4 A.5 Proof of Theorem 5 A.6 Proof of Theorem 6 A.7 Proof of Theorem 7			5.2.4 Result of Experimental 4
Appendices A Proofs of Theorems A.1 Proof of Theorem 1 A.2 Proof of Theorem 2 A.3 Proof of Theorem 3 A.4 Proof of Theorem 4 A.5 Proof of Theorem 5 A.6 Proof of Theorem 6 A.7 Proof of Theorem 7	6	Con	clusion
A Proofs of Theorems A.1 Proof of Theorem 1 A.2 Proof of Theorem 2 A.3 Proof of Theorem 3 A.4 Proof of Theorem 4 A.5 Proof of Theorem 5 A.6 Proof of Theorem 6 A.7 Proof of Theorem 7	7	State	ement
A.1 Proof of Theorem 1 A.2 Proof of Theorem 2 A.3 Proof of Theorem 3 A.4 Proof of Theorem 4 A.5 Proof of Theorem 5 A.6 Proof of Theorem 6 A.7 Proof of Theorem 7	Aŗ	pend	ices
A.2 Proof of Theorem 2 A.3 Proof of Theorem 3 A.4 Proof of Theorem 4 A.5 Proof of Theorem 5 A.6 Proof of Theorem 6 A.7 Proof of Theorem 7	A	Proc	ofs of Theorems
A.3 Proof of Theorem 3 A.4 Proof of Theorem 4 A.5 Proof of Theorem 5 A.6 Proof of Theorem 6 A.7 Proof of Theorem 7		A.1	Proof of Theorem 1
A.4 Proof of Theorem 4		A.2	Proof of Theorem 2
A.5 Proof of Theorem 5 A.6 Proof of Theorem 6 A.7 Proof of Theorem 7		A.3	Proof of Theorem 3
A.6 Proof of Theorem 6			Dua of of Theorem 4
A.7 Proof of Theorem 7		A.4	Proof of Theorem 4
		12.	Proof of Theorem 5
A.8 Proof of Theorem 8		A.5	
		A.5 A.6	Proof of Theorem 5

864 865		A. 11	Proof of Theorem 11	30
866				
867	B	Preli	minaries	33
868		B.1	Notations	33
869		B.2	Introduction to Riemannian Optimization	34
870 871		B.3	•	35
872		D .3		
873				35
874			B.3.2 Doubly Stochastic Manifold	36
875			B.3.3 Stiefel Manifold	37
876 877		B.4	Manifold-based Machine Learning Algorithms	38
878			B.4.1 Algorithms on the Single Stochastic Manifold	38
879			B.4.2 Algorithms on the Double Stochastic Manifold	38
880 881				38
882		D 5		39
883		B.5	Other Related Work and Background Introduction	99
884	C	Onti	mization Algorithms on the RIM Manifold	40
885 886		_		
887		C.1		40
888		C.2	Conjugate Gradient Method on the RIM Manifold	40
889		C .3	Trust Region Method on the RIM Manifold	40
890 891				
892	D	Deta	ils of the Experimental Setup	42
893		D.1	Experiment 2 Setup	42
894		D.2	Experiment 3 Setup	42
895 896		D.3	Experiment 4 Setup	42
897				43
898			3	43
899 900				
901				44
902				44
903			D.3.5 How to Choose l and u	45
904 905	_			
906	E	Addi	•	46
907		E.1	Results of Experimental 1	46
908		E.2	Results of Experimental 2	46
909 910		E.3	Results of Experimental 3	47
911		E.4	Results of Experimental 4	48
912				
913	F	RIM	Manifold Equipped with Fisher Metric	50
914 915		F.1	Dimension and Tangent Space	50
916		F.2		50
917				51
		E 3	NED ACTION INVADIBILITY	11

918		F.4 Which to Use?	51
919			
920	G	Explanation regarding $l=u$	51
921		Zinpinianion regardang v	
922	ш	Reference Code for RIM Manifold Riemannian Toolbox	52
923	п	Reference Code for Krivi Manifold Kiemannian Toolbox	34
924			
925			
926			
927			
928			
929			
930			
931			
932			
933			
934 935			
936			
937			
938			
939			
940			
941			
942			
943			
944			
945			
946			
947			
948			
949			
950			
951			
952			
953			
954			
955			
956			
957			
958			
959			
960			
961			
962			
963			
964			
965			
966			
967			
968			
969			

A PROOFS OF THEOREMS

A.1 PROOF OF THEOREM 1

Our relaxed indicator matrix set $\mathcal{M} = \{X \mid X1_c = 1_n, l < X^T1_n < u, X > 0\}$ forms an embedded submanifold of the Euclidean space, with dim $\mathcal{M} = (n-1)c$. We refer to it as the Relaxed Indicator Matrix Manifold.

Proof. The set \mathcal{M} can be viewed as the intersection of three sets: $\mathcal{M} = \{X \mid X1_c = 1_n, l < X^T1_n < u, X > 0\} = \Omega_1 \cap \Omega_2 \cap \Omega_3$, where $\Omega_1 = \{X \mid X > 0, X1_c = 1_n\}$, $\Omega_2 = \{X \mid X^T1_n > l\}$, and $\Omega_3 = \{X \mid X^T1_n < u\}$. Consider the differential of the local defining function for the set Ω_1 , i.e.

$$D(X1_c - 1_n)[V] = \lim_{t \to 0} \frac{(X + tV)1_c - 1_n - (X1_c - 1_n)}{t} = \lim_{t \to 0} \frac{tV1_c}{t} = V1_c$$
 (22)

Consider the null space of $D(X1_c - 1_n)[V]$, given by $Ker(D(X1_c - 1_n)[V]) = \{V \mid V1_c = 0\}$. The dimension of this null space is

$$\dim(\text{Ker}(D(X1_c - 1_n)[V])) = nc - c = (n - 1)c$$
(23)

In addition, since $\Omega_2=\{X\mid X^T1_n>l\}$ and $\Omega_3=\{X\mid X^T1_n< u\}$, take Ω_2 as an example. For any directional vector U, there must exist $\delta_U>0$ such that $(X+\delta_UU)^T1_n>l$. Thus, both Ω_2 and Ω_3 are open sets. According to Theorem (Petersen, 2006), Ω_1 forms a manifold, and Ω_2 and Ω_3 are open sets. The intersection of an open set with a manifold remains a manifold. Therefore, $\mathcal{M}=\{X\mid X1_c=1_n, l< X^T1_n< u, X>0\}=\Omega_1\cap\Omega_2\cap\Omega_3$ is still a manifold, and $\dim(\mathcal{M})=\dim(\mathrm{Ker}(D(X1_c-1_n)[V]))=(n-1)c$.

We refer to \mathcal{M} as the Relaxed Indicator Matrix manifold, abbreviated as the RIM manifold.

A.2 PROOF OF THEOREM 2

By restricting the Euclidean inner product $\langle U, V \rangle = \sum_{i=1}^n \sum_{j=1}^c U_{ij} V_{ij}$ onto the RIM manifold \mathcal{M} , the tangent space of \mathcal{M} at X is given by $T_X \mathcal{M} = \{U \mid U1_c = 0\}$. For any function \mathcal{H} , if its Euclidean gradient is $\operatorname{Grad} \mathcal{H}(F)$, the Riemannian gradient $\operatorname{grad} \mathcal{H}(F)$ is expressed as following.

$$\operatorname{grad} \mathcal{H}(F) = \operatorname{Grad} \mathcal{H}(F) - \frac{1}{c} \operatorname{Grad} \mathcal{H}(F) 1_{c} 1_{c}^{T}.$$
(24)

Proof. According to the definition of tangent space,

$$T_X \mathcal{M} = \text{Ker}(D(X1_c - 1_n)[U]) = \{U \mid U1_c = 0\}$$
 (25)

Let $\operatorname{Grad}\mathcal{H}$ be the gradient of \mathcal{H} in the Euclidean space. Then, $\operatorname{Grad}\mathcal{H}=\operatorname{Grad}\mathcal{H}_{\parallel}+\operatorname{Grad}\mathcal{H}_{\perp}$, where $\operatorname{Grad}\mathcal{H}_{\parallel}$ represents the component of $\operatorname{Grad}\mathcal{H}$ parallel to $T_X\mathcal{M}$, and $\operatorname{Grad}\mathcal{H}_{\perp}$ represents the component perpendicular to $T_X\mathcal{M}$.

By the definition of the Riemannian gradient,

$$D\mathcal{H}[V] = \langle \operatorname{Grad}\mathcal{H}, V \rangle = \langle \operatorname{grad}\mathcal{H}, V \rangle_X, V \in T_X \mathcal{M}$$
 (26)

Here, $\langle \operatorname{grad} \mathcal{H}, V \rangle_X$ denotes the inner product equipped on the manifold at X. When $\langle \operatorname{grad} \mathcal{H}, V \rangle_X$ coincides with the Euclidean inner product, we have

$$\langle \operatorname{Grad}\mathcal{H}, V \rangle = \langle \operatorname{Grad}\mathcal{H}_{\parallel}, V \rangle + \langle \operatorname{Grad}\mathcal{H}_{\perp}, V \rangle = \langle \operatorname{Grad}\mathcal{H}_{\parallel}, V \rangle = \langle \operatorname{grad}\mathcal{H}, V \rangle_{X}$$
 (27)

for $V \in T_X \mathcal{M}$, since $\langle \operatorname{Grad} \mathcal{H}_{\perp}, V \rangle = 0$ for $V \in T_X \mathcal{M}$. By the Ritz representation theorem, in this case, $\operatorname{grad} \mathcal{H}$ is the orthogonal projection of $\operatorname{Grad} \mathcal{H}$ onto the tangent space. The next step is to solve the optimization problem:

$$\min_{U \in \{U | U1_c = 0\}} \mathcal{L} = \min_{U \in \{U | U1_c = 0\}} \|U - \text{Grad}\mathcal{H}\|_F^2$$
 (28)

The Lagrangian function for the optimization problem is given by: $\mathcal{L} = \frac{1}{2} \|U - \operatorname{Grad} \mathcal{H}\|_F^2 + \alpha^T (U1_c)$. Taking the gradient with respect to U, we have:

$$\nabla_U \mathcal{L} = U - \text{Grad}\mathcal{H} + \alpha \mathbf{1}_c^T = 0$$
 (29)

Solving for U, we obtain $U = \operatorname{Grad} \mathcal{H} - \alpha 1_c^T$.. Since $U1_c = 0$, substituting U gives $\operatorname{Grad} \mathcal{H} 1_c - \alpha 1_c^T 1_c = \operatorname{Grad} \mathcal{H} 1_c - c\alpha = 0$, which implies $\alpha = \frac{1}{c}\operatorname{Grad} \mathcal{H} 1_c$. Therefore, the Riemannian gradient is following.

$$\operatorname{grad}\mathcal{H} = \operatorname{argmin}_{U \in \{U \mid U1_c = 0\}} \|U - \operatorname{Grad}\mathcal{H}\|_F^2 = \operatorname{Grad}\mathcal{H} - \frac{1}{c}\operatorname{Grad}\mathcal{H}1_c1_c^T$$
(30)

A.3 PROOF OF THEOREM 3

For the manifold \mathcal{M} , there exists a unique connection that is compatible with the inner product and ensures that the Riemannian Hessian mapping is self-adjoint. This connection is given by following. $\bar{\nabla}$ is the Riemannian connection in Euclidean space.

$$\nabla_V U = \bar{\nabla}_V U - \frac{1}{c} \bar{\nabla}_V U \mathbf{1}_c \mathbf{1}_c^T. \tag{31}$$

Proof. First, we need to prove that the connection is compatible with the inner product, which means proving $W\langle U,V\rangle=\langle\nabla_W U,V\rangle+\langle U,\nabla_W V\rangle$. We have the following equation

$$W\langle U, V \rangle = D(\langle U, V \rangle)[W] = D\left(\sum_{i=1}^{n} \sum_{j=1}^{n} U_{ij} V_{ij}\right) [W] = \sum_{i=1}^{n} \sum_{j=1}^{n} D(U_{ij} V_{ij})[W]$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} (V_{ij} D(U_{ij})[W_{ij}] + U_{ij} D(V_{ij})[W_{ij}]) = \langle U, D(V)[W] \rangle + \langle D(U)[W], V \rangle$$

$$= \langle U, D(V)[W] - \frac{1}{c} D(V)[W] \mathbf{1}_{c} \mathbf{1}_{c}^{T} \rangle + \langle D(U)[W] - \frac{1}{c} D(U)[W] \mathbf{1}_{c} \mathbf{1}_{c}^{T}, V \rangle$$

$$+ \langle U, \frac{1}{c} D(V)[W] \mathbf{1}_{c} \mathbf{1}_{c}^{T} \rangle + \langle \frac{1}{c} D(U)[W] \mathbf{1}_{c} \mathbf{1}_{c}^{T}, V \rangle.$$
(32)

Since the standard inner product in Euclidean space is chosen, we have

$$\langle U, \frac{1}{c}D(V)[W]1_c1_c^T \rangle = \frac{1}{c} \text{tr}(U^T D(V)[W]1_c1_c^T) = \frac{1}{c} \text{tr}(D(V)[W]1_c1_c^T U^T)$$

$$= \frac{1}{c} \text{tr}(D(V)[W]1_c(U1_c)^T) = 0$$
(34)

The last step equals zero because $U \in T_X \mathcal{M}$, which implies that $U1_c = 0$. In the Euclidean space, the connection $\nabla_V U$ is defined as D(U)[V]. Furthermore, we have:

$$W\langle U, V \rangle = \langle U, D(V)[W] - \frac{1}{c}D(V)[W]1_c1_c^T \rangle + \langle D(U)[W] - \frac{1}{c}D(U)[W]1_c1_c^T, V \rangle$$
(35)

$$= \langle U, \bar{\nabla}_W V - \frac{1}{c} \bar{\nabla}_W V 1_c 1_c^T \rangle + \langle \bar{\nabla}_W U - \frac{1}{c} \bar{\nabla}_W U 1_c 1_c^T, V \rangle \tag{36}$$

$$= \langle U, \nabla_W V \rangle + \langle V, \nabla_W U \rangle \tag{37}$$

The second step is to prove that the Hessian map obtained from the connection is self-adjoint. That is, we need to prove $[U,V] = \nabla_U V - \nabla_V U$, where [U,V] is the Lie bracket, and [U,V]f = U(V(f)) - V(U(f)). with f being a smooth scalar field on the manifold \mathcal{M} . U and V are tangent vectors of the RIM manifold \mathcal{M} , i.e., $U,V \in T_X \mathcal{M}$. Let \bar{U} and \bar{V} be smooth extensions of U and V in the neighborhood of \mathcal{M} , satisfying $\bar{U}|_{\mathcal{M}} = U$ and $\bar{V}|_{\mathcal{M}} = V$. We have $[\bar{U},\bar{V}] = D\bar{V}[\bar{U}] - D\bar{U}[\bar{V}] = \bar{\nabla}_{\bar{U}}\bar{V} - \bar{\nabla}_{\bar{V}}\bar{U}$. Thus, we can prove that:

$$[U,V] = [\bar{U},\bar{V}]|_{\mathcal{M}} \tag{38}$$

$$= \left(\bar{\nabla}_{\bar{U}}\bar{V} - \bar{\nabla}_{\bar{V}}\bar{U}\right)|_{\mathcal{M}} \tag{39}$$

$$= \operatorname{Proj}_{\mathcal{M}} (\bar{\nabla}_{\bar{U}} \bar{V} - \bar{\nabla}_{\bar{V}} \bar{U})|_{\mathcal{M}} \tag{40}$$

$$= \bar{\nabla}_{U} V - \frac{1}{c} \bar{\nabla}_{U} V 1_{c} 1_{c}^{T} - \bar{\nabla}_{V} U + \frac{1}{c} \bar{\nabla}_{V} U 1_{c} 1_{c}^{T}$$
(41)

$$= \nabla_U V - \nabla_V U. \tag{42}$$

This equality, $(\bar{\nabla}_{\bar{U}}\bar{V} - \bar{\nabla}_{\bar{V}}\bar{U})|_{\mathcal{M}} = \operatorname{Proj}_{\mathcal{M}}(\bar{\nabla}_{\bar{U}}\bar{V} - \bar{\nabla}_{\bar{V}}\bar{U})|_{\mathcal{M}}$, holds because [U,V] is defined in the tangent space of \mathcal{M} . Therefore, the expression $(\bar{\nabla}_{\bar{U}}\bar{V} - \bar{\nabla}_{\bar{V}}\bar{U})|_{\mathcal{M}}$ and its projection onto the tangent space of \mathcal{M} must be equal.

A.4 PROOF OF THEOREM 4

For the manifold \mathcal{M} equipped with the connection $\nabla_V U = \bar{\nabla}_V U - \frac{1}{c} \bar{\nabla}_V U 1_c 1_c^T$, the Riemannian Hessian mapping satisfies following.

hess
$$\mathcal{H}[V] = \text{Hess } \mathcal{H}[V] - \frac{1}{c} \text{Hess } \mathcal{H}[V] \mathbf{1}_c \mathbf{1}_c^T.$$
 (43)

Proof. The Riemannian Hessian is defined as

$$hess\mathcal{H}[U] = \nabla_U \operatorname{grad} \mathcal{H} = \nabla_U \left(\operatorname{Grad} \mathcal{H} - \frac{1}{c} \operatorname{Grad} \mathcal{H} 1_c 1_c^T \right).$$
 (44)

Using the definition of the Riemannian connection ∇ , we have

hess
$$\mathcal{H}[U] = \nabla_U \operatorname{grad} \mathcal{H} = D \left(\operatorname{Grad} \mathcal{H} - \frac{1}{c} \operatorname{Grad} \mathcal{H} 1_c 1_c^T \right) [U]$$
 (45)

$$= \lim_{t \to 0} \frac{\operatorname{Grad} \mathcal{H}(X + tU) - \operatorname{Grad} \mathcal{H}(X)}{t} - \lim_{t \to 0} \frac{\operatorname{Grad} \mathcal{H}(X + tU) 1_c 1_c^T - \operatorname{Grad} \mathcal{H}(X) 1_c 1_c^T}{ct}$$
(46)

$$= \operatorname{Hess} \mathcal{H}[V] - \frac{1}{c} \operatorname{Hess} \mathcal{H}[V] 1_c 1_c^T$$
(47)

A.5 PROOF OF THEOREM 5

Let $R_X(tV) = \operatorname{argmin}_{F \in \mathcal{M}} \|F - (X + tV)\|_F^2, X \in \mathcal{M}$. Then

$$\operatorname{argmin}_{F \in \mathcal{M}} \|F - (X + tV)\|_F^2 = \max(0, X + tV - \nu(t)1_c^T - 1_n \omega^T(t) + 1_n \rho^T(t)) \tag{48}$$

where $\nu(t), \omega^T(t), \rho^T(t)$ are Lagrange multipliers. Moreover, there exists $\delta>0$ such that for $t\in(0,\delta), -\nu(t)1_c^T-1_n\omega(t)^T+1_n\rho(t)^T=0$, and the Retraction satisfies the following. Where $\frac{D}{dt}$ denotes the Levi-Civita derivative.

$$R_X(0) = X, \quad \frac{d}{dt} R_X(tV) \big|_{t=0} = V, \quad \frac{D}{dt} R'_X(tV) \big|_{t=0} = 0$$
 (49)

Thus, $R_X(tV)$ is a geodesic.

Proof. First, the Lagrangian dual function of the original problem is as follows:

$$\mathcal{L}(F,\nu,\omega,\rho) = \frac{1}{2} \|F - (X+tV)\|_F^2 - \nu^T (F1_c - 1_n) - \omega^T (F^T 1_n - u) + \rho^T (l - F^T 1_n)$$
 (50)

Where ν , ω , and ρ are the corresponding Lagrange multipliers, satisfying $\nu \geq 0$, $\omega \geq 0$, $\rho \geq 0$. Let $\frac{\partial \mathcal{L}}{\partial F} = 0$, then we have the following formular:

$$\frac{\partial \mathcal{L}}{\partial F} = F - X + \nu \mathbf{1}_c^T + \mathbf{1}_n \omega^T - \mathbf{1}_n \rho^T - tV = 0, \tag{51}$$

That is, $F = X + tV - \nu \mathbf{1}_c^T - \mathbf{1}_n \omega^T + \mathbf{1}_n \rho^T$. Since F lies on the manifold \mathcal{M} and $F \geq 0$, the final result is:

$$F^* = \operatorname{argmin}_{F \in \mathcal{M}} \|F - (X + tV)\|_F^2 = \max(0, X + tV - \nu \mathbf{1}_c^T - \mathbf{1}_n \omega^T + \mathbf{1}_n \rho^T). \tag{52}$$

It can be proven that F^* satisfies the KKT conditions of the original problem. For different t, the values of the Lagrange multipliers ν, ω, ρ vary, and they are functions of t: $\nu(t), \omega(t), \rho(t)$. The next step is to prove the three properties of the second-order Retraction, $R_X(0) = X, \frac{d}{dt}R_X(tV)\big|_{t=0} = V, \frac{D}{dt}R_X'(tV)\big|_{t=0} = 0$. First, consider $R_X(0) = \operatorname{argmin}_{F \in \mathcal{M}} \|F - X\|_F^2$.

Since $X \in \mathcal{M}$, we have $R_X(0) = F^*(0) = X$. Additionally, since $F^*(0) = \max\left(0, X + tV - \nu 1_c^T - 1_n\omega^T + 1_n\rho^T\right)\big|_{t=0} = \max\left(0, X - \nu(0)1_c^T - 1_n\omega(0)^T + 1_n\rho(0)^T\right)$. We know that $X = \max\left(0, X - \nu(0)1_c^T - 1_n\omega(0)^T + 1_n\rho(0)^T\right)$.

According to the definition, we calculate:

$$\frac{d}{dt}R_X(tV)|_{t=0} = \lim_{t \to 0} \frac{F^*(t) - F^*(0)}{t} = \lim_{t \to 0} \frac{\max\left(0, X + tV - \nu \mathbf{1}_c^T - \mathbf{1}_n\omega^T + \mathbf{1}_n\rho^T\right) - F^*(0)}{t}$$
(53)

Since $X \in \mathcal{M}$, we know that $X_{ij} > 0$, $X1_c = 1_n$, and $l < X1_n < u$. Furthermore, since $V \in T_X\mathcal{M}$, there exists a $\delta > 0$ such that for $t \in (0,\delta)$, we still have $(X+tV)_{ij} > 0$, $(X+tV)1_c = 1_n$, and $l < (X+tV)1_n < u$. This means that for $t \in (0,\delta)$, we have $R_X(tV) = \operatorname{argmin}_{F \in \mathcal{M}} \|F - (X+tV)\|_F^2$, and since $(X+tV) \in \mathcal{M}$, it follows that $R_X(tV) = F^*(t) = X+tV$. Therefore, we have:

$$\frac{d}{dt}R_X(tV)|_{t=0} = \lim_{t \to 0} \frac{F^*(t) - F^*(0)}{t} = \lim_{t \to 0} \frac{X + tV - X}{t} = V$$
 (54)

For $\frac{D}{dt}R_X'(tV)$, first consider $\frac{d}{dt}R_X'(tV)|_{t=0}=\lim_{t\to 0}\frac{1}{t}\left(\frac{d}{dt}F^*(t)-\frac{d}{dt}F^*(0)\right)$. Since there exists an interval $(0,\delta)$ such that $F^*(t)=\max\left(0,X+tV-\nu\mathbf{1}_c^T-\mathbf{1}_n\omega^T+\mathbf{1}_n\rho^T\right)=X+tV$, and within $(0,\delta)$, without loss of generality, we can assume that $\nu(t)\mathbf{1}_c^T-\mathbf{1}_n\omega(t)^T+\mathbf{1}_n\rho(t)^T=0$, and within this interval, X+tV>0. Thus, within $(0,\delta)$, we have $\frac{d}{dt}\max\left(0,X+tV-\nu\mathbf{1}_c^T-\mathbf{1}_n\omega^T+\mathbf{1}_n\rho^T\right)=V$. Therefore, $\frac{d}{dt}R_X'(tV)|_{t=0}=\lim_{t\to 0}\frac{1}{t}\left(V-V\right)=0$. Thus, the Levi-Civita derivative, compatible with the connection, is $\frac{D}{dt}R_X'(tV)|_{t=0}=0$. This concludes the proof.

A.6 PROOF OF THEOREM 6

 $\mathcal{M} = \Omega_1 \cup \Omega_2 \cup \Omega_3$, where $\Omega_1 = \{X \mid X > 0, X1_c = 1_n\}$, $\Omega_2 = \{X \mid X^T1_n > l\}$, and $\Omega_3 = \{X \mid X^T1_n < u\}$. The primal problem can be solved using the Dykstras (Tibshirani, 2017; Boyle & Dykstra, 1986) algorithm by iteratively projecting onto Ω_1 , Ω_2 , and Ω_3 . Specifically:

 $\operatorname{Proj}_{\Omega_1}(X) = (X_{ij} + \eta_i)_+$, where η is determined by $\operatorname{Proj}_{\Omega_1}(X)1_c = 1_n$.

 $\operatorname{Proj}_{\Omega_2}(X)$ and $\operatorname{Proj}_{\Omega_3}(X)$ are defined similarly. For example,

$$\operatorname{Proj}_{\Omega_{2}}(X^{j}) = \begin{cases} X^{j}, & \text{if } (X^{j})^{T} 1_{n} > l_{j}, \\ \frac{1}{n} (l_{j} - 1_{n}^{T} X^{j}) 1_{n} + X^{j}, & \text{if } (X^{j})^{T} 1_{n} \leq l_{j}, \end{cases}$$
(55)

where X^{j} is the j-th column of X, and l_{j} is the j-th element of the column vector l.

Proof. Consider first the orthogonal projection on Ω_1 , which is to solve the optimization problem: $F = \arg\min_{F \in \Omega_1} \|F - X\|_F^2$ where $\Omega_1 = \{X \mid X > 0, X1_c = 1_n\}$. The Lagrange function for this problem, incorporating the equality constraint $X1_c = 1_n$ and the inequality constraint X > 0, is:

$$\mathcal{L}(F, \eta, \Theta) = \frac{1}{2} \|F - X\|_F^2 - \eta^T (F1_c - 1_n) - \sum_{i,j} \Theta_{ij} F_{ij}$$
 (56)

where $\eta \in \mathbb{R}^n$ are Lagrange multipliers for the equality constraints, and $\Theta_{ij} \geq 0$ are multipliers for the non-negativity constraints.

Since the constraints are separable row-wise, we optimize each row F_i independently. The row-wise Lagrangian is $\mathcal{L}_i(F_i, \eta_i, \Theta_i) = \frac{1}{2} \|F_i - X_i\|_2^2 - \eta_i(F_i \mathbb{1}_c - 1) - \sum_j \Theta_{ij} F_{ij}$. Taking the gradient with respect to F_i and setting it to zero:

$$F_i - X_i - \eta_i \mathbf{1}_c^T - \Theta_i = 0 \quad \Rightarrow \quad F_i = X_i + \eta_i \mathbf{1}_c^T + \Theta_i \tag{57}$$

By complementary slackness, $\Theta_{ij}F_{ij}=0$. If $F_{ij}>0$, then $\Theta_{ij}=0$, implying $F_{ij}=X_{ij}+\eta_i$. If $F_{ij}=0$, then $X_{ij}+\eta_i+\Theta_{ij}=0$ with $\Theta_{ij}\geq0$, hence $X_{ij}+\eta_i\leq0$. Thus, the optimal solution is:

$$F_{ij}^* = \max(X_{ij} + \eta_i, 0) = (X_{ij} + \eta_i)_+$$
(58)

The multiplier η_i is determined by the equality constraint $F_i^* 1_c = 1 \to \sum_{i=1}^c (X_{ij} + \eta_i)_+ = 1$

For the projection onto Ω_2 , consider the optimization problem: $F^* = \operatorname{argmin}_{F \in \Omega_2} \|F - X\|_F^2$ where $\Omega_2 = \{X \mid X^T 1_n > l\}$. For each column X^j , solve: $\min_{F^j} \|F^j - X^j\|_2^2$ s.t. $(F^j)^T 1_n > l_j$.

If $(X^j)^T 1_n > l_j$, the constraint is already satisfied: $\operatorname{Proj}_{\Omega_2}(X^j) = X^j$

If $(X^j)^T 1_n \leq l_j$, introduce the Lagrangian:

$$\mathcal{L}(F^{j}, \lambda) = \frac{1}{2} \|F^{j} - X^{j}\|_{2}^{2} + \lambda (l_{j} - (F^{j})^{T} 1_{n}), \quad \lambda \ge 0$$
(59)

Taking the gradient of F^{j} , we have the following:

$$\nabla_{F^j} \mathcal{L} = F^j - X^j - \lambda \mathbf{1}_n = 0 \quad \Rightarrow \quad F^j = X^j + \lambda \mathbf{1}_n \tag{60}$$

Substitute into the binding constraint $(F^j)^T 1_n = l_j$:

$$(X^j + \lambda \mathbf{1}_n)^T \mathbf{1}_n = l_j \quad \Rightarrow \quad \lambda = \frac{1}{n} \left(l_j - (X^j)^T \mathbf{1}_n \right) \tag{61}$$

Thus, the projection is:

$$\operatorname{Proj}_{\Omega_2}(X^j) = X^j + \frac{1}{n} (l_j - (X^j)^T 1_n) 1_n$$
(62)

Combining both cases, we have that

$$\operatorname{Proj}_{\Omega_2}(X^j) = \begin{cases} X^j, & \text{if } (X^j)^T 1_n > l_j, \\ \frac{1}{n} (l_j - 1_n^T X^j) 1_n + X^j, & \text{if } (X^j)^T 1_n \le l_j, \end{cases}$$
(63)

Similarly, for the projection onto Ω_3 , we can follow the same procedure and obtain:

$$\operatorname{Proj}_{\Omega_{3}}(X^{j}) = \begin{cases} X^{j}, & \text{if } (X^{j})^{T} 1_{n} < u_{j}, \\ \frac{1}{n} (u_{j} - 1_{n}^{T} X^{j}) 1_{n} + X^{j}, & \text{if } (X^{j})^{T} 1_{n} \ge u_{j}, \end{cases}$$
(64)

where X^{j} is the j-th column of X, and u_{i} is the j-th element of the column vector u.

The ultimate goal is to perform an orthogonal projection onto the intersection of three convex sets, $\Omega_1,\Omega_2,\Omega_3$. This can be achieved using the von Neumann iterative projection theorem. However, the von Neumann iterative projection can only guarantee convergence to $\Omega_1 \cap \Omega_2 \cap \Omega_3$, but it does not ensure the orthogonal projection, i.e., the solution to the Retraction problem. To address this, we introduce Dykstras's projection algorithm, which performs a linear correction to the von Neumann projection algorithm at each step, ensuring that it achieves the orthogonal projection onto $\Omega_1 \cap \Omega_2 \cap \Omega_3$. The algorithm flowchart for Dykstras's projection algorithm for the intersection of d convex sets is shown below.

Algorithm 1: Dykstras's Algorithm for Projection onto the Intersection of Convex Sets

```
Input: Closed convex sets \Omega_1, \Omega_2, \dots, \Omega_d and point y \in \mathbb{R}^{n \times c}
1226
             Output: Sequence of iterates u^{(k)} converging to the projection onto \Omega_1 \cap \cdots \cap \Omega_d

1 Initialize u^{(0)} = y, z_1^{(0)} = \cdots = z_d^{(0)} = 0;

2 while not converged do

3 u_0^{(k)} = u_d^{(k-1)};

4 for i = I to d do
1227
1228
1229
1230
1231
                            \begin{vmatrix} u_i^{(k)} = \operatorname{Proj}_{\Omega_i}(u_{i-1}^{(k)} + z_i^{(k-1)}); \\ z_i^{(k)} = u_{i-1}^{(k)} + z_i^{(k-1)} - u_i^{(k)}; \\ \end{vmatrix} 
1232
1233
1234
1235
                           k \leftarrow k + 1;
1236
1237
            10 return u^{(k)};
1238
```

The algorithm iteratively performs $\operatorname{Proj}_{\Omega_1}(\cdot)$, $\operatorname{Proj}_{\Omega_2}(\cdot)$, and $\operatorname{Proj}_{\Omega_3}(\cdot)$, and at each step, a linear correction using $u^{(k)}$ is applied. This ensures the final result is the orthogonal projection onto the intersection $\Omega_1 \cap \Omega_2 \cap \Omega_3$.

A.7 PROOF OF THEOREM 7

 Solving the primal problem is equivalent to solving the following dual problem:

$$\max_{\omega \ge 0, \rho \ge 0} \mathcal{L} = \frac{1}{2} \| \max(0, X + tV - \nu \mathbf{1}_c^T - \mathbf{1}_n \omega^T + \mathbf{1}_n \rho^T) \|_F^2 - \langle \nu, \mathbf{1}_n \rangle - \langle \omega, u \rangle + \langle \rho, l \rangle$$
 (65)

where ν , ω , and ρ are Lagrange multipliers. The partial derivatives of \mathcal{L} with respect to ν , ω , and ρ are known, and gradient ascent can be used solving ν , ω , and ρ . Finally, $R_X(tV)$ can be obtained using $\max(0, X + tV - \nu 1_c^T - 1_n \omega^T + 1_n \rho^T)$. The partial derivatives are following.

$$\begin{cases} \frac{\partial \mathcal{L}}{\partial \nu} = \max(0, X + tV - \nu \mathbf{1}_c^T - \mathbf{1}_n \omega^T + \mathbf{1}_n \rho^T) \mathbf{1}_c - \mathbf{1}_n \\ \frac{\partial \mathcal{L}}{\partial \omega} = \max(0, X + tV - \nu \mathbf{1}_c^T - \mathbf{1}_n \omega^T + \mathbf{1}_n \rho^T)^T \mathbf{1}_n - u \\ \frac{\partial \mathcal{L}}{\partial \rho} = -\max(0, X + tV - \nu \mathbf{1}_c^T - \mathbf{1}_n \omega^T + \mathbf{1}_n \rho^T)^T \mathbf{1}_n + l \end{cases}$$
(66)

Proof. According to the previous theorem, we know that

$$F^* = \max(0, X + tV - \nu 1_c^T - 1_n \omega^T + 1_n \rho^T)$$
(67)

Substituting F^* into the Lagrangian function, we obtain

$$\mathcal{L}(\nu, \omega, \theta) = \frac{1}{2} \| \max \left(0, X + tV - \nu \mathbf{1}_c^T - \mathbf{1}_n \omega^T + \mathbf{1}_n \rho^T \right) - X - tV \|_F^2$$
 (68)

$$+ \nu^T \max (0, X + tV - \nu 1_c^T - 1_n \omega^T + 1_n \rho^T) 1_c - \nu^T 1_n$$
 (69)

$$+ \omega^{T} \max (0, X + tV - \nu 1_{c}^{T} - 1_{n} \omega^{T} + 1_{n} \rho^{T})^{T} 1_{n} - \omega^{T} u$$
 (70)

$$-\rho^{T} \max (0, X + tV - \nu 1_{c}^{T} - 1_{n}\omega^{T} + 1_{n}\rho^{T})^{T} 1_{n} + \rho^{T} l$$
 (71)

Among the Lagrange multipliers ν, ω, ρ , we have $\omega \geq 0$ and $\rho \geq 0$.

 $\star \text{ If } \left(X+tV-\nu\mathbf{1}_c^T-\mathbf{1}_n\omega^T+\mathbf{1}_n\rho^T\right)<0, \text{ then } \max\left(0,X+tV-\nu\mathbf{1}_c^T-\mathbf{1}_n\omega^T+\mathbf{1}_n\rho^T\right)=0, \text{ which further leads to }$

$$\mathcal{L}(\nu, \omega, \rho) = \frac{1}{2} \|X + tV\|_F^2 - \nu^T 1_n - \omega^T u + \rho^T l$$
 (72)

At this point, a simple differentiation yields:

$$\frac{\partial}{\partial \nu} \mathcal{L}(\nu, \omega, \rho) = -1_n, \quad \frac{\partial}{\partial \omega} \mathcal{L}(\nu, \omega, \rho) = -u, \quad \frac{\partial}{\partial \rho} \mathcal{L}(\nu, \omega, \rho) = l$$
 (73)

 $\star \text{ If } \left(X+tV-\nu\mathbf{1}_c^T-\mathbf{1}_n\omega^T+\mathbf{1}_n\rho^T\right) \geq 0, \text{ then } \max\left(0,X+tV-\nu\mathbf{1}_c^T-\mathbf{1}_n\omega^T+\mathbf{1}_n\rho^T\right) = X+tV-\nu\mathbf{1}_c^T-\mathbf{1}_n\omega^T+\mathbf{1}_n\rho^T. \text{ It is worth noting that } \nu^T\max\left(0,X+tV-\nu\mathbf{1}_c^T-\mathbf{1}_n\omega^T+\mathbf{1}_n\rho^T\right)\mathbf{1}_c \in \mathbb{R} \text{ is a real number, that is, }$

$$\nu^{T} \max \left(0, X + tV - \nu \mathbf{1}_{c}^{T} - \mathbf{1}_{n} \omega^{T} + \mathbf{1}_{n} \rho^{T}\right) \mathbf{1}_{c}$$
(74)

$$= \operatorname{tr} \left(\nu^{T} \max \left(0, X + tV - \nu \mathbf{1}_{c}^{T} - \mathbf{1}_{n} \omega^{T} + \mathbf{1}_{n} \rho^{T} \right) \mathbf{1}_{c} \right)$$
 (75)

$$= \operatorname{tr} \left(\max \left(0, X + tV - \nu \mathbf{1}_{c}^{T} - \mathbf{1}_{n} \omega^{T} + \mathbf{1}_{n} \rho^{T} \right)^{T} \nu \mathbf{1}_{c}^{T} \right)$$
 (76)

$$= \langle \max(0, X + tV - \nu \mathbf{1}_{c}^{T} - \mathbf{1}_{n}\omega^{T} + \mathbf{1}_{n}\rho^{T}), \nu \mathbf{1}_{c}^{T} \rangle.$$
 (77)

At this point, we have

$$\mathcal{L}(\nu,\omega,\rho) = \frac{1}{2} \|\nu \mathbf{1}_c^T + \mathbf{1}_n \omega^T - \mathbf{1}_n \rho^T\|_F^2 - \langle \nu, \mathbf{1}_n \rangle - \langle \omega, u \rangle + \langle \rho, l \rangle$$
 (78)

$$+\langle X + tV - \nu \mathbf{1}_{c}^{T} - \mathbf{1}_{n}\omega^{T} + \mathbf{1}_{n}\rho^{T}, \nu \mathbf{1}_{c}^{T} + \mathbf{1}_{n}\omega^{T} - \mathbf{1}_{n}\rho^{T}\rangle$$
 (79)

$$= \frac{1}{2} \left\| \nu \mathbf{1}_c^T + \mathbf{1}_n \omega^T - \mathbf{1}_n \rho^T \right\|_F^2 - \langle \nu, \mathbf{1}_n \rangle - \langle \omega, u \rangle + \langle \rho, l \rangle$$
 (80)

$$+\left\langle X+tV,\nu1_{c}^{T}+1_{n}\omega^{T}-1_{n}\rho^{T}\right\rangle -\left\|\nu1_{c}^{T}+1_{n}\omega^{T}-1_{n}\rho^{T}\right\|_{F}^{2}$$
 (81)

$$= -\frac{1}{2} \| \nu \mathbf{1}_c^T + \mathbf{1}_n \omega^T - \mathbf{1}_n \rho^T \|_F^2 - \langle \nu, \mathbf{1}_n \rangle - \langle \omega, u \rangle$$
 (82)

$$+ \langle \rho, l \rangle + \langle X + tV, \nu \mathbf{1}_c^T + \mathbf{1}_n \omega^T - \mathbf{1}_n \rho^T \rangle \tag{83}$$

At this point, taking derivatives of the Lagrangian with respect to the multipliers ν, ω, ρ , we obtain

$$\begin{cases}
\frac{\partial \mathcal{L}}{\partial \nu} = (X + tV - \nu \mathbf{1}_c^T - \mathbf{1}_n \omega^T + \mathbf{1}_n \rho^T) \mathbf{1}_c - \mathbf{1}_n, \\
\frac{\partial \mathcal{L}}{\partial \omega} = (X + tV - \nu \mathbf{1}_c^T - \mathbf{1}_n \omega^T + \mathbf{1}_n \rho^T)^T \mathbf{1}_n - u, \\
\frac{\partial \mathcal{L}}{\partial \rho} = -(X + tV - \nu \mathbf{1}_c^T - \mathbf{1}_n \omega^T + \mathbf{1}_n \rho^T)^T \mathbf{1}_n + l.
\end{cases}$$
(84)

Finally, by consolidating the two cases, we obtain

$$\begin{cases}
\frac{\partial \mathcal{L}}{\partial \nu} = \max(0, X + tV - \nu \mathbf{1}_c^T - \mathbf{1}_n \omega^T + \mathbf{1}_n \rho^T) \mathbf{1}_c - \mathbf{1}_n, \\
\frac{\partial \mathcal{L}}{\partial \omega} = \max(0, X + tV - \nu \mathbf{1}_c^T - \mathbf{1}_n \omega^T + \mathbf{1}_n \rho^T)^T \mathbf{1}_n - u, \\
\frac{\partial \mathcal{L}}{\partial \rho} = -\max(0, X + tV - \nu \mathbf{1}_c^T - \mathbf{1}_n \omega^T + \mathbf{1}_n \rho^T)^T \mathbf{1}_n + l.
\end{cases}$$
(85)

After obtaining the gradient, the dual problem can be solved by a simple dual gradient ascent method. It should be noted that the multipliers ω and ρ have non-negative constraints, so projection onto the constraints is needed. Specifically, after each gradient ascent step, ω and ρ should be projected onto the non-negative constraint. Once ν , ω , and ρ are obtained, F^* can be derived using

$$F^* = \max(0, X + tV - \nu 1_c^T - 1_n \omega^T + 1_n \rho^T)$$
(86)

The algorithm flow is as follows:

Algorithm 2: Dual Gradient Projection Ascent Method

```
1324
                 Input: Initial values: \nu_0, \omega_0, \rho_0
1325
                 Step size \kappa > 0
1326
                 Constraints: \omega \geq 0, \rho \geq 0
1327
                 Output: Optimized multipliers: \nu^*, \omega^*, \rho^*
1328
             1 Initialize \nu = \nu_0, \omega = \omega_0, \rho = \rho_0;
1329
            2 while not converged do
1330
                        Compute Gradient:;
1331
                         \frac{\partial \mathcal{L}}{\partial \nu}, \frac{\partial \mathcal{L}}{\partial \omega}, \frac{\partial \mathcal{L}}{\partial \rho};
1332
                        Update multipliers:;
1333
                        \nu \leftarrow \nu + \kappa \cdot \frac{\partial \mathcal{L}}{\partial \nu};
1334
                       \omega \leftarrow \omega + \kappa \cdot \frac{\partial \mathcal{L}}{\partial \omega};\rho \leftarrow \rho + \kappa \cdot \frac{\partial \mathcal{L}}{\partial \rho};
1335
1336
                         Project onto constraints:;
1337
                        \omega \leftarrow \max(0, \omega);
1338
                        \rho \leftarrow \max(0, \rho);
           11
1339
           12 end
1340
```

A.8 PROOF OF THEOREM 8

return Final values ν, ω, ρ ;

The Sinkhorn-based Retraction is defined as

$$R_X^s(tV) = \mathcal{S}(X \odot \exp(tV \oslash X)) = \operatorname{diag}(p^*)(X \odot \exp(tV \oslash X)) \operatorname{diag}(q^* \odot w^*) \tag{87}$$

where p^*, q^*, w^* are vectors, $\exp(\cdot)$ denotes element-wise exponentiation, and $\operatorname{diag}(\cdot)$ converts a vector into a diagonal matrix. The vectors p^*, q^*, w^* are obtained by iteratively updating the following

equations:

$$\begin{cases}
p^{(k+1)} = 1_n \oslash \left((X \odot \exp(tV \oslash X)) \left(q^{(k)} \odot w^{(k)} \right) \right), \\
q^{(k+1)} = \max \left(l \oslash \left((X \odot \exp(tV \oslash X))^T p^{(k+1)} \odot w^{(k)} \right), 1_c \right), \\
w^{(k+1)} = \min \left(u \oslash \left((X \odot \exp(tV \oslash X))^T p^{(k+1)} \odot q^{(k+1)} \right), 1_c \right).
\end{cases} (88)$$

This iterative procedure ensures the mapping onto the RIM manifold. The solution $R_X^s(tV) = \operatorname{diag}(p^*)(X \odot \exp(tV \odot X)) \operatorname{diag}(q^* \odot w^*)$ is equivalent to solving the dual-bound optimal transport problem (12) with an entropy regularization parameter of 1.

$$R_X^s(tV) = \operatorname{argmin}_{F \in \mathcal{M}} \left\langle F, -\log(X \odot \exp(tV \odot X)) \right\rangle + \delta \Big|_{\delta=1} \sum_{i=1}^n \sum_{j=1}^c \left(F_{ij} \log(F_{ij}) - F_{ij} \right) \tag{89}$$

Proof. Introduce Lagrange multipliers $\eta \in \mathbb{R}^n$ (for equality $F1_c = 1_n$), and $\lambda, \nu \in \mathbb{R}^c, \lambda, \nu > 0$ (for inequalities $F^T1_n > l$, $F^T1_n < u$). The Lagrangian is:

$$\mathcal{L}(F, \eta, \lambda, \nu) = \left\langle F, -\log(X \odot \exp(tV \odot X)) \right\rangle + \sum_{i,j} \left(F_{ij} \log(F_{ij}) - F_{ij} \right) + \eta^T (F \mathbf{1}_c - \mathbf{1}_n) + \lambda^T (l - F^T \mathbf{1}_n) + \nu^T (F^T \mathbf{1}_n - u).$$

$$(90)$$

Differentiate \mathcal{L} with respect to F_{ij} and set to zero, we have

$$-\log\left(X_{ij}\exp\left(\frac{tV_{ij}}{X_{ij}}\right)\right) + \log F_{ij} + \eta_i - \lambda_j + \nu_j = 0$$
(91)

Simplify using $\log(X_{ij} \exp(tV_{ij}/X_{ij})) = \log X_{ij} + tV_{ij}/X_{ij}$:

$$-X_{ij} - \frac{tV_{ij}}{X_{ij}} + \log F_{ij} + \eta_i - \lambda_j + \nu_j = 0$$
(92)

Solve for F_{ii} :

$$F_{ij}^* = X_{ij} \exp\left(\frac{tV_{ij}}{X_{ij}} - \eta_i + \lambda_j - \nu_j\right) = X_{ij} \exp\left(\frac{tV_{ij}}{X_{ij}}\right) e^{-\eta_i + \lambda_j - \nu_j}$$
(93)

Since λ and ν are positive, we introduce the following variable substitutions:

$$\begin{cases}
p = e^{-\eta}, \\
q = e^{\lambda}, \quad e^{\lambda} \ge 1_n, \\
w = e^{-\nu}, \quad e^{-\nu} \le 1_n.
\end{cases}$$
(94)

Writing the component-wise form into matrix form, we have the following formula.

$$F^* = \operatorname{diag}(p) (X \odot \exp(tV \oslash X)) \operatorname{diag}(q \odot w). \tag{95}$$

To construct the iterative format, we first consider the equality constraints. Substitute F into $F1_c=1_n$:

$$\operatorname{diag}(p)\left(X\odot\exp(tV\oslash X)\right)\operatorname{diag}(q\odot w)1_{c}=1_{n}\Rightarrow\operatorname{diag}(p)\left(X\odot\exp(tV\oslash X)\right)\left(q\odot w\right)=1_{n}$$
(96)

Further, we can derive the iterative update formula for the row equality constraints.

$$p = 1_n \oslash ((X \odot \exp(tV \oslash X)) (q \odot w)) \Rightarrow p^{(k+1)} = 1_n \oslash \Big((X \odot \exp(tV \oslash X)) (q^{(k)} \odot w^{(k)})\Big)$$
(97)

Next, considering the column constraint $F^T 1_n > l$, substituting F, we obtain:

$$\operatorname{diag}(q \odot w) \left(X \odot \exp(tV \oslash X) \right)^T \operatorname{diag}(p)^T 1_n > l \Rightarrow \left(q \odot w \right) \odot \left(\left(X \odot \exp(tV \oslash X) \right)^T p \right) > l$$
(98)

By the complementary slackness condition, we obtain:

$$\lambda_j \left[(q \odot w) \odot \left((X \odot \exp(tV \oslash X))^T p \right) - l \right]_j = 0 \tag{99}$$

At this point, we discuss the complementary slackness condition.

$$\begin{cases}
\left[(q \odot w) \odot \left((X \odot \exp(tV \oslash X))^T p \right) \right]_j \neq l_j, & \lambda_j = 0 \Rightarrow q_j = 1 \\
\left[(q \odot w) \odot \left((X \odot \exp(tV \oslash X))^T p \right) \right]_j = l_j, & \Rightarrow q_j = \left(l \oslash \left((X \odot \exp(tV \oslash X))^T p \odot w \right) \right)_j
\end{cases} \tag{100}$$

The element-wise iterative update formula is then derived as follows.

$$q_{j} = \max \left(l \oslash \left(\left(X \odot \exp(tV \oslash X) \right)^{T} p \odot w \right), 1_{c} \right)_{j}$$

$$(101)$$

$$\Rightarrow q_j^{(k+1)} = \max\left(l \oslash \left(\left(X \odot \exp(tV \oslash X)\right)^T p \odot w\right), 1_c\right)_j \tag{102}$$

$$\Rightarrow q^{(k+1)} = \max \left(l \oslash \left(\left(X \odot \exp(tV \oslash X) \right)^T p \odot w \right), 1_c \right)$$
(103)

Considering the column constraint $F^T 1_n < u$, substituting F, we obtain:

$$\operatorname{diag}(q \odot w) \left(X \odot \exp(tV \oslash X) \right)^T \operatorname{diag}(p)^T 1_n < u \Rightarrow \left(q \odot w \right) \odot \left(\left(X \odot \exp(tV \oslash X) \right)^T p \right) < u$$
(104)

By the complementary slackness condition for upper bounds:

$$\nu_{j} \left[u - (q \odot w) \odot \left(\left(X \odot \exp(tV \odot X) \right)^{T} p \right) \right]_{j} = 0$$
(105)

This leads to two cases

$$\begin{cases}
\left[(q \odot w) \odot \left((X \odot \exp(tV \oslash X))^T p \right) \right]_j \neq u_j, & \nu_j = 0 \Rightarrow w_j = 1 \\
\left[(q \odot w) \odot \left((X \odot \exp(tV \oslash X))^T p \right) \right]_j = u_j, & \Rightarrow w_j = \left(u \oslash \left(\left((X \odot \exp(tV \oslash X))^T p \right) \odot q \right) \right)_j
\end{cases}$$
(106)

The element-wise update rule is then:

$$w_{j} = \min \left(u \oslash \left(\left(\left(X \odot \exp(tV \oslash X) \right)^{T} p \right) \odot q \right), 1_{c} \right)_{i}$$
(107)

$$\Rightarrow w_j^{(k+1)} = \min\left(u \oslash \left(\left((X \odot \exp(tV \oslash X))^T p^{(k+1)}\right) \odot q^{(k+1)}\right), 1_c\right)_i \tag{108}$$

$$\Rightarrow w^{(k+1)} = \min\left(u \oslash \left(\left((X \odot \exp(tV \oslash X))^T p^{(k+1)}\right) \odot q^{(k+1)}\right), 1_c\right)$$
(109)

The final update formula can be obtained as follows.

$$\begin{cases}
p^{(k+1)} = 1_n \oslash \left((X \odot \exp(tV \oslash X)) \left(q^{(k)} \odot w^{(k)} \right) \right), \\
q^{(k+1)} = \max \left(l \oslash \left((X \odot \exp(tV \oslash X))^T p^{(k+1)} \odot w^{(k)} \right), 1_c \right), \\
w^{(k+1)} = \min \left(u \oslash \left((X \odot \exp(tV \oslash X))^T p^{(k+1)} \odot q^{(k+1)} \right), 1_c \right).
\end{cases} (110)$$

It is easy to verify that the result derived from Sinkhorn is indeed a Retraction (Douik & Hassibi, 2019). It can be seen that the F obtained through the Retraction $R_X^s(tV)$ minimizes the inner product with $\log(X\odot\exp(tV\odot X))$ under the entropy regularization coefficient of 1. On one hand, this entropy regularization is introduced merely to facilitate computation via the Sinkhorn theorem. On the other hand, the regularization coefficient being 1 lacks practical significance. Moreover, this Retraction is not a second-order Retraction, making its theoretical justification in terms of convergence properties less rigorous compared to the norm-minimizing Retraction. Therefore, the norm-minimizing Retraction is recommended.

A.9 PROOF OF THEOREM 9

Theorem 9. The loss function for the Ratio Cut is given by $\mathcal{H}_r(F) = tr(F^T L F (F^T F)^{-1})$. Then, the Euclidean gradient of the loss function with respect to F is:

$$Grad \mathcal{H}_r(F) = 2 \left(LF(F^T F)^{-1} - F(F^T F)^{-1} (F^T L F) (F^T F)^{-1} \right)$$
 (111)

Given the substitutions $(F^TF)^{-1} = J$ and $F^TLF = K$, the Euclidean Hessian map for the loss

 $\operatorname{Hess}\mathcal{H}_r[V] = 2(LVJ - LFJ(V^TF + F^TV)J - VJKJ + FJ(V^TF + F^TV)JKJ$ (112)

$$-FJ(V^{T}LF + F^{T}LV)J + FJKJ(V^{T}F + F^{T}V)J)$$
(113)

Proof. Let the objective function be $\mathcal{H}_r(F) = \operatorname{tr}(F^T L F J)$, where $J = (F^T F)^{-1}$. Apply a small perturbation δF to F, yielding the variation:

$$\delta \mathcal{H}_r = \operatorname{tr}\left((\delta F^T)LFJ + F^TL(\delta F)J - F^TLFJ\left((\delta F^T)F + F^T(\delta F)\right)J\right). \tag{114}$$

Using the cyclic property of the trace and symmetry (L is symmetric, J is symmetric), we simplify

$$\delta \mathcal{H}_r = 2 \operatorname{tr} \left(\delta F^T \left(LFJ - FJ(F^T LF)J \right) \right). \tag{115}$$

Thus, the Euclidean gradient is:

$$Grad \mathcal{H}_r(F) = 2 \left(LFJ - FJ(F^T LF)J \right). \tag{116}$$

Apply the direction V to the gradient and compute the directional derivative:

$$\operatorname{Hess}\mathcal{H}_r[V] = \frac{d}{dt}\operatorname{Grad}\mathcal{H}_r(F+tV)\Big|_{t=0}.$$
 (117)

Expanding the components:

- The derivative of LFJ gives $LVJ LFJ(V^TF + F^TV)J$,
- The derivative of -FJKJ yields:

$$-VJKJ - F\left[-J(V^TF + F^TV)JKJ + J(V^TLF + F^TLV)J + JKJ(V^TF + F^TV)J\right].$$

Combining and simplifying:

$$\operatorname{Hess}\mathcal{H}_r[V] = 2\Big(LVJ - LFJ(V^TF + F^TV)J - VJKJ + FJ(V^TF + F^TV)JKJ - FJ(V^TLF + F^TLV)J\Big). \tag{119}$$

Further, to obtain the Riemannian gradient and Riemannian Hessian mapping, the Euclidean gradient and Euclidean Hessian mapping from the above expressions can be projected onto the RIM manifold. This allows for the optimization of the Ratio Cut loss function on the RIM manifold.

A.10 PROOF OF THEOREM 10

Theorem 10. For any graph cut problem expressed as $\mathcal{H}(F) = \operatorname{tr}((F^T L F)(F^T W F)^{-1})$, where W is any symmetric matrix, the Euclidean gradient $Grad\mathcal{H}(F)$ is bounded, and satisfies:

$$\|\operatorname{Grad}\mathcal{H}(F)\|_{\widehat{\mathbb{S}}} \le 2\left(\frac{\|L\|_{\widehat{\mathbb{S}}}\sqrt{n}}{\alpha} + \frac{\|W\|_{\widehat{\mathbb{S}}}\|L\|_{\widehat{\mathbb{S}}}n^{3/2}}{\alpha^2}\right),$$
 (120)

where

$$\alpha = \frac{\sigma_{\min}(W) \cdot l^2}{n},\tag{121}$$

and $\sigma_{\min}(W)$ is the smallest singular value of the matrix W. This implies that $\mathcal{H}(F)$ is Lipschitz

Proof. The spectral norm of the matrix F, which is its largest singular value, satisfies:

$$||F||_{\widehat{\otimes}}^2 = \sigma_{\max}(F)^2 \le \sum_{i=1}^n ||F_i||_2^2 \le n \cdot 1^2 = n,$$
 (122)

therefore, $||F||_{\mathfrak{S}} \leq \sqrt{n}$.

Let F^j be the j-th column of the matrix F. Given the constraint $F^{\top} \mathbf{1}_n > l$, the ℓ_1 -norm of F^j satisfies $||F^j||_1 = \sum_{i=1}^n F_{ij} > l$. By the Cauchy–Schwarz inequality, we have:

 $||F^{j}||_{1} \le \sqrt{n}||F^{j}||_{2} \quad \Rightarrow \quad ||F^{j}||_{2} \ge \frac{||F^{j}||_{1}}{\sqrt{n}} \ge \frac{l}{\sqrt{n}}.$ (123)

Next, we estimate a lower bound for the smallest singular value of the matrix F^TWF . For any unit vector $v \in \mathbb{R}^c$, we have:

$$||Fv||_2^2 \ge \sum_{j=1}^c v_j^2 ||F^j||_2^2 \ge \frac{l^2}{n} \sum_{j=1}^c v_j^2 = \frac{l^2}{n}.$$
 (124)

Therefore, the smallest singular value of the matrix F satisfies:

$$\sigma_{\min}(F) \ge \frac{l}{\sqrt{n}}.\tag{125}$$

Since W is a symmetric matrix, its singular values are the absolute values of its eigenvalues, i.e., $\sigma_i(W) = |\lambda_i(W)|$. Using the singular value inequality for matrix products, we have:

$$\sigma_{\min}(F^T W F) \ge \sigma_{\min}(F)^2 \cdot \sigma_{\min}(W).$$
 (126)

Substituting the previously derived $\sigma_{\min}(F) \geq \frac{l}{\sqrt{n}}, \quad \sigma_{\min}(W) = \min_i |\lambda_i(W)|$ we obtain

$$\sigma_{\min}(F^T W F) \ge \left(\frac{l}{\sqrt{n}}\right)^2 \cdot \sigma_{\min}(W) = \frac{l^2}{n} \cdot \sigma_{\min}(W).$$
 (127)

Furthermore, the upper bound for the spectral norm of the inverse matrix can be estimated as:

$$\|(F^T W F)^{-1}\|_{\widehat{\otimes}} = \frac{1}{\sigma_{\min}(F^T W F)} \le \frac{n}{\sigma_{\min}(W) l^2} \equiv \frac{1}{\alpha}$$
 (128)

and the α can be presented as

$$\alpha = \frac{\sigma_{\min}(W)l^2}{n}.\tag{129}$$

Using the same proof method as in A.9, we provide the gradient expression for the general graph cut objective function as:

$$Grad \mathcal{H}(F) = 2 \left(LF(F^T W F)^{-1} - WF(F^T W F)^{-1} (F^T L F) (F^T W F)^{-1} \right), \tag{130}$$

and with the above technique, we can estimate its nuclear norm upper bound.

For $||LF(F^TWF)^{-1}||_{\mathbb{S}}$ Using the sub-multiplicativity of the spectral norm ($||AB||_{\mathbb{S}} \leq ||A||_{\mathbb{S}} \cdot ||B||_{\mathbb{S}}$):

$$||LF(F^TWF)^{-1}||_{\mathfrak{S}} \le ||L||_{\mathfrak{S}} \cdot ||F||_{\mathfrak{S}} \cdot ||(F^TWF)^{-1}||_{\mathfrak{S}}$$
(131)

Substituting the known upper bounds:

$$||LF(F^TWF)^{-1}||_{\mathbb{S}} \le ||L||_{\mathbb{S}} \cdot ||F||_{\mathbb{S}} \cdot ||(F^TWF)^{-1}||_{\mathbb{S}} = ||L||_{\mathbb{S}} \cdot ||F||_{\mathbb{S}} \cdot \frac{1}{\sigma_{\min}(F^TWF)}$$
(132)

$$\leq \|L\|_{\widehat{\mathbb{S}}} \cdot \|F\|_{\widehat{\mathbb{S}}} \cdot \frac{n}{\sigma_{\min}(W)l^2} = \frac{\|L\|_{\widehat{\mathbb{S}}} \cdot \|F\|_{\widehat{\mathbb{S}}}}{\alpha} \leq \frac{\|L\|_{\widehat{\mathbb{S}}} \cdot \sqrt{n}}{\alpha} \tag{133}$$

Next, we consider the second term $WF(F^TWF)^{-1}(F^TLF)(F^TWF)^{-1}$. This term can be decomposed into four parts, namely:

$$||WF(F^TWF)^{-1}(F^TLF)(F^TWF)^{-1}||_{\mathbb{S}} \le ||WF||_{\mathbb{S}} \cdot ||(F^TWF)^{-1}||_{\mathbb{S}} \cdot ||F^TLF||_{\mathbb{S}} \cdot ||(F^TWF)^{-1}||_{\mathbb{S}}$$

For $||WF||_{\mathfrak{S}}$, we have the following inequality:

$$||WF||_{\mathfrak{S}} \le ||W||_{\mathfrak{S}} \cdot ||F||_{\mathfrak{S}} \le ||W||_{\mathfrak{S}} \cdot \sqrt{n}. \tag{135}$$

For $||F^T LF||_{\odot}$, we have the following inequality:

$$||F^{T}LF||_{\mathfrak{S}} \le ||F^{T}||_{\mathfrak{S}} \cdot ||L||_{\mathfrak{S}} \cdot ||F||_{\mathfrak{S}} = ||F||_{\mathfrak{S}} \cdot ||L||_{\mathfrak{S}} \cdot ||F||_{\mathfrak{S}} \le ||L||_{\mathfrak{S}} \cdot n. \tag{136}$$

Combining our estimates with the previous inequality, we obtain:

$$||WF(F^{T}WF)^{-1}(F^{T}LF)(F^{T}WF)^{-1}||_{\mathfrak{S}}$$
(137)

$$\leq \|WF\|_{\mathfrak{S}} \cdot \|(F^TWF)^{-1}\|_{\mathfrak{S}} \cdot \|F^TLF\|_{\mathfrak{S}} \cdot \|(F^TWF)^{-1}\|_{\mathfrak{S}} \tag{138}$$

$$\leq \|W\|_{\widehat{\mathbb{S}}} \cdot \sqrt{n} \cdot \|L\|_{\widehat{\mathbb{S}}} \cdot n \cdot \left(\frac{1}{\sigma_{\min}(F^T W F)}\right)^2 \leq \|W\|_{\widehat{\mathbb{S}}} \cdot \sqrt{n} \cdot \|L\|_{\widehat{\mathbb{S}}} \cdot n \cdot \left(\frac{n}{\sigma_{\min}(W)l^2}\right)^2 \tag{139}$$

$$= \frac{\|W\|_{\S} \cdot \|L\|_{\S} \cdot n^{7/2}}{\sigma_{\min}^2(W)l^4} = \frac{\|W\|_{\S} \cdot \|L\|_{\S} \cdot n^{3/2}}{\alpha^2}.$$
 (140)

In summary, we have

$$\|\operatorname{Grad}\mathcal{H}(F)\|_{\widehat{\mathbb{S}}} \le 2\left(\frac{\|L\|_{\widehat{\mathbb{S}}}\sqrt{n}}{\alpha} + \frac{\|W\|_{\widehat{\mathbb{S}}}\|L\|_{\widehat{\mathbb{S}}}n^{3/2}}{\alpha^2}\right),\tag{141}$$

where

$$\alpha = \frac{\sigma_{\min}(W) \cdot l^2}{n}.\tag{142}$$

Since

$$\|\operatorname{Grad}\mathcal{H}(F)\|_{F} \leq \sqrt{\min(n,c)} \|\operatorname{Grad}\mathcal{H}(F)\|_{\widehat{\mathbb{S}}}, \tag{143}$$

it follows that $\|\operatorname{Grad}\mathcal{H}(F)\|_F$ is also bounded.

In particular, for the Ratio Cut, we know that W = I is the identity matrix. Therefore,

$$\|\operatorname{Grad}\mathcal{H}_m(F)\|_{\widehat{\otimes}} \le 2\left(\frac{\|L\|_{\widehat{\otimes}}\sqrt{n}}{\alpha} + \frac{\|L\|_{\widehat{\otimes}}n^{3/2}}{\alpha^2}\right), \alpha = \frac{l^2}{n}.$$
(144)

Furthermore, since

$$\operatorname{grad} \mathcal{H}_r(F) = \operatorname{Grad}_r \mathcal{H}(F) - \frac{1}{c} \operatorname{Grad}_r \mathcal{H}(F) 1_c 1_c^T, \tag{145}$$

it is clear that grad $\mathcal{H}_r(F)$ is also bounded. An obvious bound is given by

$$\|\operatorname{grad} \mathcal{H}_r(F)\|_{\widehat{\mathbb{S}}} \leq \|\operatorname{Grad} \mathcal{H}_r(F)\|_{\widehat{\mathbb{S}}} + \frac{1}{c} \left(\|\operatorname{Grad} \mathcal{H}_r(F)\|_{\widehat{\mathbb{S}}} \cdot \|1_c 1_c^T\|_{\widehat{\mathbb{S}}} \right), \tag{146}$$

which leads to

$$\|\operatorname{grad} \mathcal{H}_r(F)\|_{\widehat{\mathbb{S}}} \leq 2\left(\frac{\|L\|_{\widehat{\mathbb{S}}}\sqrt{n}}{\alpha} + \frac{\|L\|_{\widehat{\mathbb{S}}}n^{3/2}}{\alpha^2}\right) + \frac{1}{c}\left(2\left(\frac{\|L\|_{\widehat{\mathbb{S}}}\sqrt{n}}{\alpha} + \frac{\|L\|_{\widehat{\mathbb{S}}}n^{3/2}}{\alpha^2}\right) + \sqrt{nc}\right)$$

$$(147)$$

$$= (2 + \frac{2}{c}) \left(\frac{\|L\|_{\$} \sqrt{n}}{\alpha} + \frac{\|L\|_{\$} n^{3/2}}{\alpha^2} \right) + \sqrt{\frac{n}{c}}$$
 (148)

where $\alpha = \frac{l^2}{n}$.

A.11 Proof of Theorem 11

Theorem 11. For a general graph cut problem expressed as $\mathcal{H}(F)=\operatorname{tr}((F^TLF)(F^TWF)^{-1})$, where W is an arbitrary symmetric matrix, the problem is always Lipschitz smooth. Let the corresponding smoothness Lipschitz constant be Q. When applying Riemannian Gradient Descent (RIMRGD) on the RIM manifold with step size κ , if $\kappa \leq \frac{1}{Q}$, then $\mathcal{H}(F)$ converges to a critical point at a rate of $\mathcal{O}(\frac{1}{T})$, i.e.,

$$\min_{0 \le k \le T} \left\| \operatorname{grad} \mathcal{H}(F^{(k)}) \right\|^2 \le \frac{2 \left(\mathcal{H}(F^{(0)}) - \mathcal{H}(F^*) \right)}{\kappa (T+1)}, \tag{149}$$

where T is the total number of iterations, and $\mathcal{H}(F^*)$ is the global minimum of $\mathcal{H}(F)$.

Proof. For a general graph cut problem, similar to Theorem A.9, the expression of the Euclidean Hessian mapping can be given.

$$\operatorname{Hess}\mathcal{H}[V] = 2(LVJ - LFJ\operatorname{sym}(V^TWF)J - WVJKJ$$
(150)

$$+ AFJ\operatorname{sym}(V^TWF)JKJ - WFJ\operatorname{sym}(V^TWF)J \tag{151}$$

$$+WFJKJ\operatorname{sym}(V^TWF)J) \tag{152}$$

Where $(F^TWF)^{-1} = J$ and $F^TLF = K$, and $sym(\cdot)$ denotes the symmetrization operation.

Similar to the previous discussion, we can decompose $Hess \mathcal{H}[V]$ into multiple parts:

$$||\operatorname{Hess}\mathcal{H}[V]||_{\widehat{\mathbb{S}}} \le 2(||LVJ||_{\widehat{\mathbb{S}}} + ||LFJ\operatorname{sym}(V^TWF)J||_{\widehat{\mathbb{S}}} + ||WVJKJ||_{\widehat{\mathbb{S}}}) \tag{153}$$

$$+ ||AFJ\operatorname{sym}(V^TWF)JKJ||_{\widehat{\otimes}} + ||WFJ\operatorname{sym}(V^TWF)J||_{\widehat{\otimes}}$$
 (154)

$$+ ||WFJKJ\operatorname{sym}(V^TWF)J||_{\mathfrak{S}}) \tag{155}$$

So the spectral norm of each part is bounded. It is not difficult to prove that the spectral norm of $\operatorname{Hess}\mathcal{H}[V]$ is also bounded. Furthermore, it can be shown that the Riemannian Hessian map $\operatorname{hess}\mathcal{H}[V]$ is also bounded.

$$||\operatorname{hess}\mathcal{H}[V]||_{\widehat{\otimes}} \leq ||\operatorname{Hess}\mathcal{H}[V]||_{\widehat{\otimes}} + \frac{1}{c}||\operatorname{Hess}\mathcal{H}[V]||_{\widehat{\otimes}} \cdot ||1_{c}^{T}1_{c}||_{\widehat{\otimes}}$$
(156)

Since Theorem A.5 has already proven that we can obtain geodesics using Dijkstra's algorithm, in the subsequent proofs, we will directly assume the use of geodesics for the retraction process.

Since the Riemannian Hessian map is bounded, let its upper bound be Q. Using the retraction generated by the geodesic, we can expand the function $\mathcal{H}(F)$ as follows:

$$\mathcal{H}(R_F(V)) \le \mathcal{H}(F) + \langle \operatorname{grad} \mathcal{H}(F), V \rangle_F + \frac{Q}{2} ||V||_F^2$$
(157)

In the Riemannian Gradient Descent method on the RIM manifold (RIMRGD), by choosing $V = -\kappa \operatorname{grad} \mathcal{H}(F^{(k)})$, and substituting it into the upper bound, we obtain:

$$\mathcal{H}(F^{(k+1)}) \le \mathcal{H}(F^{(k)}) - \kappa \|\operatorname{grad} \mathcal{H}(F^{(k)})\|^2 + \frac{Q\kappa^2}{2} \|\operatorname{grad} \mathcal{H}(F^{(k)})\|^2.$$
 (158)

When the step size $\kappa \leq \frac{1}{Q}$, it simplifies to:

$$\mathcal{H}(F^{(k+1)}) \le \mathcal{H}(F^{(k)}) - \frac{\kappa}{2} \|\operatorname{grad} \mathcal{H}(F^{(k)})\|^2.$$
 (159)

This indicates that at each iteration, the function value decreases by at least $\frac{\kappa}{2} \| \operatorname{grad} \mathcal{H}(F^{(k)}) \|^2$. Summing the descent over the first k iterations yields:

$$\sum_{i=0}^{k} \frac{\kappa}{2} \|\operatorname{grad} \mathcal{H}(F^{(i)})\|^{2} \le \mathcal{H}(F^{(0)}) - \mathcal{H}(F^{(k+1)}) \le \mathcal{H}(F^{(0)}) - \mathcal{H}(F^{*}), \tag{160}$$

where $\mathcal{H}(F^*)$ is the infimum of $\mathcal{H}(F)$. Since the right-hand side is bounded, the series $\sum_{i=0}^{\infty} \|\operatorname{grad} \mathcal{H}(F^{(i)})\|^2$ converges, and thus

$$\lim_{k \to \infty} \|\operatorname{grad} \mathcal{H}(F^{(k)})\| = 0. \tag{161}$$

From the inequality above, we obtain:

$$\min_{0 \le k \le T} \|\operatorname{grad}\mathcal{H}(F^{(k)})\|^2 \le \frac{2(\mathcal{H}(F^{(0)}) - \mathcal{H}(F^*))}{\kappa(T+1)}$$
(162)

which implies a convergence rate of $O\left(\frac{1}{T}\right)$.

In addition, since the algorithm in Manopt adopts the Wolfe step size, we further provide a convergence proof of RIMRGD under the Wolfe step-size scheme. Moreover, based on our experiments, it usually yields numerical results consistent with those obtained using the Armijo step size.

Condition 1. Equation (156) shows that the Riemannian Hessian hess is bounded. Therefore, we have $hess(F) \leq Q$. According to Lemma 3.5 (Retraction L-smooth) in (Kasai et al., 2018), there exists L > 0 such that

$$f(x_{t+1}) \le f(x) + \langle \operatorname{grad} f(x), s \rangle + \frac{1}{2}L||s||^2, \quad x_{t+1} = R_x(s), \ s \in T_x \mathcal{M}.$$
 (163)

Condition 2. We adopt the Wolfe step size, i.e.,

$$f(x + \kappa d) \le f(x) + c_1 \cdot \kappa \langle \operatorname{grad} f(x), d \rangle,$$

$$\langle \operatorname{grad} f(x + \kappa d), d \rangle \ge c_2 \langle \operatorname{grad} f(x), d \rangle,$$
(164)

where $0 < c_1 < c_2 < 1$ are hyperparameters.

Condition 3. The Ratio Cut loss is clearly lower bounded (according to the real interpretation of Ratio Cut).

Therefore, according to (Sato, 2021), the algorithm converges to a critical point.

B PRELIMINARIES

B.1 NOTATIONS

 Matrices are denoted by uppercase letters, while vectors are denoted by lowercase letters. Let $tr(\cdot)$ the trace of a matrix. 1_n denotes an n-dimensional column vector of all ones, and $\operatorname{Ind}^{n\times c}$ represents the set of indicator matrices. If $F\in\operatorname{Ind}^{n\times c}$, then $F\in\mathbb{R}^{n\times c}$ satisfies the property that each row contains exactly one element equal to 1, while all others are 0. The relaxed indicator matrix set is defined as $M=\{X\mid X1_c=1_n, l< X^T1_n< u, X>0\}$, and we proved it can form a manifold \mathcal{M} . $T_X\mathcal{M}$ represents the tangent space of \mathcal{M} at X. $\langle\cdot,\cdot\rangle$ denotes the Euclidean inner product, while $\langle\cdot,\cdot\rangle_X$ denotes the inner product on the manifold at X. \mathcal{H} represents the objective function, $\operatorname{Grad}\mathcal{H}$ denotes the Euclidean gradient of \mathcal{H} , and $\operatorname{grad}\mathcal{H}$ denotes the Riemannian gradient of \mathcal{H} . Hess $\mathcal{H}(F)$ represents the Euclidean Hessian mapping, while hess $\mathcal{H}(F)$ represents the Riemannian Hessian mapping. R_X denotes the Retraction function at X, which generates a curve passing through X, and $R_X(tV)$ represents a curve on the manifold obtained via the Retraction function, satisfying $\frac{d}{dt}R_X(0)=V$. The connection in Euclidean space is denoted as $\nabla_V U$, while the connection on the manifold is denoted as $\nabla_V U$. The differential mapping is represented as $\mathcal{DH}(F)[V]$. Specifically, a geodesic $\gamma(t)$ is a curve on the manifold that extremizes the distance between two points. If $\frac{D}{dt}\gamma'(t)=0$, then $\gamma(t)$ is a geodesic. \mathcal{P} represents vector transport, which maps the tangent vector V at point X on the manifold to the tangent space $T_Y\mathcal{M}$ at another point Y.

We have compiled all the symbols used in this paper in Table 6, where their specific meanings are explained. Additionally, all Riemannian optimization-related symbols used in this paper follow standard conventions in the field and can also be referenced in relevant textbooks.

Table 6: Notations.

	Notation	Description
	$Ind^{n \times c}$	The set of $n \times c$ indicator matrices
	$1_n, 1_c$	All-ones column vectors of size n or c
	L	Laplacian matrix
	l, u	Lower and upper bounds of the column sum of the relaxed indicator matrix, both are c-dimensional column vectors
в	M	A set that forms a manifold
	$<\cdot,\cdot>$ $<\cdot,\cdot>_X$	Inner product defined in Euclidean space, mapping two Euclidean vectors to a scalar Inner product defined on the tangent space of \mathcal{M} at X
	$T_X\mathcal{M}$	Tangent space of the manifold \mathcal{M} at X , which is a linear space
	\mathcal{H}	The objective function to be optimized
	$\operatorname{Grad} \mathcal{H}(F)$	Euclidean gradient of \mathcal{H} at F , i.e., the gradient in the embedding space
	$\operatorname{grad} \mathcal{H}(F)$	Riemannian gradient of ${\cal H}$ at F
	$\bar{\nabla}_V U$	Riemannian connection of the tangent vector field U along V in Euclidean space
	$\nabla_V U$	Riemannian connection of the tangent vector field U along V on the manifold
	$\text{Hess } \mathcal{H}[V]$	Riemannian Hessian mapping along tangent vector V in Euclidean space
	$hess \mathcal{H}[V]$	Riemannian Hessian mapping along tangent vector V on the manifold
	$R_X(tV)$	A curve on the manifold generated at X along the tangent vector tV
	$\frac{d}{dt}R_X(tV)\big _{t=0}$	The derivative of $R_X(tV)$ at $t=0$
	$\frac{\frac{d}{dt}R_X(tV)\big _{t=0}}{\frac{D}{dt}\gamma'(t)\big _{t=0}}$	Levi-Civita derivative of $\frac{d}{dt}\gamma(t)$ at $t=0$, where $\frac{D}{dt}\gamma'(t)\big _{t=0}=0$ means $R_X(tV)$ generates a geodesic with parameter $t=0$
	$argmin(\cdot)$	Returns the minimizer of an optimization problem
	$\Omega_1, \Omega_2, \Omega_3$	Linear submanifolds that require projection
	$X_{i_{\cdot}}$	The i -th row of matrix X
	X^j	The j -th column of matrix X
	$\operatorname{Proj}_{\Omega_i}(X^j)$	Orthogonal projection of the j-th column of matrix X onto the set Ω_i
	$\max(a, b)$	Returns the maximum of a and b Returns the minimum of a and b
	$\min(a, b)$ \mathcal{L}	Lagrangian function for solving the optimization problem
	$ \cdot _F$	Frobenius norm of a matrix
	$\nu(t), \omega(t), \rho(t)$	Lagrange multipliers in the optimization problem
	$\frac{\partial \mathcal{L}}{\partial \nu}$, $\frac{\partial \mathcal{L}}{\partial \omega}$, $\frac{\partial \mathcal{L}}{\partial \rho}$	Partial derivatives of \mathcal{L} with respect to $\nu(t), \omega(t), \rho(t)$
	$\exp(\cdot)$	Element-wise exponential function on a matrix
	diag(·)	Converts a vector into a diagonal matrix
	$D\mathcal{H}(F)[V]$	The differential mapping of \mathcal{H} at F along V
,	$\mathcal{S}(\cdot)$	Sinkhorn function that outputs a doubly stochastic matrix
	\mathcal{P}	Maps the tangent vector V at point X on the manifold to the tangent space $T_Y \mathcal{M}$ at another point Y
	(·) [†]	Moore-Penrose pseudoinverse of a matrix
	$tr(\cdot)$	Trace of a matrix
	Ø	Element-wise division
	⊙	Hadamard product (element-wise multiplication)

B.2 Introduction to Riemannian Optimization

Riemannian optimization optimizes functions over Riemannian manifolds, which are smooth manifolds equipped with a metric that defines distance and angles (Meghwanshi et al., 2018). It extends classical optimization to non-Euclidean spaces by replacing the Euclidean gradient with the Riemannian gradient and so on. Introduced in the 1990s in control theory and signal processing (Edelman et al., 1998; Overton & Womersley, 1995), it has since been widely adopted in machine learning, computer vision, and data science due to its ability to handle geometric constraints (Carson et al., 2017; Khan & Maji, 2021; Boumal, 2023).

The core idea is to respect the manifold's geometry during optimization. Unlike classical methods that assume Euclidean space, Riemannian optimization accounts for curvature. Early methods used steepest descent, while later developments introduced second-order methods like Riemannian conjugate gradient and Newton methods for faster convergence. Recent advancements have expanded this framework to more complex manifolds, such as Stiefel manifold.

The main advantage of Riemannian optimization lies in its ability to perform optimization directly on the manifold, ensuring that the constraints inherent to the problem are naturally respected. For example, in low-rank matrix factorization, the optimization occurs on the Stiefel manifold $\mathcal{S}t = \{X \in \mathbb{R}^{n \times k} \mid X^TX = I_k\}$, where I_k is the identity matrix of size k, naturally respecting the orthogonality constraints of the factor matrices.

In Riemannian submanifold of Euclidean space, the Riemannian gradient $\operatorname{grad}\mathcal{H}(F)$ at a point $F \in \mathcal{M}$ is defined as the projection of the Euclidean gradient onto the tangent space of the manifold:

$$\operatorname{grad}\mathcal{H}(F) = \operatorname{Proj}_{T_F \mathcal{M}} \operatorname{Grad}\mathcal{H}(F) \tag{165}$$

This ensures that the optimization process stays within the manifold, preserving its geometric structure.

To solve optimization problems efficiently on manifolds, key operations include the Riemannian gradient, which is used in gradient-based methods. The gradient descent update rule is:

$$F^{(k+1)} = R_{F^{(k)}}(-\alpha^{(k)}\operatorname{grad}\mathcal{H}(F^{(k)}))$$
(166)

where R_F is the Retraction map, and α_k is the step size at iteration k. The purpose of the Retraction is to update along a curve in the manifold in a specified direction.

For second-order optimization, the Riemannian Hessian hess $\mathcal{H}(F)$ is needed. The Hessian captures the curvature of the manifold and provides more information about the local behavior of the function. The Riemannian Hessian is defined as:

$$\operatorname{hess}\mathcal{H}(F)[V] = \nabla_V \operatorname{grad}\mathcal{H}(F) \tag{167}$$

for any tangent vector $V \in T_F \mathcal{M}$, and is used in more sophisticated optimization algorithms to accelerate convergence.

A geodesic is a curve that connects two points on a manifold with an extremal distance, are also important in Riemannian optimization. They are used to guide the optimization process along the manifold and are defined by the differential equation:

$$\frac{d^2}{dt^2}\gamma(t) + \Gamma(\gamma(t), \dot{\gamma}(t)) = 0 \tag{168}$$

where Γ are the Christoffel symbols that encode the manifold's curvature (Boumal, 2014; Smirnov, 2021).

The Retraction map $R_X(tV)$ is used to map from the tangent space back onto the manifold after each iteration. A common Retraction map is the exponential map (Kochurov et al., 2020; Sun et al., 2019), which can generate a geodesic.

Riemannian optimization efficiently handles manifold structures, avoiding artificial constraints and leading to faster algorithms. Second-order methods like Riemannian conjugate gradient (RCG) and Newton methods further improve convergence by utilizing curvature information. The approach is versatile, extending to manifolds such as the Stiefel, Grassmannian, and the Relaxed Indicator Matrix (RIM) manifold, which generalizes both single and double stochastic manifolds.

Overall, Riemannian optimization has become a crucial tool in solving large-scale, constrained optimization problems, particularly in machine learning, computer vision, and robotics, due to its ability to manage manifold-valued data and complex constraints.

B.3 Introduction to Related Manifolds

In this section, we will introduce the single stochastic manifold, the doubly stochastic manifold, and the Stiefel manifold. For each of these manifolds, we will provide their basic definitions and discuss optimization methods on these manifolds.

B.3.1 SINGLE STOCHASTIC MANIFOLD

The single stochastic manifold (Sun et al., 2015; Saberi-Movahed et al., 2024) consists of matrices where each element is greater than zero and the row sums are equal to one, denoted as $\{X \mid X > 0, X1_c = 1_n\}$, with a dimension of (n-1)c. The tangent space of a manifold \mathcal{M} at a point X is given by $T_X \mathcal{M} = \{U \mid X1_c = 0\}$.

In current research, the Fisher information metric is typically used as the inner product on the single stochastic manifold \mathcal{M} , and is defined as:

$$\langle U, V \rangle_X = \sum_i \sum_j \frac{U_{ij} V_{ij}}{X_{ij}}, \quad \forall U, V \in T_X \mathcal{M}, X \in \mathcal{M}.$$
 (169)

The Riemannian gradient $\operatorname{grad} \mathcal{H}(F)$ is the projection of the Euclidean gradient $\operatorname{Grad} \mathcal{H}(F)$:

$$\operatorname{grad} \mathcal{H}(F) = \operatorname{Proj}_{T_F \mathcal{M}} \left(\operatorname{Grad} \mathcal{H}(F) \odot F \right) \tag{170}$$

where $\operatorname{Proj}_{T_F\mathcal{M}}$ is the projection operator that projects vectors from the Euclidean space onto $T_F\mathcal{M}$. Specifically, the projection is given by:

$$\operatorname{Proj}_{T_{X}\mathcal{M}}(Z) = Z - (\alpha 1_{c}^{T}) \odot X, \quad \alpha = Z 1_{c} \in \mathbb{R}^{n}$$
(171)

This projection operation involves matrix multiplication and element-wise operations, with a complexity of $\mathcal{O}(nc)$.

In the single stochastic manifold, the Retraction mapping $R_X(tV)$ is defined as:

$$X_{+} = R_{X}(tV) = (X \odot \exp(tV \odot X)) \odot (X \odot \exp(V \odot X) 1_{c}1_{c}^{T}),$$

where the operation \odot denotes element-wise multiplication, and \oslash denotes element-wise division. The time complexity of this operation involves element-wise computation and normalization, resulting in a complexity of $\mathcal{O}(nc)$.

In the embedded space, the connection is considered with the Fisher metric on the set $\{X|X>0\}$. According to the Koszul formula theorem, the unique connection in the embedded space is given by:

$$\bar{\nabla}_U V = DV[U] - \frac{1}{2}(U \odot V) \oslash X \tag{172}$$

Based on this, the unique connection on the manifold that makes the Riemannian Hessian mapping self - adjoint is:

$$\nabla_{U}V = \operatorname{Proj}_{T_{X}\mathcal{M}}\left(\bar{\nabla}_{U}V\right) = \operatorname{Proj}_{T_{X}\mathcal{M}}\left(DV[U] - \frac{1}{2}(U \odot V) \oslash X\right)$$
(173)

When involving directional derivatives and projections, the complexity of the operation is O(nc).

By computing the connection of the Riemannian gradient, one can obtain the Riemannian Hessian mapping on the manifold. The Riemannian Hessian hess $\mathcal{H}(F)[V]$ is

$$\operatorname{hess} \mathcal{H}(F)[V] = \operatorname{Proj}_{T_F \mathcal{M}} \left(D \operatorname{grad} \mathcal{H}(F)[V] - \frac{1}{2} (V \odot \operatorname{grad} \mathcal{H}(F)) \oslash F \right)$$
 (174)

where the computation of $D \operatorname{grad} \mathcal{H}(F)[V]$ involves the Euclidean directional derivative:

$$D\operatorname{grad}\mathcal{H}(F)[V] = \operatorname{DGrad}\mathcal{H}(F)[V] \odot F + \operatorname{Grad}\mathcal{H}(F) \odot V - (\alpha \mathbf{1}_c^T) \odot V - (D\alpha[V] \mathbf{1}_c^T) \odot F \quad (175)$$

where $\alpha = (\operatorname{Grad} \mathcal{H}(F) \odot F)1_c$. The time complexity of this computation involves higher-order derivatives and projections, leading to a complexity of $\mathcal{O}(nc)$. Due to the complexity of the computation, the coefficient in front of $\mathcal{O}(nc)$ is large.

B.3.2 DOUBLY STOCHASTIC MANIFOLD

The double stochastic manifold (Shi et al., 2021; Douik & Hassibi, 2019) refers to the set of matrices where each element is greater than 0, the row sums equal 1, and the column sums equal r. Specifically, the manifold is defined as:

$$\{X \mid X > 0, X1_c = 1_n, X^T 1_n = r\}$$
(176)

with dimension (n-1)(c-1). In fact, there are requirements for r. The more general definition is as follows.

$$\{X \mid X > 0, X1_c = 1_n, X^T 1_n = r, r^T 1_c = 1_n^T X 1_c\}$$
(177)

where r is a general vector and the last condition ensures consistency of row and column sums. Generally, we simply denote it as (176). The tangent space of the manifold \mathcal{M} at X is:

$$T_X \mathcal{M} = \{ U \mid X 1_c = 0, X^T 1_n = 0 \}$$
 (178)

In current research, the Fisher information metric is also used as the inner product on the double stochastic manifold \mathcal{M} , defined as: $\langle U,V\rangle_X=\sum_i\sum_j\frac{U_{ij}V_{ij}}{X_{ij}}, \quad \forall U,V\in T_X\mathcal{M},X\in\mathcal{M}.$ The Riemannian gradient on the double stochastic manifold is given by (n=c):

$$\begin{cases}
\operatorname{grad} \mathcal{H}(F) = \gamma - (\alpha 1_n^T + 1_n 1_n^T \gamma - 1_n \alpha^T F) \odot F, \\
\alpha = (I - F F^T)^{\dagger} (\gamma - F \gamma^T) 1_n, \quad \gamma = \operatorname{Grad} \mathcal{H}(F) \odot F.
\end{cases}$$
(179)

Here, $(I - FF^T)^{\dagger}$ represents the Moore-Penrose pseudoinverse of an $n \times n$ matrix. Since computing the pseudoinverse requires at least $\mathcal{O}(n^3)$ operations, this method is impractical for large-scale datasets.

The connection on the double stochastic manifold is defined as an embedded manifold, and in the embedding space, the connection is given by $\bar{\nabla}_U V = DV[U] - \frac{1}{2}(U\odot V) \oslash X$. Further, the connection on the double stochastic manifold is given by $\operatorname{Proj}_{T_X\mathcal{M}}(\bar{\nabla}_U V) = \operatorname{Proj}_{T_X\mathcal{M}}\left(DV[U] - \frac{1}{2}(U\odot V) \oslash X\right)$.

 $\operatorname{Proj}_{T_X \mathcal{M}}$ denotes the projection into the tangent space of the double stochastic manifold. The projection expression is:

$$\begin{cases}
\operatorname{Proj}_{T_X \mathcal{M}}(Z) = Z - (\alpha 1_n^T + 1_n \beta) \odot X, \\
\alpha = (I - XX^T)^{\dagger} (Z - XZ^T) 1_n, \quad \beta = Z^T 1_n - X^T \alpha.
\end{cases}$$
(180)

Indeed, the Riemannian Hessian mapping calculation in the referenced literature involves very complex expressions, including pseudoinverses and other operations with a time complexity of $\mathcal{O}(n^3)$, making it infeasible for large-scale datasets. In contrast, the proposed RIM manifold in this paper simplifies the calculation significantly, reducing the complexity to $\mathcal{O}(n)$.

The Riemannian Hessian is computed as follows:

hess
$$\mathcal{H}(F)[V] = \operatorname{Proj}_{T_X \mathcal{M}} \left(\dot{\delta} - \frac{1}{2} \left(\delta \odot V \right) \oslash F \right)$$

$$\alpha = \epsilon \left(\gamma - F \gamma^T \right) 1_n$$

$$\beta = \gamma^T 1_n - F^T \alpha$$

$$\gamma = \operatorname{Grad} \mathcal{H}(F) \odot F$$

$$\delta = \gamma - \left(\alpha 1_n^T + 1_n \beta^T \right) \odot F$$

$$\epsilon = \left(I - F F^T \right)^{\dagger}$$

$$\dot{\alpha} = \left[\dot{\epsilon} \left(\gamma - F \gamma^T \right) + \epsilon \left(\dot{\gamma} - V \gamma - F \dot{\gamma}^T \right) \right] 1_n$$

$$\dot{\beta} = \dot{\gamma}^T 1_n - V^T \alpha - F^T \dot{\alpha}$$

$$\dot{\gamma} = \operatorname{Hess} \mathcal{H}(F)[V] \odot F + \operatorname{Grad} \mathcal{H}(F) \odot V$$

$$\dot{\delta} = \dot{\gamma} - \left(\dot{\alpha} 1_n^T + 1_n \dot{\beta}^T \right) \odot F - \left(\alpha 1_n^T + 1_n \beta^T \right) \odot V$$

$$\dot{\epsilon} = \epsilon \left(F V^T + V F^T \right) \epsilon$$
were Sinkhorn to obtain the doubly steebestic metrix. The time complexity of

The Retraction map uses Sinkhorn to obtain the doubly stochastic matrix. The time complexity of optimization on the doubly stochastic manifold is large, with a constant term of $\mathcal{O}(n^3)$. The aboved formulas is suitable for the case where n=c. However, when $n\neq c$, the calculation formula differs slightly, but the time complexity remains the same.

B.3.3 STIEFEL MANIFOLD

The Stiefel manifold (Jiang & Dai, 2015; Li et al., 2020; Zhu, 2017) is the set of all matrices whose columns are orthonormal, i.e.,

$$St(n,c) = \{ X \in \mathbb{R}^{n \times c} \mid X^T X = I \}. \tag{182}$$

It can be proven that this set satisfies the requirements for a manifold, and the dimension of this manifold is given by:

$$\dim(\mathcal{S}t(n,c)) = nc - \frac{c(c+1)}{2}.$$
(183)

At $X \in \mathcal{S}t$, the tangent space of the Stiefel manifold is given by:

$$T_X \mathcal{S}t = \{ Z \mid Z^T X + X^T Z = 0 \}. \tag{184}$$

Since the Stiefel manifold is an embedded submanifold of $\mathbb{R}^{n \times c}$, its Riemannian inner product is defined as the Euclidean inner product $\langle U, V \rangle_X = \sum_{ij} U_{ij} V_{ij}$.

The projection operator onto the tangent space $T_X St$ is given by:

$$\begin{cases}
\operatorname{Proj}_{T_X \mathcal{S}t}(Z) = (\hat{W} - \hat{W}^T)X, \\
\hat{W} = ZX^T - \frac{1}{2}X(X^TZX^T).
\end{cases}$$
(185)

Based on this, the Riemannian gradient can be directly obtained by projecting the gradient.

$$\operatorname{grad} \mathcal{H}(F) = \operatorname{Proj}_{T_F \mathcal{S}t}(\operatorname{Grad} \mathcal{H}(F)) = (\hat{W} - \hat{W}^T)F, \quad \hat{W} = \operatorname{Grad} \mathcal{H}(F)F^T - \frac{1}{2}F(F^T \operatorname{Grad} \mathcal{H}(F)F^T)$$
(186)

To compute the Retraction on the Steifel manifold, the Cayley transform method is used, given by:

$$Y(\alpha) = \left(I - \frac{\alpha}{2}W\right)^{-1} \left(I + \frac{\alpha}{2}W\right)X\tag{187}$$

Where $W = \hat{W} - \hat{W}^T$, α is the length on the curve. However, the inversion of $\left(I - \frac{\alpha}{2}W\right)$ is computationally expensive. To address this, Li et al. (2020) further attempts to use an iterative approach to find the solution. The Retraction is obtained by iteratively solving the following equation:

$$Y(\alpha) = X + \frac{\alpha}{2}W(X + Y(\alpha)) \tag{188}$$

Even so, each iteration still requires multiple matrix multiplications, resulting in a relatively high computational cost.

To obtain the momentum gradient descent on the Riemannian manifold, it is necessary to define the vector transport, which moves a tangent vector $V_1 \in T_{X_1} \mathcal{S}t$ from the Steifel manifold at X_1 to the tangent space $T_{X_2} \mathcal{S}t$ at X_2 . This transport operation is denoted as:

$$\mathcal{P}: T_{X_1}\mathcal{S}t \to T_{X_2}\mathcal{S}t, \quad \forall V_1 \in T_{X_1}, \mathcal{P}(V_1) \in T_{X_2}\mathcal{S}t. \tag{189}$$

In fact, this transport operation is general in its definition for manifolds. For the Relaxed Indicator Matrix (RIM) manifold, $T_{X_1}\mathcal{M} = T_{X_2}\mathcal{M}$ for all $X_1, X_2 \in \mathcal{M}$, which means that the vector transport is simply $\mathcal{P}(V_1) = V_1$ in the RIM manifold. However, this property does not hold on the Steifel manifold. The transport formula on the Steifel manifold is given by:

$$\mathcal{P}(V_1) = \text{Proj}_{T_{X_2} \mathcal{S}_t}(V_1) = (\hat{W} - \hat{W}^T) X_2, \tag{190}$$

where $\hat{W} = V_1 X_2^T - \frac{1}{2} X_2 (X_2^T V_1 X_2)$, ensuring that the vector is properly projected into the tangent space at X_2 . This projection step ensures the transfer of the vector V_1 from the tangent space at X_1 to the tangent space at X_2 on the Steifel manifold.

As for the computation of the connection and the Riemannian mapping matrix, although the literature does not provide explicit expressions, it can be proven that the expressions for the connection and Hessian map are as follows:

$$\begin{cases} \nabla_{U}V = \operatorname{Proj}_{T_{X_{2}}\mathcal{S}t}(DV[U]), \\ \operatorname{hess}\mathcal{H}(F)[V] = \operatorname{Proj}_{T_{X_{2}}\mathcal{S}t}(\operatorname{Hess}\mathcal{H}(F)[V]). \end{cases}$$
(191)

Using the above Riemannian toolbox, Riemannian optimization can be performed on the Steifel manifold. If the closed-form solution for the Retraction is directly computed, the time complexity is $\mathcal{O}(n^3)$. However, by using an iterative approach, the time complexity can be reduced to a large constant factor of $\mathcal{O}(n^2)$.

B.4 Manifold-based Machine Learning Algorithms

In this section, we will introduce some classical machine learning algorithms defined on the Single stochastic, Double stochastic, and Steifel manifolds. In general, we assume the data matrix is Z, where $Z \in \mathbb{R}^{n \times k}$ with n samples and k features. Each row of Z represents a sample, and z_i denotes the i-th row of Z.

B.4.1 ALGORITHMS ON THE SINGLE STOCHASTIC MANIFOLD

Fuzzy K-means (Fuzzy C-means, FCM) (Sulaiman & Isa, 2010) is an extension of the traditional K-means algorithm that allows data points to belong to multiple clusters with degrees of membership, rather than being strictly assigned to a single cluster. The core idea is to describe the relationship between data points and clusters through a membership matrix, which is suitable for clustering data with fuzzy boundaries.

Let the number of clusters be c, and the membership matrix $U \in \mathbb{R}^{c \times n}$, where u_{ij} represents the membership degree of the j-th data point in the i-th cluster. The cluster centers are denoted as $C = \{c_1, c_2, ..., c_c\}$. The optimization goal is to minimize the following objective function:

$$J(U,C) = \sum_{i=1}^{c} \sum_{j=1}^{n} u_{ij}^{m} ||z_{j} - c_{i}||^{2}$$
(192)

The constraints are that the sum of the membership degrees for each data point equals 1: $\sum_{i=1}^{c} u_{ij} = 1$ $(\forall j=1,2,...,n)$, and the membership degrees are non-negative: $u_{ij} \in [0,1]$. Where m>1 is the fuzziness coefficient, which controls the degree of fuzziness in the clustering and $\|z_j - c_i\|$ is the Euclidean distance between data point z_j and cluster center c_i . Thus, the final objective function and constraints can be written as:

min
$$J(U,C)$$
 s.t. $U \in \{X \in \mathbb{R}^{c \times n} \mid X > 0, X^T 1_c = 1_n\}, C \in \mathbb{R}^{c \times k}$ (193)

This optimization problem is defined over the Cartesian product of the single stochastic manifold and the Euclidean space, which still constitutes a form of a single stochastic manifold.

B.4.2 Algorithms on the Double Stochastic Manifold

ANCMM (Yuan et al., 2024c) is a method for solving constrained problems on the double stochastic manifold, which can achieve adaptive neighbor clustering. Its objective function is given by:

$$\min_{S \in \mathbb{R}^{n \times n}} \sum_{i,j}^{n} \|z_i - z_j\|_2^2 S_{ij} + \alpha \|S\|_F^2$$
s.t. $S^T 1_n = 1_n, \ 0 \le s_{ij} \le 1, \ S = S^T, \ \text{rank}(L_S) = n - c$

where S is the similarity matrix, and S_{ij} represents the similarity between the i-th and j-th samples. The constraint can be written as:

$${X \in \mathbb{R}^{n \times n} \mid X1_n = 1_n, X^T1_n = 1_n, X > 0} \cap {X \in \mathbb{R}^{n \times n} \mid X = X^T, L_S = n - c}$$
 (195)

where L_S is the Laplacian matrix corresponding to S, and $L_S = n - c$ implies that the learned S is naturally c-connected, leading to c clusters. Thus, this problem can be viewed as a constrained optimization problem on the double stochastic manifold.

B.4.3 ALGORITHMS ON THE STEIFEL MANIFOLD

The Min Cut (Fox et al., 2023) is a classic clustering method on the Steifel manifold, and its objective function and constraints are given by:

$$\min_{F} \operatorname{tr}(F^{T}LF), \quad \text{s.t. } F \in \{F \in \mathbb{R}^{n \times c} \mid F^{T}F = I\}$$
(196)

This optimization problem can be solved through eigenvalue decomposition. However, it requires approximately $\mathcal{O}(n^3)$ time complexity, and eigenvalue decomposition alone does not provide clustering results. Additional post-processing, such as using k-means, is required. Similarly, the derived classic

methods such as Ratio Cut and Normalized Cut are also classic machine learning algorithms on the Steifel manifold. The expressions for Ratio Cut and Normalized Cut are as follows:

$$\begin{cases}
\min_{F} \operatorname{tr}(F^{T}LF(F^{T}F)^{-1}), & \text{s.t. } F \in \{F \in \mathbb{R}^{n \times c} \mid F^{T}F = I\} \\
\min_{F} \operatorname{tr}(F^{T}LF(F^{T}DF)^{-1}), & \text{s.t. } F \in \{F \in \mathbb{R}^{n \times c} \mid F^{T}F = I\}
\end{cases}$$
(197)

In addition, algorithms such as MinMax Cut (Nie et al., 2010), Principal Component Analysis (PCA) (Abdi & Williams, 2010), Robust PCA (Hubert et al., 2005), and others are also classic machine learning algorithms defined on the Steifel manifold.

B.5 OTHER RELATED WORK AND BACKGROUND INTRODUCTION

In this section, we first review our contributions and then introduce other related work beyond manifold optimization.

As mentioned in our paper, there are currently three main approaches to relaxing the indicator matrix (ours being the fourth). For the first three, the optimization methods themselves have seen little change, but have instead been applied to different models. For example:

The earliest approach relaxes to the singly stochastic manifold (Bezdek et al., 1979), which actually has a history of more than 45 years. More recent applications in clustering include (Bao et al., 2024), which employs momentum methods to solve the constraint, and Zhao et al. (2022), which introduces auxiliary variables and updates via coordinate descent. The main drawback of this relaxation is its inability to incorporate prior information about class sizes into the model.

Another line of work relaxes to the Stiefel manifold, starting from (Ng et al., 2001), which spurred the development of spectral graph theory and has now a history of about 20 years. The basic idea is to construct forms like $\operatorname{tr}(F^TLF)$ and perform spectral decomposition, as in (He et al., 2025). The limitation here is that the resulting F lacks the interpretability of an indicator matrix, requiring a subsequent K-Means step, with a computational complexity of $\mathcal{O}(n^3)$. Moreover, this approach also cannot incorporate any class-related information.

A more recent direction is doubly stochastic relaxation, with representative work Fettal et al. (2024), which solves the problem via optimal transport, and Douik & Hassibi (2019), which adopts manifold optimization. The challenge here is that the constraints can be overly strict and counterproductive to the model, and manifold optimization still requires $\mathcal{O}(n^3)$.

Some works in optimal transport are also related to ours. For example, Chapel et al. (2020) introduces Partial Optimal Transport, which is a less strict form of optimal transport. This idea is similar to ours in spirit; however, our algorithm is designed for arbitrary functions defined on manifolds, whereas theirs focuses on classical linear problems.

In addition, Benamou et al. (2014) shows that optimal transport problems can be solved using Bregman Projections. This is close in spirit to the original motivation behind our Retraction design. We further demonstrate that our Retraction corresponds to a geodesic, while also simplifying the overall algorithmic procedure.

C OPTIMIZATION ALGORITHMS ON THE RIM MANIFOLD

In this section, we will introduce three renowned Riemannian optimization algorithms that are utilized in this paper: the Riemannian Gradient Descent method, the Riemannian Conjugate Gradient method, and the Riemannian Trust-Region method. For each algorithm, we will present its fundamental concepts and provide pseudocode. For detailed implementations of these algorithms, one may refer to the open-source manifold optimization package, Manopt (Boumal et al., 2014).

C.1 Gradient Descent on the RIM Manifold

The Gradient Descent on the RIM Manifold method generalizes the classical gradient descent in Euclidean space to Riemannian manifolds by replacing the traditional gradient with the Riemannian gradient, ensuring that the iterations remain on the manifold. The key idea is to utilize the manifold's geometric structure to adjust the gradient direction, and then use Retraction to map the updated point back onto the manifold. The process begins with initialization, where an initial point F_0 is chosen on the manifold, and a step size is chosen. In the next step, the Euclidean gradient of the objective function is computed at the current point $F^{(k)}$. Then, the Euclidean gradient is projected onto the tangent space of the manifold to obtain the Riemannian gradient, which involves adjusting the gradient by subtracting the normal component. The updated point is then computed along the Riemannian gradient direction, and Retraction (such as exponential mapping or projection) is used to ensure that the new point remains on the manifold. The process continues iteratively until the gradient norm or the change in the objective function becomes smaller than a predefined threshold. The reference pseudo code is in Algorithm 3.

C.2 CONJUGATE GRADIENT METHOD ON THE RIM MANIFOLD

The Conjugate Gradient Method on the RIM Manifold introduces conjugate directions to reduce the redundancy in search directions during iterations, thereby speeding up convergence by incorporating information from previous search directions. The core idea is to define and update conjugate directions on the manifold. The method begins with initialization, where the initial point F_0 is chosen, the initial Riemannian gradient g_0 is computed, and the initial search direction is set as $d_0 = -g_0$. Then, the optimal step size in the direction of d_k is determined through a line search, using conditions like Armijo's rule. The point is updated along d_k , and Retraction is applied to map it back onto the manifold. In the next step, the conjugate direction is updated using the current gradient g_{k+1} and the previous direction d_k , with formulas such as the Polak-Ribière method to compute the new conjugate direction d_{k+1} . On the RIM manifold, the transport of tangent vectors is equivalent to the vectors themselves. This property simplifies the process of the Riemannian Conjugate Gradient Method. The process is repeated until convergence is achieved. The reference pseudo code is in Algorithm 4.

C.3 Trust Region Method on the RIM Manifold

The Trust Region Method on the RIM Manifold constructs a local quadratic model in each iteration and constrains the step size within a trust region to ensure stability. The trust region radius is dynamically adjusted to balance the accuracy of the model with the step size. The method starts with initialization, where the initial point F_0 and trust region radius Δ_0 are set. The Riemannian gradient g_k and the approximate Hessian H_k are computed at $F^{(k)}$. The next step involves solving the constrained quadratic optimization problem in the tangent space, given by:

$$\min_{d \in T_{F}(k), \mathcal{M}, ||d|| \le \Delta_k} \left(g_k^T d + \frac{1}{2} d^T H_k d \right)$$
(198)

Following this, the method updates the point and adjusts the trust region radius Δ_k based on the ratio of the actual decrease in the objective function to the model's predicted decrease. Finally, Retraction is used to project the updated point back onto the manifold. This method is known for its strong stability and is particularly suited for highly nonlinear problems. However, it requires frequent Hessian

```
2160
           calculations, resulting in a high computational cost. The reference pseudo code is in Algorithm 5.
2161
           Algorithm 3: Riemannian Gradient Descent Algorithm on RIM Manifold
2162
           Input: RIM manifold \mathcal{M} = \{X \mid X1_c = 1_n, l < X^T1_n < u, X > 0\}
2163
           Objective function \mathcal{H}(F), Retraction R_X(tV), transport \mathcal{P}. Initial point F_0 \in \mathcal{M}
2164
           Output: Sequence of iterates \{F^{(k)}\} converging to a stationary point of \mathcal{H}
2165
        1 Initialize k = 0 while not converged do
2166
                Compute Euclidean gradient \operatorname{Grad} \mathcal{H}(F^{(k)})
2167
                Compute Riemannian gradient: grad \mathcal{H}(F^{(k)}) = \operatorname{Grad} \mathcal{H}(F^{(k)}) - \frac{1}{c} \operatorname{Grad} \mathcal{H}(F^{(k)}) 1_c 1_c^T
2168
                The line search step size: \kappa^{(k)}
2169
                Perform Retraction: F^{(k+1)} = R_{F(k)}(\kappa^{(k)} \operatorname{grad} \mathcal{H}(F^{(k)}))
2170
2171
                k \leftarrow k + 1
2172
        7 end
        s return F^{(k)}
2174
2175
           Algorithm 4: Riemannian Conjugate Gradient Algorithm on RIM Manifold
2176
           Input: RIM manifold \mathcal{M} = \{X \mid X1_c = 1_n, l < X^T1_n < u, X > 0\}
2177
           Objective function \mathcal{H}(F), Retraction R_X(tV), Initial point F_0 \in \mathcal{M}.
2178
           Output: Sequence of iterates \{F^{(k)}\}\ converging to a stationary point of \mathcal{H}
2179
        ı Initialize k = 0;
2180
        2 Compute initial Riemannian gradient, d_0 \leftarrow -\operatorname{grad} \mathcal{H}(F^{(0)});
        3 while not converged do
2182
                Compute line search step size \kappa^{(k)}
2183
                Perform Retraction: F^{(k+1)} = R_{F^{(k)}}(\kappa^{(k)}d^{(k)})
2184
                Compute new gradient grad \mathcal{H}(F^{(k+1)})
2185
                Compute the conjugate direction d^{(k+1)} = -\operatorname{grad} \mathcal{H}(F^{(k+1)}) + \beta^{(k)}\mathcal{P}(d^{(k)})
2186
                Compute \beta^{(k)}: \beta^{(k)} = \frac{\langle \operatorname{grad} \mathcal{H}(F^{(k+1)}), \operatorname{grad} \mathcal{H}(F^{(k+1)}) - \operatorname{grad} \mathcal{H}(F^{(k)}) \rangle}{\langle \operatorname{grad} \mathcal{H}(F^{(k)}), \operatorname{grad} \mathcal{H}(F^{(k)}) \rangle}
2187
2188
                k \leftarrow k + 1
2189
       10 end
2190
       11 return F^{(k)}
2191
2192
2193
           Algorithm 5: Riemannian Trust Region Algorithm on RIM Manifold
2194
           Input: RIM manifold \mathcal{M} = \{X \mid X1_c = 1_n, l < X^T1_n < u, X > 0\}
2195
           Objective function \mathcal{H}(F), Retraction R_X(tV), Initial point F_0 \in \mathcal{M}, Initial trust region radius \Delta_0.
2196
           Output: Sequence of iterates \{F^{(k)}\}\ converging to a stationary point of \mathcal{H}
2197
         1 Initialize k=0 Initialize \Delta_0 while not converged do
2198
                Compute Riemannian gradient grad \mathcal{H}(F^{(k)})
2199
                Compute the Riemannian Hessian hess \mathcal{H}(F^{(k)})
2200
                Solve the trust region subproblem: \Delta^{(k)} = \arg\min_{\|d\| < \Delta_k} \mathcal{H}(F^{(k)} + d)
2201
                Compute the step size \kappa^{(k)} using a line search or heuristic method
2202
                Perform Retraction: F^{(k+1)} = R_{F^{(k)}}(\kappa^{(k)}d^{(k)})
2203
                Update the trust region radius \Delta_{k+1};
2204
                k \leftarrow k + 1
2205
        9 end
2206
       10 return F^{(k)}
2207
2208
```

D DETAILS OF THE EXPERIMENTAL SETUP

D.1 EXPERIMENT 2 SETUP

In the first problem of Experiment 2, due to the particularity of the manifold, it is known that the optimal solution on manifold \mathcal{M} is A, at which point the value of the objective function is 0. Therefore, by comparing the losses of different algorithms under various parameters, the one with the smallest loss is the optimal result.

D.2 EXPERIMENT 3 SETUP

For Experiment 3, we compared the cases when l=u and $l\neq u$. For $l\neq u$, we set $l=0.9\left\lfloor\frac{n}{c}\right\rfloor$ and $u=1.1\left\lfloor\frac{n}{c}\right\rfloor$. When l=u, the RIM manifold degenerates into the double stochastic manifold, and we can compare it with algorithms on the double stochastic manifold. When $l=0.9\left\lfloor\frac{n}{c}\right\rfloor$ and $u=1.1\left\lfloor\frac{n}{c}\right\rfloor$, more general methods such as the Frank-Wolfe Algorithm (FWA) and Projected Gradient Descent (PGD) are used for comparison. For the case where the RIM manifold degenerates into the double stochastic manifold, we also compared the Riemannian Gradient Descent (DSRGD) and Riemannian Conjugate Gradient (DSRCG) on the double stochastic manifold. A brief introduction to these algorithms is provided as follows:

- The Frank-Wolfe algorithm (Xie et al., 2025) is a well-known method for solving nonlinear constrained optimization problems. The core idea is to find the direction within the constraint set that is closest to the negative gradient direction, and search and descend along this direction to optimize the objective function.
- The Projected Gradient Descent algorithm (Chen et al., 2021) is also a method for solving nonlinear constrained problems. The process involves searching along the gradient direction, and when leaving the constraint set, the point is projected back onto the constraint set.
- Riemannian optimization on the double stochastic manifold (Douik & Hassibi, 2019): This
 includes Double Stochastic Riemannian Gradient Descent, Double Stochastic Riemannian
 Conjugate Gradient methods. The algorithm process is similar to the RIM manifold methods,
 except that the Retraction and Riemannian gradient computation methods are different.

The PGD method differs greatly from Riemannian optimization methods, including the search direction. Projected Gradient Descent follows the Euclidean gradient, but the Euclidean gradient may contain irrelevant information on the constraint set. Riemannian optimization removes the redundant information and searches along the Riemannian gradient direction.

The Retraction process also differs; the projection process in Projected Gradient Descent may not be easy to compute and the result may not be unique, whereas Riemannian optimization can choose an appropriate Retraction process, which is faster and more convenient.

The generality is also different: Riemannian optimization not only has Riemannian descent but can also be naturally extended to methods like Riemannian Conjugate Gradient, Riemannian Coordinate Descent, etc., while Projected Gradient Descent has fewer such extensions.

The convergence properties differ as well; for example, Projected Gradient Descent typically requires convexity to converge to the global optimum, while Riemannian optimization only requires geodesic convexity, and there are cases where non-convex problems are geodesically convex.

We compared the final results obtained by optimizing with these algorithms and the total time required, and we organized the data into tables in the main text and appendix, along with visualizations through plotting.

D.3 EXPERIMENT 4 SETUP

For RIMRcut, we apply the same initialization as (Xie et al., 2025) and perform RIM optimization on Rcut based on the initialization. When applying the RIM manifold to the Rcut, we compare it with ten benchmark clustering algorithms across eight real-world datasets. These algorithms include KM-based methods, bipartite graph clustering techniques, and various balanced clustering

2271

2272

2273

2274

2277 2278

2281

2282

2283

2285

2287

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2300

2302

2305

2306

2308

2309

23102311

2312

2313

2314 2315

2316

2317

23182319

2320

2321

approaches. By solving the Ratio Cut problem on the RIM manifold, the clustering results are more balanced, as the number of samples within each cluster is constrained to a reasonable range. A detailed introduction to each algorithm is provided below.

- KM partitions data into predefined clusters by minimizing the sum of squared distances between data points and their corresponding cluster centers. It is simple but sensitive to initial centroids and struggles with non-spherical clusters.
- CDKM (Nie et al., 2021) improves KM by utilizing coordinate descent method to directly solve the discrete indicator matrix instead of alternative optimization. It could optimize the solution of KM further.
- Rcut minimizes the cut between two sets in a graph while considering the size of the sets, aiming to balance the partition.
- Ncut improves on Ratio-Cut by normalizing the cut, balancing the partition while considering the total graph weight. It's better suited for non-convex and unevenly distributed clusters.
- Nystrom (Chen et al., 2011) method approximates large kernel matrices using a subset of data, making spectral clustering scalable and efficient for large datasets.
- BKNC (Chen et al., 2022a) (Balanced K-Means with a Novel Constraint) extends K-Means by introducing a balance-aware regularizer, allowing flexible control over cluster balance. It is solved using an iterative optimization algorithm and achieves better balance and clustering performance than existing balanced K-Means variants.
- FCFC (Liu et al., 2018) is an efficient clustering algorithm that combines K-means with a balance penalty, ensuring flexible cluster sizes. It scales well to large datasets and outperforms existing methods in efficiency and clustering quality.
- FSC (Zhu et al., 2017) improves spectral clustering efficiency by using Balanced K-means based Hierarchical K-means (BKHK) to construct an anchor-based similarity graph. It achieves high performance on large-scale data.
- LSCR (Chen & Cai, 2011) randomly selects landmarks instead of using K-Means, making it faster but potentially less accurate than LSCK in capturing data structure.
- LSCK selects representative landmarks via K-Means to construct a smaller graph, reducing computational cost while preserving clustering quality.

To evaluate the clustering performance comprehensively, three metrics are applied, which are clustering accuracy (ACC), normalized mutual information (NMI) and adjusted rand index (ARI). The calculation of these three metrics are displayed below.

D.3.1 CLUSTERING ACCURACY (ACC)

Clustering Accuracy (Yuan et al., 2024a;b) measures the proportion of correctly clustered data points by aligning predicted cluster labels with ground truth labels. Since clustering algorithms do not inherently assign specific labels, a permutation mapping is applied, often using the Hungarian algorithm, to maximize alignment. The formula for ACC is:

$$ACC = \frac{\delta(map(\hat{y}_i), y_i)}{n}$$
 (199)

where $\delta(a, b)$ is an indicator function defined as:

$$\delta(a,b) = \begin{cases} 1, & \text{if } a = b \\ 0, & \text{otherwise,} \end{cases}$$
 (200)

Here, $\hat{y_i}$ is the predicted label, y_i is the true label, n is the total number of data points, and $map(\hat{y_i})$ is the permutation mapping function that aligns predicted labels with ground truth labels. ACC ranges from 0 to 1, with higher values indicating better clustering performance.

D.3.2 NORMALIZED MUTUAL INFORMATION (NMI)

Normalized Mutual Information (Zhong et al., 2021) quantifies the mutual dependence between clustering results and ground truth labels, normalized to account for differences in label distributions.

It evaluates the overlap between clusters and true classes using information theory. Given predicted partitions $\{\hat{C}_i\}_{i=1}^c$ and ground truth partitions $\{C_i\}_{i=1}^c$, NMI is calculated as:

$$NMI = \frac{\sum_{i=1}^{c} \sum_{j=1}^{c} \left| \hat{C}_{i} \cap C_{j} \right| \log \frac{n \left| \hat{C}_{i} \cap C_{j} \right|}{\left| \hat{C}_{i} \right| \left| C_{j} \right|}}{\sqrt{\left(\sum_{i=1}^{c} \left| \hat{C}_{i} \right| \log \frac{\left| \hat{C}_{i} \right|}{n} \right) \left(\sum_{j=1}^{c} \left| C_{j} \right| \log \frac{C_{j}}{n} \right)}}$$
(201)

Here, $|\cdot|$ denotes the size of a set, and $\hat{C}_i \cap C_j$ represents the number of data points belonging to both the i-th predicted cluster and the j-th ground truth class. NMI ranges from 0 to 1, where 1 indicates perfect agreement between clustering results and ground truth. It is particularly effective in scenarios with imbalanced class distributions.

D.3.3 ADJUSTED RAND INDEX (ARI)

The Adjusted Rand Index (Dang et al., 2021) measures the similarity between predicted clustering and ground truth by comparing all pairs of samples and evaluating whether they are assigned to the same cluster in both results. A contingency table H is first constructed, where each element h_{ij} represents the number of samples in both predicted cluster \hat{C}_i and ground truth cluster C_j . The formula for ARI is:

$$ARI(\bar{C}, C) = \frac{\sum_{ij} \binom{n_{ij}}{2} - \left[\sum_{i} \binom{n^{i}}{2} \sum_{j} \binom{n_{j}}{2}\right] / \binom{n}{2}}{\frac{1}{2} \left[\sum_{i} \binom{n^{i}}{2} + \sum_{j} \binom{n_{j}}{2}\right] - \left[\sum_{i} \binom{n^{i}}{2} \sum_{j} \binom{n_{j}}{2}\right] / \binom{n}{2}}$$
(202)

where $\binom{n_{ij}}{2} = \frac{n_{ij}(n_{ij}-1)}{2}$. ARI ranges from -1 to 1, where 1 indicates perfect clustering, 0 represents random assignments, and negative values indicate worse-than-random clustering. ARI is robust to differences in cluster sizes and does not favor a large number of clusters.

D.3.4 Introduction of Real Datasets

The real-world datasets includes: COIL20, Digit, JAFFE, MSRA25, PalmData25, USPS20, Waveform21 and MnistData05. These datasets are selected for their diversity in data types (images, waveforms, and biometric data) and their widespread use in benchmarking machine learning and computer vision algorithms. They provide a comprehensive evaluation framework for testing the robustness and generalization capabilities of the proposed methods. The detailed description of them are displayed below.

- The COIL20 dataset ¹ contains 1,440 images of 20 distinct objects, with each object captured from different angles. Each image has 1,024 dimensions, making it suitable for object recognition and clustering tasks.
- The Digit dataset consists of 1,797 instances of handwritten digits, ranging from 0 to 9. Each sample has 64 dimensions, representing low-resolution grayscale images.
- The JAFFE dataset includes 213 facial expression images from 10 subjects, covering seven basic emotions. Each image has 1,024 dimensions, making it suitable for facial expression recognition and emotion analysis.
- The MSRA25 dataset is a widely used benchmark for face recognition task. It consists of 1,799 grayscale face images, each resized to 16×16 pixels. The dataset includes 12 clusters, representing different individuals or categories.
- The PalmData25² dataset consists of 2,000 palmprint images, each with 256 dimensions. It includes 100 clusters.
- The USPS20 dataset is a subset of the USPS handwritten digit dataset, containing 1,854 instances. Each sample has 256 dimensions, representing grayscale images of digits.

¹http://www.cad.zju.edu.cn/home/dengcai/Data/data.html

²https://www.scholat.com/xjchensz

- The Waveform21 dataset ³ contains 2,746 instances of synthetic waveform data, each with 21 dimensions. It includes 3 clusters.
- The MnistData05 dataset is a subset of the MNIST dataset, containing 3,495 instances of handwritten digits. Each sample has 784 dimensions, representing 28×28 grayscale images. It is widely used for digit recognition, classification, and clustering tasks, providing a benchmark for evaluating machine learning models.

D.3.5 How to Choose l and u

l and u are pivotal parameters within the RIM manifold. When the values of l and u are set to be equal, an approximation of the doubly stochastic manifold can be achieved. When l and u are not equal, their application to practical problems holds significant meaning, particularly in the context of unbalanced scenarios. For instance, in clustering tasks, the RIM manifold encompasses all indicator matrices, with l and u representing the minimum and maximum number of samples within each cluster, respectively. The magnitude of these parameters can be estimated based on the total number of samples and the known number of clusters. Alternatively, they may be assigned according to certain prior knowledge. However, it is noteworthy that in the absence of prior information, the values of l and u can be set within a broader range. In addition, a suitable choice of l and u can also be determined through multiple trials.

The parameter in RIM optimization is listed in Table 7.

Table 7: Values of l and u on different data sets for RIMRcut

Datasets	l	u
COIL20	[0.6*n/c]	[1.2*n/c]
Digit	[0.4*n/c]	[1.6*n/c]
JAFFE	[0.4*n/c]	[1.6*n/c]
MSRA25	[0.4*n/c]	[1.6*n/c]
PalmData25	[0.4*n/c]	[1.8*n/c]
USPS20	[0.6*n/c]	[2.0*n/c]
Waveform21	[0.4*n/c]	[1.8*n/c]
MnistData05	[0.8*n/c]	[1.4*n/c]

Subsequently, we will perform clustering using the data in this table and visualize the clustering results, as shown in Figure 7 and Figure 8.

Moreover, we acknowledge that precisely choosing l and u is a challenging task, as it is essentially equivalent to obtaining prior information about the dataset. Our study is conducted under the assumption that such prior information is available. Nevertheless, we also provide a possible way to estimate this prior knowledge, namely by running K-Means to approximate the cluster proportions. For instance, on the MnistData05 dataset, the estimation yields $(l,u)=(0.86\times \frac{n}{c},1.22\times \frac{n}{c})$, which is close to the values we selected.

At the same time, although the algorithm is sensitive to (l, u), the sensitivity is not high. Taking the MnistData05 dataset as an example, the performance metrics under different values of l and u are as follows. Here, $a \times d$ enotes $a \times \frac{n}{c}$.

Table 8: Performance under different (l, u) values on the *MnistData05* dataset.

				() .)			
(l,u)	$(0\times,2\times)$	$(0.3\times, 1.7\times)$	$(0.5\times, 1.5\times)$	$(0.6 \times, 1.4 \times)$	$(0.7\times, 1.3\times)$	$(0.8 \times, 1.4 \times)$	$(0.9 \times, 1.1 \times)$
ACC	61.23	61.61	62.86	63.12	64.26	65.55	66.09
NMI	54.96	55.53	56.68	57.54	58.68	59.35	61.93
ARI	46.02	46.25	49.37	50.73	51.82	52.87	53.02

³http://archive.ics.uci.edu/datasets

E ADDITIONAL EXPERIMENTAL RESULTS

In this section, we present additional experimental results to better demonstrate the advantages of the proposed algorithm.

E.1 RESULTS OF EXPERIMENTAL 1

Experiment 1 compares the running times of three Retraction methods under different matrix sizes. In Table 9, we compare the running times when l is not equal to u. The results that run the fastest under each set of experiments are highlighted in red . Additionally, for better visualization, we present a three-dimensional bar chart showing the performance of multiple Retraction methods, as illustrated in Figure 3. The experimental results reveal that when the matrix dimension is small, Sinkhorn outperforms the other two methods in terms of speed, while Dykstras shows an advantage when the matrix dimension is larger. This conclusion holds true both when l equals u and when l does not equal u. While the efficiency of dual method is always inferior than other methods.

Table 9: Table of Execution Time when $l \neq u$ for Different Retraction Algorithms(s)

Row&Col	Dual					Sinkhorn					Dykstras							
	500	1000	3000	5000	7000	10000	500	1000	3000	5000	7000	10000	500	1000	3000	5000	7000	10000
5	0.015	0.025	0.056	0.083	0.109	0.140	0.001	0.004	0.017	0.042	0.085	0.166	0.011	0.005	0.011	0.018	0.027	0.037
10	0.020	0.039	0.082	0.111	0.145	0.183	0.001	0.003	0.017	0.042	0.081	0.179	0.009	0.005	0.015	0.022	0.031	0.044
50	0.053	0.106	0.763	1.353	1.934	2.738	0.001	0.005	0.021	0.056	0.109	0.226	0.006	0.010	0.022	0.038	0.052	0.072
100	0.014	0.156	1.556	2.747	3.948	5.675	0.002	0.005	0.029	0.079	0.149	0.288	0.009	0.012	0.030	0.054	0.071	0.100
500	0.060	0.119	7.296	12.208	17.021	23.773	0.006	0.014	0.114	0.305	0.577	1.119	0.018	0.032	0.089	0.157	0.207	0.299
1000	0.103	0.172	15.483	25.830	37.027	58.107	0.018	0.036	0.194	0.500	0.889	1.781	0.036	0.071	0.204	0.367	0.522	0.763

Figure 3: Comparison of running time for different Retraction algorithms.

E.2 RESULTS OF EXPERIMENTAL 2

For the first question in Experiment 2, we compare the application of gradient descent, conjugate gradient, and trust-region methods on the RIM manifold. The value of cost function and running time of gradient descent and conjugate gradient on RIM manifold are display in Table 10 and 11. As can be seen from the two tables, regardless of the optimization method employed, the loss function values and running time of the RIM manifold approach are superior to those of the doubly stochastic manifold method. This advantage is attributed to the lower computational complexity of gradient and Hessian matrix calculations on the RIM manifold. For example, when the matrix size is 100 by 10,000, for the RTR method, the running time is increased by approximately 200 times. For the RGD method, the time required is only one-twenty five of that for the doubly stochastic manifold. As for RCG method, the running time is increased by approximately 75 times. Meanwhile, optimization methods on RIM manifolds often yield solutions closer to zero (the ratio of losses can even reach 1E10) compared to methods on doubly stochastic manifolds.

Table 10: Cost and Time on the RIM Manifold and Doubly Stochastic Manifold(RGD).

Row&Col]	RIM Manife	old		Doubly Stochastic Manifold						
		Cost			Time			Cost			Time	
Size	5000	7000	10000	5000	7000	10000	5000	7000	10000	5000	7000	10000
5	4.74E-14	1.14E-13	1.05E-13	1.233	0.974	1.225	4.96E-07	6.08E-07	9.01E-07	17.19	18.07	38.73
10	1.28E-13	4.48E-05	7.04E-15	0.864	2.686	1.311	1.22E-06	7.73E-07	2.39E-06	12.76	19.20	22.45
20	5.39E-14	1.09E-14	1.89E-13	0.779	1.266	1.914	3.07E-06	2.79E-06	5.46E-06	18.34	20.08	27.02
50	1.95E-13	8.12E-14	1.84E-13	1.442	2.780	2.663	3.71E-06	6.38E-06	9.27E-06	48.72	37.79	75.39
70	1.72E-13	4.47E-13	1.73E-13	2.350	2.811	4.356	7.91E-06	9.68E-06	1.82E-05	39.37	64.68	56.13
100	1.58E-15	1.12E-14	2.32E-13	3.086	3.242	4.126	1.37E-05	1.89E-05	2.99E-05	46.06	93.26	105.8

The second issue pertains to the problem of image restoration. We introduced varying levels of noise into two images and then compared the visual outcomes of the RIM manifold-based method with those of the DSM-based method in restoring the original images from their noisy counterparts. The visual results are displayed in Figure 4, which also annotates the values of the parameter ξ . Regardless of the intensity of the noise, the images restored by the RIM method are clearer and retain better texture information.

Table 11: Cost and Time on the RIM Manifold and Doubly Stochastic Manifold(RCG).

Row&Col			RIM Manifo	old			Doubly Stochastic Manifold							
		Cost			Time			Cost			Time			
Size	5000	7000	10000	5000	7000	10000	5000	7000	10000	5000	7000	10000		
5	3.74E-14	4.63E-13	1.20E-13	0.285	0.375	0.683	8.16E-10	7.78E-10	2.57E-09	4.624	10.22	15.42		
10	6.22E-14	2.56E-13	4.92E-14	0.161	0.307	0.579	1.81E-09	2.71E-09	1.53E-09	6.230	11.29	13.96		
20	1.03E-13	1.08E-13	1.52E-15	0.396	0.817	0.558	4.75E-09	3.53E-09	2.67E-09	11.91	16.91	17.13		
50	5.69E-14	1.56E-13	2.51E-13	0.859	1.047	1.774	3.74E-09	5.49E-09	4.81E-09	30.11	45.33	58.19		
70	2.22E-13	1.74E-13	6.37E-17	0.932	1.603	1.024	4.36E-09	2.52E-09	4.81E-09	46.83	73.80	60.49		
100	4.21E-13	1.89E-15	1.61E-14	1.542	0.960	2.045	4.03E-09	5.01E-09	7.99E-09	55.70	81.65	158.7		

E.3 RESULTS OF EXPERIMENTAL 3

Experiment 3 compared the objective function values and running times of the rim manifold-based approach with other solution methods on real datasets when the objective function was the Ratio Cut. The results for the case where l equals u are shown in Table 4, while the results for l not equal to u are reported in Table 12. It can be observed that the RIMRCG method achieves the lowest running time on most datasets. Meanwhile, the RIMRGD method can reach the minimum in terms of loss. Furthermore, for each dataset, we have plotted the iteration curves of the objective function

Table 12: Time and Loss of Different Optimization Algorithms on Ratio Cut when $l \neq u$

Datasets&Methods	FWA		PGD		RIM	IRGD	RIM	RCG	RIMRTR	
Datasets&Methous	Time	Cost	Time	Cost	Time	Cost	Time	Cost	Time	Cost
COIL20	6.220	3.908	6.061	0.7108	8.040	0.5306	2.601	0.494	15.97	0.588
Digit	5.878	0.389	6.063	0.817	7.355	0.652	1.443	0.755	13.92	0.661
JAFFE	0.257	0.207	1.019	0.294	0.116	1.110	0.260	0.154	3.741	0.103
MSRA25	6.238	0.253	6.444	0.048	9.123	0.037	9.787	0.000	15.95	0.033
PalmData25	77.69	16.40	71.73	3.299	25.54	0.984	5.635	6.686	19.05	12.78
USPS20	6.133	1.631	6.109	1.563	7.025	1.544	1.309	1.729	17.72	1.551
Waveform21	12.62	0.405	8.529	0.452	9.650	0.366	1.571	0.373	46.20	0.366
MnistData05	19.86	0.538	17.09	12.36	16.52	1.693	1.876	2.467	30.47	1.677

values against the number of iterations for various optimization methods. These are displayed in Figures 5 and 6, respectively. From the convergence curves in Figure 5, it is evident that the Rim manifold-based methods enable the objective to decrease more rapidly within a shorter number of iterations. In contrast, the descent curves of the PGD and DSRGD methods are more gradual. A similar experimental outcome is also presented in Figure 6.

Figure 5: Comparison of Loss Decrease for Optimization Algorithms on Real Datasets (l = u).

Figure 6: Comparison of Loss Decrease for Optimization Algorithms on Real Datasets ($l \neq u$).

E.4 RESULTS OF EXPERIMENTAL 4

In this section, we mainly provide two supplementary materials. First, we verify whether Riemannian optimization on the RIM manifold ensures that the distribution of each column lies within the prescribed range. Second, we visualize the learned indicator matrix to examine whether each entry $F_{ij} \in [0,1]$ is satisfied.

Figure 7 illustrates the column sum distributions of the relaxed indicator matrix obtained via Riemannian gradient descent (RIMRGD) on the RIM manifold for different datasets. The dashed lines represent the values of the upper bound u and lower bound l. As shown, all column sums eventually lie within the specified interval [l, u].

It is worth noting that, under the specified bounds [l,u], not all bounds are necessarily active for every dataset. For instance, in the Digit dataset, the lower bound l is active, as the sum of the 8th column reaches the lower bound, while no column reaches the upper bound u. In contrast, for the MSRA25 dataset, the upper bound u is active, but the lower bound l is not. For some datasets like COIL20, neither the lower nor the upper bounds are active, possibly because the dataset naturally leads to a balanced partitioning.

Figure 8 presents the visualization results of the relaxed indicator matrix. It can be observed that each element F_{ij} lies within the interval [0,1], and the indicator matrix exhibits a clear clustered structure. This structure indicates distinct clustering results, suggesting that learning on the relaxed indicator matrix manifold effectively captures the underlying structure of the graph.

F RIM MANIFOLD EQUIPPED WITH FISHER METRIC

In this section, we will explain why we assign the Euclidean inner product to $\mathcal{M}=\{X|X1_c=1_n,l< X^T1_n< u,X>0\}$ instead of the currently more commonly used Fisher information metric. The RIM manifold is defined as $\mathcal{M}=\{X|X1_c=1_n,l< X^T1_n< u,X>0\}$, where the row sums are equal to 1. Therefore, each element's rows on the RIM manifold can be considered as a probability distribution and can equip a Fisher information metric. Specifically, for each point X on the RIM manifold, there exists a tangent space $T_X\mathcal{M}$ which is a linear space. Previously, the Euclidean metric was equipped on this linear space, that is, $\forall U,V\in T_X\mathcal{M}, < U,V>_X=\sum_{i=1}^n\sum_{j=1}^nU_{ij}V_{ij}$. This section will discuss the impact on optimization over the manifold when the Fisher information metric is equipped on $T_X\mathcal{M}$, that is,

$$\forall U, V \in T_X \mathcal{M}, \langle U, V \rangle_X = \sum_{i=1}^n \sum_{j=1}^n \frac{U_{ij} V_{ij}}{X_{ij}}$$
 (203)

To distinguish it from the previous RIM manifold, we call the RIM manifold equipped with the Fisher information metric the Fisher RIM manifold, abbreviated as FRIM manifold.

F.1 DIMENSION AND TANGENT SPACE

Regarding dimension and tangent space, their definitions depend only on the manifold itself and are independent of the metric equipped on it. Therefore, for the same set \mathcal{M} , whether it is equipped with the Euclidean metric or the Fisher information metric, it has the same dimension and tangent space. That is, both the RIM manifold and the FRIM manifold have a dimension of (n-1)c, and the tangent space is $T_X\mathcal{M}=\{U\mid U1_c=0\}$. The proof can be found in Theorem A.1

F.2 RIEMANNIAN GRADIENT, RIEMANNIAN CONNECTION AND RIEMANNIAN HESSIAN

When the Fisher metric is assigned to $\{X \in \mathbb{R}^{n \times c} | X > 0\}$, the gradient of \mathcal{H} at X in $\{X \in \mathbb{R}^{n \times c} | X > 0\}$ is given by $\operatorname{Grad}\mathcal{H} \odot X$, where $\operatorname{Grad}\mathcal{H}$ is the Euclidean gradient. At this time, the FRIM manifold is a Riemannian embedded submanifold of $\{X \in \mathbb{R}^{n \times c} | X > 0\}$. The Riemannian gradient on the FRIM manifold is the orthogonal projection under the Fisher metric. The expression of this orthogonal projection is

$$\operatorname{Proj}_{T_{X}\mathcal{M}}(Z) = Z - (\alpha 1_{c}^{T}) \odot X, \quad \alpha = Z 1_{c} \in \mathbb{R}^{n}$$
(204)

The Riemannian connection on the FRIM manifold is the orthogonal projection of the connection under the Fisher metric, where the connection on $\{X \in \mathbb{R}^{n \times c} | X > 0\}$ can be expressed as

$$\bar{\nabla}_U V = DV[U] - \frac{1}{2}(U \odot V) \oslash X, \quad U, V \in \mathbb{R}^{n \times c}$$
 (205)

The Riemannian connection on the FRIM manifold is given by

$$\begin{cases}
\nabla_{U}V = \operatorname{Proj}_{T_{X}\mathcal{M}}\left(\bar{\nabla}_{U}V\right) = \operatorname{Proj}_{T_{X}\mathcal{M}}\left(DV[U] - \frac{1}{2}(U \odot V) \oslash X\right) \\
U, V \in T_{X}\mathcal{M}, X \in \{X \in \mathbb{R}^{n \times c} | X > 0\}
\end{cases}$$
(206)

Furthermore, the Riemannian Hessian mapping is given by

$$\operatorname{hess} \mathcal{H}(X)[V] = \operatorname{Proj}_{T_X \mathcal{M}} \left(D \operatorname{grad} \mathcal{H}(X)[V] - \frac{1}{2} (V \odot \operatorname{grad} \mathcal{H}(X)) \oslash X \right)$$
 (207)

It can be seen that the Riemannian gradient, Riemannian connection and Riemannian Hessian on the FRIM manifold are the same as those on the single stochastic manifold equipped with the Fisher information metric. Since the FRIM manifold itself can be regarded as a Riemannian embedded submanifold of the single stochastic manifold, it is not surprising that these three Riemannian tools are the same as those on the single stochastic manifold. However, the existing Retraction mapping on the single stochastic manifold cannot be applied to the FRIM manifold, because it cannot be guaranteed that the curve generated by the Retraction mapping on the single stochastic manifold will always lie on the FRIM manifold (it may violate the column constraint).

F.3 RETRACTION MAPPING

Although the Retraction mapping on the single stochastic manifold cannot be used as the Retraction mapping on the FRIM manifold, the Retraction mapping on the RIM manifold proposed in this paper can naturally serve as the Retraction mapping on the FRIM manifold. That is, the FRIM manifold naturally has three Retraction methods respectively given by Theorems A.6, A.7 and A.8. However, Theorem A.5 indicates that the result obtained by Theorem A.6 is a geodesic on the RIM manifold. However, on the FRIM manifold, Theorem A.6 is not an orthogonal projection under the Fisher information metric, so the geodesic on the FRIM manifold cannot be obtained. That is to say, although the three methods in Theorems A.6, A.7 and A.8 can all be used as Retractions, none of them is a second-order Retraction.

F.4 WHICH TO USE?

Although there is also a set of Riemannian tools available on the FRIM manifold, according to the analysis above, the Riemannian toolbox under the RIM manifold and the Riemannian toolbox on the FRIM manifold have almost the same time complexity and can use the same Retraction. However, when using the Dykstras Retraction, a geodesic can be quickly obtained on the RIM manifold, while it is impossible to obtain a geodesic on the FRIM manifold, meaning a second-order Retraction cannot be achieved. This may have a certain impact on the convergence of the algorithm. Therefore, we recommend using the RIM manifold, which restricts the Euclidean inner product to the manifold rather than the Fisher information metric.

G Explanation regarding l = u

We are very pleased that you are interested in the intrinsic principles of the RIM manifold. During the community's use of the RIM manifold, we have received related issues in which users asked: when l=u, the RIM manifold theoretically seems to degenerate into an empty set. They further wondered what ingenious techniques in the RIM manifold algorithm allow it to still function effectively. We are glad to provide an answer here.

In fact, it is precisely our design that effectively avoids this situation, and the algorithm can efficiently converge to the doubly stochastic manifold

$$\{X \in \mathbb{R}^{n \times n} \mid X \mathbf{1}_n = \mathbf{1}_n, \ X^T \mathbf{1}_n = \mathbf{1}_n, \ X > 0\}.$$
 (208)

The effectiveness of the algorithm comes from our deliberately designed retraction. Taking projection onto Ω_2 as an example, computing $\frac{1}{n}(l_j-1_n^TX^j)1_n+X^j$ essentially projects each column of X onto $\{(X^j)^T1_n \geq l_j\}$.

It can be seen that, regardless of the values taken by l and u, the computation of the Riemannian gradient and other formulas are completely unaffected. With our specially designed retraction, when l = u = r, projection is carried out respectively onto $\Omega_2 = \{X^T 1_n = r\}, \quad \Omega_3 = \{X^T 1_n = r\}.$

Thus, the retraction essentially projects onto $\{X^T1_n=r\}\cap\{X1_n=1_n\}$, that is, a retraction onto the doubly stochastic manifold. In this way, our algorithm can elegantly converge to the doubly stochastic manifold.

Moreover, considering the practical use of the relaxed indicator matrix, taking Ω_2 as an example, there is no essential difference between $\{X^T1_n>l\}$ and $\{X^T1_n\geq l\}$. If one is concerned about obtaining points on the boundary, it suffices to simply set $l'=l+\epsilon$, with $\epsilon<10^{-12}$, and run the RIM manifold on $\{X^T1_n>l'\}$.

H REFERENCE CODE FOR RIM MANIFOLD RIEMANNIAN TOOLBOX

```
2755
2756
       function M = RIMfactory(n, c, row, upper, lower)
2757
           maxDSiters = min(1000, n*c);
2758
           if size(row, 1) ~= n
2759
               error('row should be a column vector of size n.');
2760
           end
2761
           if size(upper, 1) ~= c
2762
               error('upper should be a column vector of size c.');
           end
2763
           if size(lower, 1) ~= c
2764
               error('lower should be a column vector of size c.');
2765
2766
           M.name = @() sprintf('%dx%d matrices with positive entries F1_c=1_n,1
2767
               <F1_n<u', n, c);
2768
           M.dim = @() (n-1)*c;
2769
           M.hash = @(X) ['z' hashmd5(X(:))];
2770
           M.lincomb = @matrixlincomb;
2771
           M.zerovec = @(X) zeros(n, c);
           M.transp = @(X1, X2, d) ProjToTangent(d);
2772
           M.vec = @(X, U) U(:);
2773
           M.mat = @(X, u) reshape(u, n, c);
2774
           M. vecmatareisometries = @() true;
2775
           M.inner = @iproduct;
2776
2777
           function ip = iproduct(X,eta, zeta)
               ip = sum((eta(:).*zeta(:)));
2778
2779
           M.norm = @(X,eta) sqrt(M.inner(X,eta, eta));
2780
           M.typicaldist = @() n+c;
2781
           M.rand = @random;
2782
           function X = random(X)
               Z = abs(randn(n, c));
2783
               X = Dykstras(Z, row, lower, upper, maxDSiters);
2784
           end
2785
           M.randvec = @randomvec;
2786
           function eta = randomvec(X)
               Z = randn(n, c);
2787
               eta = ProjToTangent(Z);
2788
           end
2789
           M.proj = @projection;
2790
           function etaproj = projection(X,eta)
2791
               etaproj = ProjToTangent(eta);
2792
           end
           M.tangent = M.proj;
2793
           M.tangent2ambient = @(X,eta) eta;
2794
           M.egrad2rgrad = @egrad2rgrad;
2795
           function rgrad = egrad2rgrad(X, egrad)
2796
               rgrad = ProjToTangent(egrad);
2797
           end
           M.retr = @Retraction;
2798
           function Y = Retraction(X, eta, t)
2799
               if nargin < 3
2800
                   t = 1;
2801
               end
               Y=Dykstras(X+t*eta, row, lower, upper, maxDSiters);
2802
2803
           M.ehess2rhess = @ehess2rhess;
2804
           function rhess = ehess2rhess(X, egrad, ehess, eta)
2805
               rhess = ProjToTangent(ehess);
2806
2807
       end
```

2809

2810

2811

2812

2813 2814

2815

In this section, we will provide reference code for the RIM manifold toolbox. Our code is compatible with the well-known open-source manifold optimization toolbox Manopt (Boumal et al., 2014), allowing the direct use of Manopt's algorithms to implement Riemannian optimization on the RIM manifold. The first code block creates a factory named "RIM", which allows for the direct call to the RIM factory to obtain the basic description of the RIM manifold, covering the essential information about the manifold and the invocation of basic Riemannian operations.

Dykstras algorithm is one of the methods for implementing Retraction. Its process involves iterative projections and the condition for determining when to exit the loop.

```
2816
       function [P] = Dykstras(M, a, b_l, b_u, N)
2817
           if b_l==b_u
2818
               tol=1e-2;
2819
           else
2820
               tol=1e-1;
           end
2821
           rng(1);
2822
           [mn, mc] = size(M);
           P = M:
2824
           z1 = zeros(mn, mc);
2825
           z2 = zeros(mn, mc);
           z3 = zeros(mn, mc);
2827
           for iter = 1:N
               for i = 1:mn
2829
                    prev_row = P(i, :) + z1(i, :);
2830
                    P(i, :) = EProjSimplex_new(prev_row, a(i));
                    z1(i, :) = prev_row - P(i, :);
2831
               end
2832
2833
               for j = 1:mc
2834
                    prev_col = P(:, j) + z2(:, j);
2835
                    current_sum = sum(prev_col);
                    if current_sum >= b_l(j)
2836
                        z2(:, j) = 0;
2837
                        P(:, j) = prev_col;
2838
                    else
2839
                        delta = (b_l(j) - current_sum) / mn;
                        new_col = prev_col + delta * ones(mn, 1);
2840
                        z2(:, j) = prev_col - new_col;
2841
                        P(:, j) = new_col;
2842
                    end
2843
               end
               for j = 1:mc
2845
                    prev_col = P(:, j) + z3(:, j);
2846
                    current_sum = sum(prev_col);
2847
                    if current_sum <= b_u(j)</pre>
2848
                        z3(:, j) = 0;
2849
                        P(:, j) = prev_col;
2850
                    else
                        delta = (b_u(j) - current_sum) / mn;
2851
                        new_col = prev_col + delta * ones(mn, 1);
2852
                        z3(:, j) = prev_col - new_col;
2853
                        P(:, j) = new_col;
2854
                    end
2855
               end
2856
               if norm(P*ones(mc,1)-a, 'fro') < tol && all(P(:)>=-tol)
2857
                    disp(['Converged at iteration: ', num2str(iter)]);
2858
                    break:
2859
               end
2860
           end
       end
2861
```

2863

2864

2865

2890

2891 2892

2893

2894

2896

2897

2898

2899

2900

2901

2902

2903

2904

29052906

29072908

2909

2910

2911

2912291329142915

In the Dykstras algorithm process, the first step is to project onto the simplex, where the projection function is EProjSimplex_new. The code for this is provided below. During usage, you can create a file named EProjSimplex_new and call the EProjSimplex_new algorithm in each iteration of the Dykstras algorithm process.

```
2866
       function [x ft] = EProjSimplex_new(v, k)
2867
           if nargin < 2
2868
               k = 1;
2869
           end;
           ft=1;
2870
           n = length(v);
2871
           v0 = v-mean(v) + k/n;
2872
           vmin = min(v0);
2873
           if vmin < 0
2874
               f = 1;
                lambda_m = 0;
2875
                while abs(f) > 10^-10
2876
                    v1 = v0 - lambda_m;
2877
                    posidx = v1>0;
2878
                    npos = sum(posidx);
                    q = -npos;
                    f = sum(v1(posidx)) - k;
2880
                    lambda_m = lambda_m - f/g;
2881
                    ft=ft+1;
2882
                    if ft > 100
2883
                        x = \max(v1, 0);
2884
                        break;
                    end;
2885
               end;
               x = \max(v1, 0);
2887
           else
2888
               x = v0;
2889
       end;
```

The function ProjToTangent is a simple projection function onto the tangent space.

```
function P = ProjToTangent(X)
    c=size(X,2);
    P=X-1/c*X*ones(c,c);
end
```

When running the code, please create four separate MATLAB files for RIMfactory, Dykstras, EProjSimplex_new, and ProjToTangent, and place them in the manopt folder following this structure:

```
-manopt;
--manifolds;
---multinomial;
----RIMfactory;
----Dykstras;
----EProjSimplex_new;
----ProjToTangent;
```

Then you can call the functions in the general way as per manopt.

```
RIM_manifold = RIMfactory(n,c,row,upper,lower);
problem.M = RIM_manifold;
problem.cost = @(X) ...;
problem.egrad = @(X) ...; % Euclidean gradient
[X_rim,~,info_rim,~] = steepestdescent(problem);
```

2917

2918

2968 2969 Furthermore, we provide reference code for the dual gradient and Sinkhorn algorithms, which allow the Retraction operation to be performed in other ways. Overall, we still recommend using Dykstras algorithm under the Euclidean inner product for descent along the geodesics of the RIM manifold.

```
2919
       function F = dual_gradient(Z, 1, u, max_iter)
2920
           [n, c] = size(Z);
2921
           1 = 1(:);
2922
           u = u(:);
2923
           nu = ones(n, 1);
2924
           omega = ones(c, 1);
2925
           rho = ones(c, 1);
2926
2927
           step size = .05;
2928
           for iter = 1:max_iter
2929
               term = Z - nu * ones(1, c) - ones(n, 1) * omega' + <math>ones(n, 1) *
2930
                   rho';
2931
               F_{current} = \max(term, 0);
2932
               grad_nu = F_current * ones(c, 1) - ones(n, 1);
2933
               grad_omega = F_current' * ones(n, 1) - u;
2934
               grad_rho = -F_current' * ones(n, 1)+1;
2935
2936
               nu = nu + step_size * grad_nu;
2937
               omega = omega + step_size * grad_omega;
               rho = rho + step_size * grad_rho;
2938
2939
               omega = max(omega, 0);
2940
               rho = max(rho, 0);
2941
           end
           term = Z - nu * ones(1, c) - ones(n, 1) * omega' + ones(n, 1) * rho';
2942
           F = \max(term, 0);
2943
       end
2944
2945
       function P = sinkR(X, a, l, u, N)
2946
           rng(1)
2947
           [n, c] = size(X);
2948
           K = X;
           u_vec = ones(n, 1);
2949
           q_{vec} = ones(c, 1);
2950
           v_{vc} = ones(c, 1);
2951
2952
           for i = 1:N
2953
               u_vec = a ./ (K * (q_vec .* v_vec));
2954
               sum_P_t = sum((u_vec .* K), 1)';
2955
               q_{vec} = max(l(:) ./ sum_P_t, ones(c, 1));
2956
2957
               sum_P_t = sum((u_vec .* K) .* q_vec', 1)';
2958
               v_{vc} = min(u(:) ./ sum_P_t, ones(c, 1));
2959
               P = diag(u\_vec) * K * diag(q\_vec .* v\_vec);
2960
               P_{liehe} = P' * ones (n, 1);
2961
2962
               if norm(P*ones(c,1)-ones(n,1), 'fro') < 1e-2 && all(P(:)>=-1e-2)
2963
                    && all(P_liehe >= 1-1e-2) && all(P_liehe <= u+1e-2)
2964
                    break;
               end
2965
           end
2966
       end
2967
```