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ABSTRACT

Data scarcity is a fundamental problem since data lies at the heart of any ML
project. For most applications, annotation is an expensive task in addition to
data collection. Thus, learning from limited labeled data is very critical for data-
limited problems, such as in healthcare applications, to have the ability to learn
in a sample-efficient manner. Self-supervised learning (SSL) can learn meaning-
ful representations from exploiting structures in unlabeled data, which allows the
model to achieve high accuracy in various downstream tasks, even with limited
annotations. In this work, we extend contrastive learning, an efficient imple-
mentation of SSL, to cardiac imaging. We propose to use generated M(otion)-
mode images from readily available B(rightness)-mode echocardiograms and de-
sign contrastive objectives with structure and patient-awareness. Experiments on
EchoNet-Dynamic show that our proposed model can achieve an AUROC score
of 0.85 by simply training a linear head on top of the learned representations, and
is insensitive to the reduction of labeled data.

1 INTRODUCTION

Early assessment of cardiac dysfunction with routine screening is essential for diagnosing cardio-
vascular diseases, the leading cause of death worldwide (WHO| 2022). An important metric for
assessing cardiac (dys)function is the left ventricular (LV) ejection fraction (EF), which evaluates
the ratio between LV end-systolic and -diastolic volumes (Bamira & Picard, 2018 [Ouyang et al.,
2020). Echocardiography is a widely-adopted imaging modality, with ultrasound being a low-cost,
real-time, and non-ionizing technology (Sarkar & Chandra, 2020). However, the manual evaluation
of echocardiograms is an expensive and operator-dependent task; thus, there has been a clear inter-
est in automated EF prediction methods. Some recent works have applied deep learning techniques
to EF prediction using echocardiograms (Sarkar & Chandra, 2020; Tian et al.,|2021; Madani et al.}
2018} |Ghorbani et al.l |2020; [Mehanian et al., |2019), which exploit either still-images or spatio-
temporal convolutions relying on fully labelled data. However, data collection and annotation are
expensive for most applications, such as in healthcare. Therefore, learning from limited labeled data
plays a key role in data-limited problems. To overcome this data bottleneck, self-supervised learning
(SSL) methods have been proposed, which aim to learn meaningful high-level representations from
unlabeled data (LeCun & Misra, [2021} |Shurrab & Duwairi, 2022).

Our contribution In this work, we propose an SSL scheme for predicting EF using echocardio-
grams through extending contrastive learning, an efficient implementation of SSL. Instead of using
conventional B-mode videos, we leverage generated M-mode images ((Avila et al., 2018} [Singh
et al., 2018)) as the input modality. [Sutter et al.[(2022) recently showed the effectiveness of M-mode
images for assessing cardiac dysfunction while bypassing larger 3D models. For the contrastive
learning part, M-mode images from the same patient can then naturally serve as positive pairs since
they share labels for many downstream tasks. As discussed by (Yeche et al.,|2021), bio-signal data
is inherently highly heterogeneous; thus, when applying learning-based methods to patient data, we
need to consider both the similarity and the difference between samples originating from the same
patient. To remedy this problem, we design a ContrAstive Loss for M-mode images (CALM) to learn
unsupervised representations with structure and patient awareness. We evaluate the learnt represen-
tation on the publicly available EchoNet-Dynamic dataset ((Ouyang et al.| |2020)) and demonstrate
the robustness of our models in the limited labeled-data scenario.
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Figure 1: Overview of our proposed CALM method. The contrastive loss includes (a) patient aware-
ness to attract similarity between data from the same patient and to discourage between different pa-
tients (b) structure awareness to take the (possible) dissimilarity from the same patient into account.
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Figure 2: Schema of the contrastive learning framework with training and evaluation stages. The
training stage exploits the contrastive loss to learn a representation leveraging the unlabelled images.
The evaluation stage exploits these learned representations in a supervised manner to predict EF.

2 METHOD

This work aims to learn meaningful representations from unlabeled data to estimate EF using
echocardiograms. To this end, we propose an SSL scheme for M-mode images based on contrastive
learning, while extending it with patient and structure awareness as shown in Figure[T}

Contrastive Learning Framework It contains training and evaluation stages, as shown in Fig-
ure[2] In the training stage, the model is trained with the contrastive loss leveraging the information
from underlying structures of the unlabeled images. In the evaluation stage, a multilayer perceptron
(MLP) head is trained on top of the learned representations in a supervised manner. Assume our
dataset contains N patients. For each patient i = {1,2,--- , N}, the label y; indicates its EF. We
then generate M M-mode images x!* with m = {1,2,--- , M} with evenly-spaced angles from a
single B-mode echocardiogram for each patient <. For more information, please refer to Appendix[A]

(m)

Furthermore, for each ", we generate its augmented view x " using the Aug(-) module. So the

v(m)

augmented dataset is represented as {(x]*, x;" ', ¥;)}. The encoder network Enc(-) maps each

image ;" to a feature vector 2;".

In the training stage, z;" is normalized to the unit hyper-sphere before being passed to the projec-
tion network. Following the work from (Chen et al.l 2020), we introduce a learnable non-linear
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projection network between the representation and the contrastive loss. The projection network
Proj(-) takes the normalized lower-level representation z!™ as input and outputs the higher-level
representation p;"*.

In the evaluation stage, we freeze the encoder network Encg() and add an MLP head Head(-) to the
top. For each patient ¢, we have M feature vectors z[* € R™. The M vectors are then concatenated
to get the joint representation Z; € R¥*M for patient i, which is the input of Head(-). Head(-) is
trained with labeled data using supervised loss.

ContrAstive Loss for M-mode images (CALM) To account for (dis)similarities from M-mode
images, we design two loss functions for learning both patient- and structure-aware representations.

Patient-aware loss: The goal of the loss is to attract the representations from the same patient to
be similar while pushing apart representations from different patients (see Figure [1| (a)). Inspired
by [Yéche et al.| (2021), we define the neighborhood function n(zl*, :cé) = (1 = j] x 1[jm —
I| < A]), which enforces two M-mode images to be considered neighbors if they are from the
same patient and the distance of their mode ordinal numbers are within a certain threshold \. Here
we introduce a neighborhood threshold A\ because M-mode images with large angle distance may
contain quite different structural information, and we should not simply consider them from the
same neighborhood. The neighborhood of the m-th M-mode image from patient ¢ is defined as
N(i,m) = {l # m|n(x]", ) = 1}. Using the definition of neighborhood function, N (i, m) =
{l # m||m — 1] < A} & N(m), the patient-aware loss is given as:

N M

ZZ| o Z ] - eXP(PT‘pé/T) ) (1)

og
i=1 m=1 leN(m) Zk:l Zj?fi exp(p;" .p?/T)

Structure-aware loss: If we only use patient-aware loss L4, there exists a risk that all images
from the same neighborhood collapse to a single point (Yeche et al., [2021). So we propose the
structure-aware loss, to introduce some diversity among neighbors (see Figure[T](b)). To incorporate
this into the learned representations, we construct positive pairs from each M-mode image with its
augmentation and consider other combinations as negative pairs. It is then defined as:

N 2M v('y ) /’7’)

P P

i=1 m=1 ZleN(m) eXp(p pt/T)

2

where N is the number of patients in one batch, M is the number of M-mode images used for
each patient, and 7 is the temperature scaling parameter. As shown in Figure [2] pj" represents the
output of Proj(-). If image m is an original image, then v(m) represents its augmented view;
if image m is an augmented image, then v(m) represents the original image. Minimizing L4
drives the representation pairs from the augmented images in the numerator close, while pushing the
representations in the denominator far away, where the denominator contains M-mode images from
the same patient but from different modes in the neighbourhood.

Finally, we combine the two losses to get ContrAstive Loss for M-mode images (CALM). The
hyper-parameter « is used to control the trade-off between patient and structure awareness:

3 EXPERIMENTS AND RESULTS

Dataset We use the publicly available EchoNet-Dynamic (Ouyang et al.,|2020) dataset containing
10, 030 apical-4-chamber echocardiography videos provided by Stanford University Hospital. Each
video was processed to 112 x 112 pixel grayscale image sequences. In addition to the videos, the
dataset provides the clinical measurement of the EF of LV for each patient. For each echocardiogram
video, we extract M = 50 M-mode images. For convenience, we use a fixed video length 7" = 112.
We apply the combination of random horizontal flip and Gaussian noise as data augmentations. The
dataset split is the same as original (except that shorter ones (less than 112 frames) are discarded):
6,966 videos in the training set, 1, 230 videos in the validation set, and 1, 190 videos in the test set.
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Figure 3: Estimated EF compared to actual EF for (a) CALM and (b) E2E models. R? scores for
both models are also reported.

Labels | MSE | MAE | AUROC | AUPRC

E2E CALM E2E CALM E2E CALM E2E CALM
100% [47.2+£2.0 79.8+£5.9 |5.240.1 6.84+0.3|0.92+0.00 0.854+0.02|0.974+0.00 0.95+0.01
70% [50.5£1.2 82.4+6.3 |5.3£0.1 6.940.3|0.91+0.00 0.854+0.01|0.97+0.00 0.95+0.00
50% |55.3+0.7 84.446.0 [5.54+0.1 7.0+0.2|0.904+0.01 0.854+0.01|0.974+0.00 0.954-0.00
30% [59.3+0.6 87.84+5.5 |5.84+0.0 7.24+0.2|0.89+0.00 0.84+0.01|0.96+0.00 0.94-+0.00
10% |70.0+1.3 100.81+7.1|6.3+£0.1 7.7£0.3|0.87£0.00 0.80+0.02|0.964+0.00 0.93+0.01

Table 1: Model performance on EchoNet-Dynamic validation set. AUROC and AUPRC are calcu-
lated with EF threshold 50. For each metric, mean =+ std of 3 runs are reported.

Experiments We evaluate the proposed framework with two models: (i) CALM model is trained
with 2-stage contrastive learning; (ii) E2E has the same architecture as CALM model in the evalua-
tion stage, but is trained end-to-end in a supervised manner. We report the performance of the models
using classification accuracy for three random seeds. The predictions of EF are shown in Figure [3]
Both models generate predictions close to the ground truth, with CALM reaching R? = 0.43 and
E2E achieving B2 = 0.65. We set an EF threshold to 50 and use the EF predictions to detect poten-
tial heart failures, e. g. cardiomyopathy. CALM achieves mean AUROC score of 0.85 and AUPRC
score of 0.95, whereas E2E 0.92 and 0.97, respectively. Note that our E2E model achieves similar
performance with (Sutter et al.|, [2022), which leverages CNN and LSTM to predict EF from M-
mode images, and achieves an AUROC score of 0.89 and AUPRC score of 0.96. We also evaluate
the performance in the limited labeled-data scenario. As shown in Table[I} we gradually reduce the
fraction of labeled training data from 100% to 10%, and observe only small degradation on all the
metrics for both of the models (less than 0.02 for AUROC and AUPRC).

4 DISCUSSION AND CONCLUSION

In this work, we proposed a contrastive learning scheme tailored for predicting EF from M-mode im-
ages, where we leveraged the trade-off between structure-aware loss and patient-aware loss to tackle
the heterogeneity problem in patient data. Furthermore, we showed that M-mode echocardiography
is a good modality for learning SSL representation and predicting cardiac function. Admittedly,
it is surprising that the end-to-end model consistently performs better than the 2-stage contrastive
framework, even in the limited labeled-data scenario. There are several reasons that may explain
these results: (i) the videos in the EchoNet-Dynamic dataset are well aligned, which can make it
an easier task for the supervised learning; (ii) the dataset for SSL is not large enough only con-
taining around 7k training images compared to 50k datapoints e.g. in (Yeche et al) 2021)), iii)
M-mode images contain time information compared to common images in contrastive learning set-
tings. However, both structure- and patient-aware losses only deal with variations at the spatial, but
not at the temporal level. Overall, our work provides an insight of using SSL to learn representations
from M-mode echocardiograms. We believe that enriching the contrastive loss with other objectives
to learn time-aware representation is a promising direction for future work.



Under review as a conference paper at ICLR 2023

REFERENCES

Jacob Avila, Ben Smith, Therese Mead, Duane Jurma, Matthew Dawson, Michael Mallin, and Adam
Dugan. Does the Addition of M-Mode to B-Mode Ultrasound Increase the Accuracy of Identi-
fication of Lung Sliding in Traumatic Pneumothoraces? Journal of Ultrasound in Medicine, 37
(11):2681-2687, 2018.

D Bamira and M H Picard. Imaging: Echocardiology—Assessment of Cardiac Structure and Func-
tion. In Encyclopedia of Cardiovascular Research and Medicine, pp. 35-54. Elsevier, 2018. doi:
10.1016/b6978-0-12-809657-4.10953-6.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning,

pp. 1597-1607, 2020.

Amirata Ghorbani, David Ouyang, Abubakar Abid, Bryan He, Jonathan H Chen, Robert A Har-
rington, David H Liang, Euan A Ashley, and James Y Zou. Deep learning interpretation of
echocardiograms. npj Digital Medicine, 3(1), 2020.

Yann LeCun and Ishan Misra. Self-supervised learning: The dark matter of intelligence. Meta Al,
23, 2021.

Ali Madani, Jia Rui Ong, Anshul Tibrewal, and Mohammad R K Mofrad. Deep echocardiogra-
phy: data-efficient supervised and semi-supervised deep learning towards automated diagnosis of
cardiac disease. npj Digital Medicine, 1(1), 2018.

Courosh Mehanian, Sourabh Kulhare, Rachel Millin, Xinliang Zheng, Cynthia Gregory, Meihua
Zhu, Hua Xie, James Jones, Jack Lazar, Amber Halse, Todd Graham, Mike Stone, Kenton Gre-
gory, and Ben Wilson. Deep Learning-Based Pneumothorax Detection in Ultrasound Videos.
In mart Ultrasound Imaging and Perinatal, Preterm and Paediatric Image Analysis, pp. 74-82,
2019. doi: 10.1007/978-3-030-32875-7{\-}9.

David Ouyang, Bryan He, Amirata Ghorbani, Neal Yuan, Joseph Ebinger, Curtis P Langlotz, Paul A
Heidenreich, Robert A Harrington, David H Liang, Euan A Ashley, and James Y Zou. Video-
based Al for beat-to-beat assessment of cardiac function. Nature, 580(7802):252-256, 2020.

Prattay Guha Sarkar and Vishal Chandra. A Novel Approach for Detecting Abnormality in Ejection
Fraction Using Transthoracic Echocardiography with Deep Learning. International Journal of
Online and Biomedical Engineering (iJOE), 16(13):99, 2020.

Saeed Shurrab and Rehab Duwairi. Self-supervised learning methods and applications in medical
imaging analysis: A survey. PeerJ Computer Science, 8:¢1045, 2022.

Anup K Singh, Paul H Mayo, Seth Koenig, Aranabh Talwar, and Mangala Narasimhan. The Use of
M-Mode Ultrasonography to Differentiate the Causes of B Lines. Chest, 153(3):689-696, 2018.

Thomas M. Sutter, Sebastian Balzer, Ece Ozkan, and Julia E. Vogt. M(otion)-mode Based Prediction
of Cardiac Function on Echocardiograms. In Workshop on Medical Imaging meets NeurIPS. ETH
Zurich, 2022.

Yinbing Tian, Shibiao Xu, Li Guo, and Fuze Cong. A Periodic Frame Learning Approach for
Accurate Landmark Localization in M-Mode Echocardiography. In 2021 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), 2021.

WHO. Cardiovascular diseases (CVDs). https://www.who.int/news-room/fact-
sheets/detail/cardiovascular-diseases-(cvds), 2022.

Hugo Yeche, Gideon Dresdner, Francesco Locatello, Matthias Hiiser, and Gunnar Rétsch. Neigh-
borhood contrastive learning applied to online patient monitoring. In International Conference
on Machine Learning, pp. 11964-11974, 2021.



Under review as a conference paper at ICLR 2023

A APPENDIX

M(otion)-mode Generation Given an echocardiogram video consisting of 7" sequential images,
each with a size of H x W, we place a straight line from the top-middle to the bottom-middle of
each image. By concatenating the lines throughout the temporal axis we get one M-mode image
with size H x T (see Figure[d). Then we rotate the video sequences at different angles and repeat
this procedure to get several M-mode images for each video (patient).

B(rightness)-mode M(otion)-mode

Figure 4: Converting B-mode video to M-mode images. The solid green vertical line is placed at the
middle of each image. The dashed green box shows the extracted M-mode image with size H x T

Experimental Parameters Below we list the hyper-parameters used in the experiments.

Name | Value | Description
A 50 neighborhood threshold
o 0.8 loss trade-off
T |0.01 temperature scaling
Ir 1.0 learning rate
bsz | 256 training batch size
epoch| 300 maximum training epochs
M 5 number of images per patient
D. | 2048 | dimension of encoder output
D, | 128 |dimension of projection output

Table 2: Hyper-parameters used in contrastive learning experiments.

Additional Experimental Results Below you can see the further experimental results.

True Positive Rate

04 06 08 10 %80 02 04 06 08 10
False Positive Rate Recall

080 02
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Figure 5: (a) Receiver operating characteristic and (b) precision-recall curves in the full labeled-data
regime. The plots are generated from a run of seed 924.
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Figure 6: Influence of the percentage of labeled data on the model performance on the validation

set.
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Figure 7: Influence of the percentage of labeled data on the model performance on the test set.
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