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Abstract

Large language models (LLMs) have emerged
as a convenient tool for the relation extraction
(RE) task, both in supervised and in-context
learning settings. However, their supervised
performance still lags behind much smaller ar-
chitectures, which we argue is because of two
main reasons. (i) For LLMs, both input and
labels live in the same prompt space, which
makes it necessary for both to be expanded
into natural language, decreasing information
density. (ii) An LLM has to generate from
scratch the entities, entity labels, and relation
labels by classifying over the entire vocabulary,
while also formatting the output so that pre-
dictions can be automatically extracted from
the generated output. To show this, we evalu-
ate LLMs and graph-based parsers on six RE
datasets with sentence graphs of varying sizes
and complexities. Our results show that LLM
performance increasingly degrades, compared
to graph-based parsers, as the number of rela-
tions in documents increases, arguably making
the latter a superior choice in the presence of
complex annotated data.

1 Introduction

Relation extraction (RE) is a core NLP task
which entails extracting [head, relation,
dependent] RDF triples (Candan et al., 2001)
from text (Zhao et al., 2024). In supervised set-
tings, this task can be approached with a variety of
models, with one of the most popular paradigms
being graph-based parsers (Verga et al., 2018; Tang
et al., 2022). Although recent literature has ex-
plored the capacity of autoregressive LLMs to carry
out RE through in-context learning (ICL) (Bi et al.,
2024; Wei et al., 2024) and supervision via causal
language modeling (Zhang et al., 2024; Papaluca
et al., 2024; Gajo and Barrén-Cedefio, 2025), to the
best of our knowledge no direct comparison has yet
been made between them and graph-based parsers.

In this paper, we wish to assess the effective-
ness of LLMs on the RE task with respect to the
complexity of the relations comprising the training
and testing documents. To this end, we compare
the sentence-level and document-level RE perfor-
mance of a popular instruction-tuned LLM (Jiang
et al., 2023) against that of varying configurations
of a graph-based parser (Dozat and Manning, 2017;
Ji et al., 2019; Bhatt et al., 2024). We train and
evaluate both architectures on six datasets for re-
lation extraction and dependency parsing, since
ultimately both tasks can be reduced to infering
nodes, edges, and edge labels (Velickovié et al.,
2020; Kazi et al., 2023; Lu et al., 2023) over a lin-
guistic graph (i.e. a text). We also evaluate the
model prior to any fine-tuning as a baseline. The
datasets vary widely in the graph sizes of each doc-
ument, ranging from just a couple of nodes and an
edge between them, to having dozens of nodes and
relations between them. This helps us verify how
LLMs are impacted by linguistic graph complexity
compared to graph-based parsers.

Our results show that the LLM performs better
than the graph-based parser when graph complexity
is trivial, but greatly worsens when complex rela-
tions are involved. In particular, the graph-based
parsers, despite their much smaller parameter sizes,
match or even outperform the much larger LLM
on texts underlying graphs with as few as 10 edges.
Thus, the contribution of this work is providing
initial insight into the limited capacity of LLMs to
extract complex relations from text.

2 Background

The state of the art in RE entails using deep neu-
ral networks (NNs) to find connections between
entities in a text via some measure of similar-
ity between them (Zhao et al., 2024). Graph-
based parsers do this by embedding each token
of a sentence and processing them with recurrent



Dataset Train Val Test
CoNLLO4 1.39 +095 1.48 105 1.47 +1.22
ADE 1.59 128 1.59 126 1.51 +1.10
SciERC 2.36 +1.76 243 +180 245 +175
enEWT 18.54 +11.67 15.37 +9.99 15.26 +10.30
SciDTB  23.33 +985 23.92 1075 23.17 £0.74
ERFGC  49.07 +26.21 48.66 +22.62 50.69 +27.30

Table 1: Statistics of the number of relations for the
documents contained in the datasets.

or graph NNs so that the individual embeddings
share information based on the structure of the sen-
tence (Dozat and Manning, 2017, 2018; Ji et al.,
2019; Donatelli et al., 2021; Bhatt et al., 2024; Tang
et al., 2022).

Another paradigm is represented by sequence-
to-sequence models, which are trained to output
predictions directly in natural language, formatted
in a way that allows for the automatic extraction
of the predictions (Liu et al., 2022; Lu et al., 2022;
Paolini et al., 2021; Zaratiana et al., 2024).

Similarly, LLMs have recently been shown to
be able to extract relations from texts even with-
out being fine-tuned specifically on the given task,
just by providing extraction schema and ICL ex-
amples (Wei et al., 2024; Zhang and Soh, 2024; Bi
et al., 2024; Dong et al., 2024).

3 Data

To train and evaluate our models, we use six
datasets comprising texts annotated with entity
classes, entity relations, and relation classes. Ta-
ble 1 reports the statistics of the number of relations
for each dataset. Additional information on statis-
tics and annotation for the six datasets can be found
in Table 3 in Appendix A.

CoNLL04 (Roth and Yih, 2004) comprises short
news texts and is annotated with the entity classes
e; € {per, org, loc} and relation classes r; €
{workFor, kill, orgBasedIn, liveln, locIn}.
ADE (Gurulingappa et al., 2012) is made up by
reports of drug adverse-effect reactions. Enti-
ties can be classified as e; € {drug, disease},
while the only relation between them can be r; €
{adverseEffect}. SciERC (Luan et al., 2018)
is compiled from scientific literature. Despite its
small size, the domain is specialized, making it
challenging. In addition, the validation and test-
ing partition entities are not labeled, meaning they
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Figure 1: Diagram of the graph-based parser.

cannot be used to help infer relations. CoNLL04,
ADE, and SciERC are characterized by relations
which are not complex enough to form connected
graphs of considerable size.

More complex graphs are contained in
enEWT (Nivre et al., 2018), built from the English
Web Treebank, and SciDTB (Yang and Li, 2018),
which comprises 798 abstracts from the ACL
Anthology.! We use the xPOS tags as entity labels
and the type of dependency as relation classes.

Finally, the most complex graphs we use are
from ERFGC (Yamakata et al., 2020), a dataset of
culinary recipes annotated as flow graphs. In this
case, the entities and relations of the texts make
up graphs which are directed and acyclic, with a
single sink (i.e. reverse arborescences). As advised
directly by the authors in personal correspondence,
we ignore the “-” relation annotations.

4 Model

For the graph-based parser, we adopt and extend
the architecture of Bhatt et al. (2024), schematized
in Figure 1. Contextual embeddings are produced
by a frozen BERT encoder and then passed to
a tagger, which produces entity tag embeddings.
These are concatenated with the original input and
passed into a learned stack of L, € {0,1,2,3}
BiLSTMs 1. The output of 1 is projected with
four separate MLPs to produce head and depen-
dent representations for edges and edge labels. The
edge representations are then passed through an
iterative refinement process in which a stack with
Ly € {0,1,2,3} pairs of biaffine and Graph At-
tention Network (GAT) (Velickovi¢ et al., 2018)

'We do not use the Penn Treebank (Prasad et al., 2008)
due to its prohibitive cost.



layers further encodes multi-hop dependencies into
the representations. These are passed to a final bi-
affine layer, producing a matrix of adjacency scores
which is then decoded by a greedy algorithm during
training and a maximum spanning tree algorithm at
evaluation. Details for the graph-based model are
available in Appendix B.

The LLM we use is Mistral-7B-Instruct-
v0.3 (Jiang et al., 2023),% a decoder-only Trans-
former pre-trained on a large corpus and then
fine-tuned on instruction prompts. We pick this
model because it has shown to achieve the best
performance among models of similar size on
CoNLLO04, ADE, and SciERC (Gajo and Barrén-
Cedefio, 2025).

The graph-based parser is trained with a learning
rate 771 = 1073 and a batch size of 8. The LLM
is fine-tuned with LoRA (Hu et al., 2021), with
r = a = 16, only targeting the key, query, and
value weights of its attention layers. With these
settings, the total number of trainable LoRA pa-
rameters is 94M. In this case the learning rate is
no = 2 x 1074, We carry out 5 warm-up steps at
the start of training and apply a weight decay of
0.01. We use AdamW (Loshchilov and Hutter,
2019) as the optimizer for both models.

We train the graph-based parser for 3,000 steps
and evaluate every 500. The LLM is trained
and evaluated using instruction prompts with
N1 € {0, 1} examples, sampled randomly from
the training set. We use a limited Vi, because
ERFGC has very long texts, resulting in out-of-
memory errors with more examples, due to the
excessively long context window. We train the
LLM for a single epoch for each dataset to make
the comparison fair with regard to the total com-
pute used, while still allowing the model to see all
of the training examples once. Since we train for a
single epoch, we evaluate the base and fine-tuned
LLMs solely on the testing partition. A prompt
example can be found in Appendix C, in Figure 2.
In the case of ERFGC, which has the least num-
ber of samples across all partitions (300), the total
amount of time required for training and evaluation
is almost identical, c¢. 38 minutes, for the LLM and
the graph-based parser at its heaviest configuration
(18M trainable parameters). All other datasets have
more training and evaluation samples, meaning that
the LLM is allotted a much bigger quantity of com-

2https://huggingface.co/mistr‘alai/
Mistral-7B-Instruct-ve.3

pute compared to the smaller model for them, since
we train for a full epoch regardless and we always
evaluate on the full testing partition.

As with similar works (Bhatt et al., 2024; Dozat
and Manning, 2018; Jiang et al., 2024), we eval-
uate tagging and parsing performance in terms of
micro-F;. We use exact evaluation (Zhang et al.,
2024), where a triple is considered correct if the
entities and the relation match, irrespective of the
tag. We do this to make the evaluation equivalent
for the two models and because evaluating the tags
is impossible for SciERC, since its evaluation and
testing partitions do not have most tag annotations.
To corroborate our results, we train and evaluate the
graph-based parser with five random seeds, while
the LLM is evaluated on three seeds to decrease
the compute requirements.

5 Results and discussion

We report the results for the graph-based parser
and the LLM in Table 2. Predictably, for the
graph-based parser the best results are obtained
when using Ly, = 3 BiLSTM layers. GAT lay-
ers can improve performance, but only when using
L, € {0,1} BiLSTM layers. Specifically, Ly = 1
GAT layer seems to be the best configuration across
the board when using either 0 or 1 BiLSTM lay-
ers. This shows how 2-hop dependencies being
encoded into the representations prior to edge scor-
ing is beneficial, meaning that the model performs
better when it is capable of handling complex de-
pendencies. With L,, € {2,3}, the higher count
of learned parameters makes second-order depen-
dencies superfluous, with the performance being
almost identical between Ly = 0 and Ly = 1.
Regarding the LLM, the performance without
any prior fine-tuning (F'T = x in Table 2) is very
low, especially with N = 0 examples in the
prompt. The performance with Nj;; = 1 is slightly
higher, but the number of provided examples is
not large enough for the increase to be substantial.
When fine-tuning (F'T = V'), the performance of
the model increases greatly, especially when adding
one example in the prompt. However, the LLM out-
performs the smaller graph-based parser only on
one of the least complex datasets, ADE. Indeed,
the performance gap becomes bigger as the the
graphs become more complex. For ERFGC, which
comprises the most complex graphs, the delta is
37.3 F; points. We find the difference to be sub-
stantial, considering that the graph-based parser
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Ly Ly CoNLL04 ADE SciERC enEWT SciDTB ERFGC
0 0.617 +o.012  0.567 +0.016 0.172 +0.032  0.692 +0.003 0.785 +0.002  0.630 +0.005
0 1 0.618 +0.007  0.589 +0.028 0.183 +0.023 0.715 +o.004 0.820 +0.004 0.640 +0.003
2 0.562 +0.038  0.575 +0.000  0.145 +0.043  0.686 +0.00r 0.813 +0.001  0.631 +o0.010
3 0.536 +0.026 0.521 +0.085 0.056 +0.033  0.641 +o.011  0.789 +0.003 0.633 +0.004
0 0.649 +0.013  0.678 +0.0a1  0.317 +0.020 0.850 +0.002  0.903 £0.0001  0.695 +0.002
| 1 0.658 +0.002  0.705 +0.011  0.323 +0.005  0.850 +0.001  0.902 +0.005s 0.697 +0.004
2 0.635 0.015  0.685 +0.018  0.289 +0.012  0.837 +o.00r  0.897 +0.003  0.695 +0.005
3 0.624 +0.007  0.700 +0.004 0.262 +0.012  0.816 +0.007 0.887 +0.002  0.680 +0.009
0 0.653 0.017  0.699 +0.007  0.347 +0.021  0.865 +o.003 0.917 £0.002  0.711 +0.005
’ 1 0.661 +0.020 0.689 +0.033 0.339 +0.021  0.859 +0.00r  0.912 +0.003  0.701 +0.003
2 0.654 t0.007  0.703 +0.031  0.332 +0.012  0.849 +0.004 0.908 £0.0001  0.694 +0.006
3 0.602 +0.010 0.694 +0.007 0.262 +0.012  0.831 +0.005 0.901 +0.001  0.695 +0.014
0 0.668 +0.024 0.697 +0.022  0.351 +0.033 0.865 +o.004 0.918 £0.003 0.713 +0.007
3 1 0.643 0.008  0.691 +0.0s8 0.344 +0.010 0.858 +0.003  0.915 £0.002  0.709 +o.010
2 0.608 +0.039  0.690 +0.040 0.314 +0.021  0.850 +0.00r  0.910 +0.000  0.711 +o.008
3 0.625 0.015  0.638 +0.068  0.287 +0.028 0.840 +0.003 0.902 +0.000  0.704 +o0.011

FT Njc CoNLL04 ADE SciERC enEWT SciDTB ERFGC
« 0 0.115 £0.000  0.047 +0.000  0.021 +0.000 0.006 +o.000 0.001 +£0.000 0.002 +0.000
1 0.123 +0.000  0.281 +0.031  0.039 +0.005 0.026 +0.000 0.032 +0.001  0.056 +0.013
v 0 0.597 t0.011 0.776 +0.016  0.320 +0.005 0.784 +o.000 0.793 £0.003  0.248 +o0.017
1 0.613 z0.011 0.775 +0.007  0.346 +0.005 0.805 +o.001  0.830 +0.001  0.331 +o0.013

Table 2: Exact evaluation micro-F1 for the graph-based model (top) and the LLM (bottom). Best in bold.

only has 14M learnable parameters (124M total) in
the best-performing configuration, compared to the
94M learnable LoRA parameters of the LLM (7B
total). Furthermore, inference is extremely slow.
Evaluating on the enEWT dataset takes more than
3 hours on a single NVIDIA H100, while it takes
just a few seconds for the graph-based parser. This
is not just because of the huge parameter differ-
ence. Compared to a single forward pass of the
graph-based parsers, autoregressive models need
to produce hundreds if not thousands of tokens for
a single prediction.

6 Conclusions

In this paper, we have compared the performance
on the relation extraction (RE) task for a small
graph-based model and a 7B-parameter LLM. We
evaluated them on six datasets of varying under-
lying linguistic graph complexity to gauge the be-
havior of the LLM on complex graphs. Our ex-
periments showed that, while the LLM is capable
of handling a small number of relations, its per-
formance degrades much more than graph-based

parsers, as relations become more difficult. Our re-
search arguably prompts more research on the topic
of RE with LLMs, given the presented issues and
their current popularity in the RE and knowledge
graph construction landscape.

In future work, we plan to extend this study to
non-linguistic datasets, such as QM9 (Ramakrish-
nan et al., 2014), a dataset for the prediction of
molecule characteristics. The aim of this potential
study is to verify the capacity of LLMs to extract
complex relations from non-linguistic data.

7 Computational resources

Fine-tuning the LLM took between 30 minutes to 3
hours on NVIDIA L40s and H100s, depending on
the size of the dataset. Inference was much slower,
requiring between 3 to 6 hours, since we set the
maximum generation length to Sk tokens for safety.
For the graph-based parser, each training run took
approximately 10 minutes on NVIDIA P100s and
Tesla V100s.



8 Limitations

We acknowledge that only one type of graph-based
parser and LLLM are used, and that experiment-
ing with a wider variety could potentially reveal
more insight on the relation extraction capacities
of LLMs.

A deeper analysis is required to verify the rea-
sons behind the lower performance exhibited by
the LLM. This paper is meant as an initial study
towards such a line of research.
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Dataset (Train / Dev / Test)

ADE (2,563 / 854 / 300) (Gurulingappa et al., 2012)
Entities: disease, drug
Relations: adverseEffect

CoNLL04 (922 /231 / 288) (Roth and Yih, 2004)
Entities: organization, person, location
Relations: kill, locatedIn, workFor, orgBasedIn, liveln

SciERC (1,366 / 187 / 397) (Luan et al., 2018)
Entities: generic, material, method, metric, other-
SciTerm, task
Relations: usedFor, featureOf, hyponymOf, evaluate-
For, partOf, compare, conjunction

ERFGC (242 /29 /29) (Yamakata et al., 2020)
Entities: food, tool, duration, quantity, actionByChef,
discontAction, actionByFood, actionByTool, foodState,
toolState
Relations: agent, target, indirectObject, toolComple-
ment, foodComplement, foodEq, foodPartOf, foodSet,
toolEq, toolPartOf, actionEq, timingHead Verb, other

enEWT (10,098 / 1,431/ 1,427) (Yamakata et al., 2020)
Entities: xPOS tags
Relations: UD relations

SciDTB (2,567 / 814 / 817) (Yang and Li, 2018)
Entities: xPOS tags
Relations: UD relations

Table 3: Samples per partition and entity/relation classes
for the datasets used in this paper.

A Dataset labels

In this section, we report the split sizes and the
entity/relation labels for each dataset in Table 3.

B Graph-based model details

The graph-based model comprises four main com-
ponents: encoder, tagger, parser, and decoder. The
input is tokenized and passed through a BERT-like
encoder, where token representations are averaged
into |V| word-level features x; € R% .3 Optionally,
additional features can be obtained by predicting
the entity classes of each word with a tagger, com-
posed by a single-layer BILSTM ¢, followed by a
classifier:

hjag o(x;), hi* e RM

= Softmax(MLP'(h!?)), y'* ¢ R/

where T is the set of word tag classes. The tag-
ger’s predictions are then converted into one-hot
vectors and projected into dense representations by
another MLP, such that e/*Y = MLP*"*(17(y:")).

3Using token-level representations resulted in much lower
performance in preliminary experiments.

These new tag embeddings are concatenated with
the original BERT output and sent to the parser.

In the parser, an optional N-layered BiLSTM
1) produces new representations h; = w(e?g ®
x;), which are then projected into four different
representations:

_ MLP(edge—head)(hi% e;j
_ MLP(rel—dept) (hi), l‘;-j _

o S

MLP(rel—head) (hz)

d .
The edge scores s5°9¢ and relation scores s7¢
3 A

are then calculated with the biaffine function f:

l

f(x1,x0; W) =x/ TWxy +x1 b

edge
8

_ f(edge)(eh ed W)

R

W. € Rdxlxd
e

S?jel — f(rel)( ol W ) W, € RdX|R|><d

7

where R is the set of relation classes, i.e. the possi-
ble labels applied to an edge.

We also experiment with the addition of Lgnn €
{0,1,2,3} GNN layers upstream of the final bi-
affine layer. Each layer is composed of a biaffine
layer predicting an adjacency matrix based on the
MLP outputs, sparsified to only keep the top-k
edge scores for each node. Each MLP output is
then passed through a dedicated GAT layer (Brody
et al., 2022) along with the sparse adjacency ma-
trix:

I+1 _
e g e We

JjEN;
ayj = Softmax; (s(el,

s(el, e}) = a" LeakyReLU (W - [e; & ej])
where o1, 09 are non-linearities, ¢ is the concate-
nation operation, and A is the neighborhood of the
i-th node.

Finally, in the decoder, the edge scores are used
in conjunction with the relation representations
r’ and r¢ to obtain the final predictions. Dur-
ing training, we do greedy decoding, while dur-
ing inference, we use Chu-Liu/Edmonds’ maxi-
mum spanning tree (MST) algorithm (Edmonds,
1967) to ensure the predictions are well-formed
trees. This is especially useful with big depen-
dency graphs, since greedy decoding is more likely

_ MLP(edge—dept) (hz)



to produce invalid trees as size increases. When
doing greedy decoding, an edge index (i.e. an
adjacency matrix) a; = argmax; s dg ¢ is pro-
duced by taking the argmax of the attentlon scores
sjdg “ across the last dimension. The edge index
is then used to select which head relation repre-
sentations rh to use to calculate the relation scores
st = f(rh,xd; W), W € R¥XIEIXd The re-
latlons are then predicted as r; = argmax; s;'fl.
When using MST decoding, edge and relation
scores are combined into a single energy matrix
where each entry represents the score of a specific
head-dependent pair with its most likely relation
type. This energy matrix is then used in the MST
algorithm, producing trees with a single root and no
cycles. For all experiments, following (Bhatt et al.,
2024), prior to energy calculation, edge scores and
relation scores are scaled so that low values are
squished and high values are increased, making the
log softmax produce a hard adjacency matrix.
The model is trained end-to-end jointly on the

entity, edge, and relation classification objectives:

VI 7|
t, t
Etag = Z Zyzig 1ng yzig)
i=1 t=1
4 .
£edge = - Z lng yfgge - 1)
ij=1
VI |R|
d,
Lrg=— Y 1(y = ny < logp(yis)
ij=1

L=X\ [ztag + A2 (Ledge + »Crel)

Losses are calculated based on the gold tags,
edges, and relations. We set A\; = 0.1 and Ay =1
as hyperparameters because the tagging task is
much simpler than predicting the edges, since the
same top performance is always achieved regard-
less of any other selected architecture hyperparam-
eters. For the GNN setup, a separate loss is calcu-
lated for each biaffine layer, as in (Ji et al., 2019).
Following the usual approach for syntactic depen-
dency parsing (Dozat and Manning, 2017; Ji et al.,
2019; Jiang et al., 2024), when training on enEWT
and SciDTB we use an oracle, the gold tags, and
do not predict the POS tags ourselves. Since in
this case we only focus on training the edge and
relation classification tasks, we set A\ = 0.

C Prompt example

In Figure 2, we show an example of a training
prompt with Nj,; = 1 for ERFGC (Yamakata et al.,

<s>[INST] You are an Al specialized in the task of
extracting entity-relation-entity triples from texts.

Task: Extract a list of dictionaries in valid JSON format
as follows: ["rel": "type": "relation_type", "head":
"text": "entity_head", "type": "entity_type_head", "tail":
"text": "entity_tail", "type": "entity_type_tail"]

non

ONLY generate the valid JSON, nothing else.

The types of entities are:
["actionByFood", ..., "actionByTool"]

The types of relations are:
["actionEquality", ..., "toolEquality"]

text: "Place prawns in mixing bowl and squeeze lime
juice on top; toss to coat prawns evenly. Heat butter in a
stockpot and saute the green pepper with shallots for 2
to 3 minutes. Mix in sweetcorn, okra, tomatoes, tomato
puree, thyme, bay leaf and chilli. Season with salt and
pepper and simmer for 10 minutes. Add the prawns,
return to a boil and simmer for another 5 minutes.
Remove bay leaf and chilli before serving."

[/INST] triple_list: ["rel": "type": "foodPartOf", "head":
"text": "top", "type": "food", "tail": "text": "Place",
"type": "actionByChef", ..., "rel": "type": "target",
"head": "text": "Remove", type" "actionByChef",
"tail": "text": "chilli", ”type": "food"]</s>

non

Figure 2: Training prompt example for ERFGC. Ellipses
indicate omitted list items.

2020). Evaluation prompts are truncated after the
[/INST] token. ERFGC prompts are extremely
long (almost 10k tokens); thus, for brevity, parts of
long lists are omitted and replaced with ellipses.
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