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Abstract001

Large language models (LLMs) have emerged002
as a convenient tool for the relation extraction003
(RE) task, both in supervised and in-context004
learning settings. However, their supervised005
performance still lags behind much smaller ar-006
chitectures, which we argue is because of two007
main reasons. (i) For LLMs, both input and008
labels live in the same prompt space, which009
makes it necessary for both to be expanded010
into natural language, decreasing information011
density. (ii) An LLM has to generate from012
scratch the entities, entity labels, and relation013
labels by classifying over the entire vocabulary,014
while also formatting the output so that pre-015
dictions can be automatically extracted from016
the generated output. To show this, we evalu-017
ate LLMs and graph-based parsers on six RE018
datasets with sentence graphs of varying sizes019
and complexities. Our results show that LLM020
performance increasingly degrades, compared021
to graph-based parsers, as the number of rela-022
tions in documents increases, arguably making023
the latter a superior choice in the presence of024
complex annotated data.025

1 Introduction026

Relation extraction (RE) is a core NLP task027

which entails extracting [head, relation,028

dependent] RDF triples (Candan et al., 2001)029

from text (Zhao et al., 2024). In supervised set-030

tings, this task can be approached with a variety of031

models, with one of the most popular paradigms032

being graph-based parsers (Verga et al., 2018; Tang033

et al., 2022). Although recent literature has ex-034

plored the capacity of autoregressive LLMs to carry035

out RE through in-context learning (ICL) (Bi et al.,036

2024; Wei et al., 2024) and supervision via causal037

language modeling (Zhang et al., 2024; Papaluca038

et al., 2024; Gajo and Barrón-Cedeño, 2025), to the039

best of our knowledge no direct comparison has yet040

been made between them and graph-based parsers.041

In this paper, we wish to assess the effective- 042

ness of LLMs on the RE task with respect to the 043

complexity of the relations comprising the training 044

and testing documents. To this end, we compare 045

the sentence-level and document-level RE perfor- 046

mance of a popular instruction-tuned LLM (Jiang 047

et al., 2023) against that of varying configurations 048

of a graph-based parser (Dozat and Manning, 2017; 049

Ji et al., 2019; Bhatt et al., 2024). We train and 050

evaluate both architectures on six datasets for re- 051

lation extraction and dependency parsing, since 052

ultimately both tasks can be reduced to infering 053

nodes, edges, and edge labels (Veličković et al., 054

2020; Kazi et al., 2023; Lu et al., 2023) over a lin- 055

guistic graph (i.e. a text). We also evaluate the 056

model prior to any fine-tuning as a baseline. The 057

datasets vary widely in the graph sizes of each doc- 058

ument, ranging from just a couple of nodes and an 059

edge between them, to having dozens of nodes and 060

relations between them. This helps us verify how 061

LLMs are impacted by linguistic graph complexity 062

compared to graph-based parsers. 063

Our results show that the LLM performs better 064

than the graph-based parser when graph complexity 065

is trivial, but greatly worsens when complex rela- 066

tions are involved. In particular, the graph-based 067

parsers, despite their much smaller parameter sizes, 068

match or even outperform the much larger LLM 069

on texts underlying graphs with as few as 10 edges. 070

Thus, the contribution of this work is providing 071

initial insight into the limited capacity of LLMs to 072

extract complex relations from text. 073

2 Background 074

The state of the art in RE entails using deep neu- 075

ral networks (NNs) to find connections between 076

entities in a text via some measure of similar- 077

ity between them (Zhao et al., 2024). Graph- 078

based parsers do this by embedding each token 079

of a sentence and processing them with recurrent 080
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Dataset Train Val Test

CoNLL04 1.39 ±0.95 1.48 ±1.05 1.47 ±1.22

ADE 1.59 ±1.28 1.59 ±1.26 1.51 ±1.10

SciERC 2.36 ±1.76 2.43 ±1.80 2.45 ±1.75

enEWT 18.54 ±11.67 15.37 ±9.99 15.26 ±10.30

SciDTB 23.33 ±9.85 23.92 ±9.75 23.17 ±9.74

ERFGC 49.07 ±26.21 48.66 ±22.62 50.69 ±27.39

Table 1: Statistics of the number of relations for the
documents contained in the datasets.

or graph NNs so that the individual embeddings081

share information based on the structure of the sen-082

tence (Dozat and Manning, 2017, 2018; Ji et al.,083

2019; Donatelli et al., 2021; Bhatt et al., 2024; Tang084

et al., 2022).085

Another paradigm is represented by sequence-086

to-sequence models, which are trained to output087

predictions directly in natural language, formatted088

in a way that allows for the automatic extraction089

of the predictions (Liu et al., 2022; Lu et al., 2022;090

Paolini et al., 2021; Zaratiana et al., 2024).091

Similarly, LLMs have recently been shown to092

be able to extract relations from texts even with-093

out being fine-tuned specifically on the given task,094

just by providing extraction schema and ICL ex-095

amples (Wei et al., 2024; Zhang and Soh, 2024; Bi096

et al., 2024; Dong et al., 2024).097

3 Data098

To train and evaluate our models, we use six099

datasets comprising texts annotated with entity100

classes, entity relations, and relation classes. Ta-101

ble 1 reports the statistics of the number of relations102

for each dataset. Additional information on statis-103

tics and annotation for the six datasets can be found104

in Table 3 in Appendix A.105

CoNLL04 (Roth and Yih, 2004) comprises short106

news texts and is annotated with the entity classes107

ei ∈ {per, org, loc} and relation classes rj ∈108

{workFor, kill, orgBasedIn, liveIn, locIn}.109

ADE (Gurulingappa et al., 2012) is made up by110

reports of drug adverse-effect reactions. Enti-111

ties can be classified as ei ∈ {drug, disease},112

while the only relation between them can be rj ∈113

{adverseEffect}. SciERC (Luan et al., 2018)114

is compiled from scientific literature. Despite its115

small size, the domain is specialized, making it116

challenging. In addition, the validation and test-117

ing partition entities are not labeled, meaning they118

Figure 1: Diagram of the graph-based parser.

cannot be used to help infer relations. CoNLL04, 119

ADE, and SciERC are characterized by relations 120

which are not complex enough to form connected 121

graphs of considerable size. 122

More complex graphs are contained in 123

enEWT (Nivre et al., 2018), built from the English 124

Web Treebank, and SciDTB (Yang and Li, 2018), 125

which comprises 798 abstracts from the ACL 126

Anthology.1 We use the xPOS tags as entity labels 127

and the type of dependency as relation classes. 128

Finally, the most complex graphs we use are 129

from ERFGC (Yamakata et al., 2020), a dataset of 130

culinary recipes annotated as flow graphs. In this 131

case, the entities and relations of the texts make 132

up graphs which are directed and acyclic, with a 133

single sink (i.e. reverse arborescences). As advised 134

directly by the authors in personal correspondence, 135

we ignore the “-” relation annotations. 136

4 Model 137

For the graph-based parser, we adopt and extend 138

the architecture of Bhatt et al. (2024), schematized 139

in Figure 1. Contextual embeddings are produced 140

by a frozen BERT encoder and then passed to 141

a tagger, which produces entity tag embeddings. 142

These are concatenated with the original input and 143

passed into a learned stack of Lψ ∈ {0, 1, 2, 3} 144

BiLSTMs ψ. The output of ψ is projected with 145

four separate MLPs to produce head and depen- 146

dent representations for edges and edge labels. The 147

edge representations are then passed through an 148

iterative refinement process in which a stack with 149

Lϕ ∈ {0, 1, 2, 3} pairs of biaffine and Graph At- 150

tention Network (GAT) (Veličković et al., 2018) 151

1We do not use the Penn Treebank (Prasad et al., 2008)
due to its prohibitive cost.
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layers further encodes multi-hop dependencies into152

the representations. These are passed to a final bi-153

affine layer, producing a matrix of adjacency scores154

which is then decoded by a greedy algorithm during155

training and a maximum spanning tree algorithm at156

evaluation. Details for the graph-based model are157

available in Appendix B.158

The LLM we use is Mistral-7B-Instruct-159

v0.3 (Jiang et al., 2023),2 a decoder-only Trans-160

former pre-trained on a large corpus and then161

fine-tuned on instruction prompts. We pick this162

model because it has shown to achieve the best163

performance among models of similar size on164

CoNLL04, ADE, and SciERC (Gajo and Barrón-165

Cedeño, 2025).166

The graph-based parser is trained with a learning167

rate η1 = 10−3 and a batch size of 8. The LLM168

is fine-tuned with LoRA (Hu et al., 2021), with169

r = a = 16, only targeting the key, query, and170

value weights of its attention layers. With these171

settings, the total number of trainable LoRA pa-172

rameters is 94M. In this case the learning rate is173

η2 = 2× 10−4. We carry out 5 warm-up steps at174

the start of training and apply a weight decay of175

0.01. We use AdamW (Loshchilov and Hutter,176

2019) as the optimizer for both models.177

We train the graph-based parser for 3,000 steps178

and evaluate every 500. The LLM is trained179

and evaluated using instruction prompts with180

Nicl ∈ {0, 1} examples, sampled randomly from181

the training set. We use a limited Nicl because182

ERFGC has very long texts, resulting in out-of-183

memory errors with more examples, due to the184

excessively long context window. We train the185

LLM for a single epoch for each dataset to make186

the comparison fair with regard to the total com-187

pute used, while still allowing the model to see all188

of the training examples once. Since we train for a189

single epoch, we evaluate the base and fine-tuned190

LLMs solely on the testing partition. A prompt191

example can be found in Appendix C, in Figure 2.192

In the case of ERFGC, which has the least num-193

ber of samples across all partitions (300), the total194

amount of time required for training and evaluation195

is almost identical, c. 38 minutes, for the LLM and196

the graph-based parser at its heaviest configuration197

(18M trainable parameters). All other datasets have198

more training and evaluation samples, meaning that199

the LLM is allotted a much bigger quantity of com-200

2https://huggingface.co/mistralai/
Mistral-7B-Instruct-v0.3

pute compared to the smaller model for them, since 201

we train for a full epoch regardless and we always 202

evaluate on the full testing partition. 203

As with similar works (Bhatt et al., 2024; Dozat 204

and Manning, 2018; Jiang et al., 2024), we eval- 205

uate tagging and parsing performance in terms of 206

micro-F1. We use exact evaluation (Zhang et al., 207

2024), where a triple is considered correct if the 208

entities and the relation match, irrespective of the 209

tag. We do this to make the evaluation equivalent 210

for the two models and because evaluating the tags 211

is impossible for SciERC, since its evaluation and 212

testing partitions do not have most tag annotations. 213

To corroborate our results, we train and evaluate the 214

graph-based parser with five random seeds, while 215

the LLM is evaluated on three seeds to decrease 216

the compute requirements. 217

5 Results and discussion 218

We report the results for the graph-based parser 219

and the LLM in Table 2. Predictably, for the 220

graph-based parser the best results are obtained 221

when using Lψ = 3 BiLSTM layers. GAT lay- 222

ers can improve performance, but only when using 223

Lψ ∈ {0, 1} BiLSTM layers. Specifically, Lϕ = 1 224

GAT layer seems to be the best configuration across 225

the board when using either 0 or 1 BiLSTM lay- 226

ers. This shows how 2-hop dependencies being 227

encoded into the representations prior to edge scor- 228

ing is beneficial, meaning that the model performs 229

better when it is capable of handling complex de- 230

pendencies. With Lψ ∈ {2, 3}, the higher count 231

of learned parameters makes second-order depen- 232

dencies superfluous, with the performance being 233

almost identical between Lϕ = 0 and Lϕ = 1. 234

Regarding the LLM, the performance without 235

any prior fine-tuning (FT = × in Table 2) is very 236

low, especially with Nicl = 0 examples in the 237

prompt. The performance with Nicl = 1 is slightly 238

higher, but the number of provided examples is 239

not large enough for the increase to be substantial. 240

When fine-tuning (FT = ✓), the performance of 241

the model increases greatly, especially when adding 242

one example in the prompt. However, the LLM out- 243

performs the smaller graph-based parser only on 244

one of the least complex datasets, ADE. Indeed, 245

the performance gap becomes bigger as the the 246

graphs become more complex. For ERFGC, which 247

comprises the most complex graphs, the delta is 248

37.3 F1 points. We find the difference to be sub- 249

stantial, considering that the graph-based parser 250
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Lψ Lϕ CoNLL04 ADE SciERC enEWT SciDTB ERFGC

0

0 0.617 ±0.012 0.567 ±0.016 0.172 ±0.032 0.692 ±0.003 0.785 ±0.002 0.630 ±0.005

1 0.618 ±0.007 0.589 ±0.028 0.183 ±0.023 0.715 ±0.004 0.820 ±0.004 0.640 ±0.003

2 0.562 ±0.038 0.575 ±0.009 0.145 ±0.043 0.686 ±0.007 0.813 ±0.001 0.631 ±0.010

3 0.536 ±0.026 0.521 ±0.085 0.056 ±0.033 0.641 ±0.011 0.789 ±0.003 0.633 ±0.004

1

0 0.649 ±0.013 0.678 ±0.041 0.317 ±0.029 0.850 ±0.002 0.903 ±0.001 0.695 ±0.002

1 0.658 ±0.002 0.705 ±0.011 0.323 ±0.005 0.850 ±0.001 0.902 ±0.005 0.697 ±0.004

2 0.635 ±0.015 0.685 ±0.018 0.289 ±0.012 0.837 ±0.007 0.897 ±0.003 0.695 ±0.005

3 0.624 ±0.007 0.700 ±0.004 0.262 ±0.012 0.816 ±0.007 0.887 ±0.002 0.680 ±0.009

2

0 0.653 ±0.017 0.699 ±0.007 0.347 ±0.021 0.865 ±0.003 0.917 ±0.002 0.711 ±0.005

1 0.661 ±0.020 0.689 ±0.033 0.339 ±0.021 0.859 ±0.007 0.912 ±0.003 0.701 ±0.003

2 0.654 ±0.007 0.703 ±0.031 0.332 ±0.012 0.849 ±0.004 0.908 ±0.001 0.694 ±0.006

3 0.602 ±0.010 0.694 ±0.007 0.262 ±0.012 0.831 ±0.005 0.901 ±0.001 0.695 ±0.014

3

0 0.668 ±0.024 0.697 ±0.022 0.351 ±0.033 0.865 ±0.004 0.918 ±0.003 0.713 ±0.007

1 0.643 ±0.008 0.691 ±0.058 0.344 ±0.010 0.858 ±0.003 0.915 ±0.002 0.709 ±0.010

2 0.608 ±0.039 0.690 ±0.040 0.314 ±0.021 0.850 ±0.007 0.910 ±0.001 0.711 ±0.008

3 0.625 ±0.015 0.638 ±0.068 0.287 ±0.028 0.840 ±0.003 0.902 ±0.001 0.704 ±0.011

FT NICL CoNLL04 ADE SciERC enEWT SciDTB ERFGC

× 0 0.115 ±0.000 0.047 ±0.000 0.021 ±0.000 0.006 ±0.000 0.001 ±0.000 0.002 ±0.000

1 0.123 ±0.009 0.281 ±0.031 0.039 ±0.005 0.026 ±0.000 0.032 ±0.001 0.056 ±0.013

✓
0 0.597 ±0.011 0.776 ±0.016 0.320 ±0.005 0.784 ±0.000 0.793 ±0.003 0.248 ±0.017

1 0.613 ±0.011 0.775 ±0.007 0.346 ±0.005 0.805 ±0.001 0.830 ±0.001 0.331 ±0.013

Table 2: Exact evaluation micro-F1 for the graph-based model (top) and the LLM (bottom). Best in bold.

only has 14M learnable parameters (124M total) in251

the best-performing configuration, compared to the252

94M learnable LoRA parameters of the LLM (7B253

total). Furthermore, inference is extremely slow.254

Evaluating on the enEWT dataset takes more than255

3 hours on a single NVIDIA H100, while it takes256

just a few seconds for the graph-based parser. This257

is not just because of the huge parameter differ-258

ence. Compared to a single forward pass of the259

graph-based parsers, autoregressive models need260

to produce hundreds if not thousands of tokens for261

a single prediction.262

6 Conclusions263

In this paper, we have compared the performance264

on the relation extraction (RE) task for a small265

graph-based model and a 7B-parameter LLM. We266

evaluated them on six datasets of varying under-267

lying linguistic graph complexity to gauge the be-268

havior of the LLM on complex graphs. Our ex-269

periments showed that, while the LLM is capable270

of handling a small number of relations, its per-271

formance degrades much more than graph-based272

parsers, as relations become more difficult. Our re- 273

search arguably prompts more research on the topic 274

of RE with LLMs, given the presented issues and 275

their current popularity in the RE and knowledge 276

graph construction landscape. 277

In future work, we plan to extend this study to 278

non-linguistic datasets, such as QM9 (Ramakrish- 279

nan et al., 2014), a dataset for the prediction of 280

molecule characteristics. The aim of this potential 281

study is to verify the capacity of LLMs to extract 282

complex relations from non-linguistic data. 283

7 Computational resources 284

Fine-tuning the LLM took between 30 minutes to 3 285

hours on NVIDIA L40s and H100s, depending on 286

the size of the dataset. Inference was much slower, 287

requiring between 3 to 6 hours, since we set the 288

maximum generation length to 5k tokens for safety. 289

For the graph-based parser, each training run took 290

approximately 10 minutes on NVIDIA P100s and 291

Tesla V100s. 292
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8 Limitations293

We acknowledge that only one type of graph-based294

parser and LLM are used, and that experiment-295

ing with a wider variety could potentially reveal296

more insight on the relation extraction capacities297

of LLMs.298

A deeper analysis is required to verify the rea-299

sons behind the lower performance exhibited by300

the LLM. This paper is meant as an initial study301

towards such a line of research.302
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Dataset (Train / Dev / Test)

ADE (2,563 / 854 / 300) (Gurulingappa et al., 2012)
Entities: disease, drug
Relations: adverseEffect

CoNLL04 (922 / 231 / 288) (Roth and Yih, 2004)
Entities: organization, person, location
Relations: kill, locatedIn, workFor, orgBasedIn, liveIn

SciERC (1,366 / 187 / 397) (Luan et al., 2018)
Entities: generic, material, method, metric, other-

SciTerm, task
Relations: usedFor, featureOf, hyponymOf, evaluate-

For, partOf, compare, conjunction

ERFGC (242 / 29 / 29) (Yamakata et al., 2020)
Entities: food, tool, duration, quantity, actionByChef,

discontAction, actionByFood, actionByTool, foodState,
toolState

Relations: agent, target, indirectObject, toolComple-
ment, foodComplement, foodEq, foodPartOf, foodSet,
toolEq, toolPartOf, actionEq, timingHeadVerb, other

enEWT (10,098 / 1,431 / 1,427) (Yamakata et al., 2020)
Entities: xPOS tags
Relations: UD relations

SciDTB (2,567 / 814 / 817) (Yang and Li, 2018)
Entities: xPOS tags
Relations: UD relations

Table 3: Samples per partition and entity/relation classes
for the datasets used in this paper.

A Dataset labels524

In this section, we report the split sizes and the525

entity/relation labels for each dataset in Table 3.526

B Graph-based model details527

The graph-based model comprises four main com-528

ponents: encoder, tagger, parser, and decoder. The529

input is tokenized and passed through a BERT-like530

encoder, where token representations are averaged531

into |V| word-level features xi ∈ Rdf .3 Optionally,532

additional features can be obtained by predicting533

the entity classes of each word with a tagger, com-534

posed by a single-layer BiLSTM ϕ, followed by a535

classifier:536

htagi = ϕ(xi), htagi ∈ Rdh537

ytagi = Softmax(MLPtag(htagi )), ytagi ∈ R|T |538

where T is the set of word tag classes. The tag-539

ger’s predictions are then converted into one-hot540

vectors and projected into dense representations by541

another MLP, such that etagi = MLPemb(1T (ytagi )).542

3Using token-level representations resulted in much lower
performance in preliminary experiments.

These new tag embeddings are concatenated with 543

the original BERT output and sent to the parser. 544

In the parser, an optional N -layered BiLSTM 545

ψ produces new representations hi = ψ(etagi ⊕ 546

xi), which are then projected into four different 547

representations: 548

ehi = MLP(edge−head)(hi), edi = MLP(edge−dept)(hi) 549

rhi = MLP(rel−dept)(hi), rdi = MLP(rel−head)(hi) 550

The edge scores sedgei and relation scores sreli 551

are then calculated with the biaffine function f : 552

f(x1, x2;W ) = x⊤1 Wx2 + x⊤1 b 553
554

sedgei = f (edge)(ehi , e
d
i ;We), We ∈ Rd×1×d 555

sreli = f (rel)(rhi , r
d
i ;Wr), Wr ∈ Rd×|R|×d 556

557

where R is the set of relation classes, i.e. the possi- 558

ble labels applied to an edge. 559

We also experiment with the addition of LGNN ∈ 560

{0, 1, 2, 3} GNN layers upstream of the final bi- 561

affine layer. Each layer is composed of a biaffine 562

layer predicting an adjacency matrix based on the 563

MLP outputs, sparsified to only keep the top-k 564

edge scores for each node. Each MLP output is 565

then passed through a dedicated GAT layer (Brody 566

et al., 2022) along with the sparse adjacency ma- 567

trix: 568

el+1
i = σ1

eli, σ2

 k∑
j∈Ni

αij ·W elj

 569

αij = Softmaxj(s(eli, e
l
j)) 570

s(eli, e
l
j) = a⊤LeakyReLU (W · [ei ⊕ ej ]) 571

where σ1, σ2 are non-linearities, ⊕ is the concate- 572

nation operation, and N is the neighborhood of the 573

i-th node. 574

Finally, in the decoder, the edge scores are used 575

in conjunction with the relation representations 576

rhi and rdi to obtain the final predictions. Dur- 577

ing training, we do greedy decoding, while dur- 578

ing inference, we use Chu-Liu/Edmonds’ maxi- 579

mum spanning tree (MST) algorithm (Edmonds, 580

1967) to ensure the predictions are well-formed 581

trees. This is especially useful with big depen- 582

dency graphs, since greedy decoding is more likely 583
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to produce invalid trees as size increases. When584

doing greedy decoding, an edge index (i.e. an585

adjacency matrix) ai = argmaxj s
edge
ij is pro-586

duced by taking the argmax of the attention scores587

sedgei across the last dimension. The edge index588

is then used to select which head relation repre-589

sentations rhi to use to calculate the relation scores590

sreli = f(rhi , rdi ;W ), W ∈ Rd×|R|×d. The re-591

lations are then predicted as ri = argmaxj s
rel
ij .592

When using MST decoding, edge and relation593

scores are combined into a single energy matrix594

where each entry represents the score of a specific595

head-dependent pair with its most likely relation596

type. This energy matrix is then used in the MST597

algorithm, producing trees with a single root and no598

cycles. For all experiments, following (Bhatt et al.,599

2024), prior to energy calculation, edge scores and600

relation scores are scaled so that low values are601

squished and high values are increased, making the602

log softmax produce a hard adjacency matrix.603

The model is trained end-to-end jointly on the604

entity, edge, and relation classification objectives:605

Ltag = − 1

|V|

|V|∑
i=1

|T |∑
t=1

ytagi,t log p
(
ytagi,t

)
606

Ledge = −
|V|∑
i,j=1

log p
(
yedgei,j = 1

)
607

Lrel = −
|V|∑
i,j=1

1
(
yedgei,j = 1

) |R|∑
ℓ=1

yreli,j,ℓ log p
(
yreli,j,ℓ

)
608

L = λ1 Ltag + λ2
(
Ledge + Lrel

)
609

Losses are calculated based on the gold tags,610

edges, and relations. We set λ1 = 0.1 and λ2 = 1611

as hyperparameters because the tagging task is612

much simpler than predicting the edges, since the613

same top performance is always achieved regard-614

less of any other selected architecture hyperparam-615

eters. For the GNN setup, a separate loss is calcu-616

lated for each biaffine layer, as in (Ji et al., 2019).617

Following the usual approach for syntactic depen-618

dency parsing (Dozat and Manning, 2017; Ji et al.,619

2019; Jiang et al., 2024), when training on enEWT620

and SciDTB we use an oracle, the gold tags, and621

do not predict the POS tags ourselves. Since in622

this case we only focus on training the edge and623

relation classification tasks, we set λ1 = 0.624

C Prompt example625

In Figure 2, we show an example of a training626

prompt with Nicl = 1 for ERFGC (Yamakata et al.,627

<s>[INST] You are an AI specialized in the task of
extracting entity-relation-entity triples from texts.

Task: Extract a list of dictionaries in valid JSON format
as follows: ["rel": "type": "relation_type", "head":
"text": "entity_head", "type": "entity_type_head", "tail":
"text": "entity_tail", "type": "entity_type_tail"]

ONLY generate the valid JSON, nothing else.

The types of entities are:
["actionByFood", ..., "actionByTool"]

The types of relations are:
["actionEquality", ..., "toolEquality"]

text: "Place prawns in mixing bowl and squeeze lime
juice on top; toss to coat prawns evenly. Heat butter in a
stockpot and saute the green pepper with shallots for 2
to 3 minutes. Mix in sweetcorn, okra, tomatoes, tomato
puree, thyme, bay leaf and chilli. Season with salt and
pepper and simmer for 10 minutes. Add the prawns,
return to a boil and simmer for another 5 minutes.
Remove bay leaf and chilli before serving."

[/INST] triple_list: ["rel": "type": "foodPartOf", "head":
"text": "top", "type": "food", "tail": "text": "Place",
"type": "actionByChef", ..., "rel": "type": "target",
"head": "text": "Remove", "type": "actionByChef",
"tail": "text": "chilli", "type": "food"]</s>

Figure 2: Training prompt example for ERFGC. Ellipses
indicate omitted list items.

2020). Evaluation prompts are truncated after the 628

[/INST] token. ERFGC prompts are extremely 629

long (almost 10k tokens); thus, for brevity, parts of 630

long lists are omitted and replaced with ellipses. 631
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