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Abstract

Many real-world problems require reasoning across multiple scales, demanding
models which operate not on single data points, but on entire distributions. We
introduce generative distribution embeddings (GDE), a framework that lifts au-
toencoders to the space of distributions. In GDEs, an encoder acts on sets of
samples, and the decoder is replaced by a generator which aims to match the input
distribution. This framework enables learning representations of distributions by
coupling conditional generative models with encoder networks which satisfy a
criterion we call distributional invariance. We show that GDEs learn predictive suf-
ficient statistics embedded in the Wasserstein space, such that latent GDE distances
approximately recover the W5 distance, and latent interpolation approximately
recovers optimal transport trajectories for Gaussian and Gaussian mixture distribu-
tions. We systematically benchmark GDEs against existing approaches on synthetic
datasets, demonstrating consistently stronger performance. We then apply GDEs
to six key problems in computational biology: learning donor-level representations
from single-nuclei RNA sequencing data (6M cells), capturing clonal dynamics in
lineage-traced RNA sequencing data (150K cells), predicting perturbation effects
on transcriptomes (1M cells), predicting perturbation effects on cellular phenotypes
(20M single-cell images), designing synthetic yeast promoters (34M sequences),
and spatiotemporal modeling of viral protein sequences (1M sequences).

1 Introduction

Advancements in science and engineering increasingly
depend on our ability to reason across multiple scales:
modeling not just individual data points, but entire
populations those datapoints are drawn from. In ap-
plications ranging from single-cell genomics to DNA
sequence design, the relevant unit of analysis is not
an individual sample (e.g., a single cell), but the dis-
tribution from which it is drawn (e.g. the cell state or
the patient they were sampled from). These settings
are fundamentally hierarchical: we observe sets of
samples from latent distributions, which themselves

Figure 1: GDEs leverage distribution-
invariant encoders (£) and conditional gener-
ative models (G) to lift autoencoders to sta-
tistical manifolds where points correspond
to distributions (M).

are drawn from a meta-distribution. Without directly modeling these distributions, population-level
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signals can be lost underneath unit-level noise. The fundamental challenge we consider is how to
learn representations at the level of distributions, not just individual data points.

We introduce generative distribution embeddings (GDEs) (Fig. [I)), a framework that lifts autoen-
coders to the distribution space. In GDEs, the encoder maps a finite set of samples — an empirical
distribution — to a latent space, while the decoder is replaced by a generative model that reconstructs
the distribution by sampling conditional on this latent representation. Our central observation is that
strong distributional representations can be learned by coupling conditional generative models with
encoders that satisfy a minimal distributional invariance property.

Our framework synthesizes modern generative modeling, classical statistics, and information geom-
etry. We show empirically that GDEs behave as approximate predictive sufficient statistics [1} 2],
capturing distribution-level structure while marginalizing over sampling noise. Moreover, the learned
latent spaces exhibit geometric regularity: latent Lo distances correlate with Wasserstein distances
(W5) between underlying distributions, and linear interpolation in latent space approximates optimal
transport geodesics [3]], such that one can generate synthetic data which smoothly interpolate between
observed distributions.

We benchmark GDEs on synthetic datasets with known parametric structure, demonstrating improved
generative fidelity and structure preservation relative to baselines. We then scale our approach to
multiple domains in computational biology, showcasing GDEs’ versatility in modeling distributions
defined across diverse organizing principles such as distinct populations, varying experimental
conditions, spatial arrangements, and temporal dynamics. We demonstrate six applications: learning
donor-level representations from single-nuclei RNA sequencing data (6M cells), capturing clonal
dynamics in lineage-traced RNA sequencing data (150K cells), predicting perturbation effects on
transcriptomes (1M cells), predicting perturbation effects on cellular phenotypes (20M single-cell
images), designing synthetic yeast promoters (34M sequences), and spatiotemporal modeling of
viral protein sequences (1M sequences). Across these domains, GDEs offer a flexible and scalable
framework for distribution-level inference. Code for all experiments is available herel

2 Setting and methods 400

Count

2.1 A motivating example
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of exchangeable samples: for example, single DDPM loss PCl
cells or DNA sequences collected from individ- Set size
ual patients [4}5]. We observe n such groups, ® 10 e 100 1000 10000

each written as S; ,,, = {24;}}%,, and collect

them as D = {S; n, }; with z;; € X. Bach Figure 2: Concentration of distribution embed-
group’s samples are i.i.d. draws from a latent, dings and plug-in loss. (Left) Distribution of plug-
group_speciﬁc distribution P; € ']D(X), and the in GDE loss (diffusion generator) for sets of dif-
P; themselves are i.i.d. draws from a meta- ferent sizes sampled from the same distribution
distribution ; that is, we first sample P; ~ Q P over MNIST digits. (Righr) First two principal
and then, conditional on P;, draw z;; ~ P;. In components of embeddings of sample sets of dif-
this framework, a “patient” (or more generally, ferent sizes generated by the same F;.

any group) is implicitly represented by its probability measure P;.

This is a classical hierarchical data generating process, which gives rise to a multiscale problem.
The subject of interest here is not only individual cells or DNA sequences x;;, but the probability
measures P;. As we explore in Sec. 3 and concretely demonstrate in Sec. 6, this setting is broadly
applicable beyond the particular case of representing patients as a collection of samples.

In practice, there are often two major challenges in modeling this kind of data. First, unit-level
data is often inherently noisy. For example, single-cell data suffers from noise due to molecular
undersampling [6]. Our goal is to learn patient embeddings which capture distribution-level signal,
rather than the sample-level noise. The second challenge is that groups can contain millions of
samples (in the case of DNA sequencing reads per patient, m can be ~ 108). It is computationally
infeasible to train a model on all samples simultaneously, but given the inherent noise at the unit level
we would benefit from embedding all available samples at inference time.


https://github.com/njwfish/DistributionEmbeddings

In the remainder of Sec. 2, we will show that both of these practical challenges can be overcome by
learning distribution embeddings rather than simply encoding sets of samples. The distributional
perspective enables models which distill distribution-level signal, and are able to massively scale at
inference time to make use of all available data for precise embeddings.

2.2 Learning generative distribution embeddings

We address this problem with GDEs, which consist of an Algorithm 1 Training GDEs
encoder £ that maps a finite set of samples S; ,,, to a latent
representation, and a conditional generator G that (given
this representation) induces a distribution on the sample
space. Formally, we aim to learn £, G such that

G(E(Sim)) == P (1)

1: for each set S; ,,,, do

2 Subsample S; ,, ~ Sim;
3: Zi < 8(51,771)

40 T« U(Sim,G(2))

5 Backprop £,G

6: end for

The loss / is the standard training objective for the condi-
tional generator (for example, an evidence lower bound for a VAE or a denoising score-matching
objective for a diffusion model); we do not need to backpropagate through the sampling process of G.

We show that to guarantee Eq. (1) the encoder must satisfy the following two constraints:

1. Permutation invariance: reordering the samples in .S; ,,, does not change the embedding.

2. Proportional invariance: duplicating every sample K times does not change the embedding.

We refer to an encoder with these properties as distributionally invariant: the encoder must depend
only on the empirical distribution. So for some function ¢ we can write:

1™
Pi,m = E Z 5561‘_7” g(Sz,m) = ¢(P1,m)
j=1

We show formally that distributionally invariant encoders can capture any distributional property and
furthermore that any non-distributionally invariant architecture can spuriously encode noise features
irrelevant to the distribution (formal proofs in App. [D.2):

Proposition 1. (Informal statement of Corollary[I) To rule out order and set-size artifacts,
the encoder should depend on the sample only through its empirical distribution (equivalently:
be permutation invariant and invariant to proportional duplication).

Beyond separating signal and noise, distributional invariance, coupled with Hadamard differentiability
of the pooling operator, has a second consequence: it enables a central limit theorem for embeddings.
As the set size grows, £(5; ) concentrates around its population value with Gaussian fluctuations:

VI (E(Sim) = 6(P)) 5 N(0,34,1)

This result, illustrated empirically in Fig. 2, is what makes encoding massive sets possible. The CLT
composes through the plug-in loss so that £(S; ,,, G(E(S;.m))) is a consistent and asymptotically
normal estimator of the population loss. This provides theoretical justification for training GDEs on
subsets of larger sample sets: the gradient of the loss computed on small sets matches (in expectation)
the gradient computed using all samples per set (see App. [D.2):

Proposition 2. (Informal statement of Theorem 2) Fixing P, under mild regularity condi-
tions: (i) a distributionally invariant encoder will have asymptgtically normal distribution
embeddings; (ii) for a suitable divergence, the plug-in loss, (., = E(Sm, Q(S(Sm))) is
consistent and asymptotically normal around the population loss, (iii) a global minimizer
will recover the true data distribution as m — co: G(E(S,)) = P. See Fig. 2]

Violating distributional invariance (for example, by using sum pooling) causes the embedding to
depend on set size and breaks this limit theory causing Eq. (1) to fail. In contrast, mean pooling and
M/Z-estimators satisfy these properties (see App. [D.2).



3 From labels to distributions

In the previous section, we focused on a simple motivating example where we have patients and their
associated single-cell data. In that setting, the multiscale nature is clear and it is straightforward to
define a metadistribution (in other words, how to group samples into sets). In many datasets, a natural
hierarchy is not as clear: for example, DNA sequences and expression labels are not multiscale in the
same sense as our motivating example.

Here we illustrate how to set up the distribution learning problem in a more general framework based
on a dataset of unit-level outcomes associated with labels D = {(x, yx) }2_, rather than sets drawn
from Q). We will show how to group data points into sets {«;; }"2; whose empirical distributions
P, ., approximate draws from (). The grouping reflects the structure of the label space ) and enables
us to shape the GDE latent space for downstream applications (see Sec. [3).

When Y is discrete, we can form sets by grouping datapoints with the same label (e.g., our motivating
patient example further explored in Sec. [6.2] cells by clone identity in Sec. [6.3] cell transcriptomes by
perturbation in Sec. [6.4] or epigenetic samples by tissue in Sec. [B.T). If there is some semantic simi-
larity between discrete labels we can define sets proportional to those similarity metrics, paralleling
contrastive learning, where labels define semantic neighborhoods.

When Y is continuous or structured (e.g. spatial coordinates for the x;; as in Sec. @] or temporal
in the viral protein sequences m Sec @ we can use a similarity kernel to sample points near a
target y;: wir = exp(—d(yk, y})? ), defining a probabilistic neighborhood in the label space,
enforcing the consideration of the local structure

When labels are noisy measurements (e.g. expression associated with DNA sequences as in Sec. [6.6),
we can invert the noise model y;, = y7, + €, by sampling a latent target y;* and computing likelihood
weights w;, = p(yx | yF), yielding samples that reflect the uncertainty of the data.

All these constructions can be unified as instances of a general framework: let Q) be a prior
over label distributions. Fix a reference measure v on ) (counting for discrete labels, Lebesgue for
continuous) and assume PZ-(Y) < v. For each set i, we draw PZ-(Y) ~ QW) and compute weights

. dPZ-(Y) (we) Wik
Wik X Yk)s Wik = =
dv Zgzl Wik’

and sample x;; from D accordingly. This framework subsumes the above examples and gives us a
general set of tools for shaping the GDE latent space, as we will illustrate in Sec. [6]

4 Related work

Several lines of literature have tried to learn distribution embeddings or summary statistics. Kernel
methods, such as kernel mean embedding (KME) and set kernels, provide nonparametric approaches
to represent probability measures as points in a reproducing kernel Hilbert space, enabling tasks like
distributional regression and classification [7, 8, 9, 10, [11]. GDEs naturally nest these methods as
particular choices of distributionally invariant encoders. GDEs also generalize the approach in [12],
where they develop a particular encoder and VAE-based generator.

Distribution embeddings have also been studied from a geometric perspective. Building on theoretical
foundations from Amari [[13]], several works model distributions as points on a manifold imbued
with the Fisher-Rao metric [[14}[15,[16}[17]]. These methods are either not generative or restricted to
categorical distributions. Building on the work of Otto [3]], others have considered learning flows over
Wasserstein spaces [18|[19] (see Appendix [C.2]for background on Wasserstein spaces), primarily
focused on leveraging distribution encodings for transport problems as opposed to GDEs which aim
to auto-encode distributions. GDEs are complementary to these works, and can be plugged in to
many of these frameworks. One recent method closely related to GDEs, Wasserstein Wormhole
[20], aims to represent distributions as points in a space where Euclidean distances match Sinkhorn
divergences in the sample space. Wasserstein Wormhole is a particular instantiation of a GDE, using
an attention-based encoder and generator that only samples a fixed number of points.

A related body of work aims to learn informative summary statistics [21} 122} 23 24, 25]]. These
methods typically consider a supervised setting with a particular inferential target. For example, in



the context of likelihood-free inference, one aims to learn summary statistics which are maximally
informative about the parameters of a generative model [23, [24].

GDEs are distinct from these approaches along several dimensions: first, we generalize these methods
under a common framework with a central objective of re-sampling the encoded distribution (TJ);
second, we develop theory to guide the design and analysis of GDEs toward this objective; third, we
show that distribution embedding is deeply related to generative modeling, enabling domain-specific
generative models to be bootstrapped into high-quality GDE:s to tackle multiscale problems.

On the architectural side, the encoder in the GDE framework requires a distributionally invariant
model. While distributional invariance is a concept introduced in this work, it requires permutation
invariance, which has been well-studied [26, 27, 28]]. Some permutation invariant approaches, such
as deep sets [20], are not distributionally invariant due to proportional sensitivity, while others, such
as mean-pooled attention layers, are also distributionally invariant (as shown in Appendix [D.2)).

A key contribution of our work is the observation that any conditional generative model can be
repurposed to learn distributional representations. Recent work in the vision domain has found that
conditional diffusion models can induce strong image representations [29]]. Our work formalizes and
generalizes this finding. We demonstrate in practice that a number of modern techniques, including
variational autoencoders [30]], Sinkhorn-based generative models [31], sliced Wasserstein models
[32], denoising diffusion models [33], and autoregressive sequence models [34}35]], can be leveraged
to learn GDEs. This is by no means exhaustive: any other conditional generative modelling approach
[36,137], including those which will emerge in the future, can be used in the GDE framework.

5 Statistical and geometric properties of GDEs

GDEs aim to learn representations that separate the structure of the data-generating distribution from
finite-sample noise, and to synthesize new data consistent with that structure. We formalize this dual
role through two complementary perspectives. First, as predictive sufficient statistics, GDEs act like
learned Rao—Blackwellizations that denoise sampling variability. Second, as statistical manifold
embeddings, they interpolate between distributions along smooth geometric paths.

5.1 Learning an approximate predictive sufficient statistic

The core objective of GDE:s is to recover the true data-generating distribution P from finite samples
by learning an aggregate representation that distills the structure of P from sampling noise. This
objective is captured by the notion of asymptotic predictive sufficiency [l 2], which reformulates
sufficiency in terms of conditional independence:

P(now € A | T(Sm)) = P@new € A | Sm) —— 0,
for all measurable A C X. In our setting, the encoder £(S,,,) serves as such a statistic, asymptotically

determining P and marginalizing over sampling variability in S,,.

Predictive sufficiency implies a Rao—Blackwell improve- N Naive RB GDE

ment principle: conditioning any predictor on a predic-
tively sufficient statistic cannot increase predictive risk 10 4.72¢-03  3.79¢-03  3.12¢-03
under convex loss [2]]. To illustrate this empirically, we 100 34le-04  2.76e-04  2.71e-04
consider X; ~ Pois()\) and predict P(X,,41 = 0). The 1000~ 3.03e-05 2.81e-05  2.67e-05
baseline uses the observed frequency of X; = 0, the GDE 10000 3.23e-06 2.64e-06 3.32¢-06

estimator conditions on the embedding and draws 10° )
synthetic samples upon which the baseline estimator is Table 1: MSE of Naive, RB, and GDE
applied, and the Rao-Blackwellized (RB) estimator condi- estimators for P(X = 0), X ~ Poi(}).
tions on the sufficient statistic 7" = 3, X;. In Tab.[I| we can see that the GDE estimator outperforms
the RB bound on the data manifold at low sample numbers. This suggests GDEs can act as data-driven
analogues of Rao—Blackwellization, using synthetic sampling to magnify signal.

A predictive sufficient statistic distills the structural properties of the meta-distribution while marginal-
izing over sampling variability in the observed data. Generative distribution embeddings achieve this
in practice: they recover consistent representations of underlying distributions, even across diverse
domains and observational sample spaces.
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Figure 3: Lo in GDE latent space compared to W distance. Normalized distances from the center,
p = (1/3,1/3,1/3). The plots to the left show GDE Ly learned from empirical distributions.
MNIST and DNA distributions are constructed by sampling conditional on class label according to a
multinomial, for MNIST subsetted to images of (0, 1, 2) and a synthetic DNA dataset with 3 patterns
respectively. Rightmost plot shows the Gaussian approximation for the W5 between multinomials.

We demonstrate this using the multinomial distribution. We learn GDEs of 3-dimensional multinomial
distributions using a mean-pooled deep sets encoder and a diffusion generator. The model’s latent
space is able to recover the structure of the multinomial simplex (Fig. [3). Next, we use two real-world
datasets with discrete class labels and conditionally sample observations according to label identities,
which are drawn from the same family of 3-dimensional multinomial distributions. For both a
three-digit subset of MNIST and a set of three synthetic DNA sequence patterns, GDEs (using 2D
and 1D convolutional encoders and diffusion and HyenaDNA generators, respectively) recover the
same structure of the underlying multinomial simplex in the latent space. Despite coming from three
different domains and using three vastly different architectures, the latent geometry learned between
these experiments is nearly identical demonstrating GDEs capacity to learn signal from noise.

In fact, the learned geometry is rather particular: the Lo distance in GDE latent spaces in all three cases
closely resemble W, distances between multinomials (computed under a Gaussian approximation).
This points to a geometric interpretation of GDEs, bringing us to our second theoretical perspective.

5 OT trajectory 5 GDE trajectory
5.2 Learning a manifold of distributions ) )
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tent trajectories in GDE space correspond to
families of synthetic data that move coherently
through probability space, providing a control-
lable mechanism for exploring or augmenting
realistic generative scenarios.

Formally, let X' denote the sample space and P> (X) the set of probability measures with finite
second moment. The 2-Wasserstein distance W5 makes P (X) a geodesic metric space; in Euclidean
settings it also admits a Riemannian interpretation [3]]. For a meta-distribution @ over Py (X), let
M C Py(X) be a set supporting (); when M is a smooth submanifold, it inherits the metric induced
by Ws. Intrinsic geodesics on M are shortest paths constrained to lie in M under this induced metric
(and need not coincide with ambient W5 geodesics in Pa(X)).



The encoder & can be viewed as an (approximate) smooth embedding ¢ : M — R<, while the gener-
ator parameterizes an approximate inverse that decodes latent trajectories into synthetic distributions
along M. Ideally, 1) would preserve the manifold’s intrinsic geometry, as an approximate isometry
that maps Wasserstein distances between distributions to Euclidean distances in latent space. To
further assess this, beyond Fig. [ we can compute the correlation between the latent and Wasserstein
distances: for Gaussian distributions, latent-space L distances correlate with true W, distances at
p = 0.96; for 3-component Gaussian mixtures and W5 distances restricted to the mixture family [38]],
the correlation remains high (p = 0.76). This highlights a connection between our two perspectives:

Proposition 3. (Informal statement of Theorem [B) Assume Q is supported on a d-
dimensional statistical manifold M and the encoder induces a C* map ¢ : P(X) — R?
(with the regularity conditions in App. . Then ¢| s is asymptotically predictively sufficient
when @| 1 is a smooth embedding.

A key question this exploration prompts is precisely when GDE latent spaces are endowed with
Wasserstein geometry. It is worth noting that classically, sufficient statistics and statistical manifolds
are fixed once the model family is specified, and the geometry is independent of the likelihood of
observing a particular distribution. In contrast, our hierarchical model involves a meta-distributional
prior, endowing the setting with a Bayesian flavor. GDEs’ predictive sufficiency is therefore evaluated
with respect to Q: favoring statistics that preserve predictive information for distributions that are
more common under (). As a result, the learned representation and the synthetic data generated from
it become QQ-weighted, allocating resolution to regions of M according to their probability. This
adaptive weighting explains why GDEs can outperform the RB estimator in Tab. [T}
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The takeaway is operational: the embedding is not only geometrically faithful but also prior-weighted.
By choosing @ strategically (e.g., via the task-informed sampling in Sec. [3), we can bias the model
toward capturing distributional properties most relevant to downstream objectives.

6 Applications

We first benchmark our approach and then demonstrate the generality of GDEs on tasks across
the biological sciences, spanning several data domains: DNA sequences, protein sequences, gene
expression data, and microscopy data. Throughout, we explore different combinations of encoder-
generator pairs, see App. [A]for a detailed discussion of architectures and training dynamics.

6.1 Benchmarking GDEs on synthetic distribution datasets

Table 2: Wasserstein reconstruction error across synthetic
- . . distributional datasets. Computed as W, for normal and

any distributionally invariant encoder . .

can be coupled to any conditional gen- GMM, and as Sinkhorn divergence for MNIST and FMNIST.

The design space of GDEs is large:

erative model. To guide our imple- Model Normal GMM MNIST FMNIST

mentation choices, we systematically -\ ig 4 DDPM 0.04 217 80.46 111.01

benchmark architectures uSing syn- Ws Wormhole 0.20 2.88 263.29 320.18
thetic datasets. Included in the bench- GI%E 0.02 1.82 63.79 102.21

marked models are two existing meth-
ods that GDEs generalize, kernel mean embeddings and Wasserstein Wormhole [[1 1, [20].



We benchmark 30 combinations of encoders and generators on multivariate normal distributions in
5 dimensions. For evaluation we compute the Wasserstein reconstruction error from ground truth
distribution by estimating means and covariance matrices from generated samples and using the
closed-form for W, between Gaussians. We find that mean-pooled deep sets with skip-connections
coupled with DDPM generators provide the highest quality generations, outperforming existing
techniques. For synthetic distributions we present results for this architecture (see App. [B.2).

In Table[2| we additionally benchmark this GDE architecture on three more sophisticated datasets: (1)
3-component Gaussian mixtures in 5 dimensions, (2) mixtures of MNIST [39]] images according to
categorical distributions of 3 classes, and (3) an analogous dataset using Fashion-MNIST [40]. For
image datasets, where W, distances are not tractable, we instead compute the Sinkhorn divergences
between pretrained Resnet18 [41] representations of generated and ground truth samples. In all cases,
our chosen GDE architecture outperforms existing approaches.

6.2 GDEs enable semi-supervised distribution-level representation learning

We next explore GDEs in our motivating  Table 3: Patient label prediction from single-cell data.
example: for learning patient representa- Semi-supervised GDEs improve performance.
tions from a single-nucleus RNA-seq atlas

of the human prefrontal cortex [4], which Metric Supervised _Semi-supervised
profiled over 6.3 million nuclei from 1,494 Accuracy 0.8791 0.8887
donors across neurological and psychiatric ROC AUC 0.4872 0.5131
conditions. We consider each donor’s nu- F1 Score 0.1293 0.1479

clei as samples from an empirical distribu-
tion, and each condition as a label we wish to predict. As a baseline, we first train a supervised
model to predict patient labels from nuclei sets using a mean-pooled deep sets architecture using 10%
of the available labelled data. We compare this with a semisupervised model implemented using
GDEs. To construct a GDE model, we combine a mean-pooled deep sets encoder with a CVAE
generator, and train it using the same 10% labelled data available to the supervised model, along with
the remaining 90% with labels withheld. Semi-supervised GDEs outperform supervised baselines
across all evaluation metrics (Tab. [3).

6.3 Modeling clonal populations in lineage-traced scRNA-seq data

While many methods have been developed for learning representations of single cells from scRNA-seq
data [42]], methods for learning representations of cell populations remain relatively underexplored.
This task is relevant to the analysis of lineage tracing data, where the unit of interest is a clone, or a
population of cells that arise from the same progenitor.

Using lineage-traced scRNA-seq data from mouse
hematopoietic stem cells [43]], we apply GDEs to learn
a clone-level representations by treating the set of cells
£ within a clone as samples from an empirical distribu-
tion. Following prior frameworks [44]], we evaluate
0 the ability of representations to predict future clonal
gene expression based on the mutual information (MI)
Figure 6: 2D embeddings of lineage-traced between a clone’.s r.epresent.ation atan eaﬂy timepoint
scRNA-seq data, hued by pointwise mutual ~during differentiation and its representation at a late
information between clonal representation at  timepoint. We find that GDEs with a CVAE genera-
tor outperform Wasserstein Wormhole embeddings by
over 2 bits (Fig. [6). We next ask if this increase in
predictive power is due to improved representations within certain cell types (e.g., neutrophils or
monocytes). Decomposing MI estimates into their pointwise contributions [45]], reveals contributions
across the entire cell state space rather than any particular cell subtype (Fig. [6).

Wormbhole

1.16 bits
:

SPRING2

SPRING1 SPRING1

early timepoint and clonal fate.

6.4 Predicting transcriptional responses to genetic perturbations

A central goal in genomics is to predict the transcriptional effects of genetic perturbations[46l 47, 48]].
We evaluate GDE for genetic perturbation prediction, using the Perturb-seq data of Replogle et al.
[49] that profiled gene expression responses to CRISPRi knockdown of thousands of genes.



We consider the following task: given the identity of a perturbation, predict the full distribution of
transcriptional responses. We compare two approaches. In the first case, we train a linear model
to predict the mean expression profile directly. In the second case, we predict the GDE embedding
(trained on sets of cells subject to the same perturbation, via a Resnet Deep Sets encoder and CVAE
generator as in Sec. [6.3) of the perturbation-induced expression distribution and then recover the mean
via a learned linear projection from the embedding space. In both cases, we use a ridge regression on
top of GenePT embeddings [50]] to enable zero-shot generalization across perturbation conditions,
demonstrating that GDE improves both R? and MSE in Tab. El See Appendix for full details.

6.5 Learning morphological cellular responses to genetic perturbations

We apply GDE:s to pooled image-based CRISPR screening data Table 4: GenePT predicting held-
from Funk et al. [51], which profiles the phenotypic effects of  out perturbations in mean expres-
perturbing 5,072 essential human genes in HeLa cells. The sion space and GDE latent space.
dataset includes over 20 million single-cell microscopy images R2 MSE
with four stains, capturing diverse phenotypic variation.

Mean 0.378290 1.854997

Each perturbation ipduces a d.istribution over cell morpholggies VI 0421491 1551414
based on perturbation groupings. We treat these as empirical GDE 0457941 1500731
distributions and train a GDE model to reconstruct them. To . i
explore the role of inductive biases, we instantiate GDEs with
two different priors: a spatial prior that models positional image structure (see App. [B.6), and a
perturbation prior that captures latent variation across perturbation conditions. These approaches
capture spatial and perturbation sets, respectively.

Qualitatively, the model learns to reproduce phenotypic

n n features, including nuclear shape, cytoplasmic texture, and
. gl boundary sharpness across perturbations (Fig.[7). Quan-

: titatively, similar to Sec. [6.4 we hold out 30% of the most

u n n u perturbative perturbations and use ridge regression with
GenePT to enable zero-shot generalization across perturba-

tions by predicting the GDE embedding. We then sample
Figure 7: Real/generated DAPI images  conditional on the predicted embedding and compute the
for the heldout RACGAP1 knockout. nuclear signal intensity. The predictions on these held-out
perturbations achieved an R? = 0.7055 and an MSE of 0.00068, indicating a strong zero-shot

generalization of phenotypic outcomes.
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6.6 Decoding yeast promoter sequence activity with GDEs
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We next consider a large-scale 5] 5 -
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scriptional activity across 34 mil- 9 * w8
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promoter sequences [52]]. Each -1 g “
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80 nucleotide DNA sequence em-
bedded in a fixed DNA scaf-
fold and assayed for expression
in yeast cells. Because the
sequences are randomly sam-
pled, there is no shared structure
across examples so unconditional generative models cannot learn anything meaningful. Instead, the
signal lies entirely in how distributions over sequences give rise to distributions over expression
levels, due to the presence of transcription factor binding sites (TFBS): short, position-specific DNA
motifs that interact with transcription factors and control gene expression [52].

Figure 8: The PCA (left) of the GDE latent space of quantile
embeddings with underlying 34 million promoter sequences and
the recovered distribution of TFBS (right) as measured by motif
counts in both the real and reconstructed data.

We construct a distributional learning task where each training example is a set of sequences sampled
from a narrow expression quantile; we hold out the top 5 quantiles. We train a GDE with a 1D
convolutional network over the one-hot encoded sequences as the encoder and HyenaDNA [35] as



the decoder. As shown in Fig. [§] the learned GDE embeddings reflect a smooth gradient across
expression quantiles. Using the set of all known yeast TFBS [53]] we can identify the motifs present
in each of the real and generated sequences. Reconstructed motif distributions closely match those
of the input, indicating that the model learns to represent biologically meaningful variation across
promoter sets. Further details are available in App. [B.8]

6.7 Modeling spatiotemporal distributions of viral lineages

Powerful modeling approaches have been developed to represent individual protein sequences
[54, 155, 156} 157, [34]. Here, we show that the GDE framework can naturally lift these modeling
approaches to learn representations of distributions of sequences. In particular, we model distributions
of SARS-CoV?2 spike protein sequences over time and location. Using a dataset from the Global
Initiative on Sharing All Influenza Data (GISAID) [58]], we group sequences by sampling month and
site location and treat each group as an empirical distribution over protein sequences. We embed
these distributions using a GDE which couples the ESM architecture [56] to a mean-pooled deep sets
as the encoder and a conditional ProGen2 architecture [34] as the generator.

As shown in Fig.[9] the learned latent space organizes samples
chronologically, suggesting that GDEs capture time-varying
signal about sequence distributions. And indeed, this is ob-
served quantitatively: ridge regression on GDE representations
predicts the month of held out sequence distributions with mean
absolute error (MAE) of 1.83 + 0.01 months, an improvement
over the baseline of mean-pooled ESM embeddings with MAE
of 2.24 £ 0.01 months (errors reported as mean =+ s.e.m. over
0 10 random train/test splits). See App [B.9|for further details.
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Similarly, we also observe a spatial signal, albeit much weaker.
An SVM trained to classify distributions by country achieves
0.28 £ 0.001 accuracy from GDE representations, compared
to 0.25 £ 0.003 from mean-pooled ESM embeddings. Both
approaches slightly outperform the baseline of predicting the
most common dataset label (‘USA’ with accuracy 0.21).

Figure 9: GDE representations
of protein sequence distributions.
Each point corresponds to a set of
SARS-CoV2 spike sequences ob-
tained from one lab in one month.

7 Discussion

We introduce generative distribution embeddings, a framework that couples distribution-invariant
encoders with conditional generators to learn structured representations of distributions. Finite sample
sets are mapped by smooth embeddings that asymptotically identify the underlying distribution,
enabling consistent reconstruction in the large-sample limit. We formalized these properties via
connections to predictive sufficiency and statistical manifold embeddings, and proved that a broad
class of encoder architectures is asymptotically normal and unbiased when trained via a plug-in loss.

We demonstrated GDEs across a diverse set of large-scale biological problems. These applications
highlight the generality of GDEs and their ability to operate directly on measurement data while
modeling population-level structure. Crucially, GDEs support flexible distributional constructions
(e.g. spatial neighborhoods, time windows, expression quantiles), showing that a wide range of
problems can be cast as population-level modeling tasks. Code for model training and dataset
preprocessing is available at this |Github repository.

Limitations GDEs rely on sensible choices of meta-distributional priors (i.e. construction of sets,
Sec. [3), often requiring careful, domain-specific design. GDEs also pose practical engineering
challenges (propagate gradients to the encoder through the generator, scaling to large set sizes)
discussed in App.|Al On the theoretical side, the current formalism assumes exchangeable samples,
and does not admit non-i.i.d. samples within a distribution. Regarding geometry, we provide empirical
but not mechanistic evidence that GDEs learn isometries across domains.

Extensions GDEs can serve as a tool for generalization (akin to meta flow matching [[19]), can be
expanded to settings where the i.i.d. assumption within sets of samples does not hold, and extended to
semi-supervised settings. More broadly, GDEs point toward questions at the intersection of empirical
process theory, information geometry, and generative modeling; we hope this connection can be
explored more deeply in future work.
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A Architectures and Training Dynamics

In this section we outline some general details about the architectures and training dynamics for GDEs.
In the following section we will give more detailed explanations about each specific experiment, in
addition to full details available in the codebase. All of these findings are somewhat provisional, and
there is significant scope for future work to further explore these design choices, but we hope this is a
useful complement to our codebase for researchers trying to train their own GDEs.

A.1 Encoder Architectures

Our framework utilizes permutation-invariant encoders to map input sets S,,, = {21, ..., T, }, Where
each 2; € RY, to a fixed-dimensional latent representation z € R'. We primarily employ several
types of set encoders, including variants based on self-attention, Graph Neural Network (GNN)-style
pooling, and residual connections. All encoders typically conclude by applying a final pooling
operation (e.g., mean pooling) across the element representations, followed by a linear projection and
a non-linearity (e.g., SELU) to produce the final latent vector z.

A.1.1 Simple Self-Attention Encoder

This encoder provides a baseline transformer-based approach. It first applies a linear layer followed
by a SELU activation to project input elements x; into a hidden dimension H. It then processes these
representations through a series of multi-head Self-Attention blocks [59]. This architecture directly
models pairwise interactions within the set.

A.1.2 Simple GNN Encoder

The simple GNN-style encoder offers an alternative based on iterative pooling and non-linear
transformations, distinct from the standard DeepSets [260] sum-decomposition. It starts with an
MLP projection into the hidden dimension 1. Subsequently, it applies a sequence of layers, each
performing a pooling operation across the set followed by an MLP. This structure iteratively refines
element representations based on aggregated set information.

Pooling Operations: Our theoretical framework (see Appendix justifies the use of pooling
operations that correspond to M/Z-estimators. We focus on mean pooling but additionally implement
median pooling as an illustrative example. Notably, max pooling is generally not suitable in this
context as its non-differentiability breaks the convergence guarantees we are interested in for Eq.
(1), see the remarks in App for details. Future work might thoroughly explore which pooling
operations lead to the greatest flexibility and stability for distribution embedding.

A.1.3 ResNet-GNN Encoder

To improve gradient flow and enable deeper architectures, we enhance the GNN-style encoder with
residual connections. This encoder first projects each input element z; into [ using an MLP. It
then processes the set through a series of blocks where each block k computes an intermediate
representation hgk) for each element ¢. The core operation within a block uses mean pooling (or
median pooling). Inspired by ResNet [60l 28]|, we incorporate skip connections. The input to block &
includes the output from the previous block (=1 a linear projection of the original input x, and
the output of the initial MLP projection. Formally:

h®) = LayerNorm(PooledFC(h*~1) 4 h*=Y 4 Linear, (x))

where h(9) is the output of the initial input projection combined with a projection of x, followed by
Layer Normalization. This structure ensures the original input signal is preserved.

A.1.4 ResNet-Transformer Encoder

This variant follows the same residual structure as the ResNet-MLP encoder but replaces the layers
with standard multi-head Self-Attention blocks [S9]. This potentially allows the model to learn more
complex interactions while benefiting from the improved training dynamics of residual connections.
The skip connection mechanism remains identical to the ResNet-MLP version.
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A.1.5 Encoder Comparison

Transformer-based encoders (Simple Self-Attention and ResNet-Transformer) often leverage pre-
trained weights effectively and can converge in fewer epochs compared to GNN-style approaches.
However, this typically comes at a higher computational cost per epoch and during inference due to
the quadratic complexity of self-attention with respect to set size m. With sufficient training, we find
that the GNN-based architectures, particularly the ResNet-GNN, achieve strong performance, often
rivaling the transformer variants while being more computationally efficient for large sets.

Alternative Generative Strategies and Sampling The Wasserstein Wormhole [20] uses a self-attention
decoder with fixed positional embeddings that can map the latent z back to samples. One potential
method replaces fixed positional embeddings with samples drawn from a simple distribution (e.g.,
Gaussian) transforming this into a true generator. But this incurs substantial computational costs (e.g.,
quadratic cost in the number of generated samples for attention-based sampling decoders), and it is
not clear this would lead to significant improvements in performance.

It also becomes less obvious how to adapt existing generator architectures using this approach. One
option is to use self-attention to construct sample-specific condtional signals from the latent z and the
noise vector, and then condition the generator on this signal. This is significantly more complex, and
is not clear that this would lead to significant improvements in performance.

A.2 Adapting Pre-trained Models

Our framework is designed to flexibly incorporate pre-trained models, leveraging their learned
representations and generative capabilities. We adapt pre-trained models for both the encoder and the
generator components.

A.2.1 Encoder Adaptation

For tasks involving complex input modalities like natural language or protein sequences, we can
utilize pre-trained transformer-based encoders such as BERT [61] or ESM [62]] as powerful feature
extractors. These pre-trained models can serve as the initial feature extraction layer, whose outputs
{h1, ..., hn } are then fed into the subsequent aggregation layers of our set encoders (e.g., ResNet-
GNN or ResNet-Transformer, see subsection |A.1J).

The adaptation process typically involves:

1. Loading Pre-trained Weights: We load the desired pre-trained encoder model using
standard libraries like Hugging Faces transformers [63].

2. Feature Extraction: For each element z; in the input set X = {x1,...,zy}, we pass it
through the pre-trained transformer to obtain a contextualized representation h;. Often, the
output embedding corresponding to a special token (like [CLS] in BERT) or the mean/max-
pooled output of the final hidden states is used.

3. Set Aggregation: These element-wise feature vectors {hq, ..., hy} are then fed into the
subsequent layers of our chosen set encoder (e.g., ResNet-MLP or ResNet-Transformer
layers) which perform the permutation-invariant aggregation to produce the final latent
representation z.

4. Fine-tuning (Optional): Depending on the task and dataset size, the pre-trained encoder’s
weights might be kept frozen initially or fine-tuned jointly with the rest of the model during
end-to-end training.

A.2.2 Generator Adaptation and Conditioning

A core strength of our approach is the ability to use large pre-trained causal language models (LMs),
such as GPT-2 [64], ProGen2 [34], or specialized models like HyenaDNA [35]], as the conditional
generator pg(z|z).

The adaptation involves:

1. Loading Pre-trained Weights: We load the chosen pre-trained causal LM and its associated
tokenizer using ‘transformers* [63]].
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2. Prefix Conditioning: The primary challenge is to effectively condition the generators§
output on the latent set representation z produced by the encoder. In practice, we find
prefix tuning to be an effective and widely applicable method. The latent vector z € R
is projected, typically via a small MLP W, into one or more vectors p = W,,(z) that
have the same hidden dimension as the LM. These projected vectors p are then treated
as continuous "prefix" embeddings prepended to the actual input sequence embeddings
E(x ) before they are processed by the transformer layers. The model learns to interpret
this prefix as the conditioning signal specifying the target distribution. Mathematically, the
input embedding sequence to the transformer becomes [p; E(x<7)]. The attention mask is
adjusted accordingly to allow all sequence tokens x . to attend to the prefix p.

3. Fine-tuning: The pre-trained generator weights can be either frozen or fine-tuned. Fine-
tuning the entire model allows the LM to adapt its generation process based on the condi-
tioning prefix p. Freezing the LM backbone and only training the conditioning projection
W, (and potentially adapter layers) can be more parameter-efficient.

A.3 Training Details and Considerations
A.3.1 Learning Rate Schedule

For simpler models we use a fixed learning rate, but for more complex models we typically employ a
cosine annealing learning rate schedule during training. This involves starting with an initial learning
rate and gradually decreasing it towards zero following a cosine curve over the course of training
epochs. This schedule is often effective in achieving stable convergence and good final performance.
In general we have found that whatever the current state of the art for training the (unconditional)
generator is, that will generally give good results when learning the encoder-generator jointly.

A.3.2 Performance and Convergence

Our experiments generally indicate that this training setup, combined with the described architectures
and adaptation strategies, leads to strong performance across various tasks and datasets presented in
the main paper. As noted in subsection[A.T.5] the choice of encoder can impact convergence speed
and computational cost.

A.3.3 Set Size and Batching Trade-offs

We observe that achieving optimal performance sometimes necessitates using large input set sizes (V).
However, processing large sets can significantly increase the computational and memory requirements
per batch, particularly for the attention mechanisms in transformer-based encoders or generators.
This often forces a reduction in the overall batch size to fit within hardware constraints. Smaller
batch sizes can, in turn, lead to increased variance in the loss gradients, potentially slowing down or
destabilizing training. Careful tuning of the set size IV, batch size, and learning rate parameters is
often required to balance performance and training efficiency for a given task and hardware setup.

A.3.4 Gradient Propogation Challenges

A potential challenge arises, particularly with deeper encoder and generator architectures. The
encoder only receives a learning signal indirectly through the generator via the shared latent variable
z. If the generator itself struggles to utilize the latent information effectively, or if the dimensionality
L of z creates an information bottleneck, the gradients flowing back to the encoder can become
weak or noisy. This can make training deep encoders difficult. Addressing this might require more
sophisticated generator architectures capable of integrating the latent information more effectively or
alternative training schemes with auxiliary losses directly on the encoder. We found these issues in
the simple encoder architectures, but they seemed to be alleviated in the ResNet-based architectures.

A.4 Implementation recipe for GDEs
The GDE framework is instantiated by pairing a distributionally invariant encoder with a conditional

generative model. The following steps outline a general recipe for building GDEs across diverse data
domains:
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. Sample from the metadistribution (construct sets)

. Choose a distributionally invariant encoder

. Build a conditional generator

. Train via plug-in loss

Group raw data into sets .S; =
{z4; }}":1, where each set reflects a draw from an unknown latent distribution P;. Groupings
can be based on discrete metadata (e.g., text by author, reviews by rating, images by label,
cell clones, gene perturbations) or continuous metadata (e.g., time, location, expression
quantiles). Sets need not be mutually exclusive, meaning a single data point can belong to
multiple sets.

Select or construct a distributionally
invariant encoder £. This selection generally involves (1) using an architecture for element-
wise embeddings and (2) pooling across element-wise embeddings with a sample mean (or
other M-estimate). We found that architectures with multiple pooling layers, where each
layer’s pooled output is concatenated with the element-wise embeddings, were particularly
effective. This contrasts with pure DeepSets-style architectures that only pool once at
the final layer. For deeper architectures, we have found that including skip-connections
improves performance, especially if the generator is also a relatively deep network.

The generator G "decodes" from latent space back to the
sample space. It should be conditionable on z = £(S5).

Optimize the generator to minimize the generator loss function
U(Py, G(E(Sm)))- This loss should be the standard training objective for the conditional
generator. This plug-in loss encourages reconstruction of the true distribution.

A.5 Encoder and Generator Architectures by Experiment

The encoder-generator pairs used for each application in the paper are shown in the table below.

Sec. | Task Set Construc- Encoder Arch. Generator Arch. | Notes
tion
6.1 | MNIST, FM- | Same 1image see Table 1 see Table 1 Synthetic data
NIST class benchmark
6.2 | Lineage-traced | Same cell ResNet-GNN CVAE
scRNA-seq clones
6.3 | Genetic pertur- | Same perturba- ResNet-GNN CVAE
bation (SCRNA- | tion
seq)
6.4 | Morphological | Same perturba- 2D Conv-GNN DDPM (U-Net)
responses (cell | tion
images)
6.5 | Tissue-specific | Same patient; 1D Conv-GNN HyenaDNA Uses prefix con-
methylation Same tissue ditioning
type
6.6 | Yeast promoter | Expression 1D Conv-GNN HyenaDNA Uses prefix con-
quantile decod- | quantile (con- ditioning
ing tinuous)
6.7 | Viral protein | Same sampling | ESM + mean pooling ProGen2 Uses prefix con-
spatiotemporal | month and loca- ditioning
modeling tion
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B Experiments

B.1 Determining tissue-specific methylation signatures from bisulfite sequencing reads

Analyzing sequencing data typically extensive preprocessing, including alignment to a reference genome. GDEs
present an alternative, where sequencing reads can be modeled directly — without alignment or other preprocessing
steps. To demonstrate this capability, we show that GDEs can detect tissue-specific DNA methylation patterns
directly from bisulfite sequencing (BS-seq) reads. BS-seq measures methylation indirectly through substitution
errors: methylated cytosines remain unchanged, while unmethylated cytosines are substituted as thymines.
Using publicly available methylation data from diverse tissues [5], we simulate sample-specific BS-seq read
distributions by imposing corresponding base substitutions to the reference genome (see Appendix [B.7] for
details).

Critically, we do not provide the GDE model with any explicit information about methylation signals, the
structure of the experimental assay, or a reference genome. The model has access only to sets of sequencing
reads grouped by both patient and tissue type. For the GDE model architecture, we choose a 1D convolutional
network encoder, and the decoder is a HyenaDNA model [35]. To support large-scale inference over tens of
millions of reads per patient, we process 200,000 reads at a time through the encoder and aggregate the resulting
embeddings using a simple mean, justified by Theorem[2} This design allows the model to scale efficiently while
preserving distributional fidelity.

Our approach enables end-to-end learning of methylation signatures from tissue-specific read distributions. There
are two levels of tissue classification, a coarse level with 37 categories and a fine-grained level classification
with 83 tissues. Training a linear classifier on top of the GDE latent space, we achieve a test accuracy of 60% on
the coarse task and 35% on the fine-grained classification.

B.2 Additional semi-synthetic experimental results

W, Distance vs GDE Distance ] GMM W; Distance vs GDE Distance
ol Spearman Correlation: 0.96 Spearman Correlation: 0.76
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Figure 10: Left: Distance correlation showing high alignment between latent GDE distances and
analytical Wy distances (Spearman p = 0.96). Left: Distance correlation showing high alignment
between latent GDE distances and the OT-GMM distance [38]], which is a ¥/5 metric restricted to the
subspace of GMMs (Spearman p = 0.76).
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Figure 11: Expanding on Fig. [5|we show that the Pearson correlation between the W5 (computed via
normal approximation) and the latent GDE distances decreases as a; deviates from 1, while keeping
fixed ag = a3 = 1.

Table 5: W, reconstruction error of 30 possible GDE implementations (including two existing
methods generalized by GDE, Wasserstein Wormhole and kernel mean embeddings) on 5-dimensional
multivariate Gaussians. Covariance matrices sampled from Wishart distribution with scale of 1, and
means sampled uniformly from [0, 5]. Further results included in Table@

Gen. | \ Enc. — \ Mean Kernel mean GNN Med.-GNN ResNet-GNN SelfAttn.

Sinkhorn 0.05 0.14 0.09 0.10 0.05 0.06
Sliced Wy 0.03 0.04 0.07 0.07 0.03 0.04
CVAE 0.16 0.16 0.19 0.20 0.15 0.17
DDPM 0.03 0.04 0.06 0.05 0.02 0.07
Wormbhole 0.14 0.15 0.72 0.49 0.14 0.20

Table 6: W5 reconstruction error (mean =+ s.e.m. over 5 trials) for 30 possible GDE implementations
(including two existing methods generalized by GDE, Wasserstein Wormhole and kernel mean
embeddings) on 5-dimensional multivariate Gaussians. Covariance matrices sampled from Wishart
distribution with scale of 0.1, and means sampled uniformly from [0, 5].

Gen. | \\Enc. — \ Kernel mean GNN ResNet-GNN  Self-Attn.

CVAE 0.15+£0.011 0.12£0.006 0.12+£0.009 0.11 £0.007
DDPM 0.15+0.008 0.13+£0.020 0.09 £0.003 0.10 £+ 0.005
Direct SW 0.15+£0.008 0.13£0.007 0.13£0.009 0.15 +0.001
Direct Sinkhorn 0.29+£0.008 0.22+0.010 0.17+0.005 0.19+0.010
Wormbhole 0.23+£0.021 0.72£0.090 0.24+£0.011 0.34 £0.021

B.3 Donor-level representation learning experiments

B.3.1 Data preprocessing

We use single-nucleus RNA-seq data from the Population-scale cross-disorder atlas of the human prefrontal
cortex [4], which profiles over 6.3 million nuclei from 1,494 donors across 33 neurological and psychiatric
conditions. The dataset consists of multiple sub-datasets, so to avoid integration issues we subset to the largest
sub-dataset which contains 4 million cells. For each donor, raw count matrices were normalized to 10* counts
per nucleus, log-transformed, and restricted to the top 2,000 highly variable genes. We treat each donor’s
collection of nuclei as an empirical distribution over transcriptional states. Donor-level diagnostic metadata
were obtained from the accompanying PsychAD clinical annotations, and we restrict prediction targets to the
six major disease categories which have at least one positive and negative example in the dataset (Alzheimer’s,
Parkinson’s, diffuse Lewy body, bipolar, schizophrenia, and vascular dementia).
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B.3.2 Model architecture and training

Both the supervised and semi-supervised models use the same ResNet deep sets encoder to aggregate single-cell
features into donor-level embeddings. For the supervised variant, the encoder is trained end-to-end with a
classification head. For the semi-supervised GDE, the same encoder is coupled to a conditional variational
autoencoder (CVAE) generator, trained jointly to reconstruct cell distributions while predicting disease labels
for the 10% of donors with labeled diagnoses. In both cases, we use a 64-dimensional latent space and two
hidden layers of size 128. After training, a logistic regression classifier is fit on the donor embeddings to predict
multi-label disease status across the six categories.

B.3.3 Evaluation

We report donor-level predictive performance using accuracy, balanced accuracy, ROC-AUC, and F1 score on
10% of completely heldout data. Semi-supervised GDEs outperform purely supervised models across all metrics
(Table[3), demonstrating that unlabeled donor distributions improve representation quality and generalization in
large heterogeneous cohorts.

B.4 Lineage-traced scRNA-seq experiments

B.4.1 Data preprocessing details

We use lineage tracing data from Weinreb et al. [43]]. The single-cell RNA sequencing (scRNA-seq) count
matrices were preprocessed following standard procedures. Specifically, counts for each cell were normalized
by rescaling to 10 counts per cell, followed by log transformation. Finally, the top 10* highly variable genes
(HVGs) were selected. Cell-type annotations and two-dimensional SPRING embeddings were obtained directly
from the annotations provided in Weinreb et al.

B.4.2 Mutual information estimation

We compute mutual information as a sample mean of pointwise mutual information estimates. To estimate
pointwise mutual information in the representation space, we use the nonparametric nearest-neighbor estimator
introduced by Kraskov et al. [65] with £ = 3. This estimator has been shown to be effective in this setting:
model latent spaces with tens of dimesions [44].

B.4.3 GDE modelling architecture

We use a Resnet-GNN architecture as the encoder and a CVAE as the generator. We use 64 latent dimensions,
with 2 hidden layers of size 128.

B.5 Perturbation Prediction

B.5.1 Data preprocessing details

We use the pre-processed h5ad file from [49] including 10* genes. We compute the 10% most perturbative
perturbations by examining the differentially expressed genes and then randomly select 20 of those perturbations
to hold out. We hold these out across all cell types.

B.5.2 GDE modelling architecture

We use a Resnet-GNN architecture as the encoder and a CVAE as the generator, similar to the architecture in the
lineage-tracing experiment, except we use a larger hidden state (1024) and a larger latent space (256). We include
a perturbation prediction loss during training which trains a linear model with pairwise interactions between
the control cell distribution embedding and the gene embedding to predict the difference in mean expression
through a linear head. This structures the latent space for our downstream perturbation prediction task.

B.5.3 Perturbation Prediction

We fit a ridge regression to predict (1) the difference in mean expression and (2) the difference between the
perturbed embedding and the control for each perturbation using GenePT gene embeddings [50] with cross-
validation to perform grid search over A. We then compute the predictions on the held-out perturbations and use
a linear head to predict the mean expression from the latent difference. Finally we compute the R? score and the
MSE.
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B.6 Optical pooled screening dataset

B.6.1 Data preprocessing details

We use phenotyping images with assigned perturbation barcodes from Funk et al. [S1]. We analyze only two
of the measured channels: DAPI and GFP. Each image is a 64x64 bounding box surrounding a single cell
(center-padded or center-cropped from the original bounding box as necessary). Image intensities are normalized
to a minimum of —1 and a maximum of 1. Using the set of perturbative perturbations computed in [51] we
randomly select 30% to holdout during training for evaluation.

B.6.2 GDE modelling architecture

For the encoder architecture, we extend our GNN approach to 2D convolutional layers, standard for image
processing. For the generator we use a U-net architecture standard in diffusion for images, but upscaled in
expressivity relative to our MNIST and Fashion-MNIST examples.

B.6.3 Perturbation Prediction

We find that empirically, our diffusion approach struggles to model the padded border of the cells. So, at
inference time we condition on the border to generate our predictions. Using GenePT, we train a ridge regression
with grid search (similar to App. to predict the perturbation distribution embeddings. We also construct a
nearest neighbor model using the GenePT embeddings to sample the padding. We then condition on the padding
and the predicted latent to sample a set of 1,000 cells from each heldout perturbation. We then compute the
DAPI intensity and compare with the ground truth, computing the R? and the MSE.

B.7 Methylation atlas of human tissues

B.7.1 Simulating raw bisulfite-sequencing reads from methylation patterns

While sample-specific methylation patterns are published in [5], the raw sequencing reads are not public due to
patient privacy considerations. Here, we instead use the published methylation patterns (in the form of . pat files)
to simulate bisulfite sequencing reads. For each methylation site entry of the . pat file, we use wgbstools[66]
to find the 100 preceding bases of the HG38 genome reference, and append to the CpG sequence. We omit all
CpG sites with unknown methylation status. We subsample 107 sequencing reads per sample.

B.7.2 GDE modelling architecture

We use a 1D convolutional neural network as our encoder, with mean pooling at each layer (analogous to the
fully connected GNN with an MLP, but using convolutional layers). For the generator, we use HyenaDNA
[35]. We additionally include a linear classification head on top of the distribution embedding, co-trained with a
cross-entropy loss.

B.8 GPRA

B.8.1 Data processing details

We collect all sequences in the Gal and Gly conditions from [52] and process them into 100 quantiles by
measured expression, totaling 34 million sequences. We one-hot encode these sequences for ACTGN, and
tokenize them using the HyenaDNA tokenizer. We break these sequences into 100 quantiles and hold out the top
5 quantiles during training. During training, we construct sets by selecting a “center” quantile and then randomly
sampling from that quantile and the two adjacent quantiles.

B.8.2 GDE modelling architecture

We use the same architecture as in the methylation experiment (App. [B.7).

B.8.3 Details for Fig.

We encode a random subsample of 130K sequences from each quantile in the Gal condition to construct the set
embeddings (the larger dots). We then compute the PCA of these embeddings. We embed all the DNA sequences
as sets of size one and project them to the PCA. For the histograms of the TFBS motifs we leverage the PWMs
from [53]]. We wrote a simple unidirectional motif scanning procedure in Torch to facilitate efficient scanning,
and used a threshold of 5 to determine hits. We then sum over the motifs to derive the motif count per sequence,
and then compute the histogram by plotting the distribution of these counts by quantile.
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B.9 Spatiotemporal distribution of viral lineages

B.9.1 Data preprocessing details

We obtain all SARS-CoV2 spike sequences deposited up to April 2025 in GISAID [58]. We group sequences by
submission month and lab of collection. We discard sequences with improperly formatted date fields. During
tokenization, we truncate sequences to 1000 amino acids.

B.9.2 GDE modelling architecture

The encoder couples the ESM-50M [56] architecture coupled to a mean-pooled GNN, while the generator
uses the Progen2-150M architecture [34] with prefix conditioning. We initialize (but do not freeze) the protein
language models with their pretrained weights. We use a 128 dimensional latent space.
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C Background

C.1 Frequentist, Bayesian, and Predictive Sufficiency

Sufficiency is a classical notion in statistics that formalizes when a statistic retains all information about a
parameter or distribution. In this appendix, we distinguish three forms of sufficiency relevant to modern
generative modeling and provide canonical examples.

C.1.1 Frequentist Sufficiency

Let {P : 8§ € ©} be a parametric family of probability distributions on a sample space X. A statistic
T(X1,...,X,) is frequentist sufficient for 0 if the conditional distribution of the data given T" does not depend
on 6:

Py(X1,...,Xn | T(X1,...,X»n)) = (independent of 6).

Intuitively, the likelihood depends on the data only through 7'.

C.1.2 Bayesian Sufficiency

Given a prior 7(6) over the parameter space, a statistic 7" is Bayesian sufficient for 0 if the posterior depends on
the data only through 7:

70| X1,...,Xn) =70 | T(X1,...,Xn)).
Bayesian sufficiency holds if and only if 7" is a sufficient statistic in the sense that the posterior is conditionally
independent of the data given 7.

C.1.3 Predictive Sufficiency

A weaker notion, often relevant in nonparametric and distributional settings, is predictive sufficiency. Assume
a joint model for (6, X1.n, Xnew) (e.g. 6 ~ 7 and X; | 0 TR Py). A statistic T' is predictive sufficient if the

distribution of a new sample Xy given T is the same as given the full data:
P(Xnew € B | T(X1,...,Xn)) =P(Xnew € B | X1,...,Xn), VBe€B(X).

This requires only that 7" contains enough information to match the predictive distribution of future data.

C.1.4 Implications and Comparisons

There is a strict hierarchy among these definitions:
Frequentist sufficiency = Bayesian sufficiency = Predictive sufficiency.

The first implication follows from the factorization of the likelihood, and the second follows because the posterior
predictive is a marginal of the posterior. However, the reverse implications do not hold in general, especially in
infinite-dimensional or nonparametric models. In particular, predictive sufficiency may hold in settings where no
finite-dimensional parameter exists.

C.1.5 Examples

Example 1 (Gaussian Mean). Let X1, ..., X, ~ N (i, o?) with known 2. Then the sample mean X, is
sufficient for 1 in all three senses: frequentist, Bayesian, and predictive. The likelihood, posterior, and predictive
distributions all depend on the data only through X,,.

Example 2 (Uniform(0, 0)). Let X1,..., X, ~ Unif(0, ). Then the sample maximum
T, = max{X1,...,Xn}

is the minimal sufficient statistic for  in both the frequentist and Bayesian senses. It also suffices for prediction
of future samples, since the predictive distribution under 6 is uniform on [0, 0], and 75, provides all information
about 0.

C.1.6 Nonparametric Extensions

In the nonparametric regime where P is not indexed by a finite-dimensional parameter, predictive sufficiency
remains well-defined. For instance, under a de Finetti (exchangeable) model with a latent random measure P ~ 11
and X; | P "X P, the empirical measure P,, = % >, dx, (equivalently, the multiset of observations) is
Bayesian and hence predictive sufficient for P. In this setting, stronger finite-dimensional forms of sufficiency
may not exist, but predictive sufficiency still supports meaningful generative modeling.
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C.2 Otto’s Geometry and Statistical Submanifolds

This appendix recalls Otto’s Riemannian calculus on the 2-Wasserstein space P2(X') and explains how a
finite-dimensional parametric family of measures inherits an induced geometry [3|]. Throughout, statements are
intended in the standard “Otto calculus” sense; rigorous treatments interpret Pz as a geodesic metric space and
identify tangent objects for absolutely continuous measures.

C.2.1 Wasserstein Space and the Benamou-Brenier Formulation

Let X C R¢ be convex (e.g. X = R%), and let Py (X) be the Borel probability measures on X’ with finite second
moment. The 2-Wasserstein distance is

W2(o, ) = _inf / e — ol dy(z. ).
XXX

YEM (ko ,p1)

Benamou-Brenier gives the dynamic formulation

1
W)= ot [ [ @)l duta) an,
BtﬂtJrV‘(#/tUt):O 0

where the continuity equation holds in the distributional sense, and vy € L* ().

C.2.2 Otto’s Riemannian Structure

For p absolutely continuous with density p, a tangent vector can be represented as
fi=—V - (pV),

for a potential ¢ (defined up to an additive constant). Equivalently, one represents the tangent direction by its
minimal kinetic energy velocity field v = V. The Otto (Wasserstein) inner product is

gulfin, fi2) = /X Vé1(z) - Vo (z) duz) = /X o1(z) - va(x) dia(z),

with v; = V¢; the minimal-norm representatives. With this metric, constant-speed W»-geodesics are precisely
curves of minimal kinetic energy.

If o is absolutely continuous, the (Brenier) optimal map 7" from o to p41 induces the displacement interpolation
pe=((1—1t)id + tT)#,uo,

which is a constant-speed Wa-geodesic (on convex X).

C.2.3 Statistical Submanifolds and Induced Wasserstein Geometry

Let @ be a distribution over P2 (X). To speak of a submanifold, we assume @ is supported on a finite-dimensional
smooth embedded family
M={uy:0€ 0 CR"} CPX),

where 6 — L is smooth and pg are absolutely continuous.

The induced (pullback) Wasserstein metric on parameters is defined by
Gij(0) := gu, (Oipe, Ojpi0) = / Vi - Vjdpug,
x

where ¢; solves the elliptic equation
—V - (noVe;) = Qi (in distributional sense).
The intrinsic Riemannian distance on M can then be written as

1
daa(piogs o) = it [ \/6] G616t
t 0

and satisfies daq (o, 1) > Wa(po, p1) in general (strict unless M is geodesically closed in Ps).

C.2.4 Examples and Application to GDEs

Examples include Gaussian families (closed under W»-geodesics) and general smooth parametric families. For
mixture models with finitely many components, one can study the induced Wasserstein metric on parameters,
although ambient W5-geodesics between mixtures typically leave the class.

In this work, we interpret GDEs as learning smooth embeddings of such a constrained family of data-generating
distributions into Euclidean latent space; empirically the learned latent geometry may approximate the intrinsic
geometry induced by the Wasserstein metric.
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D Theory

Throughout, let (X, d) be a Polish metric space and let 5 denote its Borel o-algebra. Let P € P(X) denote
a probability law on X. Given m € N, let S,,, = (X1,..., Xm) be an i.i.d. sample from P, and let P, =
% >, dx, denote the empirical measure.

Let Mo (X') denote the vector space of finite signed Borel measures on X’ with total mass 0, equipped with the
bounded-Lipschitz norm || - ||gr, defined below.

We use P1, P to denote two (possibly distinct) probability laws on X, and S1, S2 for independent samples from
P, P; respectively.

For signed measures v, p on (X, B) define

dpL(v,pu) == sup ‘ffd(’/ - N)‘-
Frx—[—1,1]
Lip(f)<1
We use || - ||gr for the corresponding norm ||v||gr := dr(v,0). Since the class of bounded 1-Lipschitz

functions is contained in the class of all bounded measurable functions, we have dgr. (v, 1) < ||V — pf|Tv.

D.1 Necessity of Distributional Invariance

Motivation Our goal is to design encoder architectures that flexibly model unknown data distributions while
guaranteeing consistent generation of the underlying law as sample size grows. Since the true distribution P
is not known in advance, the encoder must be constructed to generalize across all possible P, without leaking
spurious information tied to the specific realization or sample size. If the encoder depends on sample-level
artifacts—such as ordering, multiplicity, or the raw sample size—it may encode features that a generator can
exploit, breaking the guarantee that

G(E(Sm)) L P asm — 00, Sp ~ PP

This risk arises even under either permutation or proportional invariance on their own: both permit dependencies
that vanish only in expectation and are insufficient to ensure correct extrapolation with increasing m. For
example, encoders based on unnormalized sum aggregations (e.g., DeepSets) will vary with m even when the
empirical distribution is unchanged, leading to divergence at inference time.

To formalize this constraint, we appeal to two classical principles from statistical decision theory and invariance:
(i) under i.i.d. sampling, the empirical measure is a sufficient statistic for the (nonparametric) model indexed by
the unknown law P, so conditioning on it loses no information about P; (ii) it is also minimal (and the maximal
invariant under permutations), meaning it discards exactly the ancillary degrees of freedom (ordering and other
sample-level artifacts) that do not carry information about P. In our setting this motivates enforcing that the
encoder depends on the sample only through the empirical distribution: any additional channels (e.g. ordering
or set-size effects) are unnecessary for identifying P and can be spuriously exploited by a flexible generator,
especially when extrapolating across set sizes.

We define distributional invariance:

Definition 1 (Distributional invariance). A family of encoder maps (5m)m21 with &,, : X™ — Z is dis-

tributionally invariant if there exists a measurable map ¢ : P(X) — Z such that for every m and every
Sm = (z1,...,%Tm) € X™ with empirical measure P,,, = i > Oays

Em(Sm) = ¢(Prm).

In particular, any such family is permutation invariant and consistent across set sizes under proportional
duplication, i.e. for every integer K > 1,

Em(Sm) = Excm(Smy- .-, Sm).
N————

K copies

Empirical measure as a lossless and minimal summary. Fix m € N. Consider the (nonparametric)
iid. model {P®™ : P € P(X)} on X™. We use the standard (Neyman—Fisher) notion of sufficiency:

Definition 2 (Sufficiency). A statistic Tp, : X™ — T is sufficient for the family {P®™ : P € P(X)} if
the conditional distribution of X1.., ~ P®™ given Ty, (X1.m) does not depend on P. Equivalently, for every
bounded measurable f : X™ — R, there exists a measurable g : 7 — R such that for all P,

IEP@)m[f(Xl;m) ‘ T7n(X1:7n)} = gf(Tm(Xlim)) a.s.

Let &,,, be the symmetric group acting on X™ by (21,...,%m) = (Tx), - - s Tx(m))- Call Tt permutation
invariant if T, () = T (x5) forall m € &,y
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Theorem 1 (Empirical measure is sufficient, minimal, and a maximal invariant). Let X1., = (X1,..., Xm) ~
P and P, = i Z:’;l 0x,. Then:

(i) (Sufficiency / “losing nothing”). P, is sufficient in the sense of Definition[Z] Moreover, for any bounded
measurable f : X — R, a version of the conditional expectation is given by symmetrisation:

Epem[f(X1:m) | Pm] Z F(Xr@y s Xngmy)  as.,

m! TEG,

which does not depend on P. In particular, the sample ordering is ancillary given P,.

(ii) (Maximal invariant / all permutation-invariant summaries factor through P,,). Let P.,(X) =
{m™* > Oe; t Tim € X} be the set of empirical measures with m atoms (counting multiplicity). If
Tr : X™ — T is permutation invariant, then there exists a measurable ¢, : P (X) — T such that
T = ¢m © P pointwise on X™. (One may extend ¢, to all of P(X) arbitrarily if desired.)

(iii) (Minimal sufficient / “not keeping anything unnecessary”). If Ty, is sufficient for {P®™ : P € P(X)},
then Py, is measurable with respect to o(Tr,): there exists a measurable hy, : T — P(X) such that

P = hn(Ti(X1:m))  P®™-a.s. for every P € P(X).
Equivalently, o(Pp,) is the minimal sufficient o-field.

Proof sketch. (i) Let f be bounded measurable and define the symmetrisation f (z1:m) =
% eresm f(xﬂ(l), o ,xﬂ(m)). Then f_ is permutation invariant, hence depends on x1.,, only through
its multiset, i.e. only through P,,. For any bounded measurable H that is o(P,,)-measurable, H(X1.m) =
H(Xx1),- -, Xx@m)) for all 7, so by exchangeability,

E[f(Xrim)H(X1.m)] _IE[ Zf s ,r(m))H(Xlzm)} = E[[(X1n)H(X1m)].

Thus f(X1.1,) is a version of E[f(X1.m) | Pm], and it does not depend on P, establishing sufficiency.

() If z,y € X™ satisfy Ppn,(z) = Pm(y), then y is a permutation of x, so permutation invariance gives
Tm(x) = T (y). Hence Ty, is constant on the fibres of the measurable map P, : X™ — P, (X), i.e. T,
is 0(Pm)-measurable. By the Doob-Dynkin lemma, there exists a measurable ¢, : P (X) — T such that
T = ¢m o Pp,.

(iii) If Ton(z) = Tm(y) but Pr(z) # Pm(y), choose an atomic law P that puts positive mass on every
point appearing in x or y. Then both sequences have positive probability under P®™. By varying the atomic
masses on that finite support, the ratio P®™ ({z})/P®™({y}) can be changed while keeping T}, (z) = T} (),
forcing the conditional distribution of X.,, given T}, to depend on P, contradicting sufficiency. Therefore
Tim(z) = Tm(y) = Pm(z) = Pm(y), so P is measurable with respect to o(Tn ). O

Corollary 1 (Necessity of empirical-measure dependence for artifact-free encoders). Let Z,,, = En (X1:m) be
an encoder output.

(1) If &, is permutation invariant, then by Theorem ii) there exists ¢, such that Z,, = ¢m(Pm): the
encoder can only depend on the data through the empirical distribution.

(i1) If, additionally, the family (5m)m21 is distributionally invariant in the sense of Deﬁnition then there
exists a single measurable map ¢ : P(X) — Z such that Z,,, = ¢(P,,) for all m.

In this sense, restricting to empirical-measure dependence discards only ancillary sample-level degrees of
freedom (order and size artifacts) and keeps exactly the information relevant to the underlying law P.

Remark (Connection to predictive sufﬁc1ency and scaling). Theorem E[formalzses “losing nothing” (sufficiency)
and “not keeping anything unnecessary” (minimality) for the nonparametric i.i.d. model. Definition Z in
Appendix[D3is an asymptotic, reconstruction-based analogue restricted to the manifold M: it asks that from a
low-dimensional coordinate ¢(Py,) one can reconstruct P, (in || - ||BL) as m — oo. Operationally, enforcing
duplication invariance removes a particularly dangerous ancillary channel: set size. Without it (e.g. sum
pooling), a flexible generator can fit finite-m size effects during training and behave unpredictably when m
changes, even if the empirical distribution is unchanged.

D.2 A Complete Large-m Analysis of the Plug-in Loss

Motivation We analyze the statistical properties of the plug-in loss used to train distributional encoders and
generators. Our goal is to understand the asymptotic behavior of this loss as the sample size grows, and to
establish conditions under which the learned generator recovers the true data distribution. This analysis provides
a principled foundation for the training objectives used in our framework.
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Setting First we establish some notation and definitions.

Definition 3 (Hadamard differentiability). A map 7" : D — )Y between normed spaces is Hadamard differen-
tiable at x € D if there exists a continuous linear operator DT}, such that for every sequence h; — h in D and

t o, Tetthd =T@) . pr, ().

Definition 4 (Fréchet differentiability). Let T : D — ) be a map between normed vector spaces. We say that
T is Fréchet differentiable at x € D if there exists a bounded linear operator A : D — ) such that

|7 (z+h) —T(x) — A(R)||ly
Ikl p—0 Ih|lD

=0.

The operator A is called the Fréchet derivative of T" at x.
Definition 5 (Tangent set at (g.). Let Qo € P(X) and write M (X) for finite signed Borel measures on X
with total mass 0. Define the L?(Qo)-tangent space

Do(Qo) := {h € Mo(X) : h < Qo, C%LO c LQ(QO)}, Bllng == .

We view Do (Qo) as a normed linear space via the identification h <+ dh/dQo.

dh
N

L2(Qo)

We work in the following general setting:

Assumption 1 (Data and Empirical Measure). (X, B) is a Polish space; P € P(X) is the true data law.
Observations Sy, = (X1,..., Xm) are i.i.d. P. The empirical measure is P, = i Z:il 0x;.

Assumption 2 (Encoder regularity). For each probability law P € P(X) the encoder ¢ : P(X) — R? satisfies
(i) Distributional invariance: E.,(Sm) = ¢(Prm) depends on the sample only via its empirical measure.

(ii) Pathwise (Hadamard) differentiability: ¢ is pathwise differentiable at P and its canonical gradienﬂ
¥p : X — R belongs to L*(P).

(iii) Asymptotic linearity (AL): there exists a remainder T, such that
1 m
VmA{d(Pm) —d(P)} = —= ) vp(Xi)+7m,
{ NG ;

where Ex~p[¢Yp(X)] = 0and 1, — 0 in L>(P®™).

In particular,

Vm{d(Prn) = 6(P)} & N(0,34), %y := Varx~p[tr(X)],

2
and sume”\/ﬁ{qS(Pm) — ¢(P)}” < oo.
Assumption 3 (Generator). Let M(X) denote the vector space of finite signed Borel measures on X equipped
with || - ||BL, and identify P(X) C M(X). Assume the generator G : R* — P(X) admits a local Fréchet

expansion at ju := ¢(P) when viewed as a map into M(X): there exists a bounded linear map D,G : R —
Mo (X) such that

|Gk + 1) = G(1) = DuGIhl| gy, = o(llhllza) — as [|A]] — 0.
Moreover, writing Qo := G(), the derivative is L? (Qo)—compatible:

D.G(RY) CDo(Qo) and  sup

[IrlI<1

Dug[h}HDO < .

Finally, the remainder is negligible in the L2(Qo) tangent norm:
16+ 1) — G() — DuGll|ly, oy = olllBllza) s |1 0.

Assumption 4 (Divergence (Hadamard differentiability on an L? tangent space)). Let Qo := G(p) and Do(Qo)
be as defined above. The discrepancy L : P(X )2 — Ry satisfies:

(i) (Hadamard differentiability on Do (Qo)) for each fixed P, the map Q — L(P,Q) is Hadamard
differentiable at Qo tangentially to Do(Qo) (equipped with || - ||p, ), with continuous linear derivative

DQ,C,(}D7 Qo) : ]D)()(Qo) — R.

'In the semiparametric sense of[67, i.e. the unique influence function representing the functional derivative
along Mo (X).
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(ii) (Separating property) L(P,Q) =0 — P =Q;
(iii) (Weak-continuity) for each fixed P, if L(P, Q) — 0 then Q, = P.

We work with the discrepancy £ from Assumption 4]

The plug-in loss is R
Um = L(P, G(¢(Pm)))

0= L(P, G(¢(P))),
where P, is the empirical measure of the sample, ¢ is the encoder, and G is the generator. When P is unknown,
L(P,-) is evaluated via an empirical Monte Carlo estimate based on Sy, ; the results below describe the additional
error incurred by using ¢(P,,) in place of ¢(P).
Lemma 1 (Functional Delta Method, [67) Thm. 3.9.4]). Ler (D, || - ||p) and (E, || - ||&) be normed vector spaces.
Let T : D — E be a map that is Hadamard differentiable at a point z € D tangentially to a subset Dy C D,
with continuous linear derivative denoted DT, : Dy — E.

and the population loss is

Suppose:

(a) There exist random elements Z,, taking values in D such that:

VU — 2) =5 Z

for some tight limit Z taking values in Do.
(b) Z is tight and Borel measurable.

Then:
V(T(Zm) = T(2)) -4 DT.(2),
where DT.(Z) is a random element of E.

In particular, if Z is Gaussian in Do and DT, is continuous and linear, then DT, (Z) is Gaussian in E.

Main Result
Theorem 2 (Large-m behaviour of the plug-in loss). Assumel[I} 2] 3] and

Let p := ¢(P) and U = L(P, G(¢(Pm))). Then:

(a) Asymptotic normality of the Encoder.
VI{$(Pn) — d(P)} L N(0,%4), T4 := Varx~p[tp(X)].

(b) Consistency (and mean consistency) of the loss. Writing (0 ( ) we have
Co = 0($(P, ))—M( ) =:L"
If, in addition ¢ is locally Lipschitz on a neighbourhood of . (as a map R® — R) and the sequence
{l(¢(Pm))}m>1 is uniformly integrable, then
E|Em — 0| =0 and hence E[Zm] — L.

A sufficient condition for uniform integrability is the following growth bound.: there existp > 1 and C' < oo
such that [€(0)| < C (1 + ||6]|P) for all 8 and sup,,, E||¢(Prm)||P < co.

Moreover, if £ is twice continuously differentiable in a neighbourhood of 1 with bounded Hessian, then a
second-order Taylor expansion yields

E[lm] — 0" = DO[E[$(Pr) — p]] + O(m™") = o(m™"/?).
In common unbiased cases where E[¢p(Pp,) — } Oo(m ) (e.g. sample means and many smooth
M-estimators), this simplifies to B[] — £ = O(m™1).
(c) Asymptotic normality of the loss. Let £(0) := L(P Q(Q)) and denote its derivative at |1 by the continuous
linear functional
D¢, - RY 5 R, D¢, [h] = DQC(P, Qo)[DMg[h]], Qo :=G(u).
Then R
Vi (b = £°) & N(0,0%),  o° = D, 34 DE),.

(Identifying DX,, with a gradient vector V  { € R? under the Euclidean inner product yields o° =
(VME)TZQ)(V‘LE)_)
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(d) Consistency under correct specification. Fix P. If (¢*,G*) minimizes the population objective
(¢,9) — L(P, G(¢(P)))
over the model class, and if the model is well-specified in the sense that the minimum value is 0 (equivalently,

L(P,G*(¢*(P))) = 0), then g*(¢>* (Pm)) = P in P®™-probability as m — oo.
Proof. Step 1: Asymptotic Normality of the encoder (a). Assumption |Zkiii) (asymptotic linearity) gives
1 m
Ppn)—¢(P)} = — X 1),
Vi{6(P) = (P)} = = 3 0e(Xi) + op()
and the classical multivariate CLT yields the stated convergence.
Let A, = ¢(Po) — 50 that, by (a), v/ Ay, 22 N(0, Sy).

Step 2 (consistency and mean consistency). Write £(0) := L(P,G(0)) and A,, := ¢(Pm) — p. By
Assumption iii), A, = Op(m™1/?), hence ¢(P,) = p + Ay, — p in probability. Since £ is continuous at

1 (automatic if £ is differentiable at 1), the continuous mapping theorem gives b =1 (+ Am) = L(p) =L
in probability.

For convergence of expectations, assume £ is locally Lipschitz near p and {¢(¢(Pm))}m>1 is uniformly
integrable. Since ¢(P,) — u in probability and £ is continuous at u, we have £(¢(P,,)) — £(u) in probability,

i.e. £, — £* in probability. Uniform integrability then implies E[¢,,] — £* and IE|Zm — 0| = 0.

If one prefers a direct bound using local Lipschitz, let U be a neighbourhood of 1 on which [£(8) — £(p)| <
L||6 — p|. Then

Effm — £ < B[+ Am) — £02)| {4+ Ay € UY + E[Je(n + Ap) — £)| 1+ A ¢ UY].

The first term is < LE||A,,|| and tends to 0 since sup,, E|l\/m A.,||?> < co. The second term vanishes by
uniform integrability together with P(u + A,, ¢ U) — 0.

If £ is C? near . with bounded Hessian, a second-order Taylor expansion gives
E[lm] — € = DL[E[AL]] + OE|An|?) = DL[E[AL]] + O(m™) = o(m™'/?),

since E[An,] = E[rm]//m = o(m~"/?) under Assumption 2Jiii). (If additionally E[A,,] = O(m '), then
the bias is O(m™").)

Step 3: Asymptotic Normality of the loss (c). Let A, := ¢(Pn) — p so that v/m A, = Z with Z ~
N(0,%4) by part (a).

By Assumption (including the Do (Qo) remainder control),
Vi{G(u+ An) = Qo } = ViR DuGlAn] + 0,(1) in (Do(Qo). | - [ls,)-
Since DG : RY — Do(Qo) is bounded linear, we also have \/m D,G[A,,] = D,G[Z] in Do(Qo).
Now apply the functional delta method (Lemma to the map Q — L(P, Q) at Qo, tangentially to Do (Qo):
VI{L(P.G(u+ Am)) = £(P,Qo) } = D2L(P,Q0)[D,5[Z]].
Define the continuous linear functional D/, : R* — R by
De,[h] := D2L(P, Qo) [D,G[h]].
Then the limit is D¢,,[Z], which is Gaussian with variance o* = D£,, ¥4 D, .

Step 4: Consistency under correct specification (d). If (¢*, G*) minimises P — L(P,G(¢(P))) and the
model is well specified, then £( P, G*(¢*(P))) = 0, so G*(¢*(P)) = P by Assumptionii). Repeating the
expansion from (c) with (¢*, G*) shows that

L(P,G"(¢"(P))) = Op(m™'"?),

hence £(P,G*(¢*(Pm))) — 0 in probability. Finally, Assumption iii) implies that the topology in-
duced by L(P,-) is at least as strong as the weak topology: for every 17 > 0 there exists ¢ > 0 such that
L(P,Q) < 0 entails d.(P, Q) < n. (Otherwise one could construct a sequence (Q,) with L(P, Q) — 0
but dgr.(P, Q) > n for all n, contradicting the assumption.)
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Since £(P,G*(¢*(Pm))) — 0 in probability, for any fixed > 0 we may choose § > 0 as above and obtain
B(do (G (6" (Pw), P) > ) < B(L(P,G" (6" (Pn))) > 8) ——0.

m—r o0

Thus G*(¢*(Pm)) = P in probability as claimed.
O

Encoders: examples, counter-examples, and CLTs The only encoder requirement entering Theorem 2]
is Assumption@ We now show that it is satisfied by a large family of permutation-invariant architectures built
from asymptotically-linear (M /Z) poolers.

Generic K -layer pool-concat encoder Fix K € N. Given a set of samples S,,, = {x1, ..., T} define
recursively

WO = pla), hO = TOGBED), hY = MLP(R" V2", =1,.. K,
and set the encoder output to be another pooler ¢(P,,) = T* +1)(h<1f2) :
We call a permutation-invariant functional an asymptotically linear (AL) pooler if it is root-m consistent and

admits an influence-function expansion; precise details follow.

Definition 6 (Asymptotically-linear pooler). Let ¢ : P(X) — R? be a fixed statistical functional. A family
of symmetric maps (T )m>1 With Tr, : X™ — R? is an AL pooler for @ at law P if each T},, depends on the
sample only through its empirical measure P, and there exists ¥»p € L?(P) such that, as m — oo,

Vi T (Xim) — 9(P)} = T%prm) + 0,(1).

Examples include the sample mean, median, trimmed mean, Huber M -estimators, M-quantiles, and studentised
Z-estimators with finite variance.

Proposition 4 (CLT for K-layer AL pool-concat encoders). Assume

(i) each 7o (0=1,...,K + 1) is a distributionally invariant AL pooler (in the sense ofDeﬁnition@ at

B

(ii) each MLP, and the base feature map p : X —RP are C? with bounded derivatives, and weights are
frozen as m — oo.

Then the encoder ¢ is distributionally invariant, pathwise differentiable, and satisfies the CLT of Assumption|2]
with

V{$(Pm) — 6(P)} & N(0,%,),

for some finite covariance matrix ¥ .

Sketch. The composition of Lipschitz maps (MLP,) with AL poolers is Hadamard differentiable by repeated
application of the delta method (iterating Lemmal[T] [67])). Plugging each AL expansion into the chain yields an
overall AL expansion whose leading empirical-process term is m~Y/? " L ¥p(Xe) for some L?(P) function
Yp, giving the CLT. O

Instantiation to common architectures

Corollary 2 (DeepSets, Transformers without positional enc.). Encoder architectures of either type below
satisfy Assumption[2]and Proposition 4}

(a) DeepSets / fully-connected GNN with global mean: T® and TE+D are sample means;

(b) Self-attention block with mean head: T'® are sample means; MLP, includes the softmax-attention update.

Why max-pooling fails The max functional Tax(z1:m) = max; z; is not Hadamard differentiable at
continuous laws: its influence function is identically O whenever the maximum is attained at a unique point
and undefined when it is not. As a consequence, the usual y/m—scaling does not yield a Gaussian limit for the
centered statistic v/m {Tmax (X1:m) — Tmax(P) }; instead, after a different (typically linear-in-m) rescaling
one obtains a non-Gaussian extreme-value limit law. Thus Assumption [2iii) fails. Using max-pooling inside a
deep encoder therefore breaks the loss-CLT of Theorem 2} (Softmax pooling with fixed temperature 7 > 0, by
contrast, is smooth and can be made into a valid AL pooler.)

The table below summarises the status of common poolers.
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Pooler AL/CLT? Influence fen. ¢p in L2 (P)?

Sample mean v v
Huber M -estimator (¢ fixed) v v
Sample median v N
Top-k or max X X
Softmax (7 > 0 fixed) v v

Smooth Approximation of Non-Regular Statistics The theory developed here establishes that
Hadamard differentiability of the encoder ensures asymptotic normality and consistency, and in Appendix[C.]|
we develop the idea that our encoders learn sufficient statistics. But what if the sufficient statistic of interest is
not Hadamard differentiable? The sample maximum is a classic example: it is the minimal sufficient statistic for
the endpoint of a uniform distribution (see Example[2), yet it is not asymptotically normal.

Let X1,...,Xm ~ Uniform(0, §). The sample maximum
X(m) = max{Xl, e ,Xm}
satisfies
m(0 — X (m)) % Exp(1/6),
so it converges to 6 but its asymptotic distribution is exponential, not Gaussian. This occurs because the

maximum is not a smooth functional of the empirical distribution: it fails Hadamard differentiability, so the
functional delta method does not apply.

A natural remedy is to approximate the max by a smooth, duplication-invariant functional. A standard choice is
the normalised log-sum-exp:

LSEx(X1,..., Xm) = %log (; Ze”‘i> .
i=1

For fixed A, this is a smooth functional of the empirical measure (under mild moment conditions ensuring the log-
moment is finite) and is therefore amenable to the delta-method theory above. As A — oo, LSE\x — max; X,
so we recover the max in the limit.

Corollary 3 (Smooth approximation suffices for asymptotic normality). Let T'(P,,) be a non-smooth statis-
tic (e.g., the maximum), and let 7' ()‘)(Pm) be a family of smooth approximations (e.g., LSEy) such that
TN (Py,) — T(P,,) pointwise as A — co. Suppose that for each fixed X the map P — T (P) is Hadamard
differentiable and satisfies Assumption Then for any fixed X, T (Py) admits asymptotically normal plug-in
estimators. Allowing A = \,, — oo introduces a tradeoff between approximation error and /m-asymptotics.

Thus, even when the true sufficient statistic is not regular, a Hadamard differentiable encoder can still be learned
to approximate it. This ensures that the asymptotic guarantees from Theorem 2] continue to hold. This also
highlights why we cannot use max-pooling in the encoder, since it breaks the y/m CLT.

Generators All neural generators considered in the experiments—MLPs and Transformer decoders directly,
and diffusion/score models when implemented with a fixed-step sampler—can be viewed as finite-dimensional
compositions of smooth maps from latent codes to synthetic samples, inducing a (locally) smooth dependence of
the resulting law on the embedding; this is the modelling assumption captured by Assumption 3]

D.3 Embeddings and Predictive Sufficiency

Setting. Let M C P(X) be the statistical manifold introduced in Section [5}

Here we assume the statistical manifold M is d—dimensional (in the usual differential-geometric sense), so
dim Tp M = d for every P € M.

For P € M observe Sp, = (X1,..., Xm) 114 P and write the empirical measure P, = m ! ZT;I 0x;.

Throughout we use the plug-in predictor Pr,. Given a statistic Tr, = ¢(Py, ), where ¢ : P(X) — R? is defined
and C* on a neighbourhood of M, let U C R? be an open set with (M) C U such that P(¢(Pr,) € U) — 1
for every P € M. Define a reconstruction map R : U — M that is C* on U (in the manifold sense) and set

P := R(T\n) = R(¢(Pn)).
Definition 7 (Predictive sufficiency). The statistic Ty, = ¢(Pr,) is asymptotically predictive sufficient if there
exist an open set U C R? with ¢(M) C U, and a reconstruction map R : U — M that is C* on U (in the
manifold sense), such that for every P € M,
®@m
Ppom (¢(Pn) €U) =1 and ||Pm — R($(Pm))|y, —— 0.

BL m—ooo
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We write P2 := R(¢(Po)).

This notion of sufficiency is a reconstruction-based asymptotic analogue of the “no order/size artifacts” principle
in Section|D. 1} it asks that from the low-dimensional coordinate ¢( Py, ) one can reconstruct the plug-in predictor
P, in the bounded-Lipschitz metric (and hence recover all weakly continuous predictive functionals).

Theorem 3 (Embedding <= Predictive sufficiency). Assume that ¢ : P(X) — R® is C* on a neighbourhood
of M and satisfies the encoder regularity conditions of Assumpti(m Then the following are equivalent.

(i) Smooth embedding: the restriction ¢ : M — R is injective and its differential dpp : TpM —
R? is bijective for every P € M.

(ii) Predictive sufficiency: To, = ¢(Pp) is asymptotically plug-in sufficient in the sense of Deﬁnition@
Proof (sketch). Throughout, || - ||sL denotes the bounded-Lipschitz norm on signed measures.

(i) = (ii). If ¢|r( is a smooth embedding, its image ¢(M) C R? is an embedded submanifold. By the
inverse—function theorem and standard tubular-neighbourhood constructions, for each P € M there exists a
neighbourhood Vp of ¢(P) in R? and a continuous map Rp : Vp — M such that Rp(¢(Q)) = Q for all
Q € M with ¢(Q) € Vp. Using a partition of unity we may glue these local inverses into a single continuous
retraction R : V' — M defined on an open neighbourhood V' of ¢(M) and satisfying R(¢(Q)) = Q for all
Qe M.

Encoder regularity (Assumption@ gives
VmA{$(Pn) — o(P)} = % ; ¥p(Xi) +op(l) inRY,

$0 ¢(Pn,) — ¢(P) in probability. Since P,,, — P in dgy, almost surely, we have ¢(P,,) € V with probability
tending to one and

PY = R(¢(Pn)) % R(¢(P)) =P

in the bounded-Lipschitz topology, by continuity of R. Combining this with P,,, — P in || - ||sL and applying
the triangle inequality yields

¢ ¢ pem
[Pm = PrllsL < [[Pm — Pllsr + [Py — Pl —— 0,
m—r o0
which is precisely predictive sufficiency in the sense of Definition [7]

(i) = (i). Conversely, assume predictive sufficiency with R € C' 1(U ,M). Fix P € M. Since P,, — P in
| - |l a.s. and || P, — R(¢(Pm))||BL — O in probability, we have R(¢(Pr,)) — P in probability. Encoder
regularity implies ¢(P,) — ¢(P) in probability, hence by continuity of R, R(¢(P)) = P. Therefore
Ro ¢|m = idm.

Differentiating the identity map on M and using the chain rule yields
dR¢(p) o d(bp == idTpM-

Thus dép is injective for every P € M, and since dim Tp M = d = dim R, it is bijective. Moreover, R|ym)
is a continuous inverse of ¢| a1, SO P| a1 is a smooth embedding. O

Remark (Identifiability is automatic). Because each P € M already defines a unique predictive distribution,
any statistic that is plug-in sufficient must be injective; no separate identifiability condition is required.
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E Extensions

E.1 Extension to Multiscale Settings

In many applications, data is naturally organized across multiple scales. For example, we may observe
distributions of samples at a fine scale (e.g., single cells), grouped into entities at a coarser scale (e.g., patients),
which themselves may belong to larger groups (e.g., hospitals). More generally, we may observe hierarchical
data in which each level exhibits internal distributional structure.

Our framework naturally extends to such multiscale settings. At each scale s, we observe a set of units indexed

byi = 1,...,n(*). Each unit i at scale s is associated with: a set of samples Sf‘?n = {:rgj)};”zl, drawn i.i.d.
(s+1)

from a distribution Pi(s) and a higher-scale sample x; e xGt, representing the corresponding entity at

scale s + 1.
The lower-scale distributions Pi(s) are drawn i.i.d. from a meta-distribution Q) over P(X®), while the
higher-scale samples '* ") are drawn from P{* "), where P{*T") ~ Q(+1,

s)

Each lower-scale set Sg ., defines an empirical measure

. 1 m
P = 200 € P X)),

Jj=1

At each scale we learn: an encoder £ : P, (X®)) — R% mapping lower-scale empirical distributions into
latent space, an encoder £ (s+1), p(+D) 5 Rdotr mapping higher-scale samples into the corresponding latent
space, and generators G(*) : R% — P(X(®)) and GV : Rs+1 — P(X D) at each scale.

To link adjacent scales, we introduce deterministic maps
FO RS S R4 and g i R%H 5 RY
which project embeddings upward and downward between latent spaces.

We jointly train to enforce: Approximate identity at each scale:
g<5>(5(5)(5_(5) ) ~ P~(S>, g(s+1)(5(5+1)(m(5+1))) ~ P_(5+1)7

and co-embedding consistency: the mapped lower-scale embedding f(*) (£(*) (S’Z(Sr)m)) should align with the

s+1) (x(s+1))

higher-scale embedding £ ( and vice versa via g(s).

Formally, we optimize objectives of the form:

L=2(P®,gW(EW(85)) )
+ O(P_(S-H)7 g(5+1)(8(5+1)(m(_3+1)))) (3)
+ o FED(SEL)) — T @Yy )
+ g EETISEY)) — €9 (@) (5)

where 0 is a divergence or distance (e.g., KL divergence, Wasserstein distance) defined by the generative model.
One natural approach would be to let f () g(s) both be the identity, forcing the model to learn a co-embedding
across scales. But this may be too rigid and we might prefer more flexilbity in practice.

This bi-directional coupling ensures that embeddings at adjacent scales are mutually predictive and geometrically
aligned, while each scale individually satisfies distributional invariance and approximate identity. The framework
naturally generalizes to hierarchies involving more than two scales by recursively composing the maps f () and
g% across levels.
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F Broader impacts

Generative distribution embeddings provide a general framework for modeling data across scales. They are
broadly applicable to a wide variety of problems, including those with direct societal consequences, for example
in healthcare. In these settings, it will be critical to consider any potential inequities induced by GDEs, as is the
case for any modelling approach. Lastly, we acknowledge the environmental impact of this paper, which used
nontrivial amounts of computational resources, estimated to be about 54kg CO».

36



NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction concretely state the main theoretical and empirical results
of the paper, and enumerate the demonstrated applications of our method.

Guidelines:

¢ The answer NA means that the abstract and introduction do not include the claims made in the
paper.

* The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

¢ The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.
2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We have a separate limitations subheading under the Discussion section. We clearly state
key limitations of our method (assumption of exchangability, etc).

Guidelines:

¢ The answer NA means that the paper has no limitation while the answer No means that the paper
has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

¢ The paper should point out any strong assumptions and how robust the results are to violations of
these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

¢ The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide
closed captions for online lectures because it fails to handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to address problems
of privacy and fairness.

¢ While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer: [Yes]

Justification: Theoretical results are stated with complete proof and assumptions in the Appendix of
the paper. Informal versions of theoretical results are provided in the main text.

Guidelines:

* The answer NA means that the paper does not include theoretical results.
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 All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.

» All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if they appear in
the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

¢ Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All experimental details are provided in the Appendix. Moreover, all experimental results
can be reproduced by running the code in the provided (anonymized Github repository). Models
can be trained using the appropriate experiment configs in the config/experiment/ directory, and
figures from the paper can be reproduced by running notebooks in the notebooks/ directory.

Guidelines:

* The answer NA means that the paper does not include experiments.

« If the paper includes experiments, a No answer to this question will not be perceived well by the
reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

« If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should either be
a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: Code and datasets are made publicly available, and code necessary to reproduce results
are provided with documentation.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.
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* While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

* The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/|
guides/CodeSubmissionPolicy) for more details.

» The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

* Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLS to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: All experimental details (including train/test splits and model implementation choices)
are provided in the Appendix, and can be found in the accompanying (anonymized) Github repository.

Guidelines:

* The answer NA means that the paper does not include experiments.

¢ The experimental setting should be presented in the core of the paper to a level of detail that is
necessary to appreciate the results and make sense of them.

» The full details can be provided either with the code, in appendix, or as supplemental material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [Yes]
Justification: Standard errors are reported where relevant and feasible.
Guidelines:

* The answer NA means that the paper does not include experiments.

¢ The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

 The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

* The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

¢ The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error of the
mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should preferably report
a 2-sigma error bar than state that they have a 96% ClI, if the hypothesis of Normality of errors is
not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

« If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]
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9.

10.

11.

Justification: The appendix includes details of the compute resources used for this work. Full internal
cluster details will be released after the double-blind period ends.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud
provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual experimental
runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We adhere to the code of ethics.
Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

« If the authors answer No, they should explain the special circumstances that require a deviation
from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consideration due
to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [Yes]

Justification: We discuss potential societal impacts in the broader impacts section in Appendix of the
paper.
Guidelines:

¢ The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal impact or
why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

¢ The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [NA|

Justification: We do not release datasets or models with high risk for misuse.
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Guidelines:

¢ The answer NA means that the paper poses no such risks.

¢ Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

» Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]
Justification: We cite the datasets, code, and models used in the paper.
Guidelines:

* The answer NA means that the paper does not use existing assets.

» The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a URL.
¢ The name of the license (e.g., CC-BY 4.0) should be included for each asset.

» For scraped data from a particular source (e.g., website), the copyright and terms of service of
that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the package should
be provided. For popular datasets, paperswithcode.com/datasets|has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [Yes]
Justification: The code provided in the accompanying repository are well-documented.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

¢ The paper should discuss whether and how consent was obtained from people whose asset is
used.

¢ At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]
Justification: We do not perform crowdsourcing experiments or research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

¢ Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main

paper.
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* According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]
Justification: No human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

* We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

* For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.
Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard
component of the core methods in this research? Note that if the LLM is used only for writing,
editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or
originality of the research, declaration is not required.
Answer: [NA|
Justification: LLMs are not an important component of this work.
Guidelines:
* The answer NA means that the core method development in this research does not involve LLMs
as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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