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Abstract

Despite the remarkable success of diffusion mod-
els (DMs) in data generation, they exhibit spe-
cific failure cases with unsatisfactory outputs.
We focus on one such limitation: the ability of
DMs to learn hidden rules between image fea-
tures. Specifically, for image data with dependent
features (x) and (y) (e.g., the height of the sun
(x) and the length of the shadow (y)), we inves-
tigate whether DMs can accurately capture the
inter-feature rule (p(y|x)). Empirical evaluations
on mainstream DMs (e.g., Stable Diffusion 3.5)
reveal consistent failures, such as inconsistent
lighting-shadow relationships and mismatched
object-mirror reflections. Inspired by these find-
ings, we design four synthetic tasks with strongly
correlated features to assess DMs’ rule-learning
abilities. Extensive experiments show that while
DMs can identify coarse-grained rules, they strug-
gle with fine-grained ones. Our theoretical analy-
sis demonstrates that DMs trained via denoising
score matching (DSM) exhibit constant errors in
learning hidden rules, as the DSM objective is not
compatible with rule conformity. To mitigate this,
we introduce a common technique - incorporat-
ing additional classifier guidance during sampling,
which achieves (limited) improvements. Our anal-
ysis reveals that the subtle signals of fine-grained
rules are challenging for the classifier to capture,
providing insights for future exploration.

1. Introduction

Despite the remarkable capabilities demonstrated by dif-
fusion models (DMs) in generating realistic images (Ho
et al., 2020; Song et al., 2020; Vahdat et al., 2021; Dhariwal
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& Nichol, 2021; Karras et al., 2022; Tian et al., 2024b),
videos (Ho et al., 2022; Yu et al., 2024; Yuan et al., 2024b),
and audio (Liu et al., 2023a; Yang et al., 2024b; Lemercier
et al., 2024), they still encounter specific failures in synthesis
quality, such as anatomically incorrect human poses (Borji,
2023; Zhang et al., 2024; Huang et al., 2024) and misalign-
ment between generated content and prompts (Feng et al.,
2022; Borji, 2023; Chefer et al., 2023; Liu et al., 2023b;
Lim & Shim, 2024), which could harm the reliability and
applicability of DMs in real-world scenarios.

We focus on a specific type of failure with limited attention:
the failure of DMs in learning hidden inter-feature rules
behind images. Specifically, consider image data containing
dependent feature pairs (x,y), such as the height of the
sun (x) affecting the length of a pole’s shadow (y). Our
investigation centers on whether DMs targeting the joint
distribution p(x,y) can accurately capture the underlying
relationships between x and y, effectively recovering the
conditional distribution p(y|x). Theoretically, a diffusion
model that perfectly estimates the joint distribution should
naturally capture the conditional distribution, thereby learn-
ing the latent rules between features. However, in practice,
numerous factors, such as non-negligible score function es-
timation errors, can cause the sampled joint distribution to
deviate significantly from the true distribution (Chen et al.,
2022; 2023; Benton et al., 2024). How do these deviations
propagate to inter-feature rule learning? This gap between
theory and practice remains largely unexplored.

Although existing studies have explored whether DMs can
learn specific rules, they primarily focus on independent
features, such as DMs’ compositional capabilities (Okawa
et al., 2024; Deschenaux et al., 2024; Wiedemer et al., 2024).
Some works have investigated inter-feature dependencies in
DM, but the varying complexity of rules has led to contra-
dictory findings. For example, DDPM has been reported to
fail in generating images satisfying numerical equality con-
straints (Anonymous, 2025), while succeeding in reasoning
about shape patterns in RAVEN task (Wang et al., 2024a).
These inconsistencies highlight the need for a unified ex-
perimental setting that allows for adjustable rule difficulty,
enabling an accurate evaluation of DMs’ rule-learning capa-
bilities. Moreover, existing studies rely heavily on empirical
observations, lacking theoretical analysis to elucidate the
limitations of DMs in rule conformity.
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Figure 1. Synthetic Tasks Inspired by Real-World Insights. Based on whether inter-feature rules involve spatial dependencies, we
categorize the failure cases into spatial and non-spatial rules. Spatial rules include: (a) Light-shadow, where evaluated DMs generate
unreasonable multiple shadows or incorrect shadow flips; (b) Reflection/Refraction, showing incorrect mirror rules or missing refraction
effects below water surface; (c) Semantics, such as inconsistencies between sunflower orientation and sun position, or brush and canvas
colors. Non-spatial rules involve: (d) Size-Texture, like mismatches between tree diameter and growth rings; (e) Size/Region-Color,
where evaluated models fail to capture burning candle’s color variations and star size-color relationships (e.g., red giants and white dwarf);
(f) Color-Color, as in Eclectus parrots’ body-beak color correlations that DMs fail to maintain. Appendix C provides detailed explanations
for each case. These failures of mainstream DMs in handling real-world inter-feature rules inspire our design of four synthetic tasks.

Our investigation into inter-feature rules begins with observ-
ing the limited ability of mainstream DMs (e.g., SD-3.5
Large, Flux.1l Dewv) to capture real-world inter-feature
rules, as illustrated in Figure 1, even though these mod-
els perform well on metrics such as FID !. Their errors in
inter-feature relationships are evident in various scenarios,
such as inconsistent relationships between sun positions and
building shadows, mismatched reflections of toys in mirrors,
and sunflowers failing to face the sun. Then, we carefully
design four synthetic tasks to reflect real-world rule failures,
ensuring the practical relevance of our findings. The rule of
each task features two difficulty levels: coarse-grained rules
(e.g., the sun and a pole’s shadow should be on opposite
sides) and fine-grained rules (e.g., the shadow’s length as
a precise function of the sun’s height). This hierarchical,
controllable framework enables a comprehensive evaluation
of DMs’ rule-learning capabilities. Next, through extensive
experiments considering various factors including model
architectures, training data size, and image resolution, we
reach a consistent conclusion: DMs effectively learn coarse-
grained rules but struggle with fine-grained ones.

Furthermore, we develop a rigorous theoretical analysis
using a multi-patch data model with an inter-feature rule

! Appendix A lists Mixture Gaussian as an example to demon-
strate that low FID and incorrect inter-feature relationships in DMs’
generations are not contradictory.

specified in terms of norm. We prove a constant error lower
bound on learning the hidden rule via optimizing the DSM
objective (Ho et al., 2020) with a two-layer network. This
demonstrates the incompatibility between learning joint dis-
tributions and identifying specific inter-feature rules.

Recognizing DMs’ difficulty in learning inter-feature rules,
we mitigate this issue by constructing contrastive pairs that
satisfy either fine-grained or coarse-grained rules and then
using them to train a classifier as additional guidance. While
this strategy enhances rule-compliant sample generation, fur-
ther improvements are still achievable. The in-depth anal-
ysis identifies that fine-grained rules exhibit weak signals,
making accurate classifier training particularly challenging.
We summarize our key contributions as follows:

Empirically, inspired by mainstream DMs’ struggles with
real-world inter-feature rules, we innovatively create syn-
thetic tasks with coarse/fine-grained rules to systematically
assess DMs’ rule learning ability in Section 3.1.1. Extensive
experiments in Section 3.3 show that while DMs can learn
coarse rules, their ability to grasp precise rules is limited.

Theoretically, we rigorously analyze DMs on a synthetic
multi-patch data distribution with a hidden norm depen-
dency in Section 4. We prove that the unconditional DDPM
cannot learn the precise rule of norm constraint, which ex-
hibits at least a constant error in approximating the desired
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score function. This identifies the limitation of the current
DMs training paradigm and necessitates further improve-
ments for learning hidden rules behind images.

Methodologically, we mitigate DMs’ inability to learn
fine-grained rules by introducing guided diffusion with a
contrastive-trained classifier in Section 5. However, the chal-
lenges of accurately classifying fine-grained rules identify
room for improvement in our strategy. This problem, dis-
tinct from traditional classification tasks, involves detecting
subtle distinctions between fine-grained and coarse-grained
rules, highlighting valuable insights for future exploration.

2. Related Work

We summarize prior studies on the ability of DMs to learn
specific rules, and discuss the relations to inter-feature rules.

Factual Knowledge Rules. The violation of factual rules in
DMs refers to generated images failing to accurately reflect
factual information and common sense, often characterized
as hallucinations in existing work (Aithal et al., 2024; Lim &
Shim, 2024; Anonymous, 2025). Typical examples include
violating common sense, such as extra, missing, or distorted
fingers (Aithal et al., 2024; Pelykh et al., 2024; Ye et al.,
2023), unreadable text (Gong et al., 2022; Tang et al., 2023;
Xu et al., 2024) and snowy deserts (Lim & Shim, 2024).
Additionally, inconsistencies between generated images and
given textual prompts (Liu et al., 2023b; Fu & Cheng, 2024;
Mahajan et al., 2024; Li et al., 2024b) can be regarded as
violations of prompt-based knowledge. Unlike inter-feature
rules, factual knowledge rules do not involve relationships
between multiple features and are typically attributed to
imbalanced training data distribution (Samuel et al., 2024)
or mode interpolation caused by inappropriate smoothing
of training data (Aithal et al., 2024).

Independent Features Rules. Prior work has investigated
DMs’ ability to combine independent features, i.e., composi-
tionality. Through controlled studies with independent con-
cepts (e.g., color, shape, size), Okawa et al. (2024) observe
that DDPM can successfully compose different independent
features. Similar findings are reported in (Deschenaux et al.,
2024), where interpolation between portraits without and
with clear smiles resulted in generations with mild smiles.
However, numerous studies highlight DMs’ limitations in
complex compositional tasks (Liu et al., 2022; Gokhale
et al., 2022; Feng et al., 2022; Marioriyad et al., 2024), po-
tentially due to insufficient training data for reconstructing
each individual feature (Wiedemer et al., 2024). These stud-
ies primarily examine compositional tasks with independent
features, in contrast to our focus on feature dependencies.

Abstract (Dependent Feature) Rules. This type closely
aligns with our work, which studies feature relationships like
shape consistency in generations. Prior studies give mixed

conclusions on DDPM’s rule-learning ability. For example,
DDPM struggles with numerical addition rule (Anonymous,
2025) but maintains shape consistency rule in RAVEN task
(Wang et al., 2024a). Inconsistent rule complexity leads
to ambiguous evaluation conclusions, and the lack of theo-
retical analysis leaves the underlying factors behind DMs’
performance in rule learning poorly understood. Through
controlled experiments with adjustable rule complexity, we
provide a unified assessment of DMs’ rule-learning abili-
ties and offer a theoretical explanation of their fundamental
limitations, as a result of their training paradigm.

3. Exploring Hidden Inter-feature Rule
Learning via Synthetic Tasks

In real-world image generation tasks, rules between features
are often complex and difficult to define or quantify pre-
cisely. To systematically investigate DMs’ ability in rule
learning, as previous work (Okawa et al., 2024; Deschenaux
et al., 2024; Anonymous, 2025; Wang et al., 2024a), we de-
sign simplified and controllable synthetic tasks in Figure 1.
These synthetic tasks not only provide explicitly defined
inter-feature rules but also abstract essential feature rules
present in real-world data, thereby making our conclusions
practically relevant. For example, Synthetic Task A in Fig-
ure 1 simulates the Light-Shadow relationship, while Task
B simplifies the physical rules of Reflection/Refraction.

3.1. Synthetic Tasks Inspired by Real-World Insights
3.1.1. REAL-WORLD HIDDEN INTER-FEATURE RULES

Inspired by Borji (2023), we investigate several common
scenarios where inter-feature rules exist, as illustrated in Fig-
ure 1. Specially, we categorize these hidden rules into two
types, spatial rules and non-spatial rules, based on whether
the inter-feature relationships exist in the form of spatial
arrangements or feature attributes themselves.

Spatial Rules are defined as constraints on the relative posi-
tions and layouts between features, such as the correlation
between the sun’s height and the shadow’s length. In Fig-
ure 1, scenario Light-shadow demonstrates how the position
of a light source should precisely determine the placement
of building shadows. However, both 8-billion Multimodal
SD-3.5 Large?(Rombach et al., 2022) and 12-billion
model Flux.1 Dev’(Labs, 2023), fail to generate proper
shadows, either producing incorrect directions or merely cre-
ating symmetrical duplicates of the actual buildings. Sim-
ilarly, in scenario Reflection/Refraction, while objects in
front of mirrors should dictate the layout of their reflections,
we observe completely unreasonable generations from both

Zhttps://huggingface.co/spaces/stabilityai/stable-diffusion-3.5-
large
3https://fal.ai/models/fal-ai/flux/dev
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models. Furthermore, semantic consistency in Semantics
scenario is violated, as shown by sunflowers not facing the
sun and mismatched paint colors between brush and canvas.

Non-Spatial Rules are defined as correlations between in-
trinsic feature attributes, such as the relationship between
an object’s size and its color. For instance, in type Size
-Texture, tree trunk features should exhibit precise corre-
lations between the diameter and annual ring count, and
candle flames in type Size/Region- Color should show con-
strained relationships between different flame zones and
their colors. However, these fine-grained inter-feature con-
straints are ignored by both SD-3.5 LargeandFlux.1
Dev. More detailed discussion and additional experiments
for more advanced DMs are deferred to Appendix C.

3.1.2. SYNTHETIC TASKS

Inspired by real-world rules in Section 3.1.1, we design
four synthetic tasks (A-D), each with two levels of rule
granularity (coarse and fine), as shown in Figure 1. We
provide a brief overview of synthetic tasks here, with more
details presented in Appendix D. Specially,

Task A is inspired by the spatial rules behind the Light-
shadow case, simulating the physical law between the sun
and pole shadows. In Task A of Figure 1, the coarse-grained
rule requires the sun and shadow to be on opposite sides of
the pole, while the fine-grained rule requires sun’s center,
pole top, and shadow endpoint align linearly, i.e., satisfying
lihe = l3hy (see notations in Task A, Figure 1).

Task B abstracts the spatial rule from the Reflec-
tion/Refraction case, where an object’s reflection size de-
pends on its size and distance from the mirror. Task B uses
two rectangles with lengths iy and hy (notations shown in
Task B, Figure 1) to simulate this perspective rule, where
size diminishes with distance. Assuming the viewpoint is at
the leftmost edge, the coarse-grained rule requires the left
rectangle (closer to the viewpoint) to be longer than the right
one (farther from the viewpoint), i.e., hy > ho, while the
fine-grained rule dictates rectangle lengths be proportional
to their distances from the viewpoint, i.e., l{ho = l3h;.

Task C consists of two tangent circles of different radii, aim-
ing to capture the relationship between shape/outlook and
size as illustrated in non-spatial rule. The coarse-grained
rule simply requires distinct radii for the two circles, i.e.,
r1 # 19, While the fine-grained rule specifies a precise ratio
between the radii, requiring ro = /2.

Task D simplifies the non-spatial rule from scenario
Size/Region- Color in Figure 1, where, in candle flame gen-
erations, colors transition from blue near the wick to yellow
at the outer regions. We construct two such squares, with
smaller squares positioned in the upper half and larger ones
in the lower half of the image. The coarse-grained rule
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Figure 2. Pipeline for extracting features. Given an image, we
first apply a color-based mask by using predefined colors, then
count whether the number of masks meets expectations, and finally
extract features of interest by marking the key points within masks.

requires that the upper square’s side length /; be smaller
than the lower square’s side length o, i.e., [; < I, while
the fine-grained rule specifically requires lo = 1.5[;.

3.2. Experimental and Evaluation Setup

After designing synthetic tasks with well-defined inter-
feature rules, we can systematically investigate the capa-
bility of DMs to learn these underlying relationships.

Experimental Setup. In subsequent experiments, we
train an unconditional DDPM (Ho et al., 2020) on four
synthetic tasks. Unlike latent-space DMs (e.g., SD-3.5
Large), pixel-space DDPM makes the conformity of inter-
feature relationships potentially simpler, as no additional
compression-induced information loss occurs (Rombach
et al., 2022; Yao & Wang, 2025). Following the training
setting (Aithal et al., 2024), we fix the total timesteps at
T = 1000 and employ the widely-used U-Net architecture
(Ronneberger et al., 2015) as the denoiser. 4000, 2000,
2000, and 2000 samples are generated for synthetic task A,
B, C and D, respectively, with an image size of 32 x 32.
Additionally, in Appendix E.3, we explore more advanced
architectures such as DiT (Peebles & Xie, 2023) and SiT
(Ma et al., 2024), alongside larger synthetic datasets of
20000 and 40000 samples and higher image resolutions of
64 x 64. These factors enhance the training of DMs, thus
leading to better alignment between generated and real data
distributions (Chen et al., 2022; Benton et al., 2024; Chen
et al., 2023) and enabling more effective learning of hidden
rules. More experimental details are in Appendix E.1.

Evaluation Method. To evaluate whether generated images
follow the inter-feature rules, Figure 2 designs a three-step
feature extraction pipeline: (1) Color-based Mask: Segment
element masks (e.g., sun, pole, shadow in Task A) based on
predefined color (HSV) ranges when synthesizing training
data; (2) Elements Count: Apply contour detection based
on masks to verify the presence of essential elements, mark-
ing images as Invalid if any are missing; (3) Feature
Extraction: Extract key feature points (e.g., sun center, pole
top/center and shadow endpoint in Figure 2) and compute
geometric features of interest, such as horizontal sun-to-pole
distance /4, vertical sun-to-pole-top distance hq, pole height
ho, shadow length l5. All features are scaled to [0, 1] by
dividing them by the image size to eliminate scale effects.
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Figure 3. Synthetic training data satisfies fine-grained rules. To validate the evaluation method, we extract relevant features from the
synthetic training data and check if they meet expectations, focusing on generations within the interval [2.5%, 97.5%)] for stability. The
closely matching Estimation and Ground Truth lines, along with an R? value near 1, demonstrate effectiveness of the evaluation method.
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Figure 4. Generated data does not satisfy fine-grained rules. Considering generated samples within the [2.5%, 97.5%)] range, we
extract focused features and check if they meet fine-grained rules. The Estimation line, far from the Ground Truth line, and an R? value
less than 1, reveal DMs’ failure in learning fine-grained rules. Appendix E.2 shows generated images that violate the fine-grained rules.

With these features, we can verify whether generated im-
ages satisfy predefined rules. For example, in Task A, we
examine: (1) Coarse-grained rule: the sun and shadow are
on opposite sides of the pole by comparing the relative posi-
tions of the sun center, pole center, and shadow endpoint; (2)
Fine-grained rule: validate the precise geometric relation-
ship l1hy = loh,. We extend the same feature extraction
approach in Figure 2 to validate inter-feature rules in Tasks
B, C, and D. We apply the evaluation method to synthetic
training data to validate our approach’s effectiveness, as
shown in Figure 3, which demonstrates a close alignment
between the estimation and ground truth across all tasks.

3.3. Experimental Results

For each synthetic task, we generate 2000 samples and
report the evaluated results as follows:

DMs’ Success on Coarse-Grained Rules. Table 1 demon-
strates that DMs rarely generate samples that violate the
coarse-grained rules across all tasks. This observation aligns
with expectations: generating samples that violate coarse-
grained rules requires DMs to generate out of the (training)
distribution (OOD) - an extrapolation challenge for DMs
observed in prior work (Okawa et al., 2024; Kang et al.,
2024). In Task A, for example, all training samples place

Table 1. DMs satisfy coarse rules. Table 1 shows the invalid ratio
is around 20%—-40%. And DMs can learn coarse rules with one
exception in Task A, which is visualized in Appendix E.1.

Task Invalid (%) Coarse-Grained Violations
A 30.15 1
B 40.45 0
C 41.75 0
D 24.90 0

the sun and shadow on opposite sides of the pole; violating
this rule would require generating a never-seen mode with
both elements on the same side.

DMs’ Failure on Fine-Grained Rules. While following
coarse-grained rules only requires DMs to avoid unreason-
able OOD generations, fine-grained rules are much harder,
demanding accurate learning of the in-distribution training
data. Figure 4 demonstrates the models’ performance across
four synthetic tasks, where deviations from the ground truth
in linear fitting and the coefficient of determination R? be-
low 1 indicate that DMs fail to fully capture the predefined
fine-grained rules. Additionally, we observe that DMs strug-
gle more with learning non-spatial rules, such as Task C,
compared to spatial rules, such as Task A, as evidenced by
worse linear fitting and smaller R2. This discrepancy likely
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Figure 5. DMs generate rule-conforming samples. Define Rule-
conforming generations have ratios (e.g., ;fﬁ; in Task A) within
+0.01 of true ratio (1 in Task A). Figure 5(a) shows DDPM’s
ability to generate rule-conforming samples across tasks. Fig-
ure 5(b) indicates that nearest neighbor distances between 10 rule-
conforming samples in Task A and training data are large (> 0.3),

suggesting novel generation rather than memorization.

arises from the fact that non-spatial rules are more implicit
and lack explicit cues, such as object positions and lengths,
which are readily available in spatial relationships. More
experiments for various settings (e.g., other backbone mod-
els) are deferred to Appendix E.3, which shows consistent
empirical observations that DMs can capture coarse-grained
rules but struggle to master fine-grained ones.

Despite Instabilities, DMs Can Generate Fine-Grained
Samples. While fine-grained rule experiments show DMs
generally struggle to exactly satisfy underlying rules, we
observe that they can occasionally generate rule-conforming
samples in Figure 5(a), albeit with instability. For exam-
ple, in Task A, there are 10 generated samples that (almost)
satisfy the fine-grained rule, i.e., ﬁfﬁ; € [0.99,1.01]. To
determine whether these 10 ideal samples originate from
DDPM’s generation or are merely training data replicas
(Somepalli et al., 2023a;b; Wang et al., 2024b), we ana-
lyze their memorization behaviors. For Task A, we repre-
sent each sample with a 13D vector capturing key features
(11,12, h1, he) and encoding RGB colors of sun, pole, and
shadow. We then compute Euclidean distances to their
nearest neighbors, considering samples as replicas if the
distance is below a given threshold. Figure 5(b) shows rule-
conforming generations are not mere duplicates, achieving
100% memorization at a large threshold (0.3). Appendix E.2
shows 10 ideal samples and their nearest neighbors, high-
lighting differences. This suggests that, although unstable,
DMs can generate rule-conforming samples. Inspired by
this, Section 5 presents a mitigation strategy with additional
guidance to improve generation consistency.

More Experiments on Real-world Data. Beyond syn-
thetic tasks, we alsp conduct additional experiments on real-
world datasets to further demonstrate that DMs can learn
coarse rules but struggle with fine-grained ones. Specif-
ically, we considers the SynMirror (Dhiman et al., 2024)

dataset, which presents objects and their reflections, where
rules connect features such as color, size, and shape. We
find that DDPM captures coarse rules (e.g., matching col-
ors between objects and reflections) but struggles with fine
ones, often producing mismatched shapes. We also con-
struct the Cifar-MNIST dataset, which pairs specific CIFAR
and MNIST classes (e.g., Cats/Dogs with 0/1). We observe
that DDPM satisfies coarse rules (e.g., consistently gen-
erating two digits and two objects), but only 20% of the
generations adhere to fine-grained rules that require specific
class pairings. These observations on real-world datasets
validate the conclusions drawn from synthetic tasks: DM
fail to capture fine-grained relationships between features.
Detailed experimental results are provided in Appendix E.4.

4. DMs’ Failure from a Theoretical Perspective

This section provides theoretical explanations for our ob-
served phenomenon - DMs’ inability to effectively learn
precise rules. Our analysis reveals that without prior knowl-
edge on the hidden rules, DMs trained by minimizing the
DDPM loss (Ho et al., 2020) exhibit a constant error in rule
conformity, indicating that they cannot accurately learn the
ground-truth rule.

We consider the following multi-patch data setup, which
has been widely employed for theoretical analysis of classi-
fication (Allen-Zhu & Li, 2020; Cao et al., 2022; Zou et al.,
2023; Lu et al., 2024), and recently for diffusion models
(Han et al., 2024a).

Definition 4.1 (Data distribution with Inter-Feature Rules).
Let u,v € R? be two orthogonal feature vectors with unit
norm, i.e., ||ul| = ||v|| = 1 and (u,v) = 0. Let { be a
random variable with its distribution D, supporting on a
bounded domain [c., ] for some constants 0 < ¢, < & <
oo. Each image data consists of multiple patches

)

x =[x x@T  x®T)T

where  x™) = ¢u, x® = (1 —¢)v,

and x(M) | x() are independent with the remaining patches.

Definition 4.1 specifies a inter-feature rule on the first two
patches of the data, requiring that the projection of the first
two feature patches along respective feature vectors u, v
sum up to one, ie., (x(V, u) + (x®,v) = 1. Further-
more, we show such a rule will further lead to a structural
constraint on the score function. Specifically, let xq =
[Cul, (1= v, x®T . x(P)T] represent an input im-
age. For arbitrary noise scedules {a, ¢}, Xt = axo+5e€t
represents the noised image at timestep ¢. We derive the
score function along the diffusion path as follows.

Theorem 4.2. The score function is Vlogp,(x;) =
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Figure 6. Diffusion model exhibits non-vanishing error on synthetic multi-patch data with norm constraint. We observe for a variety
of timestep ¢ and activation functions (ReLU, linear, quadratic and cubic), a (two-layer) diffusion model cannot learn precisely the hidden
norm constraint as in Definition 4.1, with both bias and variance error.

(3) (P)) }
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() =

It is clearly noted that the ground truth score (restricted to
the first two patches) exhibits the following identity:
ED< [7:(C, %4 )C] + ED< [T (¢ xe)(1 = Q)] = ]ED< [m:(C, %4)]

=1. (%)

Then, we aim to investigate whether a score network, trained
via DSM objective, can accurately conform to such a hidden
rule (x). Specifically, we follow (Han et al., 2024a) and
consider the following two-layer neural network model:

sw(xe) = [s9(x) T, ooy s (%) T]T, with
(») - _ = w? (p)
s (xt) = xt +Z wi xPywi, (1

where each patch is processed with a separate set of m neu-
rons, and o(+) is an (non-constant) polynomial activation
function. Such a network mimics the structure of U-Net
(Ronneberger et al., 2015) with shared encoder and decoder
weights. The network also contains a residual connection
that aligns with the score function (Theorem 4.2). Similar
network design has been considered in (Shah et al., 2023;
Han et al., 2024a). We train the score network by minimiz-
ing the DSM loss (Ho et al., 2020; Shah et al., 2023) with
expectation on the diffusion noise and the input:

(p)

Ban 3|0+ 5

p=1

L(W,) =

F

where x(p ) = atxgp ) 4 Btegp )Tt has been shown in (Chen
et al., 2022) that minimizing (2) is equivalent to minimizing
the score matching loss, i.e., E,, ||s, — V1og p:||%.

We next define the rule-conforming error to measure the
learning outcome of the hidden rule (x).
Definition 4.3 (Rule-conforming error). For the score net-

work s,, of a diffusion model with weights w,(.,pt)*, let

1
Ye(xe) = (sl (xe) + *Xﬁl)v u) + (52 (x;) + 2gxi7, v)
t i
be the coefficient along directions u, v at time ¢ for x;. We
say the diffusion model conforms to rule (x) if ¢, (x;) = %

holds for any x;. We define the rule-conforming error as:

cos (o3

Then, we consider training s,, by gradient descent over (2)
starting from initialization {Wi?t)’O}TG[m],pG[ p)- The follow-
ing theorem derives a lower bound on the rule-conforming
error for the trained score network model.

Theorem 4.4. Let wfnpt)*, r € [m] be a stationary point of
the DDPM loss (2). Then we can lower bound

€ 2By g [Varg o (GO ()]

+EC76§?1 {Varm,e(zl (5(2)(<v EEQD))}

where we decompose eﬁp) = E,E ?) + Egp) with eg P) be-

ing the projection of e(p) onto span(w(pt) 07...,w£f?t0).

Var(ay(-) = Var(-|A) is the conditional variance and
aP)() is a polynomial with coefficients depending on
(1)* (2)*

<Wr,t 7u>a <Wr,t 7V>'

Theorem 4.4 immediately suggests a non-vanishing rule-
conforming error, as long as the polynomial & is non-
constant and dimension d is sufficiently larger than net-
work width m to ensure variability in the random noise €; | ,
which is independent of u and v.
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Remark 4.5 (Extension to network with patch dependence).
Although our neural network setup is separable in the
patches, the analysis can be extended to network handling
dependent patches. For example, consider s ’2)(xt) =
fxim)/ﬂtz + WU(WTxgl’Q)), where xgl’Q) denotes the
concatenation of two patches, o (+) is a polynomial activation
function and W € R2?X™_ We can still follow Theorem
4.4 to show that (1) the learned W consists only the direc-
tions u, v and its initialization, and (2) the network output
becomes a polynomial function of (u, e%”), (v, e§2)> and
their cross terms (which do not appear in the patch-separated
case). As x; varies, the function output changes accordingly,
which results in a non-vanishing rule conforming error that
depends on the variation of €;.

We now show that when simplifying the model to linear
activation o(x) = x and single neuron (W,Ep ), the rule-
conforming error can be computed as the sum of bias and
variance errors, both of them are lower bounded by some
constants. Specifically, we decompose

g:

Ex, Wt(xt)]

[0 2
—- 79 +V&I‘ [wt(xt)} .
Bt S———

P> Evariance

bias

The following theorem suggests there exist a constant bias
and variance error for any stationary point w; .

Theorem 4.6. Suppose o(x) = x, m = 1 and consider
t such that oy, By = O(1). We train the network with the
gradient descent on DDPM loss (2) from small Gaussian
initialization, i.e., wgp“’ ~ N(0,081,), oo = O(d~'/?)

and d = Q(1). Let ng )* be any stationary point. Then

1)* 2)%
o (w* ), (wP",v) = 9(1).
e There exists constants Coy,C1 > 0 (depending on
E[C]; E[C2]; Qi Bt) such that 5bias = CO, gvariancc = Cl~

Theorem 4.6 shows that (1) all data features u and v can be
discovered, which is consistent with the results in Han et al.
(2024a) and verifies the ability of DMs to conform to coarse
rules in the data, i.e., the existence of the key features. (2) It
also verifies that DMs fail to learn the fine-grained hidden
rule when no constraint or guidance is imposed over the
training of DMs. Both of these two results are consistent
with our empirical findings in Section 3.

Empirical verification. We further train score networks
based on the theoretical setup and evaluate the rule-
conforming error in Figure 6, where we consider four differ-
ent activation functions (see Appendix G for details). We
calculate the error of DMs in learning the hidden rule ()
and plot the distribution of 1 (x;) over 5000 sampled x;. It
is clear that for all activation functions, the rule-conforming
error is significant, verifying our theoretical results and sug-
gesting the inability of DMs to precisely learn the hidden

rules.

5. Mitigation Strategy with Guided Diffusion

Motivated by our finding that DMs can produce rule-
conforming samples but instability, we mitigate this by a
common technique, Guided DDPM, which introduces ad-
ditional classifier guidance (Dhariwal & Nichol, 2021) dur-
ing sampling. Specifically, we train the classifier fy(x,t)
through contrastive learning with constructed contrasting
data pairs, where positive samples follow fine-grained rules
while negative samples violate fine rules while maintaining
coarse-grained compliance. The training objective is

['total = £classiﬁcation + A ﬁcontrastivea (3)

where A is weight parameter, Lcjussification 1S Cross-Entropy
loss and Lcongrastive 1S NT-Xent loss (Sohn, 2016). More de-
tails on NT-Xent loss are in Appendix H.1. Then, following
Dhariwal & Nichol (2021), gradients from fy(x, t) are used
to guide sampling toward fine-grained rule compliance.

Additionally, based on constructed contrastive data, we di-
rectly train a classifier in raw images to determine whether
a generation satisfies fine-grained rules. We filter samples
predicted as non-rule-conforming to ensure generation qual-
ity. This approach, called Filtered DDPM, which directly
provides guidance based on the noise-free pixel space, can
be seen as the upper bound for guided diffusion strategies.

5.1. Experiment Results

Setup. We use a U-Net classifier fp(x,t) with guidance
weight A = 1. Details of the data construction and training
process are provided in Appendix H.1.

Results. In addition to R?, inspired by the theorical analysis
in Section 4, we introduce Error, a metric capturing how
well DMs learn hidden rules from variance and bias. Given
the Ground Truth line y = [y« and the Estimation line
g = le + BO in Figure 3 and 4, Error is defined as:

Error := \Bl—ﬂ1|+|ﬁo|+\/\m “

Bias Error

Variance Error

We measure the bias error |E[y — ¢]| with the deviation in
the estimated coefficients (31, 3y. The variance error in (4)
corresponds to the square root of Eyayiance in Section 4.

Table 2 presents results, Error and R2, before (DDPM)
and after applying classifier guidance (Guided DDPM),
along with DDPM filtered by pixel-space classifier (Filtered
DDPM). Both Guided DDPM and Filtered DDPM outper-
form the baseline DDPM across all tasks, showing reduced
Error and improved R2, with Filtered DDPM achieving the
best performance on most tasks.
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Table 2. Comparison between DDPM, Guided DDPM (Guid-
ance), and Filtered DDPM (Filtering): Additional guidance and
filtering improve generation with lower Error and higher R?.

Task Error | Rt
DDPM  Guidance Filtering DDPM  Guidance Filtering
A 0.25 0.21 0.17 0.85 0.90 0.90
B 0.11 0.10 0.05 0.83 0.85 0.86
C 0.41 0.26 0.25 0.57 0.67 0.64
D 0.46 0.43 0.39 0.79 0.84 0.85

5.2. Discussions on the Limitation of Guided Diffusion

While guided and filtered diffusion provides some mitiga-
tion for rule learning, we acknowledge that this improve-
ment is limited. The limited improvement stems from the
inherent nature of our problem: unlike conventional clas-
sification tasks, the fine-grained rules that differentiate our
contrastive samples exhibit subtle signals, making effective
classifier training particularly challenging. In Appendix H.1,
we provide additional experimental evidence that, even on
such simple synthetic tasks, the classification accuracy on
the test set remains between 60% and 80%, supporting the
difficulty of precise classification in contrastive data.

Additionally, the effectiveness of this strategy relies on prior
knowledge of fine-grained rules. In real-world scenarios,
fine-grained rules are often difficult to accurately define
and detect, making the construction of contrastive data im-
possible. We leave the solution to DMs’ inability to learn
fine-grained rules in real-world scenarios for future work.

6. Conclusion and Future Work

This study evaluates DMs from the perspective of inter-
feature rule learning, revealing through carefully designed
synthetic experiments that DMs can capture coarse rules
but struggle with fine-grained ones. Theoretical analysis
attributes this limitation to a fundamental inconsistency in
DMs’ training objective with the goal of rule alignment. We
further explore some common techniques, such as guided
diffusion, to enhance fine-grained rule learning, but ob-
serve limited success. Our in-depth findings underscore
the inherent difficulty of capturing subtle fine-grained rules,
providing valuable insights for future advancements.

One potential direction to address the limitation of DMs in
learning fine-grained rules is to introduce stronger reward
signals, such as those from human feedback (Ouyang et al.,
2022; Xu et al., 2023) or specialized reward models (Fan
et al., 2023; Wu et al., 2024), to better guide DMs during
generation. However, unlike typical test-time alignment
tasks, such as focusing on changing image style or aligning
prompts(Wallace et al., 2023; Yang et al., 2024c;a; Yuan
et al., 2024a; Kim et al., 2025), fine-grained rule learning
is more challenging due to its subtle signal. How to obtain
a powerful reward model that accurately reflects various

rules remains an open question. Additionally, incorporating
inter-feature rules into the tokenizer—e.g., through masking
strategies (He et al., 2021; Assran et al., 2023; Deng et al.,
2025)—may help DMs better capture semantic information
related to rules. We leave these explorations to future work.
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A. Low FID and Worse Inter-Feature Learning: A Gaussian Mixture Case

In this section, we provide a toy example based on the Gaussian Mixture Distribution to explain how low FID and incorrect
inter-feature relationships can coexist. This supports the point that even though DMs may perform excellently on classical
metrics such as FID, this does not necessarily mean they can perfectly learn the hidden inter-feature rules.

Consider a 2-dimensional population, i.e., the true distribution p(x, y), which is a Gaussian Mixture Model (GMM) with

two Components as:
1 171 0 1 -11 1 0
ple,y) = Flpp, 3p) = 5 -N<H : {0 1D +3 'NQ—J , {0 1D 5)

where we can have

and the covaraince matirx as

T, = Zw (i + (s — ) (s — 1) ")
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We assume the estimated data distribution learned by DMs is a joint Gaussian distribution:
A 0] |2 1
o =50 - ([ [ 1)) 0

With means and covariance matrices of true distributon p and estimated distribution g are identical, thatis p, = p, = [0, O]T

2 1} , we easily have the FID between p(x, y) and p(&, §) is computed as:

and 3, = ¥, = L 9

FID = [, — i[5+ Tr (2 + 2, — 2(5,%,)?)
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Although the FID is small (i.e., 0), the inter-feature relationships between = and y in true and estimated distribution are
fundamentally different. In the true distribution, = and y are independent within each Gaussian component but exhibit
dependence in the overall distribution due to the mixture of components. In the estimated distribution ¢(Z, §), & and g are
dependent with Cov(z,y) = 1. Therefore, low FID does not imply a correct recovery of the inter-feature rules.

3
B. On the Rule Conforming Error with linear settings 5
We remark a recent work (Wang, 2025) analyzes the case when rule- 1 / \
conforming data lies on low-dimensional linear subspace and demonstrates a o —°_ '<"“">' 1
linear score network can precisely learn the distribution asymptotically. This \
can be also reflected in our Theorem 4.4, where the polynomial functions -1 ‘
7 (+),5?)(-) reduce to constant functions, due to the polynomial degree =
1 as we consider linear model. This ultimately leads to a zero lower bound 7 Ground Truth: y =5 = 0.56
for the rule-conforming error. T3 lnear 2MLP 2MLP 3-MLP

(relu) (quad) (relu)
Nevertheless, our theoretlca'll argument mainly f(?cuses on the general case, Figure 8. Linear network exhibits lower rule-
where we consider the settings that the underlying rule is unknown to the  ¢onforming error than more complex networks
learner, and the model class does not align with the true structure of the under the linear rule.
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Table 3. Real-World Inter-Feature Rules. For each scenario containing inter-feature rules, Table 3 provides detailed prompts and
annotates the existing inter-feature relationships. By comparing the genuine inter-feature relationships with those in generated images, we

can evaluate DMs’ ability to learn inter-feature relationships.

[Spatial Rule] (a) Light shadow:

Prompt 1: A desert scene with a majestic palace under a bright sun.
Inter-Feature Rule 1: Sun position affects palace’s shadow direction.

Prompt 2: The moonlight casts a clear shadow of a tall tree onto the ground.
Inter-Feature Rule 2: Moon position affects tree’s shadow direction

[Spatial Rule] (b) Reflection/Refraction

Prompt 1: A plush lion toy in front of the mirror. Its front side is facing the
camera. There is its reflection in the mirror.

Inter-Feature Rule 1: The lion toy’s orientation relative to the mirror determines its reflection’s orientation.
Prompt 2: A transparent glass bottle partially submerged in a calm, clear pool
of water. The upper half of the bottle extends above the water’s surface and
the lower half of the bottle is submerged.

Inter-Feature Rule 2: The water surface’s position dictates the bottle’s shape distortion.

[Spatial Rule] (¢) Semantics

Prompt 1: A field of sunflowers under a clear blue sky with the sun shining
brightly above.

Inter-Feature Rule 1: Sun direction dictates sunflower orientation.

Prompt 2: A paintbrush fully loaded with paint, making a stroke on a blank white
canvas.

Inter-Feature Rule 2: Brush tip color matches canvas paint.

[Non-Spatial Rule] (d) Size -Texture

Prompt 1: The cross-section of a sturdy tree, covered with annual rings.
Inter-Feature Rule 1: The diameter of a tree is related to its growth rings.

Prompt 2: A nautilus fossil, showing its intricate spiral shell structure with
visible growth chambers.

Inter-Feature Rule 2: Nautilus fossil size correlates with spiral patterns.

[Non-Spatial Rule] (e) Size/Region- Color

Prompt 1: An artistic representation showing the expanded star phase and cooling
star phase of the same star.

Inter-Feature Rule 1: Celestial body size and color should align, exemplified by red giants and white dwarfs.
Prompt 2: A burning red candle in a dark with the flame, which is vibrant,
dynamic, and glowing intensely against the darkness.

Inter-Feature Rule 2: Candle flame color varies with distance from the wick.

[Non-Spatial Rule] (f) Color - Color

Prompt 1: Two Eclectus parrots, showcasing the striking sexual dimorphism of the
species.

Inter-Feature Rule 1: Eclectus parrots’ body and beak colors match—green and yellow for males, red and black for
females.

Prompt  2: A male Poecilia reticulata and a female Poecilia reticulata are
swimming gracefully in a clear, freshwater aquarium, showcasing the striking
sexual dimorphism of the species

Inter-Feature Rule 2: Guppies’ body and tail colors match—males are equally colorful in both.
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v

Spatial

SDXL
Flux.1.1
Ultra

Non-Spatial

Rule Type:  (a) Light shadow (b) Reflection/Refraction (c) Semantics (d) Size -Texture (e) Size/Region- Color  (f) Color - Color

Figure 7. Evaluating More Mainstream DMs on Real-World Inter-Feature Rules. We evaluate more mainstream DMs on scenarios
with inter-feature rules, with 5 random generations and manual selection of unreasonable samples. Despite their success in metrics like
FID, none of these DMs achieve complete correctness in cases involving inter-feature relationships.

rule. In such scenarios, although the network may be able to recover the
data distribution, while the hidden rule may still not be well captured. This will still lead to non-zero rule-conforming error.

To further support this claim empirically, we conduct an experiment comparing rule-conforming errors across different
model classes in a synthetic linear data setup, where two patches are x(!) = ¢u, x(?) = —¢v, with ¢ ~ A(0,1). As shown
in the Figure 8, linear model achieves significantly lower rule-conforming error compared to more complex, nonlinear
models (2-layer, 3-layer MLPs with ReLLU or quadratic activation, operated on all patches jointly). This aligns with our
findings that without exact structural alignment between the model/objective and the rule, the small rule-conforming error
cannot be guaranteed.

C. Details and More Examples on Real-Wold Hidden Inter-Feature Rules

Table 3 provides a detailed description of the prompts for each case in Figure 1 and Figure 7, including scenarios with
inter-feature rules and the corresponding rules themselves. We also consider more DMs such as SDXL* (Podell et al., 2023),
Flux.1.1 Ultra’ (Labs,2023), DALL-E 3° (Betker et al., 2023), and VAR-based (Tian et al., 2024a) text-to-image
model Infinity’ (Han et al., 2024b) in the evaluation. By comparing these rules, we observe that most mainstream DMs
fail in some or all scenarios. For instance, in the Reflection/Refraction scenario, none of the DMs successfully generate
plausible images: the reflected toy in the mirror faces the camera just like the real one, and the submerged bottle shows
no refraction. Our evaluation covers both classic latent diffusion models (e.g., SD-3.5 Large) and the latest next-scale
prediction-based diffusion models (e.g., Infinity). Surprisingly, none of them can perfectly handle these inter-feature
relationships, highlighting the widespread limitation of DMs in this regard.

D. Details and More Example on Synthetic Tasks
This section presents supplementary details and examples regarding our synthetic datasets.

Task A generates synthetic images featuring a simple outdoor scene composed of a vertical pole, a sun, and their corre-
sponding shadow. The height of the pole is randomly selected within the range of [6.4, 12.8] pixels, which corresponds to
[20%, 40%)] of the total image size (32 x 32 pixels). The sun’s horizontal position is sampled from two predefined distance
intervals: far distances (0 — 6 pixels or 26 — 32 pixels) and near distances (10 — 16 pixels or 16 — 22 pixels), ensuring a

*https://fal.ai/models/fal-ai/fast-lightning-sdxl
>https://fal.ai/models/fal-ai/flux-pro/v1.1-ultra
Shttps://chatgpt.com/g/g-iLoR8U3iA-dall-e3
"https://github.com/FoundationVision/Infinity ?tab=readme-ov-file
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Figure 9. Synthetic Data Examples. We present synthetic samples in four synthetic tasks, with annotations of features of interest and
Ratio calculations. The target Ratios for Tasks A, B, C, and D are 1, 1, v/2, and 1.5, respectively.

varied distribution of sun locations. The shadow length is computed using the formula:

shadow_length — pole_height x |sun_distance]

8
sun_height — pole_height ®)

where the sun height is determined as twice the pole height, clipped within [9.6, 25.6] pixels (30%-80% of the image size).
Colors for the sun, pole, and shadow are randomly selected from predefined HSV (Hue-Saturation-Value) ranges: Sun color
(yellowish tones) has a hue in [0, 30], saturation in [100, 255], and value in [200, 255]. Pole color (blue-green tones) has a
hue in [90, 150], saturation in [100, 255], and value in [100, 255]. Shadow color (dark tones like black, brown, gray) has a
hue in [0, 180], saturation in [0, 50], and value in [50, 150].

Task B generates synthetic images containing two rectangular objects placed within a 32 x 32 pixel space. The first
rectangle’s position and size are determined as follows: its leftmost position /; is chosen randomly from the range [0, 9.6]
pixels (30% of the image width), and its height 5 is chosen randomly from [6.4, 19.2] pixels (20% to 60% of the image
height). The color of the first rectangle is randomly selected from a yellowish hue range with hue [0, 30], saturation
[100, 255], and value [200, 255] in HSV space. The second rectangle’s position is determined by hy, which is chosen
randomly within a range dependent on ly. Specifically, h; is sampled from the range [I; + 6.4, 25.6] pixels (ensuring
h1 > l1). The height of the second rectangle hy is calculated based on the first rectangle’s height /5, ensuring the relation
l1h1 = hals. The color of the second rectangle is chosen randomly from a blue-green hue range with hue [90, 150],
saturation [100, 255], and value [100, 255] in HSV space.

Task C generates images containing two circles: one large and one small. The large circle’s diameter is randomly chosen
between 10% and 30% of the image size, and the small circle’s diameter is determined to be /2 times the diameter of the
large circle. The colors of the circles are randomly selected from predefined color ranges in the HSV color space. Specifically,
the large circle is assigned a color from the blue-green hue range, with hue values between 90 and 150, saturation between
100 and 255, and brightness between 100 and 255. The small circle is assigned a color from the yellowish hue range,
with hue values between 0 and 30, saturation between 100 and 255, and brightness between 200 and 255. The circles are
randomly positioned such that they are adjacent to each other—either on the left, right, top, or bottom of the large circle.

Task D generates images containing two squares: one smaller and one larger. The small square’s size is randomly chosen to
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be between 30% and 70% of the top half of the image’s size. The larger square’s size is then set to be 1.5 times the size of
the small square. The color of the small square is randomly selected from a yellowish hue range, with hue values between 0
and 30, saturation between 100 and 255, and brightness between 200 and 255. The color of the large square is randomly
chosen from a blue-green hue range, with hue values between 90 and 150, saturation between 100 and 255, and brightness
between 100 and 255. The position of the squares is determined within specific regions of the image. The top half and the
bottom half of the image are divided into distinct regions, with the small square being placed in the top half and the large
square in the bottom half. The exact position of each square is randomly chosen within its respective region, while ensuring
that the squares do not exceed the image’s boundaries. Both squares are positioned such that they do not overlap with each
other and remain entirely within the image frame.

E. More Synthetic Tasks Setup and Results
E.1. More Details of Experimental Setup

We use the U-Net architecture as the denoising network, consisting of several down-sampling and up-sampling blocks,
each with two convolutional layers followed by ReLU activation. Each down-sampling block incorporates a Self-Attention
mechanism and skip connections to preserve fine details. Pooling layers are used to reduce spatial dimensions and capture
abstract features. A final 1 x 1 convolution layer produces the denoised output image. We use AdamW (Loshchilov, 2017)
as the optimizer with a learning rate of 3e — 4. The noisy steps are set to 7' = 1000, with a linear noise schedule ranging
from le — 4 to 2e — 2. For Tasks A, B, C, and D, the sample sizes are 4000, 2000, 2000, and 2000, respectively, and the
input data size is (3,32, 32). The training is performed on a single NVIDIA A800 GPU for 400, 800, 1600, and 1000
epochs, respectively.

E.2. More Results of Synthetic Tasks

This section provides additional details to complement the experimental results in Section 3.3. Notably, to ensure more
accurate quality assessment of generated images, we upscale the 32 x 32 images to 128 x 128 during evaluation. This
allows the training data to precisely exhibit the expected rule patterns, thereby enabling more reliable evaluation of the
generated samples.

Generations that Violate Coarse-Grained Rules. Table 1 illustrates the DDPM’s ability to learn coarse-grained rules.
We observe that in all four synthetic tasks, the number of samples violating the coarse-grained rules is almost zero, except
for Task A, where one generated sample, shown in Figure 10, has the sun and shadow on the same side of the pole.

Generations that Violate Fine-Grained Rules. We then proceed to show the samples .
generated by DDPMs that do not satisfy the fine rules in Figure 11, and highlight the
features of interest using the evaluation method developed in Section 3.2.

Generations that Satisfy Fine-Grained Rules. Here, we use two coordinate systems:
a 4D representation capturing key features (I1,l2, h1, ho) and a 13D representation that
additionally encodes the RGB colors of the sun, pole, and shadow. This dual-coordinate
analysis allows us to distinguish whether differences between generated and training Figure 10. For Task A, while all
samples arise from structural variations or merely from different color combinations training samples have the sun and
within similar structures (Okawa et al., 2024). We then compute the Euclidean distances shadow on opposite sides, DDPM
between each generated sample and its nearest neighbor in both 4D and 13D spaces. ~ generates one sample violating
As a supplement to the DDPM memory experiment in Section 3.3, Figure 12 presents  this coarse-grained rule where the
the three nearest neighbors in the training data for high-quality generated samples (with ~ sun and shadow appear on the
ratios in [0.99, 1.01]) in both 4-dimensional and 13-dimensional coordinates. We observe same side.

that the 4-dimensional coordinates effectively capture the spatial structure of the nearest

neighbors in the training data, while the 13-dimensional coordinates provide a more

comprehensive understanding of the similarity of the generated samples, accounting for both color and structure.
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Figure 11. Examples of Rule-violating Generations. We present samples generated by DDPM that violate fine-grained rules in four
synthetic tasks, with annotations of features of interest and Ratio calculations. The target Ratios for Tasks A, B, C, and D are 1, 1, /2,
and 1.5, respectively.

E.3. More Settings of Synthetic Tasks

In this section, we consider additional factors, such as more powerful model architectures and larger training datasets,
to evaluate the diffusion model’s ability to learn precise rules in Task A. Furthermore, detailed experimental results not
included in Section 3.3, such as samples that violate coarse rules, will be presented in this section.

More Training Epochs. Taking Task A as an example, Figure 13 shows the impact of more training epochs on learning
fine-grained rules. We observe that as the number of training epochs increases, the DDPM’s ability to learn fine-grained rules
improves significantly from 200 to 400 epochs, with R? increasing from 0.19 to 0.85. This indicates that the relationship
between [1 ho and [3h; is better described by the linear model. However, even as the training continues up to 4000 epochs,
there is no noticeable improvement in the model’s ability to learn the fine-grained rules, as reflected by the slight changes in
the fitted line coefficients and R? remaining around 0.85.

More Model Architectures. Then, we consider the factor modle architectures and use more powerful backbones, DiT
(Peebles & Xie, 2023) and SiT (Ma et al., 2024), to replace U-Net as the denoising network. Specifically, we consider two
sizes of DiT and SiT: DiT Small with 33M parameters and patch size (DiT-S/2), DiT Base with 130M parameters and patch
size (DiT-B/2), SiT Small with 33M parameters and patch size (SiT-S/2), and SiT Base with 130M parameters and patch
size (SiT-B/2). Keeping the number of training epochs, noise time steps, and other hyperparameters consistent, we find that,
compared to the 14M parameter U-Net, the parameter count of SiT and DiT has increased by 2 to 10 times. However, as
revealed in Figure 14, although all models follow coarse rules, the deficiency in DDPM’s ability to learn fine-grained rules
does not significantly improve with the increase in parameter count, and there is even a slight decrease in performance with
DiT-S/2.

More Training Data. Next, we consider the impact of training data size. For Task A, we gradually increase the sample
size from 4000 to 20000 to 40000 and observe whether increasing the sample size improves the DMs’ ability to learn rules.
Figure 15(a) and Figure 15(b) show that the increase in sample size does not enable DMs to learn fine-grained rules better,
as evidenced by the almost unchanged R? and the fitted linear model. Similarly, we do not observe DMs violating coarse
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Figure 12. Generations that Violate Fine-Grained Rules. Taking Task A as an example, we show 10 high-quality generated samples
and their Top-3 nearest neighbors from the training data. The first column visualizes the generated samples, while columns 2-4 display
the Top-3 nearest neighbors from training data in 4D coordinates, where similarity mainly reflects spatial structure. Columns 5-7 show the
top-3 nearest neighbors in 13D coordinates, where similarity primarily reflects object colors.
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Figure 13. The learning capability of DDPM for fine-grained rules across training epochs. We observe that as epochs increase from
200 to 4000, DDPM’s ability to learn fine-grained rules shows no significant improvement, as evidenced by the stable Estimation line
and R?. This suggests that increasing training iterations does not alleviate DMs’ difficulty in learning fine-grained rules. The visualized
generated samples fall within the interval [2.5%, 97.5%).

==+ Ground Truth: y =x e ---- Ground Truth: y =x ---- Ground Truth: y =x ==+ Ground Truth: y =x
—— Estimation: y = 0.78x +0.01, R? = 0.82 —— Estimation: y = 0.77x + 0.00, R? = 0.86 —— Estimation: y = 0.83x + — 0.00, R? = 0.89 —— Estimation: y = 0.77x + 0.00, R? = 0.87

020 020 020

015 015 015

Ihy
I2hy
I2hy

010 010 010

005 005 0.05

0.00 42

Ihs  hhy : I1ha : Iha

(a) 33M, DiT-S/2 (b) 130M, DiT-B/2 (c) 33M, SiT-S/2 (d) 130M, DiT-B/2

Figure 14. DDPM’s capability in learning fine-grained rules with more powerful backbones. Even with larger and more advanced
denoising networks, DDPM still cannot avoid generating samples that violate fine-grained rules. This indicates that DDPM’s inability to
learn fine-grained rules is decoupled from model architecture. The visualized generated samples fall within the interval [2.5%, 97.5%)].
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Figure 15. DDPM’s capability in learning fine-grained rules with increased training samples and larger image sizes. We observe
that increasing training samples and image sizes does not significantly improve DDPM’s ability to learn fine-grained rules, as evidenced
by the stable Estimation line and R2. This suggests that neither expanding the training dataset nor increasing image resolution alleviates
DMs’ difficulty in learning fine-grained rules. The visualized generated samples fall within the interval [2.5%, 97.5%)].

rules with large samples.

More Image Size Choice. Our final consideration is image size. In the main text, the images are only 32 x 32. Existing
studies suggest that low-resolution images may lead to the loss of details in diffusion models’ generation (Chen et al., 2024;
Niu et al., 2024; Li et al., 2024a). Therefore, we consider larger input resolutions of (3, 64, 64), as shown in Figure 15(c).
We observe almost no improvement in the DMs’ ability to learn underlying rules with generated samples that do not violate
coarse rules. Due to computational constraints, we were unable to explore even higher resolutions. But it is clear that for a
relatively simple task like Task A, which does not contain rich semantics, DMs are unable to recover the underlying feature
relationships even at the 64 x 64 resolution. This itself highlights the difficulty DMs face in learning hidden features.

E.4. More Experiments on Real-world Data

In this section, we train DDPM on real-world datasets to support the observation that diffusion models (DMs) can learn coarse
rules but have limited ability to capture fine-grained ones. Specifically, we first consider SynMirror (Dhiman et al., 2024), a
mirror dataset where the rules are defined by strict physical relationships between objects and their reflections. Figure 16
shows image generations from DDPM trained on the SynMirror dataset for 400 epochs. We observe that DDPM can learn
coarse inter-feature rules—for example, the color and general shape of the objects and their reflections are consistent.
However, it fails to capture fine-grained rules, producing errors in the precise position, angle, and detailed contours of
the reflections. We further design a synthetic dataset based on CIFAR and MNIST to enable precise quantification. We
synthesize 5 new categories by combining specific CIFAR and MNIST classes: (dog, cat, 0, 1), (automobile, truck, 2, 3),
(deer, horse, 4, 5), (airplane, bird, 6, 7), and (frog, ship, 8, 9). The inter-feature rule is defined such that only specific
categories from CIFAR and MNIST can be combined. We similarly train a DDPM with a U-Net on the CIFAR-MNIST
dataset for 1000 epochs. To evaluate whether the generated images comply with the predefined combination rules, we use
pretrained classifiers to independently identify the CIFAR and MNIST components within each generated image. As shown
in Figure 17, only about 20% of the generated samples satisfy the predefined rules, while over 90% of the training data
adhere to them.

F. Proofs of Section 4

Proof of Theorem 4.2. Given the independence, we can write pi(x;) = pt(xgl),xgz))pt(xgg), ...,xgp)). We derive
pt(x§1)7x§2)) as follows. First, we notice that x§1)|§ ~ N(azCu, B71) and x§2)|< ~ N(au(1 = ¢)v,32I). Then we
obtain

pi(x, %) = B[N (4(€). B7T20)
where we denote p1,(¢) = [a;¢u’, oy (1 = )vT]T.

(3) (P))T]T

Thus the score can be computed as Vlogpi(x:) = [V logpt(x§1)7x§2))—r,Vlogpt(xt sy Xy where
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Figure 16. Experimental results on real-world (SynMirror) data. (a) In SynMirror, the inter-feature rule is defined as the object
constraining its reflection in the mirror in terms of shape, size, and color. We train a DDPM with a U-Net on SynMirror for 400 epochs.
(b) The trained DDPM can capture coarse rules, such as consistent colors between the object and its reflection, but struggles with fine
rules, such as unrealistic contours, angles and positions. This highlights DMs’ limitation in learning fine-grained rules.

V log pt(xil), X§2))T € R?4 and can be derived as

b e _ Ve xP) | Ep [V (x4 14(Q). B Tea)]
Vlogpt(xg )7x,(5 )) = pt(x§1)7xgz)) - Epg [J\/‘(Xt;ut(o’ﬂtzlmﬂ
Ep, [ = N (xt; 1(€), B7Taa) B ° (xe — 1(Q))]
Ep, [N (x¢; 14(C), B7124)]
—B; *xs + By Ep, [m (¢ %) 14:(C)]

) o[ Ep[m(¢x¢)¢]u
= =B, %% + By Ep, [?é(gfxt)(; - Qv

where with a slight abuse of notation, we let x; = [xgl)T, XEQ)T]T

o(Cox) = N (s 14(€), 1)
B Ep N (x5 1,(€), Z¢)]

and denote

O

Proof of Theorem 4.4. According to the decomposition of the rule-respecting error in terms of bias and variance, we have
Emse = EZus + Evariance, Where we compute

Enias = ZE[a«Wg),XgM (w u) + ZE{U((WQ)X?)»} (W) ,v) - o
r=1 r=1 t
Evariance = Var( 3 o((wild i) wid w) + 3 o ((wiZ x)(wi v))

r=1 r=1

where we use the law of total variance and denote Var|. = Var(-|().

(1),0

(2),0
¢ and v, w,’

Given the gradient direction only consists of u, w . respectively for the two patches, we can decompose the

weights wﬁ? , wﬂ) into
1 0
Wf«,t) = ¢r,twr,t + Yrpa

(2 _ 0
Wrt = PritWey + Srtl
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Figure 17. Experimental results on real-world (CIFAR-MNIST) data. (a) We synthesize 5 new categories by combining specific
CIFAR and MNIST classes: (dog, cat, 0, 1), (automobile, truck, 2, 3), (deer, horse, 4, 5), (airplane, bird, 6, 7), and (frog, ship, 8, 9). The
inter-feature rule is defined such that only specific categories from CIFAR and MNIST can be combined. DDPM with U-Net is trained
on CIFAR-MNIST for 1000 epochs. (b) The trained DDPM can capture coarse rules, such as ensuring each image includes 2 digits and
2 non-digit objects, but struggles with fine rules, such as preventing duplicate digits, mismatched digits or mismatched CIFAR-MNIST
categories. (¢) To quantify DDPM’s ability to learn fine-grained rules, we use CNNs pre-trained on MNIST and CIFAR to predict labels
from 4 sub-images of the generated data. (d) Following (c), we evaluate training and generated data by checking if predicted labels fall
within the 5 predefined categories. Over 90% of the training data meet this criterion, while only about 20% of the generated data do.

for r € [m]. In addition, we decompose for each p = 1,2

(r) _ ()

€ =€+ fg,pj)_ = 73(()p)5£p) + (Ia — P(gp))fgp)
where P denotes the projection onto the span of {wf )0 wfj;}go}. Then we can write for the first patch

S o((wl, x)) (wil) u)

Z (Sraw?, + Yrew, acCu+ Bi(e + el)))) (0w, + 7rcu,u)

where 5(1)(-) is a polynomial with coefficients depending on v, ¢, ¢y ¢, o, B¢, ¢. Similarly, we can write for the second
patch that

S (W, xPN) W vy = 5P (v, e]))

where 5(?)(-) is a polynomial of the same form as &(!)(-) except that ¢,. 1, ¥,., € is respectively replaced with ¢, ¢, .1, 1 — (.
Then we can lower bound the variance by

svmce>1a¢[v&rlg(i wilx(V) wll) )JrVarK(zm:O’ wi?x) w? v)) |

r=1

(1) (2) [Var

t 77€t _

1 2
e Ell fod )(<u ei i))) JrVarIC @ (o’ 2) (v eii ))}

where we use law of total variance. O
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Lemma F.1 ((Cao et al., 2022)). Ifw) ~ N(0,021), we have with probability at least 1 — §
o2d(1 - O(d~"/?)) < [wP||? < o3d(1 + O(d~/?))
[(wi', u)| < v/21og(8/6)00,
[{(wi, v)| < /21og(8/8)o0,

Proof of Theorem 4.6. Let L) (W) = Ew o s (x\") + €P) /3, ||2. Then the loss can be written as
w® Py _ Lo 1w

P
W) = z LP)(W,) ZE () ) Z E P (P yXg )Wy 5 5 €;
p=1 i t

We first simplify the loss as follows, where we omit the superscript and consider a single patch due to that each patch is
independent and weights are separated.

( (p)) (p)

1 2
]Eet,i <Wt7xt,i>wt Bt th Eet,i
Ee,, | (we.xwe| + B ]| 2B e, e — 1)
= AW, Xg4) Wy r —x/,——e; — i [AWe, Xt i ) (Wi, —5Xp i — - €
€t,i t 1,1 t € Btg 1,1 Bt 1,1 €¢, t 1,1 t ﬁt2 1,7 Bt t,%
Il [2 13
where we can compute each term following (Han et al., 2024a) as
2
o
I = Be, [(we x00)2Jwil2 = (F (wi,xo.)® + BEllwel2) Iwell?, T = Sl
t
Qi 2 2
I3 = 5Ee,, [<Wt7xt,i>} (Wi, X0,i) = —5 (W, Xo,;)
Bi h
This suggests
2 2 2 2 2 ) 207 2
Ee, .|| (Wi, %0 )wi — 5 g = enal| = (0F (werxo,)? + B wll? ) wil? = T (wes %00 + 1
t t
where I is a constant independent of w,. Then we obtain the loss for the first two patches as
1 (1 1 20{ 1
LO (i) = (T wy w4 871w %) w1 = T B ) - Ly
2 2 2 2 207 2
L®(wi?) = (0FEl(1 = ) wi”, v)* + B wi? ) [wi” |* = S5 Bl = 0wy, v)* + L.

ﬂ2
We next analyze the training dynamics of the gradient descent on the first patch. The second patch follows from similar
analysis. For notation clarity, we omit the superscript.

The gradient for the first patch can be computed as
VLD (wy) = |lwil| 0FE[C) (wi, )+ 287w1) + 2 (aFE[C) (wi, w)? + 57 w2 wy

2
a? 205
B

It is noticed that the gradient only consists of directions of w! and u. It suffices to track the gradient descent dynamics

projected to the two directions u and w9, where w9 = w9 — (w?, u)u, i.e.,

(Wit w) = (wh ) = (VO L(wy), u)
= (1+n(202672ELC?] — 203E[CIwEII* — 482 IwI|* = 2a7E[C?) (wf, w)?) ) (wh, u)
(Wi W) )17 = (wh W) 17 = (VO Lwe), W)

(14 n( = 482w = 207EIC] (wh, w)?) ) (wh, W) w7 !

[C*]{we, w)u.
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Task A
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Figure 18. Constructed contrastive data includes three classes, which differ in fine-grained rules.

It is clear that gradients become zero only when O(||wF||?> + (wF,u)?) = ©(1). This suggests that before conver-
gence, ||wF|? = o(1) given the initialization is small, i.e., ¢y = O(d~'/?). We can then verify that (VY L(w,),u) >
(VO L(wy), w?) + C for some constant C.

In addition, suppose we decompose W} = ¢Fw? + vFu, we can see

or = (Wi, Whllwi (7%, 7 = (wi,u)

which then implies

<k~0

wi, W) [w?l 7

lwyll* = + (wi, u)?.

This combined with the fact that (VD L(w;), u) > (VWD L(w;), w?) 4 C suggests that (wi™ w9)||w?|~* cannot
increase to ©(1) without (w¥, u) reaching ©(1). Thus at stationary point, we must have both <Wt , ) [wh|? = ©(1).

Next, we analyze the stationary point. Given the gradient only consists of directions w and u, we have for any stationary
point wy, it satisfies

(VL (we), we) = [[wil|*(207E[C](we, w)? + 267 |l we |?) + Q(Q?E[CZKW u)? + ﬂfHWtHQ) lwe

izfm J(we,u)? =0

(VLD (wi), ) = [[wil[2(20F B[ twe, w) + 267 (wi, ) +2( 0BG fwe, w)? + 57 w2 (w, )

ngf E[¢?)(wy, u) = 0

We solve the stationary equalities as

w12 = 6287 2E[C?] + 4 £ /68028, (E[C?])? + 8002 ; 2EIC?] + 16
s 1 267

W)t = o — (oszE[CQ]

Bt2 + 1)” ”2
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Similarly, we can compute and solve the stationary point for the second patch where E[¢?] is replaced with E[(1 — ¢)?].

We then compute the bias error as
1) (1 1 2) (2 2

Evias = e (Wi, (wiV, ) + (W) P ) wf v)] - 2

= B Wi w)? + B[ = CJ(w(?, v)*

= Co(E[(). E[C?], v, By)

It can be easily verified that there exists a constant bias Cy that depends on E[¢], E[¢?], o, . In addition, we compute the
variance as

Evariance = (QFE[C) (i w)? + B2 [lwi 2) (wiV w)? + (aZE[(L - 2w, v)? + 82w |?) (wf?) v)?
+202EIC(1L - O)wi ) (wf v)? — (B w)? + Bl - wf v)?)
= a3Var(¢)(wi", ) + afVar(1 — O)(w(”, v)* — 20Cov(¢, 1 — O){w( u)(wi? v)?
+ B2V 1P (i w)? + 87w P (w P v)?
= afVar(¢wi” w)? = (1= Owi?,v)?) + 82wl (w2 4 2w 2w, v)?
— C1(ELC) ELC?, a1, By) > 0

where we see E[A%] — E[A]? = Var(A) > 0 for arbitrary random variable A. O

G. Experiment Details on Synthetic Data with Two-layer Diffusion Model in Section 4

In order to verify the theoretical claims on DMs failing to precisely recover the inter-feature rule () (in Section 4), we
conduct numerical experiments on a two-layer diffusion model on a two-patch data distribution.

Specifically we set x = [xM7T x@T] where x(1) = ¢u, x®T = (1 — ¢)v. Here we set u = [1,0,---0] € RY,
v =1[0,1,0,---0] € R? with d = 100. The score network follows the structure in (1) where we consider o(-) to be ReLU,
linear, quadratic and cubic activation functions. We set network width m = 20. To simulate the DDPM loss in expectation,
for each epoch, we sample n = 1000 input data x¢ ;,% € [n] and for each data we sample n. = 1000 standard Gaussian
noise € ; ;, %, j € [1000], and consider minimizing the empirical loss

1 n ne 2
TROEEC 35 3) S IREDIRENS
€ i=1 j=1p=1
where x?} j= oztxé’” Z) + ﬁtegﬁ)’ ;> =1,2. We use gradient descent to train the score network for 5000 epochs. We consider

ap = exp(—t) and B; = /1 — exp(—2t) where we set t = 0.2,0.4,0.6,0.8. We then check whether learned diffusion
models learn the ground-truth rule (x) by plotting the distribution of 1);(x;) against a;/32. The distribution of v (x;) is
estimated with 5000 samples x;.

H. Details of Mitigation Strategies
H.1. Details of Guided Diffusion
Guided Diffusion is a common strategy that trains an additional classifier to guide DDPM generation towards desired

samples during the sampling process.

Training Details and Results. This section includes the details of training classifiers with contrastive learning as guidance.
Figure 18 visualizes the constructed contrastive data, where each dataset includes three sample types that differ only in
fine-grained rules and appear nearly identical at a glance. Figure 19 visualizes the contrastive datasets constructed for each
of the four synthetic tasks. The classifier training for each task is treated as a three-class classification problem with 2000
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Figure 19. Construction of contrastive training data. For each task, we build a three-class dataset where Class 1 represents samples

satisfying fine-grained rules, while Classes 0 and 2 represent samples that only satisfy coarse-grained rules. Based on these constructed
contrastive datasets, we train classifiers as additional guidance to improve DDPM’s generation.
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Figure 20. CLIP representation of contrastive training data. For each task, we use the CLIP model to extract its representations and
apply UMAP for dimensionality reduction. We observe that the contrastive data is nearly inseparable, which presents a challenge for
training the classifier.

positive samples (class 1) and 2000 samples per negative class (classes 0 and 2). We use U-Net as the classifier architecture,
trained for 20000 iterations with a learning rate of 3e — 4, and a contrastive learning weight A = 1. Beyond standard guided
diffusion, we dynamically adjust guidance weights (gradient scales) with a piecewise strategy where guidance is activated
only in the final 20 denoising steps. The weight linearly increases from 0 to predefined gradient scale factors (7 for Tasks
A/C, 10 for Tasks B/D). Through comparation of constant versus piecewise weighting, we report optimal strategies: Task
A,B,D for standard sweighting method and Task C employs the piecewise weighting method. As noted in Section 5.2,
training high-accuracy classifiers is not easy in our problem, as evidenced by the accuracy of the training data for Tasks A,
B, C, and D being 0.57, 0.51, 0.55, and 0.63, respectively.

NT-Xent Loss. NT-Xent Loss (Normalized Temperature-scaled Cross Entropy Loss) (Sohn, 2016) is commonly used in
contrastive learning to measure the similarity between positive pairs (similar samples) and distinguish them from negative
pairs (dissimilar samples).

exp(sim(z;, z;)/7)

Ziﬁl L exp(sim(z;, zx)/T)

Lntxent(,7) = —log , 9

T 5 . . . . . .
Where z; and z; are the embeddings of the i-th and j-th samples, sim(z;,z;) = m is the cosine similarity and 7 is
i J
the temperature parameter that scales the similarity which we set 7 = 0.5 in our experiments.

H.2. Details of Filtered DDPM

Filtered DDPM is a more straightforward strategy that uses a classifier trained on raw images to filter DDPM generations,
keeping only samples predicted to satisfy fine-grained rules.

Training Details and Results. Based on the contrastive data constructed in Figure 19, we split the training and test data in
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an 80:20 ratio and directly train a three-way classifier in the raw image space, using MLP,
ResNet-8, and U-Net architectures. These models are trained for 100 epochs with a
learning rate of 3e — 4. As shown in Figure 21, the classifiers achieve accuracy between
60% and 80%. While they outperform classifiers trained for guided diffusion due to
the noise-free setting, they still fail to achieve 100% accuracy, even for these simple
synthesis tasks. Additionally, Figure 20 shows the representations extracted by CLIP
(Radford et al., 2021) for each synthetic task, followed by dimensionality reduction using
UMAP (Mclnnes et al., 2018). We observe that the data from different categories in
the contrastive data is difficult to distinguish, which presents a challenge for training
the classifier. Based on test accuracy, we use the trained MLP model to filter DDPM
generations for Tasks A and B, keeping only samples predicted as Class 1 (satisfying
fine-grained rules). For Tasks C and D, we use the U-Net model for filtering.
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Figure 21. Test accuracy of differ-
ent models on contrastive datasets.



