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ABSTRACT

Bayesian neural networks (BNNs) offer the potential for reliable uncertainty quan-
tification and interpretability, which are critical for trustworthy AI in high-stakes
domains. However, existing methods often struggle with issues such as overcon-
fidence, hyperparameter sensitivity, and posterior collapse, leaving room for al-
ternative approaches. In this work, we advance message passing (MP) for BNNs
and present a novel framework that models the predictive posterior as a factor
graph. To the best of our knowledge, our framework is the first MP method that
handles convolutional neural networks and avoids double-counting training data,
a limitation of previous MP methods that causes overconfidence. We evaluate
our approach on CIFAR-10 with a convolutional neural network of roughly 890k
parameters and find that it can compete with the SOTA baselines AdamW and
IVON, even having an edge in terms of calibration. On synthetic data, we validate
the uncertainty estimates and observe a strong correlation (0.9) between posterior
credible intervals and its probability of covering the true data-generating function
outside the training range. While our method scales to an MLP with 5.6 million
parameters, further improvements are necessary to match the scale and perfor-
mance of state-of-the-art variational inference methods.

1 INTRODUCTION

Deep learning models have achieved impressive results across various domains, including natural
language processing (Vaswani et al., 2023), computer vision (Ravi et al., 2024), and autonomous
systems (Bojarski et al., 2016). Yet, they often produce overconfident but incorrect predictions,
particularly in ambiguous or out-of-distribution scenarios. Without the ability to effectively quantify
uncertainty, this can foster both overreliance and underreliance on models, as users stop trusting their
outputs entirely (Zhang et al., 2024), and in high-stakes domains like healthcare or autonomous
driving, its application can be dangerous (Henne et al., 2020). To ensure safer deployment in these
settings, models must not only predict outcomes but also express how uncertain they are about those
predictions to allow for informed decision-making.

Bayesian neural networks (BNNs) offer a principled way to quantify uncertainty by capturing a pos-
terior distribution over the model’s weights, rather than relying on point estimates as in traditional
neural networks. This allows BNNs to express epistemic uncertainty, the model’s lack of knowledge
about the underlying data distribution. Current methods for posterior approximation largely fall into
two categories: sampling-based methods, such as Hamiltonian Monte Carlo (HMC), and determinis-
tic approaches like variational inference (VI). While sampling methods are usually computationally
expensive, VI has become increasingly scalable (Shen et al., 2024). However, VI is not without limi-
tations: It often struggles with overconfidence (Papamarkou et al., 2024), and it can struggle to break
symmetry when multiple modes are close (Zhang et al., 2018). Mean-field approaches, commonly
used in VI, are prone to posterior collapse (Kurle et al., 2022; Coker et al., 2022). Additionally, VI
often requires complex hyperparameter tuning (Osawa et al., 2019), which complicates its practical
deployment in real-world settings. These challenges motivate the need for alternative approaches
that can potentially address some of the shortcomings of VI while maintaining its scalability.

In contrast, message passing (MP) (Minka, 2001) is a probabilistic inference technique that suffers
less from these problems. Belief propagation (Kschischang et al., 2001), the basis for many MP
algorithms, integrates over variables of a joint density p(x1, . . . , xn) that factorize into a product of
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functions fj on subsets of random variables x1, . . . , xn. The corresponding factor graph is bipartite
and connects these factors fj with the variables they depend on. The following recursive equations
yield a computationally efficient algorithm to compute all marginals p(xi) for acyclic factor graphs:

p(x) =
∏
f∈Nx

mf→x(x) mf→x(x) =
∫

f(Nf )
∏

y∈Nf\{x}

my→f (y) d(Nf \ {x})

where Nv denotes the neighborhood of vertex v and my→f (y) =
∏

f ′∈Ny\{f} mf ′→y(y). Since
exact messages are often intractable and factor graphs are rarely acyclic, belief propagation typ-
ically cannot be applied directly. Instead, messages mf→X(·) and marginals pX(·) are typically
approximated by some family of distributions that has few parameters (e.g., Gaussians). However,
applying message passing (MP) in practice presents two main challenges for practitioners: the need
to derive (approximate) message equations when mf→x falls outside the approximating family, and
the complexity of implementing MP compared to other methods.

We summarize our contributions as follows:
1. We propose a scalable message-passing framework for Bayesian neural networks and derive

message equations for various factors, which can benefit factor graph modeling across domains.
2. We implement our method in Julia for both CPU and GPU, and demonstrate its scalability to

convolutional neural networks (CNNs) and large multilayer perceptrons (MLPs).
3. We evaluate on CIFAR-10 and find that our method is competitive with the SOTA baselines

AdamW and IVON, even having an edge in terms of calibration while requiring no hyperparam-
eter tuning.

To the best of our knowledge, this is the first MP method to handle CNNs and to avoid double-
counting training data, thereby preventing overconfidence and, eventually, posterior collapse. While
our methods scales to an MLP with 5.6 million parameters, further refinements are necessary to
match the scale and performance of state-of-the-art VI methods.

1.1 RELATED WORK

As the exact posterior is intractable for most practical neural networks, approximate methods are
essential for scalable BNNs. These methods generally fall into two categories: sampling-based
approaches and those that approximate the posterior with parameterized distributions.

Markov Chain Monte Carlo (MCMC) methods attempt to draw representative samples from pos-
terior distributions. Although methods such as Hamiltonian Monte Carlo are asymptotically exact,
they become computationally prohibitive for large neural networks due to their high-dimensional
parameter spaces and complex energy landscapes (Coker et al., 2022). An adaptation of Gibbs
sampling has been scaled to MNIST, but on a very small network with only 8,180 parameters (Pa-
pamarkou, 2023). Approximate sampling methods can be faster but still require a large number
of samples, which complicates both training and inference. Although approaches like knowledge
distillation (Korattikara et al., 2015) attempt to speed up inference, MCMC remains generally too
inefficient for large-scale deep learning applications (Khan & Rue, 2024).

Variational Inference (VI) aims to approximate the intractable posterior distribution p(θ | D) by
a variational posterior q(θ). The parameters of q are optimized using gradients with respect
to an objective function, which is typically a generalized form of the reverse KL divergence
DKL [ q(θ) ∥ p(θ | D) ]. Early methods like (Graves, 2011) and Bayes By Backprop (Blundell et al.,
2015) laid the foundation for applying VI to neural networks, but suffer from slow convergence and
severe underfitting, especially for large models or small dataset sizes (Osawa et al., 2019). More
recently, VOGN (Osawa et al., 2019) achieved Adam-like results on ImageNet LSVRC by applying
a Gauss-Newton approximation to the Hessian matrix. IVON (Shen et al., 2024) improved upon
VOGN by using cheaper Hessian approximations and training techniques like gradient clipping,
achieving Adam-like performance on large-scale models such as GPT-2 while maintaining similar
runtime costs. Despite recent advancements, VI continues to face challenges such as overconfi-
dence, posterior collapse, and complex hyperparameter tuning (see introduction), motivating the
exploration of alternative approaches (Zhang et al., 2018).

Message Passing for Neural Networks: Message passing is a general framework that unifies sev-
eral algorithms (Kschischang et al., 2001; Minka, 2001), but its direct application to neural networks
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has been limited. Expectation backpropagation (EBP) (Soudry et al., 2014) approximates the poste-
rior of 3-layer MLPs by combining expectation propagation, an approximate message passing algo-
rithm, with gradient backpropagation. Similarly, probabilistic backpropagation (PBP) (Hernández-
Lobato & Adams, 2015) combines belief propagation with gradient backpropagation and was found
to produce better approximations than EBP (Ghosh et al., 2016). However, PBP treats the data as
new examples in each consecutive epoch (double-counting), which makes it prone to overconfi-
dence. Furthermore, EBP and PBP were both only deployed on small datasets and rely on gradients
instead of pure message passing. In contrast, Lucibello et al. (2022) applied message passing to
larger architectures by modeling the posterior over neural network weights as a factor graph, but
faced posterior collapse to a point measure due to also double-counting data. Their experiments
were mostly restricted to three-layer MLPs without biases and with binary weights. Our approach
builds on this by introducing a message-passing framework for BNNs that avoids double-counting,
scales to CNNs, and effectively supports continuous weights.

2 THEORETICAL MODEL

Our goal is to model the predictive posterior of a BNN as a factor graph and find a Gaussian ap-
proximation of the predictive posterior via belief propagation. Essentially, factor graphs are prob-
abilistic modelling tools for approximating the marginals of joint distributions, provided that they
factorize sufficiently. For a more comprehensive introduction on factor graphs and the sum-product
algorithm, refer to Kschischang et al. (2001) BNNs, on the other hand, treat the parameters θ of
a model fθ : Rd −→ Ro as random variables with prior beliefs p(θ). Given a training dataset
D = {xi,yi}ni=1 of i.i.d. samples, a likelihood relationship p(y |x,θ) = p(y | fθ(x)), and a new
input sample x, the goal is to approximate the predictive posterior distribution p(y |x,D), which
can be written as:

p(y |x,D) =

∫
p(y |x,θ) p(θ | D) dθ. (1)

This means that the density of the predictive posterior is the expected likelihood under the posterior
distribution p(θ | D), which is proportional1 to the product of the prior and dataset likelihood:

p(θ | D) ∝ p(θ)

n∏
i=1

p(yi | fθ(x)). (2)

The integrand in Equation (1) exhibits a factorized structure that is well-suited to factor graph mod-
eling. However, directly modelling the relationship o = fθ(x) with a single Dirac delta factor
δ(o − fθ(x)) does not yield feasible message equations. Therefore we model the neural network
at scalar level by introducing intermediate latent variables connected by elementary Dirac delta fac-
tors. Figure 1 illustrates this construction for a simple MLP with independent weight matrices a
priori. While the abstract factor graph in the figure uses vector variables for simplicity, we actu-
ally derive message equations where each vector component is treated as a separate scalar variable,
and all Dirac deltas only depend on scalar variables. For instance, if d = 2, the conceptual factor
δ(o − W2a) is replaced by four scalar factors: δ(pjk − wjkak) for j, k = 1, 2, with intermediate
variables pjk, and two factors δ(oj − (pj1+pj2)). By multiplying all factors in this expanded factor
graph and integrating over intermediate results, we obtain a function in x,y,θ that is proportional
to the integrand in Equation (1). Hence, the marginal of the unobserved target y is proportional to
p(y |x,D). When y connects to only one factor, its marginal matches its incoming message.

3 APPROXIMATIONS

Calculating a precise representation of the message to the target of an unseen input is intractable for
large networks and datasets. The three primary reasons are, that a) nonlinearities and multiplica-
tion produce highly complex exact messages which are difficult to represent and propagate, b) the
enormous size of the factor graph for large datasets, and c) the presence of various cycles in the
graph. These challenges shape the message approximations as well as the design of our training and
prediction procedures, which we address in the following sections.

1with a proportionality constant of 1/p(D)
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i = 1, . . . , n

Figure 1: Conceptual vector-valued factor graph for a simple MLP. Each training example has its
own ”branch” (a copy of the network), while predictions for an unlabeled input x are computed on
a separate prediction branch. All branches are connected by the shared model parameters. Grayed-
out variables are conditioned on (observed). Colored arrows indicate the three iteration orders: a
forward / backward pass on training examples, and a forward pass for prediction.

3.1 APPROXIMATING MESSAGES VIA GAUSSIAN DENSITIES

To work around the highly complex exact messages, we approximate them with a parameterized
class of functions. We desire this class to be closed under pointwise multiplication, as variable-to-
factor messages are the product of incoming messages from other factors. We choose positive scalar
multiples of one-dimensional Gaussian densities as our approximating family. Their closedness fol-
lows immediately from the exponential function’s characteristic identity exp(x) exp(y) = exp(x+
y) and the observation that for any s1, s2 > 0 and µ1, µ2 ∈ R, the function s1(x−µ1)

2+s2(x−µ2)
2

in x can be represented as s(x − µ)2 + c for some s > 0 and µ,c ∈ R. The precise relation be-
tween two scaled Gaussian densities and its product can be neatly expressed with the help of the
so-called natural (re-)parameterization. Given a Gaussian N (µ, σ2), we call ρ = 1/σ2 the preci-
sion and τ = µ/σ2 the precision-mean. Collectively, (τ, ρ) are the Gaussian’s natural parameters,
G(x; τ, ρ) := N (x;µ, σ2), x ∈ R. For µ1, µ2 ∈ R and σ1, σ2 > 0 with corresponding natural
parameters ρi = 1/σ2

i and τi = µiρi, i = 1, 2, multiplying Gaussian densities simplifies to:

G(x; τ1, ρ1) ·G(x; τ2, ρ2) = N (µ1;µ2, σ
2
1 + σ2

2) ·G(x; τ1 + τ2, ρ1 + ρ2) (3)

for all x ∈ R. In other words, multiplying Gaussian densities simplifies to the pointwise addition
of their natural parameters, aside from a multiplicative constant. Since we are only interested in the
marginals, which are re-normalized, this constant does not affect the final result. Therefore, we can
safely ignore these multiplicative constants and only keep track of the Gaussian’s parameters.

Now we present our message approximations for three factor types, each representing a deterministic
relationship between variables: 1 the sum of variables weighted by constants, 2 the application of
a nonlinearity, and 3 the multiplication of two variables. As we model the factor graph on a scalar
level, these three factors suffice to model complex modern network architectures such as ConvNeXt
Liu et al. (2022)2. In E, we provide a comprehensive table of message equations, including additional
factors for modeling training labels.

Weighted Sum: The density transformation property of the Dirac delta allows us to compute the
exact message without approximation. For the relationship s = c⊺v modeled by the factor f :=
δ(s− c⊺v), the message

mf→s(s) =

∫
δ(s− c⊺v)

k∏
i=1

mvi→f (vi) dv1 . . . vk

2with the exception of layer normalization, which can be substituted by orthogonal initialization schemes
Xiao et al. (2018) or specific hyperparameters of a corresponding normalized network Nguyen et al. (2023)
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is simply the density of c⊺v, where v ∼
∏k

i=1 mvi→f (vi). If mvi→f (vi) = N (vi;µi, σ
2
i ) are

Gaussian, then v ∼ N (µ, diag(σ2)) and mf→s(s) becomes a scaled multivariate Gaussian:

mf→s(s) = N (s; c⊺µ, (c2)⊺σ2).

The backward messages mf→vi can be derived similarly without approximation.

Nonlinearity: We model the application of a nonlinearity ϕ : R → R as a factor f := δ(a − ϕ(z)).
However, the forward and backward messages are problematic and require approximation–even for
well-behaved, injective ϕ such as LeakyReLUα:

ma→f (a) = pdfϕ(Z)(a) for Z ∼ N

mf→z(z) =
∫

δ(a − ϕ(z)) ·ma→f (a) da = ma→f (ϕ(z)) = N (ϕ(z);µa, σ
2
a ).

For values of α ̸= 1, the forward message is non-Gaussian and the backward message does not even
integrate to 1. For ReLU (α = 0), it is clearly not even integrable. Instead, we use moment matching
to fit a Gaussian approximation. Given any factor f and variable v, we can approximate the message
mf→v with a Gaussian if the moments mk :=

∫
vkmf→v(v) dv exist for k = 0, 1, 2 and can be

computed efficiently:

mf→v(v) = N (v;m1/m0,m2/m0 − (m1/m0)
2) (Direct approximation)

However, direct moment matching of the message is impossible for non-integrable messages or
when the mk are expensive to find. Instead, we can apply moment matching to the updated marginal
of v. Let m0, m1, m2 be the moments of the ”true” marginal

m(v) =
∫

f(v, v1, ..., vk) dv1...dvk ·
∏
i

mgi→v(v),

which is the product of the true message from f and the approximated messages from other factors
gi. Then we can approximate m with a Gaussian and obtain a message approximation

mf→v(v) := N (v;µv, σ
2
v )/mv→f (v) (Marginal approximation)

which approximates mf→v so that it changes v’s marginal in the same way as the actual message.3
Since mv→f (v) is a Gaussian density, we can compute mf→v(v) efficiently by applying Gaussian
division in natural parameters, similar to Equation (3).

For LeakyReLUα, we found efficient direct and marginal approximations that are each applicable
to both the forward and backward message when α ̸= 0. The marginal approximation remains
applicable even for the ReLU case of α = 0. We provide detailed derivations in Appendix B.2.

Product For the relationship c = ab, we employ variational message passing as in Stern et al. (2009),
in order to break the vast number of symmetries in the true posterior of a Bayesian neural network.
By combining the variational message equations for scalar products with the weighted sum, we can
also construct efficient higher-order multiplication factors such as inner vector products. Refer to E
for detailed equations.

3.2 TRAINING PROCEDURE & PREDICTION

In pure belief propagation, the product of incoming messages for any variable equals its marginal
under the true posterior. With our aforementioned approximations, we can reasonably expect to
converge on a diagonal Gaussian q̌ that approximates one of the various permutation modes of the
true posterior by aligning the first two moments of the marginal. This concept can be elegantly
interpreted through the lens of relative entropy. As shown in A.2, among diagonal Gaussians q(θ) =
q1(θ1) · · · qk(θk), the relative entropy from (a mode of) the true posterior to q is minimized for q̌:

q̌ = argmin
q

DKL [ p(θ | D) | q(θ) ] . (4)

Another challenge in finding q̌ arises from cyclic dependencies. In acyclic factor graphs, each mes-
sage depends only on previous messages from its subtree, allowing for exact propagation. However,

3This is the central idea behind expectation propagation as defined in Minka (2001).
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our factor graph contains several cycles due to two primary reasons: 1 multiple training branches
interacting with shared parameters across linear layers, and 2 the scalar-level modeling of matrix-
vector multiplication in architectures with more than one hidden layer. These loops create circular
dependencies among messages. To address these challenges, we adopt loopy belief propagation,
where belief propagation is performed iteratively until messages converge. While exact propagation
works in acyclic graphs, convergence is then only guaranteed under certain conditions (e.g., Simon’s
condition (Ihler et al., 2005)) that are difficult to verify. Instead, we pass messages in an iteration
order that largely avoids loops by alternating forward and backward passes similarly to deterministic
neural networks. Our message schedule is visualized in Figure 1.

· · · a1 z1 · · ·

· · · a2 z2 · · ·
· · ·

· · · ab zb · · ·

Active Batch

Prior

Wp(W )

Batch k

· · ·
Batch 3

Batch 2

FactorGraph

Trainer

Figure 2: A full FactorGraph models all messages for one batch of training examples. To iterate the
FactorGraph, we only need one joint message summarizing the prior and all other examples. When
switching to a new batch, we aggregate messages from the previous batch and store them in the
Trainer.

Batching As the forward and backward messages depend on each other, we must store them to
compute message updates during message passing. Updating our messages in a sweeping ”pass”
over a branch and running backward passes immediately after the forward pass on the same branch,
allows us to store many messages only temporarily, reducing memory requirements. This schedule
also ensures efficient propagation of updated messages despite the presence of loops. However,
some messages must still be retained permanently4, leading to significant memory demand when
storing them for all n training examples. To address this, we adopt a batching strategy: Instead of
maintaining n training branches simultaneously, we update the factor graph using a batch (subset) of
b examples at a time. The factor graph then models b messages to the weights W , while the messages
to W from the remaining (inactive) examples are aggregated into batch-wise products and stored in
a trainer object. Figure 2 illustrates this setup. When switching batches, we divide the marginals by
the batch’s old aggregate message and multiply the updated messages into the marginal, ensuring
that data is not double-counted. Within each batch, we iterate through the examples and perform
a forward and backward pass on each in sequence. After all examples have been processed once,
we call it an ”iteration”. Depending on the training stage, we either repeat this process within the
same batch or move to the next batch. As training progresses, we gradually increase the number of
iterations per batch to allow for finer updates as the overall posterior comes closer to convergence.

Prediction: Ultimately, our goal is to compute the marginal of the unobserved target y for some
unseen input x. Since the prediction branch in Figure 1 introduces additional loops, obtaining an
accurate approximation would require iterating over the entire factor graph, including the training
branches. In neural network terms, this translates to retraining the whole network for every test
input. Instead, we pass messages only on the training branches in the batch-wise setup described
above. At test time, messages from the training branches are propagated to the prediction branch, but
not vice versa. Specifically, messages from the weights to the prediction branch are computed as the

4For example, the backward message of the linear layer is needed to compute the marginal of the inputs,
which the forward message depends on.
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product of the prior and the incoming messages from the training branches. This can be interpreted
as approximating the posterior over weights, p(θ | D), with a diagonal Gaussian q̌(θ) and using it as
the prior during inference.

4 MAKING IT SCALE

In scaling our approach to deep networks, we encountered several challenges related to computa-
tional performance, numerical stability, and weight initialization. The following subsections detail
remedies to these problems.

4.1 FACTOR GRAPH IMPLEMENTATION

While batching effectively reduces memory requirements for large datasets, a direct implementation
of a factor graph still scales poorly for deep networks. Explicitly modeling each scalar variable and
factor as an instance is computationally expensive. To address this, we propose the following design
optimizations: 1 Rather than modeling individual elements of the factor graph, we represent entire
layers of the network. Message passing between layers is orchestrated by an outer training loop. 2
Each layer instance operates across all training branches within the active batch, removing the need
to duplicate layers for each example. 3 Factors are stateless functions, not objects. Each layer is
responsible for computing its forward and backward messages by calling the required functions. In
this design, layer instances maintain their own state, but message passing and batching are managed
in the outer loop. The stateless message equations are optimized for both performance and numerical
stability. As a result, the number of layer instances scales linearly with network depth but remains
constant regardless of layer size or batch size. This approach significantly reduces computational
and memory overhead—our implementation is approximately 300x faster than a direct factor graph
model in our tests. Additionally, we optimized our implementation for GPU execution by leveraging
Julia’s CUDA.jl and Tullio.jl libraries. Since much of the runtime is spent on linear algebra
operations (within linear or convolutional layers), we built a reusable, GPU-compatible library for
Gaussian multiplication. This design makes the implementation both scalable and extendable.

4.2 NUMERICAL STABILITY

Maintaining numerical stability in the message-passing process is critical, particularly as model size
increases. Backward messages often exhibit near-infinite variances when individual weights have
minimal impact on the likelihood. Therefore, we compute them directly in natural parameters, which
also simplifies the equations. Special care is needed for LeakyReLU, as its messages can easily di-
verge. To mitigate this, we introduced guardrails: when normalization constants become too small,
precision turns negative, or variance in forward messages increases, we revert to either G(0, 0) or
use moment matching on messages instead of marginals (see E for details). Another trick is to pe-
riodically recompute the weight marginals from scratch to maintain accuracy. By leveraging the
properties of Gaussians, we save memory by recomputing variable-to-factor messages as needed5.
However, incremental updates to marginals can accumulates errors, so we perform a full recom-
putation once per batch iteration. Lastly, we apply light message damping through an exponential
moving average to stabilize the training, but, importantly, only on the aggregated batch messages,
not on the individual messages of the active batch.

4.3 WEIGHT PRIORS

A zero-centered diagonal Gaussian prior with variance σ2
p is a natural choice for the prior over

weights. However, as in traditional deep learning, setting all means to zero prevents messages from
breaking symmetry. To resolve this, we sample prior means according to spectral parametrization
(Yang et al., 2024), which facilitates feature learning independent of the network width. Another
challenge in prior choice is managing exploding variances. In a naive setup with σ2

p = 1, forward

5Each layer stores factor-to-weight-variable messages and the marginal, which is an aggregate that is con-
tinuously updated as individual messages change. To compute a variable-to-factor message, divide the marginal
by the factor-to-variable message.
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message variances grow exponentially with the network depth. While we attempted to find a prin-
cipled choice of σ2

p, our current initialization scheme is based on experimental data (see D). For a
layer with d1 inputs and d2 outputs, we set

σ2
p =

1.5− 0.8041 ·min(1.0, d2/d1)

0.8041 + 0.4496 · d1
.

Refer to D for our justification of this formula.

5 EXPERIMENTS

5.1 SYNTHETIC DATA

We first evaluate our model on a synthetic sine curve dataset of 200 data points. Figure 3 shows that
an MLP with 4-5 linear layers fits the data well, whereas smaller models are not expressive enough to
capture the data and deeper models are harder to fit. For depths beyond six layers, the performance
degrades further, but the same is true for models of the same architecture trained in Torch. As
expected, the posterior approximations in Figure 3 have small variance within the training range and
high variance outside or when the fit is bad. In all plots, the mean prediction and standard deviation
expand linearly outside the training range.

(a) Three layers (b) Four layers (c) Five layers (d) Six layers

Figure 3: Fitting MLPs of width 16 with increasing depth. Between any linear layers we apply
LeakyReLU with a leak of 0.1. As the depth increases, the network becomes more expressive but
harder to fit.

To assess how well our model’s posterior uncertainty generalizes beyond the training data, we trained
100 separate models on the same sine curve data and evaluated their performance on unseen inputs.
For this test, we limit the training data range to (−0.5, 0.5) and then measure if the posterior ap-
proximation covers the true data-generating function outside of this training range. For negative x,
61% of 1σ-intervals covered the true data-generating function, 86% of 2σ-intervals, and 93% of
3σ-intervals. For positive x, we measured 36%, 68%, and 90% respectively. While these measure-
ments are slightly lower than the probability mass covered by the respective intervals, the posterior
uncertainty appears to be reasonably well-calibrated. Overall, we found a strong correlation of 0.90
between credible intervals of the predictive posterior and the coverage rate.

5.2 CIFAR-10

To evaluate our method on the CIFAR-10 dataset we trained a 6 layer deep convolutional network
with roughly 890k parameters on the full training dataset. As baseline methods we picked the SOTA
optimizers AdamW (Loshchilov & Hutter, 2017) and IVON (Shen et al., 2024) each with a cosine
annealing learning rate schedule (Loshchilov & Hutter, 2016). Across all methods, including ours,
we trained for 25 epochs. In Appendix C we give extensive details on the network architecture and
the experimental setup in general. Table 1 compares the performance of our method (MP) against
AdamW and IVON across a variety of standard metrics. In general, we see that MP can compete
with these two strong baselines. And in the expected calibration error our method even has a notable
edge. That the metrics are overall worse than what is reported by Shen et al. (2024) is likely due to
a difference in architecture; Shen et al. only conduct experiments on ResNets equipped with filter
response normalization (Singh & Krishnan, 2019). Neither residual connections nor normalization
layers are yet implemented in our factor graph library. Nevertheless, these results motivate to further
improve our approach. In the future work part of Section 6 we outline ideas on how to model such
factors.
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Acc. ↑ Top-5 Acc. ↑ NLL ↓ ECE ↓ Brier ↓ OOD-AUROC ↑
AdamW 0.783 0.984 1.736 0.046 0.38 0.792
IVON@mean 0.772 0.983 1.494 0.041 0.387 0.819
IVON 0.772 0.983 1.316 0.035 0.37 0.808
MP (Ours) 0.773 0.977 0.997 0.029 0.361 0.81

Table 1: Comparison of various validation statistics for a convolutional network of roughly 890k
parameters trained on CIFAR-10. Out-of-distribution (OOD) detection was tested with SVHN. For
IVON we used 100 samples for prediction at test time. IVON@mean are the results obtained from
evaluating the model at the means of the learned distributions of the individual parameters.

Reproducibility All code is available at https://github.com/iclr2025-7302/iclr2025 7302.

6 CONCLUSION

Summary: We presented a novel framework that advances message-passing (MP) for Bayesian
neural networks by modeling the predictive posterior as a factor graph. To the best of our knowledge,
this is the first MP method to handle convolutional neural networks while avoiding double-counting
training data, a limitation in previous MP approaches like Soudry et al. (2014); Hernández-Lobato
& Adams (2015); Lucibello et al. (2022). In our experiment on the CIFAR-10 dataset our method
proofed to be competitive with the SOTA baselines AdamW and IVON, even showing an edge in
terms of calibration.

Limitations: Despite recent advances, variational inference methods like IVON remain ahead in
scale and performance on larger datasets. Our approach’s runtime and memory requirements scale
linearly with model parameters and dataset size. While our inference at test time can keep up with
IVON’s sampling approach in terms of speed and memory requirements, training is up to two orders
of magnitude slower and more GPU-memory intensive compared to training deterministic networks
using PyTorch with optimizers like AdamW.

The memory overhead stems from two key factors: First, each training example stores messages
proportional to the model’s parameter count, unlike AdamW’s batch-level intermediate representa-
tions. Second, each parameter requires two 8-byte floating-point numbers, contrasting with more
efficient 4-byte or smaller formats.

Runtime inflation results from several performance bottlenecks: Our training schedule lacks parallel
forward passes, our Tullio-based CUDA kernel generation misses memory-layout and GPU opti-
mizations present in mature libraries like Torch, message equations involve complex computations
beyond standard matrix multiplications, and we use Julia’s default FP64 precision, which GPUs
process less efficiently.

Future Work: We believe Moment Propagation (MP) holds significant promise for more balanced
uncertainty estimates, thanks to its moment-matching ability, compared to Variational Inference’s
tendency toward overconfident predictions. Further improvements in scalability and architectural
flexibility could make MP a competitive alternative to VI.

Concretely, in terms of memory requirements, it is worth exploring whether iterating on individ-
ual examples instead of batches, and starting from scratch in each epoch, could leave our method
ahead. While this might reintroduce the double counting problem, it would drastically reduce the
GPU-memory footprint. Regarding training efficiency, an altered message-update schedule with ac-
tual batched computations would significantly reduce training time. Reimplementing our library in
CUDA C++ with efficiency in mind could also drastically cut down computational overhead.

On the architectural front, we deem it likely that our approach can be extended to most modern deep
learning architectures. Residual connections are straightforward to implement as they boil down to
simple sum factors. For normalization layers at the scalar level, only a division factor is missing,
which can be approximated by a ”rotated” product factor. This would suffice to model ResNet-like
architectures and more modern convolutional networks like ConvNeXt. For transformers, the last
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ingredient needed is an efficient softargmax factor. Given the division factor, only an exp factor is
missing to model softargmax at the scalar level.

Finally, future work might also explore applications to more applied tasks such as continual learning,
sparse networks, and Bayesian reinforcement learning.
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A PROOF OF GLOBAL MINIMIZATION OBJECTIVE

A.1 MOMENT-MATCHED GAUSSIANS MINIMIZE CROSS-ENTROPY

Consider a scalar density p and a Gaussian q(θ) = N (θ, µ, σ). Then

minH(p, q) = min

(∫
p(θ) log

(
p(θ)

q(θ)

)
dθ

)
= min

(
1

2σ2

∫
p(θ)(θ − µ)2 dθ +

log(2πσ2)

2

)
.

It is well known that expectations minimize the expected mean squared error. In other words, the
integral is minimized by setting µ to the expectation of p and is then equal to the variance of p. The
necessary condition of a local minimum then yields that σ2 must be the variance of p.

A.2 PROOF OF EQUATION (4) GLOBAL MINIMIZATION OBJECTIVE

Let p be an arbitrary probability density on Rk with marginals pi(θi) :=
∫
p(θ) d(θ \ θi) and denote

by Q the set of diagonal Gaussians. Then for every q(θ) =
∏k

i=1 qi(θi) ∈ Q we can write the
relative entropy from p to q as

DKL[ p || q ] =
∫

p(θ) log

(
p(θ)

q(θ)

)
dθ = −

k∑
i=1

∫
p(θ) log(q(θi))dθ −H(p)

= −
k∑

i=1

∫
θi

log(qi(θi))

∫
θ\θi

p(θ)d(θ \ θi)−H(p) =

k∑
i=1

H(pi, qi)−H(p).

This shows that DKL[ p || q ] is minimized by independently minimizing the summands H(pi, qi).
In combination with A.1 this completes the proof.

B DERIVATIONS OF MESSAGE EQUATIONS

B.1 RELU

A common activation function is the Rectified Linear Unit ReLU : R → R, z 7→ max(0, z).

Forward Message: Since ReLU is not injective, we cannot apply the density transformation prop-
erty of the Dirac delta to the forward message

mf→a(a) =
∫

z∈R
δ(a − ReLU(z))mz→f (z) dz.

In fact, the random variable ReLU(Z) with Z ∼ mz→f does not even have a density. A positive
amount of weight, namely Pr[Z ≤ 0], is mapped to 0. Therefore

mf→a(0) = lim
t→0

∫
z∈R

N (ReLU(z); 0, t2)mz→f (z) dz ≥ lim
t→0

N (0; 0, t2) min
z∈[−1,0]

mz→f (z) = ∞.

Apart from 0, the forward message is well defined everywhere, and technically null sets do not matter
under the integral. However, moment-matching mz→f while truncating at 0 does not seem reason-
able as it completely ignores the weight of mz→f on R≤0. Therefore, we refrain from moment-
matching the forward message of ReLU.
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As an alternative, we consider a marginal approximation. That means, we derive formulas for

mk :=

∫
a∈R

akma→f (a)mf→a(a) da, k ∈ {0, 1, 2} (5)

and then set
mf→a(a) := N (a;m1/m0,m2/m0 − (m1/m0)

2) /ma→f (a).
By changing the integration order, we obtain

mk =

∫
a∈R

akma→f (a)
∫
z∈R

δ(a − ReLU(z))mz→f (z) dz da

=

∫
z∈R

mz→f (z)

∫
a∈R

δ(a − ReLU(z))akma→f (a) da dz

=

∫
z∈R

mz→f (z)ReLUk(z)ma→f (ReLU(z)) dz

Note that we end up with a well-defined and finite integral. Similar integrals arise in later derivations.
For this reason we encapsulate part of the analysis in basic building blocks.
Building Block 1. We can efficiently approximate integrals of the form∫ ∞

0

zkN (z;µ1, σ
2
1)N (z;µ2, σ

2
2) dz

where µ1, µ2 ∈ R, σ1, σ2 > 0 and k = 0, 1, 2.

Proof. By Equation (3) the integral is equal to

S+ = N (µ1;µ2, σ
2
1 + σ2

2)

∫ ∞

0

zkN
(
z;µ, σ2

)
dz

= N (µ1;µ2, σ
2
1 + σ2

2)

{
E[ReLUk(N (µ, σ2))] for k = 1, 2

Pr[−Z ≤ 0] = ϕ(µ/σ) for k = 0

where
µ =

τ

ρ
, σ2 =

1

ρ
, τ =

µ1

σ2
1

+
µ2

σ2
2

and ρ =
1

σ2
1

+
1

σ2
2

.

This motivates the derivation of efficient formulas for the moments of an image of a Gaussian vari-
able under ReLU.
Building Block 2. Let Z ∼ N (µ, σ2). The first two moments of ReLU(Z) are then given by

E[ReLU(Z)] = σφ(x) + µϕ(x) (6)

E[ReLU2(Z)] = σµφ(x) + (σ2 + µ2)ϕ(x), (7)

where x = µ/σ and φ, ϕ denote the pdf and cdf of the standard normal distribution, respectively.

Proof. The basic idea is to apply
∫
ze−z2/2 dz = −e−z2/2. Together with a productive zero, one

obtains
√
2πσE[ReLU(Z)] =

∫ ∞

0

ze−
(z−µ)2

2σ2 dz = σ2

∫ ∞

0

(z − µ)

σ2
e−

(z−µ)2

2σ2 dz + µ

∫ ∞

0

e−
(z−µ)2

2σ2 dz

= σ2

[
−e−

(z−µ)2

2σ2

]∞
0

+
√
2πσµPr[Z ≥ 0]

= σ2e−
µ2

2σ2 +
√
2πσµPr

[
−Z + µ

σ
≤ µ

σ

]
=

√
2πσ2φ(x) +

√
2πσµϕ(x).
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Rearranging yields the desired formula for the first moment. For the second moment, we need to
complete the square and perform integration by parts:

E[ReLU2(Z)] =
1√
2πσ

∫ ∞

0

z2e−
(z−µ)2

2σ2 dz

=
1√
2πσ

(
σ2

∫ ∞

0

(z − µ)
z − µ

σ2
e−

(z−µ)2

2σ2 dz + 2µ

∫ ∞

0

ze−
(z−µ)2

2σ2 dz − µ2

∫ ∞

0

e−
(z−µ)2

2σ2 dz

)
=

σ2

√
2πσ

([
−(z − µ)e−

(z−µ)2

2σ2

]∞
0

+

∫ ∞

0

e−
(z−µ)2

2σ2

)
+ 2µE[ReLU(Z)]− µ2ϕ(x)

= −σµφ(x) + σ2ϕ(x) + 2µE[ReLU(Z)]− µ2ϕ(x) = σµφ(x) + (σ2 + µ2)ϕ(x).

Building Block 3. Integrals of the form

S− :=

∫ 0

−∞
zkN (z;µ1, σ

2
1)N (0;µ2, σ

2
2) dz

where µ1, µ2 ∈ R, σ1, σ2 > 0 and k = 0, 1, 2 can be efficiently approximated.

Proof. Employing the substitution z = −t gives

S− = N (0;µ2, σ
2
2)

∫ ∞

0

(−1)ktkN (−t;µ1, σ
2
1) dt = (−1)kN (0;µ2, σ

2
2)

∫ ∞

0

tkN (t;−µ1, σ
2
1) dt

= (−1)kN (0;µ2, σ
2
2)

{
E[ReLU(N (−µ1, σ

2
1))] for k = 1, 2

Pr[−Z ≥ 0] = ϕ(−µ1/σ1) for k = 0.

Now let mz→f (z) = N (z;µz, σ
2
z),ma→f (a) = N (a;µa, σ

2
a ) and consider the decomposition

mk =

∫ ∞

0

zkN (z;µz, σ
2
z)N (z;µa, σ

2
a ) dz︸ ︷︷ ︸

S+

+

∫ 0

−∞
ReLUk(z)N (z;µz, σ

2
z)N (0;µa, σ

2
a ) dz︸ ︷︷ ︸

S−

.

Note that S+ falls under Building Block 1 for any k = 0, 1, 2. The other addend S− is equal to 0
for k = 1, 2, and is handled by Building Block 3 for k = 0.

Backward Message: By definition of the Dirac delta, the backward message is equal to

mf→z(z) =

∫
a∈R

δ(a − ReLU(z))ma→f (a) da = ma→f (ReLU(z))

which is, of course, not integrable, so it cannot be interpreted as a scaled density. Instead, we apply
marginal approximation by deriving formulas for

mk :=

∫
z∈R

zkmz→f (z)mf→z(z) dz, k ∈ {0, 1, 2}

and then setting

mf→z(z) := N (z;m1/m0,m2/m0 − (m1/m0)
2) /mz→f (z).

To this end, let mz→f (z) = N (z;µz, σ
2
z) and ma→f (a) = N (a;µa, σ

2
a ). Then we have

mk =

∫ ∞

0

zkN (z;µz, σ
2
z)N (z;µa, σ

2
a) dz︸ ︷︷ ︸

S+

+

∫ 0

−∞
zkN (z;µz, σ

2
z)N (0;µa, σ

2
a) dz︸ ︷︷ ︸

S−

.

The two addends S+ and S− are handled by Building Block 1 and Building Block 3, respectively.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

B.2 LEAKY RELU

Another common activation function is the Leaky Rectified Linear Unit

LeakyReLUα : R → R, z 7→
{
z for z ≥ 0

αz for z < 0.

It is parameterized by some α > 0 that is typically small, such as α = 0.1. In contrast to ReLU,
it is injective (and even bijective). For this reason the forward and backward messages are both
integrable and can be approximated by both direct and marginal moment matching. The notation is
shown in Figure 4.

a
δ(a − LeakyReLUα(z))

z
N (µa, σ

2
a ) N (µz, σ

2
z )

Figure 4: A deterministic factor corresponding to the LeakyReLUα activation function.

Forward Message: It is easy to show that the density of LeakyReLUα(N (µz, σ
2
z)) is given by

p(a) = N (LeakyReLU1/α(a);µz, σ
2
z)

{
1 for z ≥ 0

1/α for z < 0

which only has one discontinuity point, namely 0. In particular, it is continuous almost everywhere.
So by the density transformation property of Dirac’s delta, we have mf→a(a) = p(a) for almost all
a. Under the integral we can therefore replace mf→a(a) by p(a). This justifies that the moments of
mf→a are exactly the moments of (LeakyReLUα)∗N (µz, σ

2
z). Its expectation is equal to

E [LeakyReLUα(N (µz, σ
2
z))] =

∫ 0

−∞
αzN (z;µz, σ

2
z) dz +

∫ ∞

0

zN (z;µz, σ
2
z) dz

= −α

∫ ∞

0

tN (t;−µz, σ
2
z) dt+

∫ ∞

0

zN (z;µz, σ
2
z) dz

= −αE[ReLU(N (−µz, σ
2
z))] + E[ReLU(Z)].

Both addends are handled by Building Block 2. Yet we can get more insight by further substitution:

E[LeakyReLUα(Z)] = −α(σzφ(−µz/σz)− µzϕ(−µz/σz)) + σzφ(µz/σz) + µzϕ(µz/σz)

= (1− α)(σzφ(µz/σz) + µzϕ(µz/σz)) + αµz

= (1− α)E[ReLU(Z)] + αE[Z].

In the second to last equation, we use the identities φ(−x) = φ(x) and ϕ(−x) = 1−ϕ(x). As such,
the mean of LeakyReLUα(Z) is a convex combination of the mean of ReLU(Z) and the mean of Z.
The function LeakyReLU1 the identity, and its mean is accordingly the mean of Z. For α = 0, we
recover the mean of ReLU(Z).

The second moment of LeakyReLUα(Z) decomposes to

E[LeakyReLU2
α(Z)] =

∫ 0

−∞
α2z2N (z;µz, σ

2
z) dz +

∫ ∞

0

z2N (z;µz, σ
2
z) dz

= α2

∫ ∞

0

z2N (z;−µz, σ
2
z) dz +

∫ ∞

0

z2N (z;µz, σ
2
z) dz

= α2E[ReLU2(N (−µz, σ
2
z))] + E[ReLU2(N (µz, σ

2
z))].

Again, both addends are covered by Building Block 2, so approximating the forward message via
direct moment matching is feasible.
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A marginal approximation can also be found. For all k = 0, 1, 2 we have∫
a∈R

akma→f (a)mf→a(a) da =

∫
a∈R

akma→f (a)p(a) da

=
1

α

∫ 0

−∞
akN (a;µa, σ

2
a)N (a/α;µz, σ

2
z) da︸ ︷︷ ︸

S−

+

∫ ∞

0

akN (a;µa, σ
2
a)N (a;µz, σ

2
z) da︸ ︷︷ ︸

S+

The term S+ is handled by Building Block 1. The term S− is equal to

S− =

∫ 0

−∞
akN (a;µa, σ

2
a)N (a;αµz, (ασz)

2) da

= (−1)k
∫ ∞

0

akN (a;−µa, σ
2
a)N (a;−αµz, (ασz)

2) da

and therefore also covered by Building Block 1.

Backward Message: By the sifting property of the Dirac delta, the backward message is equal to

mf→z(z) =

∫
a∈R

δ(a− LeakyReLUα(z))ma→f (a) da = ma→f (LeakyReLUα(z)).

As opposed to ReLU, the backward message is integrable. That means, we can also apply direct
moment matching: For all k = 0, 1, 2 we have

mf→z(z) =

∫ 0

−∞
zkN (αz;µa, σ

2
a) dz +

∫ ∞

0

zkN (z;µa, σ
2
a) dz

=
(−1)k

α

∫ ∞

0

zkN (z;−µa/α, (σa/α)
2) dz +

∫ ∞

0

zkN (z;µa, σ
2
a) dz

For k = 1 or k = 2, the integrals fall under Building Block 2 again. If k = 0, then

mf→z(z) =
(−1)k

α
ϕ(−µa/σa) + ϕ(µa/σa).

Again, we can also find a marginal approximation as well. For all k = 0, 1, 2, we can write∫
z∈R

zkmz→f (z)mf→z(z) dz

=

∫ 0

−∞
zkN (z;µz, σ

2
z)N (αz;µa, σ

2
a) dz +

∫ ∞

0

zkN (z;µz, σ
2
z)N (z;µa, σ

2
a) dz

=
(−1)k

α

∫ ∞

0

zkN (z;−µz, σ
2
z)N (z;−µa/α, (σa/α)

2) dz +

∫ ∞

0

zkN (z;µz, σ
2
z)N (z;µa, σ

2
a) dz

Since both integrals are covered by Building Block 1 we have derived direct and marginal approxi-
mations of LeakyReLU messages using moment matching.

B.3 SOFTMAX

We model the soft(arg)max training signal as depicted in Table 3. For the forward message on the
prediction branch, we employ the so-called ”probit approximation” (Daxberger et al., 2022):

mf→c(i) =

∫
softmax(a)iN (a;µ, diag(σ2) da ≈ softmax(t)i,

where tj = µj/(1 + π
8σ

2
j ), j = 1, . . . , d. For the backward message on a training branch, to say

ad, we use marginal approximation. We hence need to compute the moments m0,m1,m2 of the
marginal of ad via:

mk =

∫
akd softmax(a)c N (a;µ, diag(σ2) da

=

∫
ad

akd N (ad;µd, σ
2
d)

∫
a\ad

softmax(a)i
∏
j ̸=i

N (aj ;µj , σ
2
j ) d(a \ ad)dad.
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We can reduce the inner integral to the probit approximation by regarding the point distribution δad
as the limit of a Gaussian with vanishing variance:∫

a\ad
softmax(a)c

∏
j ̸=d

N (aj ;µj , σ
2
j ) d(a \ ad)

=

∫
a\ad

∫
ãd

δ(ãd − ad) softmax(a1, . . . , ad−1, ãd)
∏
j ̸=d

N (aj ;µj , σ
2
j ) dãd d(a \ ad)

=

∫
ã\ãd

lim
σ→0

∫
ãi

softmax(ã)c N (ãd; ad, σ
2)

∏
j ̸=d

N (ãj ;µj , σ
2
j ) dãi dãi

By Lebesgue’s dominated convergence theorem we obtain equality to

lim
σ→0

∫
ã

softmax(ã)cN (ãd; ad, σ
2)

∏
j ̸=i

N (ãj ;µj , σ
2
j ) dã

≈ lim
σ→0

softmax(t)i = softmax(t1, . . . , td−1, ad) where tj =

{
µj/(1 +

π
8σ

2
j ) for j ̸= d

ad/(1 + π
8σ

2) for j = d.

Hence, we can approximate mk by one-dimensional numerical integration of

mk ≈
∫

ad
akd N (ad;µd, σ

2
d) softmax(t1, . . . , td−1, ad) dad.

C EXPERIMENTAL SETUP

Synthetic Data - Depth Scaling: We generated a dataset of 200 points by randomly sampling x
values from the range [0, 2]. The true data-generating function was

f(x) = 0.5x+ 0.2 sin(2π · x) + 0.3 sin(4π · x).

The corresponding y values were sampled by adding Gaussian noise: f(x) +N (0, 0.052). For the
architecture, we used a three-layer neural network with the structure:

[Linear(1, 16),LeakyReLU(0.1),Linear(16, 16),LeakyReLU(0.1),Linear(16, 1)].

A four-layer network has one additional [Linear(16, 16),LeakyReLU(0.1)] block in the middle, and
a five-layer network has two additional blocks. For the regression noise hyperparameter, we used
the true noise β2 = 0.052. The models were trained for 500 iterations over one batch (as all data
was processed in a single active batch).

Synthetic Data - Uncertainty Evaluation: The same data-generation process was used as in the
depth-scaling experiment, but this time, x values were drawn from the range [−0.5, 0.5]. The net-
work architecture remained the same as the three-layer network, but the width of the layers was
increased to 32. We trained 100 networks with different random seeds on the same dataset. We
define a p-credible interval for 0 ≤ p ≤ 1 as:

[cdf−1(0.5− p

2
), cdf−1(0.5 +

p

2
)].

For each credible interval mass p (ranging from 0 to 1 in steps of 0.01), we measured how many of
the p-credible intervals (across the 100 posterior approximations) covered the true data-generating
function. This evaluation was done at each possible x value (ranging from -20 to 20 in steps of
0.05), generating a coverage rate for each combination of p and x. For each p, we then computed
the median for x > 10 and the median for x < −10. If we correlate the p values with the medians,
we found that for the median obtained from positive x values the correlation was 0.96, for negative
x it was 0.99, and for the combined set of medians it was 0.9.

CIFAR-10: For our CIFAR-10 experiments, we used the default train-test split and trained the
following feed-forward network:
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c l a s s Net ( nn . Module ) :
def i n i t ( s e l f ) :

super ( Net , s e l f ) . i n i t ( )
s e l f . model = nn . S e q u e n t i a l (

# Block 1
nn . Conv2d ( 3 , 32 , 3 , padd ing = 0) ,
nn . LeakyReLU ( 0 . 1 ) ,
nn . Conv2d ( 3 2 , 32 , 3 , padd ing = 0) ,
nn . LeakyReLU ( 0 . 1 ) ,
nn . MaxPool2d ( 2 ) ,
# Block 2
nn . Conv2d ( 3 2 , 64 , 3 , padd ing = 0) ,
nn . LeakyReLU ( 0 . 1 ) ,
nn . Conv2d ( 6 4 , 64 , 3 , padd ing = 0) ,
nn . LeakyReLU ( 0 . 1 ) ,
nn . MaxPool2d ( 2 ) ,
# Head
nn . F l a t t e n ( ) ,
nn . L i n e a r (64 * 5 * 5 , 5 1 2 ) ,
nn . LeakyReLU ( 0 . 1 ) ,
nn . L i n e a r ( 5 1 2 , 1 0 ) ,

)

def f o r w a r d ( s e l f , x ) :
re turn s e l f . model ( x )

In the case of AdamW and IVON we trained with a cross-entropy loss on the softargmax of the
network output. For our message passing method we used our argmax factor as a training signal
instead of softargmax, see Appendix E. The reason is that for softargmax we only have message
approximations relying on rather expensive numerical integration. In our library this factor graph
can be constructed via

fg = c r e a t e f a c t o r g r a p h ( [
s i z e ( d . X t r a i n ) [ 1 : end −1 ] , # ( 3 , 32 , 32)
# F i r s t B lock
( : Conv , 32 , 3 , 0 ) , # ( 3 2 , 30 , 30)
( : LeakyReLU , 0 . 1 ) ,
( : Conv , 32 , 3 , 0 ) , # ( 3 2 , 28 , 28)
( : LeakyReLU , 0 . 1 ) ,
( : MaxPool , 2 ) , # ( 3 2 , 14 , 14)
# Second Block
( : Conv , 64 , 3 , 0 ) , # ( 6 4 , 12 , 12)
( : LeakyReLU , 0 . 1 ) ,
( : Conv , 64 , 3 , 0 ) , # ( 6 4 , 10 , 10)
( : LeakyReLU , 0 . 1 ) ,
( : MaxPool , 2 ) , # ( 6 4 , 5 , 5 )
# Head
( : F l a t t e n , ) , # (64*5*5 = 1600)
( : L inea r , 5 1 2 ) , # ( 5 1 2 )
( : LeakyReLU , 0 . 1 ) ,
( : L inea r , 1 0 ) , # ( 1 0 )
( : Argmax , t r u e )

] , b a t c h s i z e )

For all methods we used a batch size of 128 and trained for 25 epochs with a cosine annealing
learning rate schedule. Concerning hyperparameters: For AdamW we found the standard parameters
of lr = 10−3, β1 = 0.9, β2 = 0.999, ϵ = 10−8 and δ = 10−4 to work best. For IVON we followed
the practical guidelines given in the Appendix of Shen et al. (2024).
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To measure calibration, we used 20 bins that were split to minimize within-bin variance. For OOD
recognition, we predicted the class of the test examples in CIFAR-10 (in-distribution) and SVHN
(OOD) and computed the entropy over softmax probabilities for each example. We then sort them by
negative entropy and test the true positive and false positive rates for each possible (binary) decision
threshold. The area under this ROC curve is computed in the same way as for relative calibration.

D PRIOR ANALYSIS

The strength of the prior determines the amount of data needed to obtain a useful posterior that fits
the data. Our goal is to draw prior means and set prior variances so that the computed variances of
all messages are on the order of O(1) regardless of network width and depth. It is not entirely clear
if this would be a desirable property; after all, adding more layers also makes the network more
expressive and more easily able to model functions with very high or low values. However, if we
let the predictive prior grow unrestricted, it will grow exponentially, leading to numerical issues.
In the following, we analyze the predictive prior under simplifying assumptions to derive a prior
initialization that avoids exponential variance explosion. While we fail to achieve this goal, our
current prior variances are still informed by this analysis.

In the following, we assume that the network inputs are random variables. Then, the parameters
of messages also become random variables, as they are derived from the inputs according to the
message equations. Our goal is to keep the expected value of the variance parameter of the outgoing
message at a constant size. We also assume that the means of the prior are sampled according to
spectral initialization, as described in Section 4.3.

FIRSTGAUSSIANLINEARLAYER - INPUT IS A CONSTANT

Each linear layer transforms some d1-dimensional input x to some d2-dimensional output y accord-
ing to y = Wx+b. In the first layer, x is the input data. For this analysis, we assume each element
xi to be drawn independently from xi ∼ N (0, 1). Let x be a d1-dimensional input vector, mw be
the prior messages from one column of W , and z = w′x be the vector product before adding the
bias.

During initialization of the weight prior, we draw the prior means using spectral parametrization and
set the prior variances to a constant:

mwi
= N (µwi

, σ2
w) with µwi

∼ N (0, l2),

l =
1√
k
·min(1,

√
d2
d1

).

By applying the message equations, we then approximate the forward message to the output with a
normal distribution

mz = N (µz, σ
2
z).

Because σ2
z depends on the random variables xi, it is also a random variable that follows a scaled

chi-squared distribution

σ2
z =

d1∑
i=1

x2
i · σ2

w

σ2
z ∼ χ2

d1
· σ2

w

and its expected value is
E[σ2

z ] = d1 · σ2
w.

We conclude that we can control the magnitude of the variance parameter by choosing E[σ2
z ] and

setting σ2
w =

E[σ2
z ]

d1
.
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GAUSSIANLINEARLAYER - INPUT IS A VARIABLE

In subsequent linear layers, the input x is not observed and we receive an approximate forward
message that consists of independent normal distributions

mxi
= N (µxi

, σ2
xi
).

Following the message equations, the outgoing forward message to z then has a variance

σ2
z =

d1∑
i=1

(σ2
xi

+ µ2
xi
) · (σ2

w + µ2
wi
)− (µ2

xi
∗ µ2

wi
)

=

d1∑
i=1

σ2
xi

· σ2
w︸ ︷︷ ︸

I

+σ2
xi

· µ2
wi︸ ︷︷ ︸

II

+µ2
xi

· σ2
w︸ ︷︷ ︸

III

The layer’s prior variance σ2
w is a constant, whereas all other elements are random variables accord-

ing to our assumptions. To make further analysis tractable, we also have to assume that the variances
σ2
xi

of the incoming forward messages are identical constants for all i, not random variables. We
furthermore assume that the means are drawn i.i.d. from:

µwi
∼ N (0, l2)

µxi ∼ N (µµx , σ
2
µx
).

The random variable σ2
z then follows a generalized chi-squared distribution

σ2
z ∼

( d1∑
i=1

σ2
x · l2 · χ2(1, 02)︸ ︷︷ ︸

II

+σ2
w · σ2

µx
· χ2(1, µ2

µx
)︸ ︷︷ ︸

III

)
+ d1 · σ2

w · σ2
x︸ ︷︷ ︸

I

and its expected value is

E[σ2
z ] =

( d1∑
i=1

σ2
x · l2 · (1 + 02) + σ2

w · σ2
µx

· (1 + µ2
µx
)

)
+ d1 · σ2

w · σ2
x

= d1 ·
(
σ2
x · l2 + σ2

w · σ2
µx

· (1 + µ2
µx
) + σ2

w · σ2
x

)
= d1 · σ2

x · l2︸ ︷︷ ︸
II

+ d1 · (σ2
µx

· (1 + µ2
µx
) + σ2

x) · σ2
w︸ ︷︷ ︸

I+III

.

As σ2
w has to be positive, we conclude that if we choose E[σ2

z ] > d1 · σ2
x · l2, then we can set

σ2
w =

E[σ2
z ]− d1 · σ2

x · l2

d1 · (σ2
µx

· (1 + µ2
µx
) + σ2

x)
.

We know (or choose) d1, l2, and E[σ2
z ], but we require values for σ2

x, µ2
µx

, and σ2
µx

to be able to
choose σ2

w. We will find empirical values for these parameters in the next section.

EMPIRICAL PARAMETERS + LEAKYRELU

To inform the choice of the prior variances of the inner linear layers, we also need to ana-
lyze LeakyReLU. We assume the network is an MLP that alternates between linear layers and
LeakyReLU. As the message equations of LeakyReLU are too complicated for analysis, we in-
stead use empirical approximation. Let ma = N (µa, σ

2
a) be an incoming message (from the pre-

activation variable to LeakyReLU). We assume that σ2
a = t is a constant and that µa ∼ N (0, 1) is

a random variable. By sampling multiple means and then computing the outgoing messages (after
applying LeakyReLU), we can approximate the average variance of the outgoing messages, as well
as the average and empirical variance over means of the outgoing messages.
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We computed these statistics for 101 different leak settings with 100 million samples each, and found
that the relationship between leak and µµx

(average mean of the outgoing message) is approximately
linear, while the relationships between leak and σ2

µx
or µσ2

x
are approximately quadratic. Using these

samples, we fitted coefficients with an error margin below 5 · 10−5. For our network, we chose a
target variance of 1.5 and a leak of 0.1, resulting in

σ2
x = 0.8040586726631379

σ2
µx

· (1 + µ2
µx
) = 0.44958619556324186.

These values are sufficient for now setting the prior variances of the inner linear layer according to
the equations above. Finally, we set the prior variance of the biases to 0.5, so that the output of each
linear layer achieves an overall target prior predictive variance of approximately t = 1.5+0.5 = 2.0.

RESULTS IN PRACTICE

In practice, we found that the variance of the predictive posterior still goes up exponentially with
the depth of the network despite our derived prior choices. However, if we lower the prior variance
further to avoid this explosion, the network is overly restricted and unable to obtain a good fit during
training. We therefore set the prior variances as outlined here, but acknowledge that choosing a good
prior is still an unsolved problem.

E TABLES OF MESSAGE EQUATIONS

In the following, we provide tables summarizing all message equations used throughout our model.
The tables are divided into three categories: linear algebra operations (Table 2), training signals
(Table 3), and activation functions (Table 4). Each table contains the relevant forward and back-
ward message equations, along with illustrations of the corresponding factor graph where necessary.
These summaries serve as a reference for the mathematical operations performed during inference
and training, and they will be valuable for factor graph modeling across various domains beyond
neural networks.
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Pr
od

uc
t

a

b

δ(z − ab)
z

N (µz, σ
2
z )

µ = E[a]E[b] σ2 = E[a2]E[b2]− E[a]2E[b]2

τ = τzE[a] ρ = ρzE[a2]

W
ei

gh
te

d
Su

m

a1

b1

ad

bd

...

δ (z − a⊺b)

z

N (µ1, σ
2
1)

N (µd, σ
2
d)

N (µz, σ
2
z)

µ = a⊺µ σ2 =

d∑
i=1

a2iσ
2
i

µ = (µz − µ+ adµd)/ad τ = ad
τz − ρz(µ− adµd)

1 + ρz(σ2 − a2dσ
2
d)

σ2 = (σ2
z + σ2 − a2dσ

2
d)/a

2
d ρ =

a2dρz
1 + ρz(σ2 − a2dσ

2
d)

In
ne

rP
ro

du
ct

a1

b1
p1

ad

bd
pd

...

δ (p1 − a1b1)

δ (pd − adbd)

z

δ
(

z −
∑d

i=1 pi
)

N (µz, σ
2
z )

µ = E[a]⊺E[b] σ2 =

d∑
i=1

E[a2i ]E[b
2
i ]− E[ai]2E[bi]2

τbi =
τz − ρz(µ− E[ad]E[bd])

ρ∗i
E[ad]

ρbi =
ρz
ρ∗i

E[a2d]

where ρ∗i = 1 + ρz(σ
2 − E[a2d]E[b

2
d] + E[ad]2E[bd]

2)

Table 2: Message equations for linear algebra: Calculating backward messages in natural parame-
ters is preferable as it handles edge cases like ad = 0 or ρz = 0 where location-scale equations are
ill-defined. This approach also enhances numerical stability by avoiding division by very small quan-
tities. Note that the inner product messages are simply compositions of the product and weighted
sum messages with ai = 1, i = 1, . . . , d.
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R
eg

re
ss

io
n

a
N (a; y, β2)

y

β

N (µa, σ
2
a )

µ = µa σ2 = σ2
a + β2

mf→a(a) =
{
N (a; y, β2) if y is known (training branch)
1 if y is unknown (prediction branch)

So
ft

m
ax

a1

...

ad

softmax(a)c

c

c ∈ {1, . . . , d}

N (µ1, σ
2
1)

N (µd, σ
2
d)

mf→c(i) =

∫
softmax(a)iN (a;µ, diag(σ)2) da

≈ softmax(t)i (Daxberger et al. (2022))

where tj =
µj

1 + π
8σ

2
j

and j = 1, . . . , d

mf→ad(ad) =
N (ad;m1/m0,m2/m0 − (m1/m0)

2)

mad→f (ad)

where mk =

∫
ad

akd N (ad;µd, σ
2
d) softmax(t1, ..., td−1, ad)c dad

is approximated via numerical integration

A
rg

m
ax

a1

...

ad

c

z1

zd

δ(z1 − (ac − a1))

...

δ(zd − (ac − ad))

1z1 ≥ 0

1zd ≥ 0

N (µ1, σ
2
1)

N (µd, σ
2
d)

∫
1zd ≥0δ(zd − (ac − ad))N (ac;µc, σ

2
c )N (ad;µd, σ

2
d) dacdaddz

=

{
1 for c = d

Pr[ac ≥ ad] = ϕ(0;µd − µc, σ
2
d + σ2

c ) for c ̸= d

If c is known, many edges become constant and can be omitted. Assume w.l.o.g. c = d,
then ad is connected to d − 1 factors and all other ai to only one each. The messages
to a1, . . . , ad follow from the weighted sum factor, given Gaussian approximations of the
messages from zi. We derive these by moment-matching the marginals of zi (see Building
Block 2) and dividing by the message from the weighted sum factor. To stabilize training,
we regularize the variance of mf→ai by a factor of ϕ(0;µc − µi, σ

2
i + σ2

c ) and multiply
mf→ai(ai) by N (ac; 1 if i = c else − 1, γ2), effectively mixing in one-hot regression
factors during training.

Table 3: Message equations for training signals. Note that the backward messages only apply in the
case in which the target is known, i.e., on the training branches. On the prediction branch we only
do foward passes.
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A
ux
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E
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io
ns

ReLUMomentk(µ, σ2) =

{
E[ReLU(a)] with a ∼ N (µ, σ2) for k = 1

E[ReLU2(a)] with a ∼ N (µ, σ2) for k = 2

=

{
σφ(x) + µϕ(x) for k = 1

σµφ(x) + (σ2 + µ2)ϕ(x) for k = 2

where φ and ϕ denote the pdf and cdf of N (0, 1), respectively.

ζk(µ1, σ1, µ2, σ2) :=

∫ ∞

0

akN (a;µ1, σ
2
1)N (a;µ2, σ

2
2) da

= N (µ1;µ2, σ
2
1 + σ2

2) ·
{

ReLUMomentk(µm, σ2
m) for k = 1, 2

ϕ(µm/σm) for k = 0

with τm =
µ1

σ2
1

+
µ2

σ2
2

, ρm =
1

σ2
1

+
1

σ2
2

, µm =
τm
ρm

, and σ2 =
1

ρm
See Building Block 1 for the derivation of this equation.

L
ea

ky
R

eL
U

a
δ(a − LeakyReLUα(z))

z
N (µa, σ

2
a ) N (µz, σ

2
z )

We use marginal approximation while:
1. The outputs are finite and not NaN
2. Forward message: Precision of mf→z is ≥ precision of ma→f , and m0 > 10−8

3. Backward message: It has worked well to require (τz > 0) ∨ (ρz > 2 · 10−8)

Otherwise, we fall back to direct message approximation (forward) or G(0, 0) (backward).

D
ir

ec
t µ = (1− α) · ReLUMoment1(µa, σ

2
a ) + α · µa

σ2 = (1− α2) · ReLUMoment2(µa, σ
2
a ) + α2 · (σ2

a + µ2
a )− µ2.

M
ar

gi
na

l mf→z(z) =
N (z; m1

m0
, m2

m0
− (m1

m0
)2)

mz→f (z)
where mk = (−1)k · ζk(−µa, σ

2
a, −α · µz, α

2 · σ2
z ) + ζk(µa, σ

2
a, µz, σ

2
z )

To compute the marginal backward message, set αback = α−1

and swap ma→f and mz→f in the equation

Table 4: Message equations for LeakyReLU with ReLU as the special case α = 0.
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