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ABSTRACT

Modern Deep Neural Networks (dnn) models used in computer vision applica-
tions are compelling. They are widely used to solve a variety of problems and
the increase in data size implies that the model could be very large and complex,
and therefore increased in computational requirements. The number of param-
eters in recent state-of-the-art networks makes them difficult to deploy in edges
devices like mobile phones, watches or drones where memory and energy are
limited. We are working on the implementation of techniques that significantly
reduce the size of a very large and powerful vision model while preserving as
much of its performance as possible. We built classification models on the mnist
dataset and used it with pre-trained models on ImageNet on the Cats & Dogs
dataset. We performed a closer examination of the effectiveness (mathematical
and implementation aspects) of Knowledge distillation (KD), Pruning and Quan-
tization techniques. Firstly, we implemented transfer learning which consists on
modifying the parameters of an already-trained network to adapt to a new task on a
new dataset, then secondly, we trained this network by using a gradual pruning ap-
proach that requires minimal tuning and can be seamlessly incorporated within the
training process. Thirdly, the Quantization has helped us reduce the number of bits
required to represent each parameter from 32-bit floats to 8 bits. We significantly
reduced bandwidth and storage. On MNIST, we reduced the model from 12.52
MB to 0.57 MB with no loss of accuracy. After the transfer learning and prun-
ing step, we reduced the MobileNet from 12.48 MB with an accuracy of 0.9556
to 2.91 MB with an accuracy of 0.9516. We also empirically show our method’s
adaptability for classification based architecture vgg16 and VGG19 on datasets
Cat & Dogs observing that the entire pruning pipeline plus post-quantification at
8 bits works well up to 70% level of sparsity, suffer only very small losses in
accuracy and the size of the model obtained by transfer learning are divided by
10.
Keywords: Deep Learning, Compression model, Knowledge distillation, Prun-
ing, Quantization, Computer vision

1 INTRODUCTION

1.1 PROBLEM STATEMENT

Over the last few years, Deep Learning (dl) has been used to solve several problems, ranging from
computer vision, speech recognition, social media, to natural language processing, health, finance,
cybersecurity, and others. DL is one way of implementing machine learning via what are called Deep
Neural Networks (DNN) that are algorithms that effectively mimic the human brain’s structure and
function. DNN have recently received lots of attention, been applied to different applications and
achieved dramatic accuracy improvements in many tasks.

However, one of the main problems of (dnn) modern models is its huge data storage requirement;
the more data increases the deep model also become complex and larger to learn pattern from the
data. The large network structure requires high computational complexity and memory cost.
The amount of memory space and lower power consumption they need can make their deployment
very prohibitive especially for some real-time applications such as online learning, virtual reality,
augmented reality, and smart wearable devices like mobile phones or watches, where memory and
energy are limited.
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Because the dnn are large (in terms of the number of parameters), they require more space for stor-
age and also more energy to compute the results. For instance, some original architecture like the
well-known VGG architecture requires considerably larger memory (528 Mb) to store the weight
parameters needed for classifying a single image[1][2]. In a cloud-based environment with abun-
dant computational capabilities enabled by multiple graphical processing units (gpus), such massive
memory requirements might not be considered as a restriction, but the connection cost and users
number might. However, in the case of mobile or edge-based embedded devices with limited com-
putational capabilities, such resource intensive dnn cannot be readily applied. Recently, the prolifer-
ation of deep learning applications on mobile iot (Internet of things) devices, including smartphones,
has unveiled this as a major hurdle for a widespread use.

Compressing of dl models allows saving storage space and response time and therefore can have
significant impacts on distributed systems, embedded and edge devices by extending dnn applica-
tions in these areas. Thus, the design of dnn that require less storage and computation power has
established itself as a new research direction. Particularly, the modification of large models that
reduces the memory requirements while retaining as much of its performance as possible is referred
to as compression of neural networks. Another direction is the design of more memory efficient
network architectures from scratch.

It is from those problems and challenges that researchers have developed methods for compressing
neural network models. In this thesis we focused on three main methods: Knowledge distillation
(kd), Pruning and Quantization.

The first method is Knowledge Distillation (kd), the idea behind kd is to distill a knowledge of
large and complex network which is called the teacher network and transfer it to a small and simple
network which is called the student network. The second method is Pruning, which is a technique
to reduce the parameters of a large and complex network by pruning weights/neurons during the
training of this large network; Pruning the network means removing the redundant connections and
keeping only the most informative connections. The third method is Quantization: It is the process
of approximating a neural network (nn) that uses floating-point numbers by a neural network of low
bit-width numbers, reducing the number of bits that represent a number (weights, bias).

2 RESEARCH QUESTIONS AND OBJECTIVES

Our main objective in this thesis is to implement methods that significantly compress a dl model
while preserving as much as possible its performance. From the perspective of an on-device neural
network inference, given a dnn, the question are how to make it more efficient, does a large model
(as VGG19, MobileNet) have any information (or connections) it doesn’t really need? Even though
this model is already quite small, can we make it even smaller without making it lose its accuracy?
How to reduce cpus(Central Processing Units) and hardware accelerator latency, processing, power,
and model size with little degradation in model accuracy. For a given deep model, how can we arrive
at the smallest model with no loss of accuracy?

The next evolution in machine learning will move models from the cloud to edge devices. To answer
the research question, our goals are the following:

• Compress a large model to a smaller model: reduce the size of a very large and powerful
vision model while preserving as much of its performance as possible.

• Explore the methods for model compression (KD, Pruning, Quantization) : The mathemat-
ical formulation as well as their implementation.

• Resume and present a baseline of each approach used (the process) for each of three meth-
ods.

• Experimentation, results and discussion.

In this piece of work, we will compare the quality of models obtained through these different ap-
proaches, and also the one obtained by using the methods together. Our main insight is that pruning
and quantization can compress the network without loss of accuracy. We used transfer Learning to
adapt large pretrained networks on Imagenet to specialized tasks on smaller dataset like Cats and
Dogs data. Our work makes the following contributions: 1. We combine pruning and quantization
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to reduce the network complexity, 2. The experimental results are demonstrated on two available
datasets, and show that significant improvement in classification accuracy and model size compared
to the other method used alone. 3. We provide a comparison of those three methods.

3 LITERATURE REVIEW

Model compression is a critical technique to efficiently deploy nn models on mobile devices which
are limited in terms of computational resources and power budgets. The task is the modification
of large models that reduces the memory requirements while retaining as much of its performance
as possible is referred to as compression of nn. Another direction is the design of more memory
efficient network architectures from scratch. In order to learn efficient dnn, a number of methods
have been proposed to eliminate redundancy. Denil et al ? demonstrate that neural networks are
often over-parameterized and removing redundancy is possible. In the same order, various methods
have been proposed to accelerate the fully connected layer ????. To compress the whole network,
Zang et al ?? presented an algorithm using asymmetric decomposition and additional fine-tuning.
Kim et al ? presented a method called one-shot whole network compression also to compress the
entire cnn. The three different approaches that we will investigate in our work lie on the following
lines: Knowledge distillation, Pruning, and quantization. In the following, we will discuss the
literature review of the different approaches.

3.1 KNOWLEDGE DISTILLATION

• KD from Output The concept of KD was first proposed by Caruana et al ? in the context
of neural model compression; exploiting Knowledge Transfer(kt) to compress the model.
Ba and Caruana ? adopted the idea of ? to compress deep networks into shallower but
wider ones, where the compressed model mimics the logits or pre-softmax of teacher model
during his training. After that, Huang et al ? proposed a KD by Neuron Selectivity Transfer
(nst). They matched the distributions of neuron selectivity patterns between teacher and
student networks by devising a new kt loss function by minimizing the Maximum Mean
Discrepancy (mmd) metric between these distributions.

• KD from single/Multiple Layer(s) In the case that the target model is very deep, it meets
the difficulty of convergence problems. Romero et al ? proposed an improved method by
introducing intermediate-level hints, using not only the logits layer but earlier ones too. The
core idea of the method is to enable the student model to learn the intermediate representa-
tion from the teacher model. The middle layer of the teacher model is called the hint layer
and that of the target model is called the guided layer. Unfortunately, there is no principled
way to do this. To solve this, Yim et al ? proposed another concept of knowledge distil-
lation which employs the relationship between layers considered to be more representative
of the knowledge than the model output. Therefore, the extracted feature maps from two
layers are used to generate the Flow of Solution Procedure (FSP) matrix. This represents
the relationship between layers. By minimizing the distance between both FSP matrices
of the teacher network and student network, this approach enforces the knowledge of the
teacher model to be transferred to the student model.

• Layer-Level KD Inspired by ?, ? proposed a novel Layer Selectivity Learning, using
lsp (Layer Selectivity Procedure) to transfer knowledge from one or more layers based
on the analysis of the diversity and discrimination of feature maps in a layer-wise man-
ner. They firstly use an asymmetric dual-model learning framework, called Auxiliary
Structure Learning (asl), to train a small model with the help of a larger and well-trained
model. Then, the intermediate layer selection scheme, called the Layer Selectivity Proce-
dure (LSP), is exploited to determine the corresponding intermediate layers of source and
target models.

• To improve student performance, Sau and Balasubramanian ? added random perturba-
tions(noise) into soft labels(teacher) to simulate learning from multiple teachers to make
the student model more robust. Multiple teachers are a way to increase robustness. Zhang
et al. ? presented a method to train a thin deep network by incorporating multiple teacher
networks not only in output layer by averaging the softened outputs (dark knowledge) from
different networks, but also in the intermediate layers by imposing a constraint about the
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dissimilarity among examples. KL divergences between pairs of students are added into
the loss function to enforce the knowledge transfer among peers. You and al ? proposed
to train a thin deep network by incorporating multiple teacher networks not only in output
layer by averaging the softened outputs (dark knowledge) from different networks, but also
in the intermediate layers by imposing a constraint about the dissimilarity among exam-
ples, a strategy to unify multiple relative dissimilarity information provided by multiple
teacher networks. Anil et al. ? introduced an efficient distributed online distillation frame-
work called co-distillation and argued that distillation can even work when the teacher and
student are made by the same network architecture. The idea is to train multiple mod-
els in parallel and use distillation loss when they are not converged, in which case the
model training is faster and the model quality is also improved. ? showed that the student
network performance degrades when the gap between student and teacher is large. They
introduced multi-step knowledge distillation which employs an intermediate-sized network
called teacher assistant to bridge the gap between the student and the teacher, a framework
Teacher Assistant KD (takd).

3.2 PRUNING

The approach of pruning was an idea from ?. Based on the idea of learning only the important
connections in neural networks, Han et al ? proposed a compression by reducing the number of
weights and ? proposed pruning, quantization and Huffman encoding methods to reduce computa-
tional consumption of large networks. They first pruned the network by learning only the important
connections, then weights were clustered to generate the codebook to enforce weight sharing, finally
and apply Huffman coding.

This idea was first proposed by Yann Le Cunn et al. back in 1990 in their famous paper called
Optimal Brain Damage (obd) and was later applied to modern deep networks ?. Research on pruning
is mostly concerned with the question of how the contribution of the weights should be measured.
In OBD, the contribution is measured by the effect on the training error in the case of setting this
particular parameter to zero. Obviously, this method becomes computationally infeasible for deep
networks. In Deep Compression, Han et al simply prune the weights with lowest absolute value,
reducing the number of weights to 10% of its original size for fully connected, and around 60%
for convolutional layers at no loss of prediction accuracy ?. Tu et al. ? proposed a method to
accurately measure the Fisher information associated with weight and used it as a measure for its
contribution. Dong et al. ? proposed Pruning via Layer-wise Optimal Brain Surgeon (obs), where
the parameters of each individual layer are pruned independently based on second-order derivatives
of a layer-wise error function with respect to the corresponding parameters. In the same idea, Aghasi
et al. ? proposed an algorithm called Net-Trim to prune (sparsity) a trained network layer-wise by
removing connections at each layer by solving a convex optimization program.

Leroux et al ? aimed at reducing computation by evaluation of certain convolutional filters and
pruned low-impact filters at runtime. Instead of removing individual weights one at a time as done
in previous works, Srinivas et al ? explored the redundancy among neurons and proposed to remove
one neuron at a time.

• Magnitude based-method: Iterative Pruning + Retraining:

For Learning both Weights and Connections for Efficient Neural Networks, ? described
a method to reduce the storage and computation required by neural networks by an or-
der of magnitude without affecting their accuracy by learning only the important connec-
tions. Their method prunes redundant connections using a three-step method. First, they
train the network to learn which connections are important. Next, they prune unimportant
connections. Finally, they retrain the network to fine-tune the weights of the remaining
connections.

In the work Pruning cnn for Resource Efficient Inference, Molchanov et al. ? interleaved
greedy criteria-based pruning with fine-tuning by back-propagation. Focused on transfer
learning where large pre-trained networks are adapted to specialized tasks they propose a
new criterion based on Taylor expansion that approximates the change in the cost function
induced by pruning network parameters.
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• Pruning Filters for Efficient ConvNets: ? proposed to evaluate the importance of the
filters and remove the unimportant ones in line with previous works. For ? if you could rank
the neurons in the network according to how much they contribute, you could then remove
the low ranking neurons from the network, resulting in a smaller and faster network.

• Channel Pruning for Accelerating Very Deep Neural Networks: He et al. ? propose
an iterative two-step algorithm to effectively prune each layer by a lasso regression-based
channel selection and least square reconstruction. We further generalize this algorithm to
multi-layer and multi-branch cases.

• dsd: Dense-Sparse-Dense Training for Deep Neural Networks: ? proposed DSD, a
dense-sparse-dense training flow for regularizing dnn and achieving better optimization
performance. In the first D (Dense) step, they trained a dense network to learn connection
weights and importance. In the S (Sparse) step, they regularize the network by pruning the
unimportant connections with small weights and retraining the network given the sparsity
constraint. In the final D (re-Dense) step, they increase the model capacity by removing
the sparsity constraint, re-initialize the pruned parameters from zero and retrain the whole
dense network.

• Exploiting Sparsity in Recurrent Neural Network (rnn): Narang et al ? pruned weights
during initial training in order to gain sparsity of the given RNN model by using hyper-
parameters of pruning to determine the threshold. For approximately the same number of
parameters, gradual pruning (proposed) is 7% to 9% better than hard pruning (all parame-
ters below a certain threshold are pruned at a particular epoch).

3.3 QUANTIZATION

Quantization techniques aim is to reduce the number of bits required to represent each parame-
ter from 32-bit floats to 16, 8 bits or fewer. The use of vector quantization methods to compress
CNN parameters is mainly inspired by the work of Denil et al ?, who demonstrated the redundan-
cies in neural network parameters. They show that the weights within one layer can be accurately
predicted by a small ( 5%) subset of the parameters, which indicates that the neural network is
over-parameterized. Gong et al ? applied vector quantization (k-means clustering to the weights)
methods to explore the redundancy in parameter space, focusing on compressing dense connected
layers, to avoid the storage problem. Wei et al ? did Quantization Mimic, First they quantized the
large network, then mimicked the quantized small network.

3.4 PUT ALL THOSE METHODS TOGETHER

Song Han et al ? ? had successfully combined the above techniques. In their work called Deep
Compression, first, a trained network is pruned by setting connections to zero if the absolute value
of the weight is below a certain threshold. Second, quantization and weight sharing are applied. The
weights are clustered into 256 groups for convolutional, and 32 groups for fc-layers, respectively,
using k-means. Hence, a weight can be represented using 8 bit (in convolutional layers) and 5 bit
(in fc-layers) indices representing the centroids of the corresponding cluster. Weights are not shared
across layers. The centroids are then fine-tuned in an additional retraining phase, where the loss
with respect to the centroid of a cluster is simply given by the additive loss of the weights that
belong to it. Finally, Huffman-coding is applied to the indices and centroids to further compress the
representation of the parameters. Applying this method to SqueezeNet resulted in 10x compression
using 64 clusters (i.e. 6 bit representations for weights) without loss of accuracy on a network
architecture which is already optimized for compression.

In the next section, we will introduce the concept of deep learning; explain how it works, and
describe the transfer learning technique. We will go into more detail on the approaches chosen for
each of the compression methods: Knowledge Distillation, Pruning, and Quantization.

4 CONCLUSION

In this chapter, we conclude the thesis with a summary of its finding and suggest directions for
further work.
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4.1 DISCUSSION AND RECOMMENDATIONS

The relevance of compression of Deep Learning Model is on applications of Artificial Intelligence
for real world; It will be easy to deploy dl Model in a small device with a camera or using images
(like phones, smart watches, sensors, drones). In the literature review, the concept of each method
KD, Pruning and Quantization is well defined but the approaches are changing from one paper to
another. Each one has its particularity. After experimentation, we briefly summarize these three
types of methods in table ??.

• KD : The KD can only be applied to classification tasks with softmax loss function. The
model assumptions are too strict to make the performance competitive with other types of
approaches, the performance are sensitive to applications and network structure and only
support train from scratch.

• Pruning : Robust to various settings but can achieve good performance. Pruning method
can support both trained from scratch and pre-trained models. the pruning approach im-
plemented is a gradual pruning technique that can be applied across different architectures
and can be incorporated within the training process.

• Quantization : It works well for large models, but with small models with less redundant
weights, the loss in precision adversely affects accuracy. The simplest approach to quantiz-
ing a neural network is to first train it in full precision, and then simply quantize the weights
to a fixed-point. As said before , the challenge after pruning is to make the network more
immune to precision loss. By default a trained model is 32-bit floating point representa-
tion. Quantization of the parameters to a reduced precision number representation, at 8
bit-integer is an effective method for model compression.

By combining pruning and quantization, there is a small sacrifice of accuracy but we get a small size
of dnn.

• If we prune too much at once, the network might be damaged so much it won’t be able to
recover.

• Pruning + Quantization work well together

• We can prune a larger dense network to achieve better than baseline performance while
still reducing the total number of parameters significantly. Pruning a DNN reduces the size
of the model, and can also help achieve significant inference time speed-up using sparse
matrix multiply.

• In moving from 32-bits to 8-bits, we get (almost) 4x reduction in memory straightaway.
Lighter deployment models mean they hog less storage space, are easier to share over
smaller bandwidths and easier to update.

We believe this kind of work opens new frontiers for real world AI applications. We strongly rec-
ommend to use Pruning + Quantization as a tool for compressing a nn for deployment in resource-
constrained environments and to further explore Pruning as compression method.

5 RESULTS AND DISCUSSIONS

5.1 PRUNING AND QUANTIZATION

The pruning and quantification results of the VGG16 network are given in the figure 5.1. The
diagram below shows the trade-off between the accuracy and size of the different VGG16 models
for Cats & Dogs classification in pruned and pruned + quantized modes. We can observe that the
entire pruning pipeline plus quantification works well up to 70% level of sparsity, suffers only very
small losses in accuracy and the size is divided by 10.

The summarized results obtained from Cats and Dogs data on VGG19 are given in figure 5.1.
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This figure represents the variation of the size and the accuracy as function of different levels of
sparsity added to the quantization at 8 bit precision of the model obtained by Transfer Learning of
VGG19 on Cats & Dogs dataset. We can observe that the size and the accuracy, represented by the
yellow and gray line are decreasing when the levels of sparsity are increasing.

It can be noticed that when the sparsity level is low, the two lines can be confused, which means
that the accuracy is not changing, but the size yes, and we have a significant size reduction after
pruning + Quantization (represented by the orange bar). As we increase the sparsity of the model
more precisely from 70% we observe a slight shift between the two lines, which means that we lose
in accuracy even if the size is reduced.

Finally, we have described the experimentation of TL, KD, Pruning and Quantization performed on
MobileNet, VGG, etc. We provided and commented some results. The last step will be a summary
discussion and a general conclusion.

6 CONCLUSION AND FUTURE WORK

The topic of this paper was ”Deep Neural Network Models Compression ”. The principal objective
was to compress a given dl model while preserving as much as possible its performance. The main
research question was to find how to compress a model, which method is the most appropriate given
a model and also how we can combine different approaches to get better results. To answer these
questions, we started by studying how the deep models work and exploring the concept of tl which
is a machine learning method where a model developed for a task is reused at the starting point for
a model on a second task.

For compression methods, we studied three main methods : Knowledge distillation, Pruning and
Quantization. We studied the mathematical part of each method and implemented them using Ten-
sorflow. We designed models from scratch on the MNIST dataset and used pre-trained models like
MobileNet, VGG16 and VGG19 on the Cats & Dogs. On MNIST, we reduced the model from 12.52
MB to 0.57 MB with no loss of accuracy. After Transfer learning and the pruning step, we reduced
the MobileNet from 12.48 Mb with and accuracy of 95.56% to 2.91 Mb with accuracy 95.16%.

From the original VGG16 and VGG19 pre-trained on Imagenet with an accuracy of 71.3% for each
one and the size 524 Mb and 529 Mb respectively, we showed that our method’s adaptability for
classification based architecture VGG16 et VGG19 on datasets Cat & Dogs which is tl, pruning +
quantization we obtained the models 100× smaller with accuracy of 96%. As given in figure 5.1
and 5.1.

The main suggested extensions to this work is focused on pruning. To improve the results we
mainly propose to study more approach of pruning because this method requires fine tuned hyper-
parameters but can gives the best results.

In future work we will investigate on optimization pruning. Find the advanced method to prune and
to combine the compression methods. Therefore, we were focused on CNN, we can extend the same
experiments on another architecture like rnn.

REFERENCES

A APPENDIX

7



Under review as a conference paper at ICLR 2020

[width=0.9]PQV GG161.PNG

Figure 1: Results of Pruning and Quantization with Cats & Dogs on VGG16
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Figure 2: Results of Pruning and Quantization with Cats & Dogs on VGG19
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Figure 3: Sample figure caption.
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