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ABSTRACT

In recent years, Vision-Language Models (VLMs) have shown remarkable perfor-
mance improvements in vision-language tasks. However, their large size poses
challenges for real-world applications where inference latency is a concern. To
tackle this issue, we propose employing Early Exit (EE) strategies in VLM. How-
ever, training exit classifiers in VLMs is challenging, particularly with limited
labeled training data. To address this, we introduce BLIPEE, an adversarial
training approach within a GAN-based framework. Here, each exit consists of
a transformer layer and a classifier, and the transformer layer is adversarially
trained to produce feature representations similar to the final layer, while a fea-
ture classifier serves as the discriminator. Our method focuses on performing
input-adaptive inference that mitigates the overthinking issue and increases infer-
ence speed. Experimental results demonstrate the effectiveness of our approach in
enhancing accuracy and model robustness by mitigating overthinking and the phe-
nomenon of mid-crisis that we highlight. The anonymized source code is available
athttps://anonymous.4open.science/status/BLIPEE-3ED3.

1 INTRODUCTION

Vision-Language Pre-training (VLP) has evolved significantly with the emergence of sophisticated
pre-trained Vision Language Models (VLMs). These models have consistently pushed the perfor-
mance boundaries across various vision-language tasks. However, their demanding computational
requirements and inference latency pose challenges for real-time applications. Several models, such
as BLIP-2Li et al.| (2023), leverage off-the-shelf large-scale pre-trained models as building compo-
nents with their parameters frozen. This reduces VLMs training parameters but makes them suscep-
tible to issues related to overthinking during inference, as highlighted in previous studies Kaya et al.
(2019); [Zhou et al.| (2020), leading to performance degradation and wasteful computation.

The use of the Language Model (LM) component with frozen parameters not only makes VLM sus-
ceptible to overthinking but also to another phenomenon that we term mid-crisis. This phenomenon
occurs when intermediate layers suffer performance drops due to the search for irrelevant features.
While initial layers capture shallow representations and syntactic information, and deep layers learn
semantic-fusion relations |Fei et al.| (2022), intermediary layers tend to capture dataset patterns that
degrade their performance, even losing the information learned by initial layers, and the model has
to regain the lost information again in deeper layers. We illustrate this phenomenon in Figure 2]
and Section @ showcasing BLEU-4 Papineni et al.| (2002) scores of exits in the COCO |Lin et al.
(2014) dataset used for image captioning. This raises the question: how can we mitigate mid-crisis
and overthinking to enhance the accuracy and efficiency of VLMs?

We address this issue using ‘Early Exit’ (EE) techniques Xin et al.|(2020); |Zhou et al.| (2020); |[Zhu
(2021)). It is a widely adopted input-adaptive technique that seeks to alleviate computational costs
by bypassing certain layers while retaining the broad knowledge encoded in large-scale models. It is
based on the fact that real-world datasets consist of ‘easy’ and ‘hard’ samples; hence, each does not
require the same amount of computation. Implementing EE in VLMs introduces additional parame-
ters requiring training, necessitating substantial amounts of labeled data, which can be prohibitively
expensive. This limitation hampers the widespread adoption of EE methods in VLMs with good
zero-shot capabilities.
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We introduce a novel EE training technique named BLIPEE: Faster BLIP with Adversarially Trained
EE designed to enhance the efficiency of VLMs while maintaining performance and speed with
minimal training requirements. Our method leverages the capabilities of the VLMs to generate high-
quality outputs alongside a feature classifier within a Generative Adversarial Network (GAN)-based
framework|Creswell et al.|(2018) to minimize the discrepancy between feature representations at exit
points and the final layer in an adversarial setup. This approach significantly reduces unnecessary
computation at intermediate layers and elevates accuracy by learning feature representations directly
from the final layer.

Our method is tailored to VLMs with exits and Feature Classifiers (FCs) attached to intermediary
layers. Each exit consists of a single exit transformer (ET) and an exit classifier (EC). The exit
transformer is a replica of the layers in the LM of the BLIP-2 model. They are used as generators
and feature classifiers as discriminators in a GAN-based setup, as shown in Figure[I] The task of the
feature classifier is to correctly classify if the input is from the exit or final layer, and the task of the
exit transformer is to generate representations similar to the final layer to fool the feature classifier
of that exit.

The exit classifiers at each of the exits are the same as that of the final layer classifier with frozen
parameters and are used to map the outputs of exits to class probabilities. As the size of exit layer
parameters is significantly smaller than that of exit classifiers, it substantially reduces the number of
training parameters. In this way, a single LM layer attached to the exits helps produce similar feature
representations and reduces the training parameters by utilizing the final layer classifier without
training it at the exits. By attaching EEs, our method reduces the chances of overthinking and
makes the inference process faster. Figure 3| shows how our method can speed up inference while
maintaining comparable performance. The figure also provides a complete intuition of how our
method can improve performance.

Adversarial training methods are susceptible to issues such as catastrophic forgetting Kirkpatrick
et al.| (2017); Ryu et al.| (2022) and mode collapse. To circumvent these issues, we propose both
supervised and unsupervised methods. In the supervised case, we use the hard labels from a small
labeled dataset to remove the chances of catastrophic forgetting or exit training being stuck in a
local optimum. In the unsupervised case, we replace the hard labels with the soft labels available as
the output of vanilla BLIP-2, or we use the CapFilt|Li et al.| (2022b) used by the BLIP and BLIP-2
model to create high-quality synthetic labels.

* We introduce an EE strategy BLIPEE for VLMs to effectively mitigate inference latency
by reducing unnecessary computations inherent in their large-scale architecture.

* To improve performance at EE classifiers, BLIPEE emulate the behaviour of the final layer
at the exits through adversarial learning. To handle mode collapse and catastrophic forget-
ting, we propose supervised and unsupervised methods.

* Our model reduces the number of trainable parameters of the exits up to 37% by fixing the
weights of the classifier attached to the exits, reducing the size of training dataset require-
ments.

» We experiment both qualitatively (see figure [3) and quantitatively on various tasks such
as image captioning using COCO [Lin et al.| (2014) and NoCaps |Agrawal et al.| (2019)
datasets and visual question-answering using VQAv2|Goyal et al.[(2017), OK-VQA |Marino
et al.| (2019), VizWiz |Gurari et al.| (2018)) and GQA |[Hudson & Manning| (2019) datasets.
For visual dialogue, we use the VisDial |Das et al.| (2017) dataset. Our method provides
inference speed > 1.45x with comparable and sometimes even better accuracy than vanilla
BLIP-2 inference.

2 RELATED WORKS

We discuss the VLPs with LM components and EE strategies related to our work below.

Vision-language Pre-training: Different model architectures have been proposed for specific
downstream tasks in VLPs, including dual-encoder architectures Radford et al.| (2021); Jia et al.
(2021)), fusion encoder architectures Tan & Bansal| (2019)); L1 et al.| (2021)), encoder-decoder archi-
tectures |Cho et al.| (2021)); /Wang et al.|(2021)); \Chen et al.| (2022b), and more recently, unified trans-
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Figure 1: This figure shows the detailed architecture of our model. The Q-former output and previ-
ously predicted tokens are passed to the backbone. Then as the confidence threshold is met in the
second exit, the sentence is predicted.
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Figure 2: Left: BLEU-1 score for COCO with model BLIP-2-ViT-g-OPT; 7. Right: VQA accuracy
on the VQAvV2 dataset with BLIP-2-ViT-g-FlanT5x;, showcasing mid-crisis and overthinking.

former architectures|Li et al.| (2022b); Wang et al.| (2022b). Various pre-training objectives have also
been introduced, such as image-text contrastive learning Radford et al.|(2021);|Yao et al.[(2021);
let al| (2021}; 2022b), image-text matching [Ju et al (2021); [Li et al.| (2022b)); [Bao et al.| (2021), and
masked language modeling [Li et al| (2021} 2022b); [Yu et al.| (2022)); Wang et al.| (2022b). How-

ever, these end-to-end models are inflexible to leverage readily available pre-trained models, such as

LLMs Brown et al.|(2020); Zhang et al.|(20224); /Chung et al.| (2024).

Recent approaches in vision-language pre-training have adopted the strategy of utilizing off-the-
shelf pre-trained models and keeping them frozen during training. Some methods freeze only the
image encoder [Chen et al.| (2020); [Li et al.| (2020); [Zhang et al.| (2021)), and recent LiT
(2022) which uses a frozen pre-trained encoder for CLIP Radford et al.| (2021)pre-training, while
others freeze the language model to leverage knowledge from language-only pre-trained models for
vision-to-language generation tasks [Tsimpoukelli et al.| (2021)); |Alayrac et al| (2022); (Chen et al.
(20224); Mafias et al.| (2022); [Tiong et al.| (2022); |Guo et al.|(2022). The primary challenge lies in
aligning visual features with text space. To address this challenge, techniques like Frozen
poukelli et al| (2021) finetune image encoders or insert new cross-attention layers into language
models to incorporate visual features. BLIP-2 (2023) employs both frozen image encoders
and language models for various vision-language tasks, achieving strong performance.

Early Exits: To minimize inference latency in deep neural networks, BranchyNet
(2016) introduced attaching exits classifiers at intermediary layers. This concept was extended
by Shallow-deep Kaya et al.|(2019), which effectively determines when to exit based on confidence
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distribution at each exit classifier. Approaches like Huang et al.|(2017));|Yang et al.|(2020); |[Han et al.
(2023) improve EEs for image tasks by dynamically choosing different depths for different regions
of the image. Additionally, approaches like |Phuong & Lampert (2019) have employed knowledge
distillation for image classification. For Natural Language Processing (NLP) tasks, several early exit
frameworks have emerged Xin et al.| (2020); |Liu et al.|(2021); Zhou et al.| (2020); |Liu et al.| (2020);
‘Wang et al.| (2019; [2020); [Zhu| (2021); J1 et al.| (2023)); | Balagansky & Gavrilov|(2022);|Zhang et al.
(2022b)); Bajpai & Hanawal| (2024); Bajpai et al.| (2023} 2024]), primarily built on the BERT back-
bone. DeeCap [Fei et al.| (2022)) introduces EE for image captioning tasks, employing an imitation
network to replicate outputs from transformer layers within an encoder-decoder architecture. Sim-
ilarly, MuE Tang et al.| (2023) applies EE to OFA Wang et al| (2022a), a unified vision-language
model tailored for multi-modal applications.

The key differences in our work are: 1) We employ adversarial training for efficient learning of EE
models. 2) Our method can work under both semi-supervised and unsupervised setups by utilizing
the zero-shot capabilities of the BLIP-2, while previous methods require a good amount of high-
quality labeled training data, thus reducing size of training data.

3 METHODOLOGY

We start with a pre-trained BLIP-2 model that consists of three components: Image encoder, Q-
former, and Language Model. We assume that LM consists of NV layers, and we attach exits to the
K chosen layers. Each exit consists of one Exit Transformer (ET) layer with the same configuration
as one LM layer and an Exit Classifier (EC). The exit layer is such the parameters of the ET are
trainable, and those of EC are frozen. We motivate our method by investigating the phenomenon of
mid-crisis in BLIP-2.

3.1 MOTIVATION

In Fig. 2} we illustrate BLEU-1 score and VQA accuracy for various layers. As seen, performance
dips at the middle layers after the initial improvement. This is due to the LM component, which
is of large size and kept frozen during training. During pre-training, BLIP-2 aligns the features of
text and images using the Q-former, the querying transformer. However, the Q-former provides the
image-grounded text embeddings to the LM component in such a way that it produces high-quality
predictions only at the final layer and not the intermediary layer. We use this observation to add a
transformer layer at each exit instead of just adding a classifier at the exits. The transformer layer
is used to mimic the behaviour of the final layer. In this way, we have low-level features already
available at the initial layers and provide access to the high-level features at the exits by adversarially
training them to produce representations similar to those of the final layer. This makes the exits more
effective both in terms of accuracy and speeding up the inference.

We note that attaching a trainable classifier, as done in the previous works, can significantly increase
the number of parameters as the size of the dictionary is large. For instance, a classifier attached at
a single exit to BLIP-2 with OPT;, 75 as a decoder has around 130M trainable parameters, and if we
attach only 7 exits, this scales up to 900M parameters! In our methods, only the LM layer in each
exit has trainable parameters. This adds 84 M trainable parameters, scaling to 588/ parameters for
7 exits. Hence, we reduce the training parameters by freezing the classifier weights and only training
LM layer weights, thus reducing the trainable exit parameters by around 37%.

We next discuss our method which consists of two parts: 1) backbone finetuning and 2) exit training.

3.2 BACKBONE FINETUNING

The backbone is fine-tuned using the cross-entropy loss between the predicted token and the ground
truth token. The loss function for fine-tuning could be formulated as:

T
L(I) = 1ogPy(y;|yt.e—1,1) ()
t=1

where I denotes the input image, 7.1 is the true caption and 7" is the caption length. Py denote
the probability score from the final layer. In this step, the backbone learns to produce high-quality
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features at the final layer and a classifier C'y to map the feature representations at the final layers
to class probabilities. Note that C'yy is part of the backbone. Once the fine-tuning is complete, we
freeze the parameters of the backbone. This is done to maintain the optimal quality of the backbone.

3.3 EXITS TRAINING

After fine-tuning the backbone, we attach K exits to the LM component of the BLIP-2 model. We
denote the set of exit indices by [K]. At each exit, we use a feature classifier D; that discriminates the
feature representations of the transformer layer of the ¢th exit from that of the final layer. Specifically,
it provides a score to an input feature representation, whether it is from the final layer. We have a
separate feature classifier for every exit as feature representations at different exits can differ.

In our setup, the feature classifier acts as a discriminator, and the transformer layer exits as a gen-
erator; the goal of the transformer layer is to generate feature representations similar to that of the
final layer. We train them alternately as in the original GAN framework. This training problem can
be setup as an unconstrained optimization problem. Let E; denote the transformer layer in the ¢th
exit. The feature classifier loss for an exit ¢ € [K] and an input image I could be formulated as:

‘Cfc(hzy‘ﬂ hiv‘yftfla I) = _long(hi\qyrtfl’ I) - lOg(l - Dl(El(h‘“yrt?I))) (2)

where h! is the feature (hidden) representation at ith layer and hl¥ is the feature representation at
the final layer of the LM for the th token in the sentence. The overall loss across all exits could be

written as £7¢ = > €[K] Ef ©. It simultaneously updates the feature classifiers across all the exits.

The generator loss for the transformer layer in ¢th exit could be formulated as:
'Cgm(hl|yl w1, 1) = —logD;(Ei(hilyi.,—1,1))) 3)

However, because the weights of the transformer layer of the exits are untied from the original
backbone, they can face the issue of catastrophic forgetting or mode collapse. To circumvent these
issues, we utilize the small labeled dataset to fine-tune the backbone. It guides the model to correct
the learning trajectory and not let it get stuck to the local minima. The labeled data not only removes
the issue of catastrophic forgetting but also helps in reducing overthinking as exits mimic the final
layer and learn from the hard labels. The loss could be written as:

EiCE(Ia Yia—1) = logPi(y; Y11, 1) 4)
where P; denotes the probability score at the ith exit. The loss at exit i will be £; = LEE + £I"

The overall loss for exits training will be £ = )", €K L;. After this step, the backbone is learned
with attached exits.

3.4 UNSUPERVISED SETUP

Recall from the previous section that labeled data was utilized to reduce the issue of catastrophic
forgetting and mode collapse. As the BLIP-2 model has good zero-shot performance, we can utilize
it to either distill the knowledge at the final layer or create a small set of pseudo labels to fulfill the
requirements of the labeled dataset. We provide two methods for unsupervised learning.

Using Knowledge Distillation: In this case, we can directly utilize the soft labels from the final
layer to distill the knowledge to the exits. The knowledge distillation loss for the ¢th layer could be
formulated as: '

L7 = KL(pt,py) )
where pi = Cn(E;(hi|y;,_1,1)), pY = CN(hN|yf.t 1, 1) and KL is the KL-divergence loss
defined as KL(p},pl¥) = > ,cv Ph log where V is the vocabulary. We can train the exits by
replacing the L{'F by LKL, Then the overall loss for exit 4 is £; = LXL + £9°7.

This method also utilizes the zero-shot capabilities of the BLIP-2 model. However, this method

has a slightly lower performance than the CapFilt method proposed next, still it comes with lower
computational cost and has comparable performance to vanilla BLIP-2 inference.

Using CapkFilt: CapFilt|Li et al|(2022b}, 2023)) is a method that is used in both the original BLIP
and BLIP-2 models to generate high-quality synthetic captions. We use similar ideas to generate the
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NoCaps Zero-shot
#Train . . . .
Models P in-domain near-domain out-domain full-dataset Spd
arams
C S C S C S C S
Vin VL 345M 102.9 14 94.8 13.7  88.1 11.9  95.1 13.2 -
BLIP 446M 1149 152 1106 146 1148 143 1128 147 -
SimVLM 1.4B 113.7 149 1106 142 1146 144 1121 143 -
BLIP-2 ViT O,.78 1.1B 123.0 158 117.8 154 1232 150 119.6 154 1.07x
BLIP-2 ViT FT5x. 1.1B 123.7 163 1202 159 1248 151 121.6 158 1.00x
Early Exit models

DeeBLIP 1.8B 1152 153 111.5 147 1154 145 1124 145 1.41x
PABEE-BLIP 1.8B 1177 154 1142 148 117.6 147 1129 146 1.29%x
LeeBLIP 1.8B 1194 155 1158 148 120.1 149 1163 151 1.38x
MuE 1.8B 118.1 154 1153 148 118.7 148 1148 149 1.44x
BLIPEE ViT O35 1.5B 1227 157 1181 155 1239 151 1199 156 1.63x
BLIPEE ViT FT5x. 1.4B 1243 165 1200 159 1255 154 1227 16.1 1.51x

Table 1: Results on the Nocaps dataset during zero-shot transfer when the model is trained on the
COCO dataset across various domains. Spd is the speedup achieved by the model. O, 75 is OPT, 75
and FT5x is FlanT5x; .

labeled dataset. In this step, a sample is passed through the BLIP-2 model, which then provides us
with 10 possible captions for the given samples. We then use the CLIP ViT-L/14 model to rank the
synthetic captions based on the image-text similarity produced by the CLIP model. We then keep
the top-2 captions and keep them as synthetic captions that can be later utilized for training the exits
by treating the synthetic captions as true captions. Creating synthetic captions using the CapFilt is
more accurate but computationally heavy|Li et al.| (2022b)).

3.5 INFERENCE

We perform the caption in an autoregressive manner. This entails making a token-by-token pre-
diction for a given image, where the layer at which the token is predicted is determined by the
confidence score S; = max,cy Cn (E;(hi|y1.4—1,1))(v) where V is the vocabulary. The input to
the decoder is processed sequentially through the decoder layers until the confidence score .S; is
greater than a predefined threshold value . This threshold is set based on the accuracy-efficiency
trade-off. The inference starts with the begin of the sentence token and the next token is predicted
either at the exits or at the final layer. Then the predicted token is appended to the generated caption
and passed as an input to the decoder for the next token prediction. The inference process stops
when the end of the sentence token is predicted either at intermediary layers with a confidence score
of more than « or at the final layer. Note that if the prediction confidence is below « for all the exits,
then the sample is predicted at the final layer, irrespective of the confidence in the prediction.

4 EXPERIMENTS

In this section, we provide details of all the experiments and some salient results of our work.

Dataset and Metric: We evaluate the performance of our method using the COCO [Lin et al.|(2014)
and NoCaps dataset |/Agrawal et al.| (2019) for image captioning. For Visual Question-answering
tasks, we utilize the VQAV2 |Goyal et al.| (2017), OK-VQA |Marino et al.| (2019) and GQA Hudson
& Manning| (2019) datasets. For visual dialogue, we use the VisDial [Das et al.| (2017) dataset. We
report key metrics including BLEU-4 |Papineni et al.| (2002), METEOR Banerjee & Lavie| (2005),
CIDEr |Vedantam et al.| (2015) and SPICE |Anderson et al.| (2016) scores for captioning. For VQA
tasks, we report the VQA accuracy and for the Visual Dialog, we use the Mean Reciprocal Rank
(MRR) Dai et al.[(2024)). To effectively consider the speedup, we define the speedup as inverse of
the fraction of parameters used for inference on average. The speedup is formulated as:

Total parameters

Speedup =
peedup Average number of parameters used
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#Train  VQAv2 VQAvV2

Models Params train test Spd
Without Exits

ALBEF 314M 72.3 71.5 -

BLIP 385M 73.9 72.1 -

OFA 930M 75.7 75.6 -

Flamingo80B 10.6B 77.9 78.1 -

BLIP-2 V-O 1.2B 78.3 78.5 1.07x

BLIP-2 V-F 1.2B 78.8 78.7 1.00x
Early Exit models (on BLIP-2)

DeeBLIP 1.9B 754 75.9 1.52%
PABEE-BLIP 1.9B 77.4 77.1 1.39x
LeeBLIP 1.9B 78.1 77.8 1.65%

BLIPEE-V-O 1.6B 78.7 79.0 1.77 %
BLIPEE-V-F 1.5B 78.9 79.1 1.71x

Table 2: Results of semi-supervised application of our model to Visual-Question Answering tasks.

where the average number of parameters could be written as 7 Z?/Izl ZfV:fl w; X (i+ k) X p where

p denotes the number of parameters in one layer of the LM component, N; denotes the number
of predicted words in the caption for the image I, M denotes the total number of input images and
k = 1is the number of LM layers in the exit. Total parameters denote the total number of parameters
in the backbone. The baseline for comparing speedup is BLIP-2 ViT-g FlanT5x; . We only compare
the speedup of early exiting methods and the BLIP-2 variants.

Training: In our setup, we utilize two variations of the BLIP-2 model with the same image encoder
(ViT-g/14Dosovitskiy et al.[(2020)) and frozen LLMs that are OPT-2.7B [Zhang et al.|(2022a) and
FlanT5-XL |Chung et al.| (2024). We use the LAVIS |Li et al.| (2022a) library for implementation,
training and evaluation. For training, we use the validation split of the datasets. We use 80% of
validation split for training and the remaining 20% is reserved for development. We use labels of
the validation dataset when the task is semi-supervised, else we just use the samples without labels.
First, the backbone is fine-tuned for 10 epochs with a starting learning rate of le-5, which decays
by 0.5 every 3 epochs. The backbone weights are then frozen post-fine-tuning and exits are attached
to the backbone. We train exit weights for a further 3 epochs. We employ the Adam Kingma &
Bal (2014)) optimizer and a batch size of 16. For the feature classifier, we have used MLP with one
hidden layer with a hidden state of size 3072 and a LeakyReLU |Xu et al.|(2015) activation function.

For the unsupervised tasks, we train the model for 3 epochs on the validation dataset (without labels)
with knowledge distillation from the final layer. Optimizers and learning rates are kept the same as
given above. Note that in CapFilt we apply the CapFilt method on the validation dataset (without
labels) and generate synthetic labels. After this, we perform a similar procedure by treating the
synthetic labels as the true labels as done for the semi-supervised tasks. Fine-tuning of the backbone
is not required in an unsupervised setup.

Inference: Inference is conducted with a batch size of 1. We provide the results on the test dataset.
For image captioning, we use a prompt as ‘a photo of” as an initial input to the LM component.
The threshold is chosen as the best-performing threshold from the set {0.5,0.6,0.7,0.8,0.9,1.0}
on the held-out split of the validation dataset. More details on the hyperparameter setting can be
found in Appendix [6] with the values of hyperparameters. All the experiments were performed with
a combination of 6 GPU setups consisting of two NVIDIA RTX A6000 and four NVIDIA GeForce
RTX 3080 Ti.

Baselines: We establish baseline models for performance evaluation, including vanilla BLIP-2 in-
ference. Additionally, we compare with multimodal models VinVL Zhang et al.|(2021), ALBEF|L1
et al.| (2021), SimVLM [Wang et al.| (2021), OFA |Wang et al.|(2022a)), and Flamingo |Alayrac et al.
(2022). We also assess state-of-the-art early exit methods originally proposed for the BERT back-
bone, such as DeeBERT [Xin et al.| (2020), PABEE [Zhou et al.| (2020), and LeeBERT [Zhu| (2021)),
adapted to the BLIP-2 backbone as DeeBLIP, PABEE-BLIP, and LeeBLIP, respectively. DeeBLIP
uses confidence-based exiting, PABEE-BLIP employs patience-based exiting, and LeeBLIP com-
bines knowledge distillation from the final layer with hard label learning. Furthermore, we apply
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#Total VisDial  VQAv2 _ OK-VQA GQA VizWiz

Model params  test train test test test st opeed

Without exits
Flamingo3B 3.2B - 532 494 41.5 - 28.9 1.28 %
Flamingo9B 9.3B - 557 51.8 447 - 28.8 0.44 x
Flamingo80B 80B - 59.1 56.2 50.4 - 31.5 0.05x
BLIP-2 ViT-g OPT» 78 3.8B 34.1 546 520 31.2 34.2 27.0 1.07x
BLIP-2 ViT-g OPTe 78 7.8B 37.5 559 537 36.1 36.4 27.2 0.52x

BLIP-2 ViT-g FlanT5x1. 4.1B 459 649 62.5 40.6 44.5 29.8 1.00x
Early Exit models (on BLIP-2 ViT-g FlanT5xt.)

DeeBLIP 4.7B 334 413 428 234 27.8 20.1 1.39%
PABEE-BLIP 4.7B 35.7 49.6 513 31.2 343 23.6 1.31x
LeeBLIP 4.7B 39.1 57.7 571 37.1 39.7 26.4 1.29%
MuE 4.7B 36.6 554 53.6 33.7 37.1 24.7 1.36x

BLIPEE ViT-g OPT, 78 4.3B 323 555 534 35.6 44.7 26.8 1.51x
BLIPEE ViT-g FlanT5x1. 4.5B 45.5 645 62.1 40.3 44.0 29.5 1.45%

Table 3: Results of the unsupervised Visual-Question Answering and VisDial dataset. For VQA
tasks, we report the VQA accuracy and for the visual dialogue, we report the Mean Reciprocal
Rank(MRR).

COCO Karpathy test
Models B@4 C srp yM Spd
OFA 375 1303 252 311 -
Flamingo 38.5 1341 241 278 -
SimVLM 38.6 1383 248 2938

BLIP-2-V-O 417 1398 255 305 1.07x
BLIP-2-V-F 404 1415 252 29.1 1.00x
Early Exit models

DeeBLIP 328 1151 209 253 1.65x
PABEE-BLIP | 342 119.8 214 262 1.45x
LeeBLIP 374 1320 228 27.6 1.59x
MuE 379 1375 23.6 285 141x

BLIPEE-V-O | 419 1425 252 30.8 1.75x

Table 4: Results of semi-supervised training on the Karpathy test split of the COCO dataset.

the MuE [Tang et al.| (2023) early exiting method to the BLIP-2 backbone, using exits from the
better-performing BLIP-2 variant for our baselines.

5 RESULTS

Visual Question Answering: We provide results on unsupervised (see table [3) as well as semi-
supervised setups (see table[2). We observe that our method outperforms all early exit methods in
terms of accuracy and speedup even with less number of trainable parameters. We even outperform
the vanilla BLIP-2 inference due to overthinking in the BLIP-2 backbone which is mitigated by our
input-adaptive inference. We also provide results on an unsupervised visual dialogue dataset where
the task is similar to VQA but there is an additional context before the question i.e. a dialogue
history between the user and the model.

Image Captioning: We provide results of semi-supervised and unsupervised setup in table [I| and
[] respectively. We clearly outperform the existing models in terms of both accuracy as well as
speedup. For the NoCaps dataset, the model is fine-tuned on the COCO dataset. The speedup for
NoCaps dataset is lower as there is a domain change from the training which lowers the confidence
in prediction taking more samples to deeper exits for inference.

We observe performance improvement over previous baselines as we attached exits to the BLIP-
2 model and by performing input-adaptive inference, we perform better than the BLIP-2 model,
and as BLIP-2 outperforms other models, BLIPEE also outperforms others. For the early exiting
baselines on BLIP-2, we outperform them as we have an additional component in the exits rather
than just a linear classifier which helps in better performance of exits in terms of both performance
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and speedup. Note that there is a decrease in accuracy when we are in an unsupervised setup, as
our model mimics the final layer hence some amount of overthinking still remains. Still, we are
comparable to the BLIP-2 inference. On the other hand, the labeled dataset in semi-supervised tasks
helps the model learn the hardness of the incoming sample. This helps the model to overcome the
overthinking issue.

‘We have utilized two versions of the BLIP-2 model that have decoder as FlanT5x;. and OPT5 75. We
observe that the speedup in BLIP-2 with OPT, 75 was higher as there are more layers in this hence
they are more susceptible to overthinking issues. The speedup for VQA tasks was higher as these
tasks are simpler than image captioning tasks. We have not reported the speedup of the models other
than the variants of BLIP-2 as they have different types of architectures. In terms of speedup, our
objective is to make BLIP-2 faster.

In table 5] we have shown the result of using the CapFilt method to generate synthetic captions in
absence of the labeled dataset. We have reported the CIDEr score over the NoCaps dataset. We
can observe that the model has improved upon the performance using CapFilt and the speedup has
significantly increased. This effect is due to the good quality captions that help the exits learn better,
hence it outputs more samples early increasing the speedup as compared to knowledge distillation.

Ablation study: We perform a detailed ablation study analysing the behaviour of different compo-
nents, the hyperparameter o and important qualitative analysis in the Appendix.
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Figure 3: This figure provides some example outputs of BLIPEE ViT-g OPT,75. The different
colours show the difficulty levels of tokens in captions. Red: Easy to predict and predicted at initial
(1-12) layers. Green: Mediocre hard, predicted at intermediary (13-24) layers. Black: Hard to
predict, predicted at deeper (25-32) layers.
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6 CONCLUSION

In this study, we introduced a novel inference technique BLIPEE, which leverages adversarial train-
ing of exits alongside the zero-shot capabilities of the BLIP-2 model. By employing BLIPEE, we
effectively reduce the dependency on a vast amount of labeled training data typically required for
exit training. Our approach involves adversarially training exits to generate representations similar
to those of the final layer, thereby minimizing the need for extensive labeled data. Moreover, our exit
design reduces the number of trainable parameters, resulting in lower computational costs. Exper-
imental results demonstrate that our method significantly enhances inference speed while yielding
high-quality outputs, occasionally even surpassing those produced by the final layer.

7 LIMITATIONS

For attaching exits to a large model such as BLIP-2, the crucial part is to decide where to attach
exits within a given budget, i.e., what could be the best places for an exit in the LM component
of the backbone without exceeding a certain amount of parameters. We answered that question by
explaining the mid-crisis. However, the placements of exits with given budget criteria still remain
unexplored which can make these models even faster within computational boundaries.
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A APPENDIX

A.1 ABLATION STUDY

A detailed ablation study on the hyperparameter o modelling the accuracy and efficiency trade-off
can be found in the Appendix [A.2] and Fig b} In Fig [a) and section [A3]in the Appendix, we
explain and verify the importance of different components in our model.

Qualitative analysis: In Fig [3] we provide some examples of the output provided by the BLIPEE
model. The figure shows how the early exit models increase the speedup by predicting easier tokens
earlier. For instance, the image in the last row and last column of the figure is an example of an
easy sample where the tokens are predicted at initial layers. Similarly, for the image with a zebra,
it can easily predict the easier token such as ‘A zebra standing in a snowy field’ at the initial layers
while the part of the image that is not easy to predict ‘with a wall behind’ is predicted at deeper
layers and predicting a high-quality caption overall while speeding up inference using the easiness
of sample as well as token. Observe that there are fewer outputs from intermediate layers because
of the mid-crisis phenomenon.
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Figure 4: Left: BLEU-1 score for COCO with model BLIP-2-ViT-L-OPT), 75 with different compo-
nents. Right: Speedup vs BLEU-4 curve for COCO dataset with ViT-L-OPT; 7.

Model No Caps Zero-shot
in-domain near-domain out-domain full-dataset = Spd
w/o CapFilt 122.3 118.9 123.1 120.7 1.45x%
Capfilt 123.5 120.4 124.7 122.0 1.77x

Table 5: Difference between CapFilt and Knowledge distillation method for an unsupervised setup.

A.2 ACCURACY VS SPEEDUP

In figure we show the accuracy vs speedup curve which could be obtained by changing the
threshold parameter «e. As we decrease the threshold parameter, samples exit from the initial layers
even with less confidence, in this way all the samples are more prone to be incorrect decreasing the
accuracy but as the threshold is decreased more samples exit from the initial layers and increase the
speedup. One key observation is as we start decreasing the threshold, we observe that sometimes
the performance even increases, this is the effect of overthinking, where some samples are correctly
predicted at initial layers and might become wrong as they reach the final layer. We have also plotted
the curves for other exiting methods and observed that our method has better stability as compared
to other early exiting methods.

A.3 IMPORTANCE OF DIFFERENT COMPONENTS

In figure[da] we show the importance of different components of our method. We observe that there
is a huge performance drop if we remove the knowledge distillation or cross-entropy loss from the
overall loss function. This occurs due to catastrophic forgetting or mode collapse where the model
gets stuck into local minima. On the other hand, if we remove the adversarial training part, there
is again a performance drop, as we only train the classifier but we are not mapping the feature
representations of the final layer and the exits hence exits only have low-level features which are
insufficient to make correct predictions, hence resulting in a performance drop.

LLM OPT FlanT5
Exit Config [3,6,9,12,24,27,30] [3,5,7,9, 12,20, 22]
AdamW beta [0.9, 0.999] [0.9, 0.999]
Threshold 0.8 0.8
Inference beam size 5 5
Warmup Steps 500 500

Table 6: More hyperparameter details of BLIPEE on different LM component in the BLIP-2 model.
Note that the thresholds are chosen from the set {0.5,0.6,0.7,0.8,0.9,1.0}
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