
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Mini-NAS: A Neural Architecture Search Framework for Small
Scale Image Classification Applications

Anonymous Author(s)
Submission Id: 7

ABSTRACT
Neural architecture search (NAS) has shown promising results on
image classification datasets such as CIFAR-10 and ImageNet. The
desire for higher accuracy coupled with the need for computation-
ally affordable NAS, solely for these benchmarks however, has had a
profound effect on the design of NAS search spaces and algorithms.
Many real world use cases on the other hand, may not always come
with datasets as large as ImageNet or even CIFAR-10 and the re-
quired network sizes may only be a few hundred KBs, therefore,
the optimizations done to speed up NAS may not be ideal for these.
For instance, modular search spaces reduce search complexity as
compared to global ones but offer only partial network discovery
and a fine grain control over network efficiency is lost. Similarly, a
transition from algorithms searching in discrete search spaces to
continuous ones brings significant efficiency gains but reward sig-
nals in the former provide more confident search directions. In this
work, we first present a suit of 30 image classification datasets that
mimics possible real world use cases. Next, we present a powerful
yet minimal global search space that contains all vital ingredients to
create structurally diverse still parameter efficient networks. Lastly,
we propose an algorithm that can efficiently navigate a huge dis-
crete search space and is specifically tailored for discovering high
accuracy, low complexity tiny convolution networks. The proposed
NAS system, Mini-NAS, on average, discovers 14.7× more parame-
ter efficient networks for 30 datasets as compared to MobileNetV2
while achieving on par accuracy. On CIFAR-10, Mini-NAS discovers
a model that is 2.3×, 1.9× and 1.2× smaller than the smallest models
discovered by RL, gradient-based and evolutionary NAS methods
respectively while the search cost is only 2.4 days. 1

CCS CONCEPTS
• Computing methodologies → Object recognition; Search
methodologies.

KEYWORDS
Neural Architecture Search, Datasets, Tiny AutoML, Image Classi-
fication, Convolutional Neural Networks

1Code available at: omitted for blind review

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
tinyML 2021, March 22, 2021, Burlingame, CA
© 2021 Association for Computing Machinery.
ACM ISBN XXX-X-XXXX-XXXX-X/XX/XX. . . $XX.00
https://doi.org/XX.XXXX/XXXXXXX.XXXXXXX

ACM Reference Format:
Anonymous Author(s). 2021. Mini-NAS: A Neural Architecture Search
Framework for Small Scale Image Classification Applications. In tinyML
2021: First International Research Symposium on Tiny Machine Learning
(tinyML), March 22, 2021, Burlingame, CA.ACM, New York, NY, USA, 8 pages.
https://doi.org/XX.XXXX/XXXXXXX.XXXXXXX

1 INTRODUCTION
Recent neural architecture search (NAS) approaches based on re-
inforcement learning (RL), evolutionary algorithms and gradient
descent have shown promising results on benchmark image classi-
fication datasets [5, 13–15, 28, 29]. However, the considerable size
of ImageNet or even CIFAR-10 adds to increased search costs and
hence, much of the effort has been spent on making NAS computa-
tionally feasible [17]. Interestingly, many real world applications
such as [12], 1) may come with datasets smaller than even CIFAR,
and 2) require fewer parameter networks. Figure 1 shows example
cases where all datasets have similar statistics (same number of
training samples i.e. 1K and same image resolution) but still pose
varying learning difficulty for SOTA mobile architectures. For ex-
ample, it seems easier to differentiate espresso from ice cream than
beer from soda bottle. Since every dataset is inherently unique,
NAS should help discover an exclusive architecture for each and is
therefore more needed for such datasets than it is for ImageNet.

However, the optimizations done to speed up NAS by performing
modular (cell based) search in continuous spaces and estimating
candidate performances using surrogates may not be well suited for
small scale datasets. For instance, NASNet and others [6, 14, 24, 29]
significantly speed up NAS by searching only for a module/cell
instead of complete architecture whereas network depth and width
still needs to be tuned manually. In addition, modular search spaces
reduce architecture flexibility by repeating the same module i.e.
since a module comprises of more than one learnable operations,
there is hence a certain lower bound on parameter count that can-
not be decreased further. Further, although the transition from
performing NAS in discrete search spaces [1, 15, 16, 28, 29] to con-
tinuously relaxed ones [5, 14, 24] yields massive efficiency gains, we
argue that the reward signal of the former leads to highly confident
search directions while later struggles to deal with inconsistent
architecture rankings [25]. Moreover, due to expensive training of
benchmarks, NAS is further sped up by training candidates; for a
fewer epochs, on a subset of data, and with a downscaled model
[9, 27, 29]. However, these estimates may be inaccurate and disturb
architecture rankings hence sacrificing search quality.

Therefore, the need for NAS specialized for smaller datasets
requiring efficient models is evident. To this end, we propose a
generalizable and full network discovery NAS solution called Mini-
NAS that can discover parameter efficient networks for a range of
datasets. The contributions of this work are as follows:

1

https://doi.org/XX.XXXX/XXXXXXX.XXXXXXX
https://doi.org/XX.XXXX/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

tinyML 2021, March 22, 2021, Burlingame, CA Anon. Submission Id: 7

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

• We introduce a suit of 30 image classification datasets with
different number of classes, training and testing samples and
image resolutions that demonstrates versatility of potential
real world applications. This suit can be used to test the
generalizability of NAS solutions.
• We propose a powerful yet minimal global search space
whose flexibility allows networks to differ significantly yet
adapt well to different tasks both on a macro i.e. depth and
width and on a fine grain micro i.e. operation and kernel
level.
• Lastly, we present an algorithm that can efficiently navi-
gate a huge, discrete search space, and can consistently dis-
cover high accuracy high efficiency networks for 31 different
datasets.

On CIFAR-10, Mini-NAS discovers a 1.44M parameter model
with an error rate of 5.27% and the search cost is just 2.4 days. This
is 2.3×, 1.9× and 1.2× smaller than the smallest models discovered
by RL [29], gradient-based [23] and evolutionary NAS [20] methods
respectively. Moreover, to the best of the authors knowledge, this
model is the smallest NAS discovered as well as human designed
architecture when compared to the latest survey results [17]. Fur-
ther, Mini-NAS generalizes well across 30 different datasets and
consistently discovers architectures with accuracy scores on par
with EfficientNet-B0 [22] and MobileNetV2 [10] while being orders
of magnitude more parameter efficient.

2 RELATEDWORK
We first present an overview of the related work in terms of search
spaces and search algorithms and how they may not be suitable for
small scale datasets.

2.1 Search Spaces
The work in [17] presents an overview of global versus modular
search spaces of the most prominent works. The first modular or
cell based search space is introduced by NAS-RL [29] and the most
popular is currently DARTS [14] search space. There are also tree
based search spaces used in [3, 4] inspired by Inception [21] like ar-
chitectures and are similar to modular search spaces. However, we
are only interested in search spaces with simpler convolutional ar-
chitectures for efficiency reasons. There are numerous global search
spaces for convolutional networks suggested by early NAS works
each having its own set of search variables [1, 2, 7, 11, 16, 20, 28].
All of these works search for filter sizes and number of channels for
convolutional layers. Some even search for pooling layer filter sizes
and strides, number of neurons in fully connected layers and skip
connections. However, these spaces are inspired by early network
design methods that follows CONV-POOL-FC like architecture, and
none of these allow searching for different operation types such as
dilated convolution or separable convolution, please see Table 2.
Our search space however deals with fully convolutional networks
only and also adds the flexibility of operation selection at each
layer.

Figure 1: Different application datasets derived from Ima-
geNet exhibit varying difficulty. Mini-NAS discovers archi-
tectures with performance similar to EfficientNet-B0 and
MobileNetV2 however only at a fraction of parameters.

2.2 Search Algorithms
In this work, we are interested in algorithms that deal only with
global and discrete search spaces instead of modular and continu-
ous ones for the reasons mentioned in the introduction. The most
related works are therefore that of RL [1, 2, 28], Evolution [7, 16, 20]
and SMBO[11]. However, none of these algorithms focus on finding
parameter efficient networks for small scale datasets. Moreover,
some algorithms are either computationally too intensive or overly
complex for such datasets.

2.3 From NAS to Mini-NAS
We emphasize that modular (cell based) search spaces and gradient
based search algorithms are overly complex for small scale datasets.
For example, we searched cells on 10 sub datasets of CIFAR-10
using P-DARTS [5] and PC-DARTS [24] and trained each subset
with the respective discovered cell. Then, we trained these subsets
again with cells discovered on CIFAR-10 reported by these works. It
was surprising to see that cells specially searched on these datasets
performed no better than those reported in the papers, meaning
that the search itself has no effect on discovering good cells on a
given small dataset, as shown in Figure 2. Moreover, the search
only returns a cell and determining number of layers and channels
requires further trial and error. Further, since a discovered cell’s
structure is fixed throughout the network, there is no fine gain
control on network’s overall number of parameters. This motivates
the idea of a search space with greater flexibility on both macro
and micro architectural levels. On the other hand, works which
perform global architecture search [1, 2, 7, 16, 20, 28], end up either
having huge search costs or larger error rate. Moreover none of
these works focuses on parameter efficiency. Therefore, in addition
to a flexible search space, a search strategy focused on discovering
efficient architectures is also desired. Further, instead of incomplete

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Mini-NAS: A Neural Architecture Search Framework tinyML 2021, March 22, 2021, Burlingame, CA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 2: Gradient-based search inmodular search space has
no effect on smaller datasets. PC-DARTS [24] and P-DARTS
[5] indicate cells discovered on CIFAR-10 in the respective
papers. Searched indicates cells discovered specifically for
each binary dataset. Searched cells are actually unable to
beat those discovered for CIFAR-10.

training and architecture recycle, we propose to use accurate per-
formance estimate by training each candidate from scratch and till
convergence where computationally feasible. Therefore, Mini-NAS
is an important step towards generalization of NAS methods to
small scale datasets.

3 METHDOLOGY
ANAS frameworkmainly comprises of three components; 1) Search
Space, 2) Search Strategy, and 3) Performance Estimation [8]. We
optimize each of these components for Mini-NAS and discuss the
reasoning and variations from existing practices in this section.

3.1 Search Space Design
The most prominent global search spaces are shown in Table 2.
The first point to note is that all existing search spaces are huge
and overly complex except [7, 20] and search is hence expensive.
We therefore, propose a powerful yet minimal search space which
contains only the most vital model components i.e. depth, width,
operations and kernels that significantly effect an architecture’s
performance. Secondly, many search spaces contain skip connection
which is not needed for smaller networks so we remove it. Further,
some works follow early Conv-Pool-FC architecture paradigm and
search for pooling as well as fully connected layers whereas our
search space has fully convolutional networks with global pooling
layer instead. Hence, we do not have to search for pooling and
fully connected layer parameters. Moreover, searching for stride
value for convolution or pooling layers may create artificially novel
architectures but makes search overly complex. Lastly, none of
these search spaces have choice of operation per layer, and use only
plain convolutional operation at every layer while operation can

Table 1: An example candidate architecture for CIFAR-10
from Mini-NAS search space.

Layer Ch Dims Stride Ops Ks
1 32 32x32 1 Sep 5x5
2 32 32x32 1 Conv 5x5
3 32 32x32 2 Sep 3x3
4 64 16x16 1 Conv 3x3
5 64 16x16 1 Sep 5x5
6 64 16x16 2 Conv 7x7
7 128 8x8 1 Sep 7x7
8 128 8x8 1 Conv 3x3

be searched from among separable, dilated or a plain convolution
layer. We argue that varying operation type per layer has a more
meaningful effect on architecture accuracy than varying stride.
Further, we emphasize that for smaller networks, a combination of
plain and separable convolutions yields nice accuracy/parameters
trade-offs. Therefore, instead of searching for stride, we search for
operation type. Table 2 shows that Mini-NAS search space coupled
with its algorithm yields the smallest CIFAR-10 network with a
reasonable search cost and competitive accuracy.

In general, we have plain vanilla VGG [19] like networks of
varying depth and width where each layer can choose a unique
operation and kernel size. We follow [14] however, and have a fixed
rate of doubling the channels whenever the spatial dimensions are
halved, as we do not search for stride. We limit the search depth
from 3 to 15 layers and number of channels from 16 to 64 with steps
of 16. However, these bounds are flexible and may be changed if
network requirements are known in advance. For example if the
parameter budget is extremely low, the upper bounds on number
of layers and channels can be decreased and vice versa. Similarly,
if the computational resource allows, one may decrease step size
to have more fine grained channel search. In terms of operations,
each layer can have either separable or plain convolutions. Each
layer also has freedom of choosing kernel sizes of 3, 5 or 7. The
possibility of each layer having a unique operation and a kernel
size creates a more fine grained architectural variation for suitable
accuracy/efficiency trade-off. An 8 layer example architecture is
shown in Table 1.

The complexity of this search space may vary significantly de-
pending on the difficulty of the target application and increases
exponentially with depth. For a depth range of𝐷 , width range of𝑊 ,
number of operations 𝑂 and number of kernels 𝐾 , the maximum
possible number of architectures 𝑁𝑎𝑟𝑐ℎ is given in Eq. 1. Therefore
the search space as described above has approximately 2.25 × 1013
candidate architectures. However, as we will show, by making the
right approximations the complexity can be reduced considerably.

𝑁𝑎𝑟𝑐ℎ = (𝑂 × 𝐾)𝐷
𝑚𝑎𝑥

× (𝐷 ×𝑊) (1)

Although much of the complexity increases with depth, it also
adds to the strength of the search space with enhanced flexibility
of operation and kernel search for each added layer. However, it
should also be noted that a search algorithm’s cost largely depends
on the target application difficulty. For example, we shall see that

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

tinyML 2021, March 22, 2021, Burlingame, CA Anon. Submission Id: 7

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

the sequential search nature of Mini-NAS limits the search space
and cost greatly when the target application is easy, whereas a
harder dataset may require larger search space.

3.2 Search Algorithm
We introduce a relatively straightforward search algorithm that
can efficiently navigate a potentially huge search space, see Algo-
rithm 1. Since the search complexity increases exponentially with
increasing layers, the first logical step seems to settle upon just
the right depth needed for the target task. For this purpose, we
essentially let candidate models expand layers in an attempt to
overfit the training data. To do that, the number of channels is set
to maximum in the search space and layers are increased as long as
it results in significant accuracy gains i.e. by a threshold value of
𝐿𝑎𝑐𝑐
𝑔𝑎𝑖𝑛

(accuracy gain by increasing layer). If by increasing a layer,
the network accuracy drops below than 𝐿𝑎𝑐𝑐

𝑑𝑟𝑜𝑝
(accuracy drop by

increasing layer) threshold, we still continue searching for depth.
Once the network depth is learned, we prune the number of chan-
nels until there is significant drop in accuracy i.e. 𝐶𝑎𝑐𝑐

𝑑𝑟𝑜𝑝
(channel

drop tolerance). This strategy gives the algorithm enough flexibility
to adjust to target dataset at a macro level i.e. network depth and
width. Moreover, splitting the search process this way effectively
reduces the right term of complexity in Eq. 1 to 𝐷 ′+𝑊 ′, where 𝐷 ′
is the number of architectures evaluated when searching for depth
and𝑊 ′ for width. At this point, we have an architecture with 𝐷 𝑓

and𝑊 𝑓 which is final number of layers and channels respectively
to be used in further search.

The next step is to search for fine grain architectural details
i.e. operation type and kernel size at each layer. We simply search
operations and kernel sizes for each layer sequentially. The idea is
to increase network parameters only if it improves accuracy and we
do that by replacing separable convolution with plain convolution
and increasing kernel sizes. Therefore, we search for operations
by evaluating 𝐷 𝑓 architectures and learn 𝑂 𝑓 i.e. operation type at
each layer, and for kernels by evaluating 2 × 𝐷 𝑓 architectures and
learn 𝐾 𝑓 i.e. kernel sizes per layer. At this point we have learned
an architecture well suited to target dataset by evaluating only
3×𝐷 𝑓 +𝐷 ′+𝑊 ′ architectures instead of the number shown in Eq.1.
Please note that there is no guarantee for convergence to optimal
solution but the algorithm works surprisingly well in practice.

However, we emphasize that it is not entirely this search algo-
rithm that results in parameter efficiency of the discovered solutions.
As shown in Algorithm 1, we initialize the search with minimum
depth, maximum number of channels in the search space, all layers
with separable convolutions and kernel sizes of 3x3. The discov-
ery of parameter efficient networks is significantly influenced by
this initialization and the threshold parameters 𝐿𝑎𝑐𝑐

𝑔𝑎𝑖𝑛
, 𝐿𝑎𝑐𝑐
𝑑𝑟𝑜𝑝

and
𝐶𝑎𝑐𝑐
𝑑𝑟𝑜𝑝

(We tune these values to be 0.5, 0.25 and 0.5 respectively). As
discussed in 4.6, alternative initializations do not yield parameter ef-
ficiency. Overall, the algorithm yields high accuracy high efficiency
architectures by evaluating only 3 × 𝐷 𝑓 + 𝐷 ′ +𝑊 ′ architectures
instead of the number shown in Eq.1.

Algorithm 1:Mini-NAS Search Algorithm
Input: Search bounds: (𝐷𝑚𝑖𝑛 , 𝐷𝑚𝑎𝑥 ,𝑊𝑚𝑖𝑛 ,𝑊𝑚𝑎𝑥),
Target accuracy: 𝐴𝑐𝑐𝑡𝑎𝑟𝑔𝑒𝑡 ,
Thresholds: (𝐿𝑎𝑐𝑐

𝑔𝑎𝑖𝑛
, 𝐿𝑎𝑐𝑐
𝑑𝑟𝑜𝑝

, 𝐶𝑎𝑐𝑐
𝑑𝑟𝑜𝑝

)
Output: Discovered Network
Data: Application Dataset
Initialization:
𝐿 = 𝐷𝑚𝑖𝑛 Initialize with minimum layers
𝐶 =𝑊𝑚𝑎𝑥 Initialize with maximum channels
𝑂 = 𝑆𝑒𝑝 All layers have separable convolution
𝐾 = 3𝑥3 All kernels are 3x3
𝐴(𝐿,𝐶,𝑂,𝐾) Initialize Architecture 𝐴𝑖𝑛𝑖𝑡
𝐴𝑐𝑐𝑡𝑟𝑎𝑖𝑛 = 𝐴𝑐𝑐𝑡𝑟𝑎𝑖𝑛

𝑖𝑛𝑖𝑡
𝐴𝑖𝑛𝑖𝑡 train accuracy

𝐴𝑐𝑐𝑡𝑒𝑠𝑡 = 𝐴𝑐𝑐𝑡𝑒𝑠𝑡
𝑖𝑛𝑖𝑡

𝐴𝑖𝑛𝑖𝑡 test accuracy
while (𝐴𝑐𝑐𝑡𝑒𝑠𝑡 < 𝐴𝑐𝑐𝑡𝑎𝑟𝑔𝑒𝑡 and 𝐿! = 𝐷𝑚𝑎𝑥) do

if 𝐴𝑐𝑐𝑡𝑟𝑎𝑖𝑛 == 100 then
𝑏𝑟𝑒𝑎𝑘

else
if (𝐿 ← 𝐿 + 1 improves 𝐴𝑐𝑐𝑡𝑒𝑠𝑡 by 𝐿𝑎𝑐𝑐

𝑔𝑎𝑖𝑛
) then

𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒

else
if (𝐿 ← 𝐿 + 1 drops 𝐴𝑐𝑐𝑡𝑒𝑠𝑡 by 𝐿𝑎𝑐𝑐

𝑑𝑟𝑜𝑝
) then

𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒

while (𝐶 >𝑊𝑚𝑖𝑛) do
𝐶 ← 𝐶 −𝐶𝑟𝑒𝑠
if (𝐴𝑐𝑐𝑡𝑒𝑠𝑡𝑑𝑟𝑜𝑝 < 𝐶𝑎𝑐𝑐

𝑑𝑟𝑜𝑝
) then

𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒

for 𝑖 ← 1 to 𝐿 do
if (𝑂𝑖 ← 𝐶𝑜𝑛𝑣 improves 𝐴𝑐𝑐𝑡𝑒𝑠𝑡) then

𝑂𝑖 ← 𝐶𝑜𝑛𝑣

𝑘𝑒𝑟𝑛𝑒𝑙𝑠 = [5, 7]
for 𝑖 ← 1 to 𝐿 do

𝑏𝑒𝑠𝑡𝐾 = 3
for 𝑘 ← 𝑘𝑒𝑟𝑛𝑒𝑙𝑠 do

if (𝐾𝑖 ← 𝑘 improves 𝐴𝑐𝑐𝑡𝑒𝑠𝑡) then
𝑏𝑒𝑠𝑡𝐾 ← 𝑘

𝐾𝑖 ← 𝑏𝑒𝑠𝑡𝐾

3.3 Performance Estimation
Since the most expensive component of any NAS system is candi-
date performance evaluation, many works use performance estima-
tors. However, such estimators are not precise and may negatively
impact architecture rankings [26]. In case of smaller datasets and
networks, training is faster and a potential candidate can be trained
till convergence in a reasonable amount of time. This gives an ac-
curate performance rank of each candidate. Therefore Mini-NAS
trains each candidate from scratch and till convergence to accu-
rately guide the search. However, that does not mean that we can

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Mini-NAS: A Neural Architecture Search Framework tinyML 2021, March 22, 2021, Burlingame, CA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Table 2: Mini-NAS discovers the smallest model among methods operating on global search spaces, with on par performance
and search efficiency. Please note that 2.3× parameter efficiency over RL [29] and 1.9× overGradient-basedNAS [23]mentioned
in the introduction, is not shown in this table because these operate on modular search spaces.

NAS Method Search Network Parameters CIFAR-10
Error (%)

Parameters
(Millions) GPU Days

Depth
(Layers)

Width
(Channels)

Operations
per Layer

Convolutional
Kernel Strides Pooling

Layers

Fully
Connected
Layers

Skip
Connections

NAS-RL [28] 3.65 37.4 22400
Meta-QNN [1] 6.92 11.18 100
Large-scale Evolution [16] 5.40 5.4 2600
EAS [2] 4.23 23.4 10
Genetic Programming CNN [20] 5.98 1.7 14.9
NASH-Net [7] 5.2 19.7 1
NASBOT [11] 8.69 N/A 1.7
Mini-NAS (Ours) 5.27 1.44 2.4

Table 3: Datasets derived from CIFAR-10 and Tiny ImageNet and categorized according to the number of output classes and
image resolution.

Sub Datasets
CIFAR-10

Train
Size

Test
Size

No.
Class

Sub Datasets
CIFAR-10

Train
Size

Test
Size

No.
Class

Sub Datasets
ImageNet

Train
Size

Test
Size

No.
Class

airplane, auto 10K 2K 2 airplane, auto, bird 15K 3K 3 volley, basket 1K 100 2
auto, bird 10K 2K 2 bird, cat, deer 15K 3K 3 espresso, icecrem 1K 100 2
bird, cat 10K 2K 2 deer, dog, frog 15K 3K 3 soda, beer 1K 100 2
cat, deer 10K 2K 2 frog, horse, ship 15K 3K 3 bucket, barrell 1K 100 2
deer, dog 10K 2K 2 ship, truck, airplane 15K 3K 3 seashore, lakeside 1K 100 2
dog, frog 10K 2K 2 airplane, auto, bird, cat 20K 4K 4 egyptian, persian 1K 100 2
frog, horse 10K 2K 2 cat, deer, dog, frog 20K 4K 4 limo, sports 1K 100 2
horse, ship 10K 2K 2 frog, horse, ship, truck 20K 4K 4 bullfrog, tailedfrog 1K 100 2
ship, truck 10K 2K 2 airplane, auto, bird, cat, deer 25K 5K 5 tiny imagenet dogs 3K 300 6
truck, airplane 10K 2K 2 dog, frog, horse, ship, truck 25K 5K 5 tiny imagenet vehicles 7.5K 750 15

exhaustively train every candidate in the search space, therefore
we still need to efficiently navigate the search space.

4 EXPERIMENTS
4.1 Datasets
Instead of bringing alien datasets, we use CIFAR-10 and Tiny Ima-
geNet to sample subsets and categorize these with respect to num-
ber of output classes i.e. 2, 3, 4, 5, 6 and 15 as shown in Table 3.
The datasets are created to illustrate the idea that even when the
datasets’ statistics are the same, i.e. same number of training and
testing samples, same number of output classes and similar resolu-
tion, each dataset exhibits inherently unique learning difficulty and
needs a different architecture. Thus NAS methodolgies need to be
adaptive to various datasets. From CIFAR-10, we collect 10 2-class
datasets (out of the possible 45) which suffices for our purpose.
Similarly, we choose only a few of the possible combinations for 3,
4 and 5 class subsets. Moreover, Tiny ImageNet subsets are used
because of higher image resolution and fewer training samples per
class as compared to CIFAR-10 i.e. 500 versus 5000, which makes
learning difficult. The choice of specific classes is such that there is
some resemblance in the objects to be differentiated hence making
the task even more challenging. For example, both soda and beer
belong to bottle category and both egyptian cat and persian cat
are cat breeds. We emphasize that deriving the subsets this way is
only to illustrate the idea of varying learning difficulty associated

with different datasets and users may derive different subsets for
their own use case. What is important is for the NAS methodology
to be able to discover efficient networks for datasets of various
characteristics.

4.2 Models
4.2.1 Baseline Models. Since we can not run search with all NAS
methods in Table 2 on all datasets, we use EfficientNet-B0 [22] and
MobileNetV2 [18] to set a baseline accuracy/efficiency trade-off.
We emphasize that this is not for an explicit comparison to these
baselines since these are not NAS discovered but are a reasonable
fit because of their remarkable accuracy and parameter efficiency
on ImageNet. In case of ImageNet subsets, we use the baseline
models without any modifications. But since CIFAR-10 images are
just 32x32, we modify the first two strides of 2 in both baselines
with 1 as shown in Table 5.

4.2.2 Search Models. CIFAR-10 search models start with a convo-
lutional layer and batch normalization where output channels are
doubled to that provided in search settings. At layers correspond-
ing to the 1/3 and 2/3 of the total network depth, a stride of two is
applied and channels are doubled similar to [14]. The rest of the net-
work (i.e. number of layers and channels, operations and kernels)
is figured out by the search algorithm. Following [24], ImageNet
search networks start with 3 convolutional layers with stride 2 to
reduce the resolution from 224x224 to 28x28 and then layers at 1/3

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

tinyML 2021, March 22, 2021, Burlingame, CA Anon. Submission Id: 7

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 4: Mini-NAS comparison to baseline networks.

Dataset Accuracy Params Dataset Accuracy Params Dataset Accuracy Params
E-Net M-Net Ours (MBs) E-Net M-Net Ours (MBs) E-Net M-Net Ours (MBs)

airplane, auto 99.25 99.3 99.45 0.74 airplane, auto, bird 97.86 98.06 97.79 1.24 volley, basket 86 88 87 0.19
auto, bird 99.8 99.75 99.35 0.13 bird, cat, deer 95.06 95.13 93.9 0.18 espresso, icecream 96 97 95 0.26
bird, cat 95.15 95.35 95.1 0.28 deer, dog, frog 96.56 97.13 96.79 0.18 soda, beer 74 74 76 0.15
cat, deer 96.5 96.55 95.75 0.15 frog, horse, ship 99 99.06 99 0.24 bucket, barrell 80 77 81 0.05
deer, dog 96.8 96.9 96.9 0.52 ship, truck, airplane 97 96.93 97.43 0.22 seashore, lakeside 81 78 82 0.39
dog, frog 98.4 98.55 98.55 0.18 airplane, auto, bird, cat 96.5 96.55 96.6 3.72 egyptian, persian 92 86 94 0.42
frog, horse 99.15 99.3 98.6 0.02 cat, deer, dog, frog 92.95 93.57 93 0.39 limo, sports 93 96 94 0.19
horse, ship 99.6 99.55 99.15 0.11 frog, horse, ship, truck 98.55 98.85 98.17 0.83 bullfrog, tailedfrog 78 79 82 0.23
ship, truck 98.65 98.8 98.55 0.14 airplane, auto, bird, cat, deer 95.34 96.51 95.37 1.08 imagenet dogs 71 68 68 0.46
truck, airplane 98.35 98.3 98.15 0.04 dog, frog, horse, ship, truck 97.51 97.95 98 0.58 imagenet vehicles 78.93 78 75.86 0.26

CIFAR-10 94.04 94.45 94.73 1.44

Table 5: Modifications in block stride value for both Effi-
cientNetB0 and MobileNetV2. The number of channels of
networks remain unchanged.

ImageNet Models CIFAR Models
Resolution Stride Resolution Stride
224 x 224 2 32 x 32 1
112 x 112 1 32 x 32 1
112 x 112 2 32 x 32 1
56 x 56 2 32 x 32 2
28 x 28 2 16 x 16 2
14 x 14 1 8 x 8 1
14 x 14 2 8 x 8 2
7 x 7 1 4 x 4 1
7 x 7 1 4 x 4 1

and 2/3 of the total network depth have a stride of 2. The rest of
the network structure is identified by the search algorithm.

4.3 Training Details
We transform all CIFAR-10 and ImageNet training and validation
subsets the same way as in [5, 14, 24]. To match the mobile settings,
we have upscaled the 64x64 Tiny Imagenet images to 224x224.
This up-scaling also allows testing Mini-NAS on higher resolution
images as compared to CIFAR. We train all our models for 300
epochs using SGD with momentum of 0.9 and weight decay of 3e-4.
We use an initial learning rate of 0.025 annealed down to 0 using a
cosine scheduler, and a batch size of 64.

4.4 Results
4.4.1 CIFAR-10. Table 2 shows the comparison of Mini-NAS to
best performing global search NAS methods. Mini-NAS discovers a
state-of-the-art solution in terms of test error, parameter efficiency
and search cost. In addition to discovering a model 1.2× smaller
and 1.14% more accurate than [20], Mini-NAS solution is also 2.3×
and 1.9× smaller than the smallest models discovered by RL [29]
and gradient-based [23] NAS methods respectively (not shown in
the Table). Moreover, for an extensive comparison of Mini-NAS to
all SOTA NAS methods, we refer to results in Table 1 of this survey
paper [17]. We emphasize that Mini-NAS discovers the smallest
model with reasonable search cost and competitive test error among

all hand crafted as well as NAS powered solutions reported in Table
1. of the survey.

4.4.2 CIFAR-10 Sub-Datasets. Since these datasets do not have
any baseline accuracy scores and running all relevant NAS meth-
ods is not only computationally infeasible but also may or may
not discover suitable archiitectures, we therefore use MobileNetV2
(M-Net) and EfficientNet-B0 (E-Net) architectures to set an accu-
racy/parameter baseline for all datasets. As for the comparison of
Mini-NAS explicitly to NAS methods, we refer to Table 2. Table 4
shows results for both CIFAR-10 and ImageNet sub-datasets. For
7 out of 21 CIFAR subsets, Mini-NAS is being able to discover ar-
chitectures which either surpass or give accuracy equal to best
baseline. For 4 datasets, it performs better than at least one of the
baselines and for the remaining 10 subsets, it shows negligible
accuracy drops. The average accuracy change across CIFAR and
subsets is approximately 0.31 with the worst drop of 1.23 in case
of bird-cat-deer dataset and the best gain is +0.43 for ship-truck-
airplane dataset. Also note that Mini-NAS surpasses both baselines
on standard CIFAR-10 dataset by +0.29 percent. As shown in Table
6, Mini-NAS is significantly parameter efficient as compared to the
most established mobile network, MobileNetV2. There is only one
dataset i.e. airplane-auto-bird-cat for which the parameters surpass
both baselines but in that case it also boasts increased accuracy. An
interesting thing to notice is that Mini-NAS’ parameter efficiency is
not fixed and is varying according to dataset difficulty. This shows
that Mini-NAS is being able to effectively find just the right amount
of parameters needed for the given task.

4.4.3 ImageNet Sub-Datasets. The accuracy scores are even better
in case of ImageNet subsets which might be more representative of
real world applications. Mini-NAS achieves better accuracy for 5 Im-
ageNet subsets, comes 2nd for 3 subsets and last for only 2. There are
no ImageNet subsets for which Mini-NAS cannot produce a highly
parameter efficient network. The most difficult dataset however is
ImageNet vehicles with 15 classes where Mini-NAS struggles and
drops 3.07% accuracy, although it manages to be 8.7×more efficient
which can be adequate trade-off for many tinyML applications. The
accuracy drop could be because of the simplicity of the search space
i.e. no skip connections as compared to baselines, fewer training
samples/class ratio or simply because of fewer number of channels.
Figure 4 shows discovered architectures for a few datasets. The ar-
chitecture variations across datasets seem un-intuitive as compared
to human design but are well suited to respective datasets.

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Mini-NAS: A Neural Architecture Search Framework tinyML 2021, March 22, 2021, Burlingame, CA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 6: Mini-NAS shows negligible performance drops with significant parameter efficiency as compared to MobileNetV2.

Dataset airplane,
auto

auto,
bird

bird,
cat

cat,
deer

deer,
dog

dog,
frog

frog,
horse

horse,
ship

ship,
truck

truck,
airplane

airplane,
auto,
bird

bird,
cat,
deer

deer,
dog,
frog

frog,
horse,
ship

ship,
truck,
airplane

airplane,
auto,
bird, cat

Accuracy Gain +0.15 -0.45 -0.25 -0.8 0 0 -0.7 -0.45 -0.25 -0.2 -0.27 -1.23 -0.34 -0.06 +0.43 +0.05
Parameter Efficiency 3.1x 17.6x 8.1x 14.9x 4.4x 12.5x 103.9x 20.1x 16.2x 52x 1.8x 12.5x 12.8x 9.2x 10.6x 0.6x

Dataset cat, deer,
dog, frog

frog, horse,
ship, truck

airplane,
auto, bird,
cat, deer

dog, frog,
horse,
ship, truck

CIFAR-10
All

volleyball,
basketball

espresso,
icecream

soda bottle,
beer bottle

bucket,
barrell

seashore,
lakeside

egyptian cat,
persian cat

limo,
sports

bullfrog,
tailedfrog

imagenet
dogs

imagenet
vehicles

Accuracy Gain -0.57 -0.68 -1.14 +0.05 +0.29 -1 -2 +2 +1 +1 +2 -2 +3 -3 -3.07
Parameter Efficiency 5.9x 2.8x 2.1x 3.9x 1.6x 11.9x 8.9x 15.1x 44.4x 5.9x 5.5x 11.9x 10.1x 4.9x 8.7x

Figure 3: Search cost (GPU Hours) for different datasets.
x-axis represents the number of datasets for a particular
group i.e. 2-class, 3-class etc CIFAR-10 subsets and a Binary-
ImageNet (2-class) subset. High resolution, ImageNet sub-
sets pose increased search costs.

4.5 Search Cost Analysis
The search cost of Mini-NAS depends on the number of training
samples, image resolution and target task difficulty. Fewer training
samples and lower image resolution means faster training, hence
faster search and vice versa. Moreover, within a group of similar
datasets, Mini-NAS may end up with a deeper network for a harder
task and the subsequent operation/kernel search cost increases.
Figure 3 shows search cost for each task categorized with respect
to number of classes i.e 2, 3, 4 etc. Even within a dataset category
(with same statistics), the search cost varies because the algorithm
is able to find a shallower network and fewer candidate evaluations
for relatively easier tasks but keeps searching longer for others. In
general, although ImageNet subsets have fewer training samples
as compared to others, the search cost is higher, indicating that
higher resolution contributes most to the search cost. Further, we
mention here that for CIFAR-10, Mini-NAS evaluates the most
architectures i.e. 39 from a search space containing approximately
360M candidates and the search cost is 58 GPU hours (not shown
in graph). The search cost for ImageNet Dogs dataset is around
38 hours and around 75 hours for ImageNet vehicles. The search
experiments are carried on a shared Nvidia V100 GPU but due to

Table 7: Effect of different intialization strategies on search.
Initializing with all separable operations, and all 3x3 ker-
nels yields best accuracy/efficiency trade-off.

Initialization
Strategy

Accuracy
(%)

Parameters
(M)

Conv-64-3x3 97.85 0.65
Conv-64-7x7 97.35 0.64
Sep-64-3x3 97.96 0.23
Sep-64-7x7 97.73 0.90

lower memory requirements, a standalone Nvidia 2080Ti will also
result in approximately similar costs.

4.6 Ablation Studies
In section 3.2, we mentioned that Mini-NAS algorithm initializes
the search with all separable convolutions, kernel sizes of 3×3 for all
layers and maximum number of channels. This decision is reached
by empirically evaluating alternative optimization strategies. Table
7 shows strategies where initially, layers can be convolutions or
kernel sizes could be 7 × 7.

(1) Where kernel size is 7 × 7, we try pruning that to shorter
5 × 5 and 3 × 3 even if the accuracy is retained to increase
parameter efficiency.

(2) Similarly, since vanilla convolution is less parameter efficient
than separable, we replace it with separable if the accuracy
is retained.

The accuracy scores and parameters for different strategies aver-
aged across 10 binary subsets of CIFAR-10 in Table 7 show that the
best strategy is to start with smaller networks and add parameters
only if there is accuracy gain. This strategy significantly beats the
rest in terms of parameter efficiency.

5 CONCLUSION
This work motivates the need for NAS specialized for small scale
real world applications. It presents a suit of 30 image datasets,
where each classification task poses inherently unique learning
challenge and demands a unique network architecture. This suit
can be used to test the generalizability of any NAS system. More-
over, this work proposes a search space which is generic and flexible
such that end to end architecture solutions can be searched in it
with fine grain control over total number of network parameters.
Further, a search algorithm has been proposed that can efficiently
navigate a huge search space and discover parameter efficient net-
works. The proposed NAS system generalizes well across a range

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

tinyML 2021, March 22, 2021, Burlingame, CA Anon. Submission Id: 7

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Figure 4: Two sample architectures discovered byMini-NAS.

of datasets and consistently discovers networks performing on par
with MobileNetV2 and EfficientNet-B0 but only at a fraction of
parameters. However, the proposed NAS system is not suitable for
larger datasets due to complete candidate training from scratch.
Moreover, some data representations are inherently harder to learn
and architecture search alone is not a complete solution, therefore
jointly searching for architectures, data augmentations and training
hyper-parameter might be one of the future research directions.

REFERENCES
[1] Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. 2017. Designing

Neural Network Architectures using Reinforcement Learning. In 5th International
Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings. OpenReview.net. https://openreview.net/
forum?id=S1c2cvqee

[2] Han Cai, Tianyao Chen, Weinan Zhang, Yong Yu, and Jun Wang. 2018. Efficient
Architecture Search by Network Transformation. In Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative
Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on
Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana,
USA, February 2-7, 2018, Sheila A. McIlraith and Kilian Q. Weinberger (Eds.).
AAAI Press, 2787–2794. https://www.aaai.org/ocs/index.php/AAAI/AAAI18/
paper/view/16755

[3] Han Cai, Jiacheng Yang, Weinan Zhang, Song Han, and Yong Yu. 2018. Path-Level
Network Transformation for Efficient Architecture Search. In Proceedings of the
35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan,
Stockholm, Sweden, July 10-15, 2018 (Proceedings of Machine Learning Research,
Vol. 80), Jennifer G. Dy and Andreas Krause (Eds.). PMLR, 677–686. http://
proceedings.mlr.press/v80/cai18a.html

[4] Han Cai, Ligeng Zhu, and Song Han. 2019. ProxylessNAS: Direct Neural Ar-
chitecture Search on Target Task and Hardware. In 7th International Conference
on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net. https://openreview.net/forum?id=HylVB3AqYm

[5] Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. 2019. Progressive differentiable
architecture search: Bridging the depth gap between search and evaluation. In
Proceedings of the IEEE International Conference on Computer Vision. 1294–1303.

[6] Xuanyi Dong and Yi Yang. 2019. Searching for a robust neural architecture in
four gpu hours. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 1761–1770.

[7] Thomas Elsken, JanHendrikMetzen, and FrankHutter. 2017. Simple And Efficient
Architecture Search for Convolutional Neural Networks. CoRR abs/1711.04528
(2017). arXiv:1711.04528 http://arxiv.org/abs/1711.04528

[8] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. 2018. Neural Architecture
Search: A Survey. CoRR abs/1808.05377 (2018). arXiv:1808.05377 http://arxiv.
org/abs/1808.05377

[9] Stefan Falkner, Aaron Klein, and Frank Hutter. 2018. BOHB: Robust and Effi-
cient Hyperparameter Optimization at Scale. In Proceedings of the 35th Interna-
tional Conference on Machine Learning (Proceedings of Machine Learning Research,
Vol. 80), Jennifer Dy and Andreas Krause (Eds.). PMLR, Stockholmsmässan, Stock-
holm Sweden, 1437–1446. http://proceedings.mlr.press/v80/falkner18a.html

[10] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. MobileNets:
Efficient Convolutional Neural Networks for Mobile Vision Applications. http:
//arxiv.org/abs/1704.04861 cite arxiv:1704.04861.

[11] Kirthevasan Kandasamy, Willie Neiswanger, Jeff Schneider, Barnabás Póczos, and
Eric P. Xing. 2018. Neural Architecture Search with Bayesian Optimisation and
Optimal Transport. In Proceedings of the 32nd International Conference on Neural
Information Processing Systems (Montréal, Canada) (NIPS’18). Curran Associates
Inc., Red Hook, NY, USA, 2020–2029.

[12] C. Kyrkou and T. Theocharides. 2020. EmergencyNet: Efficient Aerial Image Clas-
sification for Drone-Based Emergency Monitoring Using Atrous Convolutional
Feature Fusion. IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing 13 (2020), 1687–1699.

[13] Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fernando, and Koray
Kavukcuoglu. 2017. Hierarchical representations for efficient architecture search.
arXiv preprint arXiv:1711.00436 (2017).

[14] Hanxiao Liu, Karen Simonyan, and Yiming Yang. 2018. Darts: Differentiable
architecture search. arXiv preprint arXiv:1806.09055 (2018).

[15] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. 2019. Regularized
evolution for image classifier architecture search. In Proceedings of the aaai
conference on artificial intelligence, Vol. 33. 4780–4789.

[16] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Sue-
matsu, Jie Tan, Quoc V. Le, and Alexey Kurakin. 2017. Large-Scale Evolution of
Image Classifiers (Proceedings of Machine Learning Research, Vol. 70), Doina Pre-
cup and Yee Whye Teh (Eds.). PMLR, International Convention Centre, Sydney,
Australia, 2902–2911. http://proceedings.mlr.press/v70/real17a.html

[17] Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Xiaojiang
Chen, and Xin Wang. 2020. A Comprehensive Survey of Neural Architecture
Search: Challenges and Solutions. CoRR abs/2006.02903 (2020). arXiv:2006.02903
https://arxiv.org/abs/2006.02903

[18] Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey Zhmoginov, and
Liang-Chieh Chen. 2018. Inverted Residuals and Linear Bottlenecks: Mobile
Networks for Classification, Detection and Segmentation. CoRR abs/1801.04381
(2018). arXiv:1801.04381 http://arxiv.org/abs/1801.04381

[19] Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional Net-
works for Large-Scale Image Recognition. In 3rd International Conference on Learn-
ing Representations, ICLR 2015, SanDiego, CA, USA,May 7-9, 2015, Conference Track
Proceedings, Yoshua Bengio and Yann LeCun (Eds.). http://arxiv.org/abs/1409.1556

[20] Masanori Suganuma, Shinichi Shirakawa, and Tomoharu Nagao. 2018. A Genetic
Programming Approach to Designing Convolutional Neural Network Archi-
tectures. In Proceedings of the Twenty-Seventh International Joint Conference on
Artificial Intelligence, IJCAI-18. International Joint Conferences on Artificial In-
telligence Organization, 5369–5373. https://doi.org/10.24963/ijcai.2018/755

[21] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2015.
Going deeper with convolutions. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 1–9.

[22] Mingxing Tan and Quoc Le. 2019. EfficientNet: Rethinking Model Scaling for Con-
volutional Neural Networks (Proceedings of Machine Learning Research, Vol. 97),
Kamalika Chaudhuri and Ruslan Salakhutdinov (Eds.). PMLR, Long Beach, Cali-
fornia, USA, 6105–6114. http://proceedings.mlr.press/v97/tan19a.html

[23] Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. 2019. SNAS: stochastic
neural architecture search. In International Conference on Learning Representations.
https://openreview.net/forum?id=rylqooRqK7

[24] Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi, Qi Tian, and
Hongkai Xiong. 2019. Pc-darts: Partial channel connections for memory-efficient
differentiable architecture search. arXiv preprint arXiv:1907.05737 (2019).

[25] Antoine Yang, Pedro M. Esperança, and Fabio M. Carlucci. 2020. NAS evaluation
is frustratingly hard. In International Conference on Learning Representations.
https://openreview.net/forum?id=HygrdpVKvr

[26] Kaicheng Yu, Christian Sciuto, Martin Jaggi, Claudiu Musat, and Mathieu Salz-
mann. 2020. Evaluating The Search Phase of Neural Architecture Search. In
International Conference on Learning Representations. https://openreview.net/
forum?id=H1loF2NFwr

[27] Arber Zela, Aaron Klein, Stefan Falkner, and Frank Hutter. 2018. Towards au-
tomated deep learning: Efficient joint neural architecture and hyperparameter
search. arXiv preprint arXiv:1807.06906 (2018).

[28] Barret Zoph and Quoc V Le. 2016. Neural architecture search with reinforcement
learning. arXiv preprint arXiv:1611.01578 (2016).

[29] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. 2018. Learning
transferable architectures for scalable image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recognition. 8697–8710.

8

https://openreview.net/forum?id=S1c2cvqee
https://openreview.net/forum?id=S1c2cvqee
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16755
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16755
http://proceedings.mlr.press/v80/cai18a.html
http://proceedings.mlr.press/v80/cai18a.html
https://openreview.net/forum?id=HylVB3AqYm
https://arxiv.org/abs/1711.04528
http://arxiv.org/abs/1711.04528
https://arxiv.org/abs/1808.05377
http://arxiv.org/abs/1808.05377
http://arxiv.org/abs/1808.05377
http://proceedings.mlr.press/v80/falkner18a.html
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
http://proceedings.mlr.press/v70/real17a.html
https://arxiv.org/abs/2006.02903
https://arxiv.org/abs/2006.02903
https://arxiv.org/abs/1801.04381
http://arxiv.org/abs/1801.04381
http://arxiv.org/abs/1409.1556
https://doi.org/10.24963/ijcai.2018/755
http://proceedings.mlr.press/v97/tan19a.html
https://openreview.net/forum?id=rylqooRqK7
https://openreview.net/forum?id=HygrdpVKvr
https://openreview.net/forum?id=H1loF2NFwr
https://openreview.net/forum?id=H1loF2NFwr

	Abstract
	1 Introduction
	2 Related Work
	2.1 Search Spaces
	2.2 Search Algorithms
	2.3 From NAS to Mini-NAS

	3 Methdology
	3.1 Search Space Design
	3.2 Search Algorithm
	3.3 Performance Estimation

	4 Experiments
	4.1 Datasets
	4.2 Models
	4.3 Training Details
	4.4 Results
	4.5 Search Cost Analysis
	4.6 Ablation Studies

	5 Conclusion
	References

