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ABSTRACT

We propose a method to learn predictors that are invariant under counterfactual
changes of certain covariates. This method is useful when the prediction tar-
get is causally influenced by covariates that should not affect the predictor out-
put. For instance, this could prevent an object recognition model from being
influenced by position, orientation, or scale of the object itself. We propose a
model-agnostic regularization term based on conditional kernel mean embeddings
to enforce counterfactual invariance during training. We prove the soundness of
our method, which can handle mixed categorical and continuous multivariate at-
tributes. Empirical results on synthetic and real-world data demonstrate the effi-
cacy of our method in a variety of settings.

1 INTRODUCTION AND RELATED WORK

Invariance, or equivariance to certain transformations of data, has proven essential in numerous ap-
plications of machine learning (ML), since it can lead to better generalization capabilities Arjovsky
et al. (2019); Chen et al. (2020); Bloem-Reddy & Teh (2020). For instance, in image recognition,
predictions ought to remain unchanged under scaling, translation, or rotation of the input image.
Data augmentation is one of the earliest heuristics developed to promote this kind of invariance, that
has become indispensable for training successful models like deep neural networks (DNNs) Shorten
& Khoshgoftaar (2019); Xie et al. (2020). Well-known examples of certain types of “invariance by
design” include convolutional neural networks (CNNs) for translation invariance Krizhevsky et al.
(2012), group equivariant CNNs for other group transformations Cohen & Welling (2016), recurrent
neural networks (RNNs) and transformers for sequential data Vaswani et al. (2017), DeepSet Zaheer
et al. (2017) for sets, and graph neural networks (GNNs) for different types of geometric struc-
tures Battaglia et al. (2018).

Many real-world applications in modern ML, however, call for an arguably stronger notion of in-
variance based on causality, called counterfactual invariance. This case has been made for image
classification, algorithmic fairness Hardt et al. (2016); Mitchell et al. (2021), robustness Bühlmann
(2020), and out-of-distribution generalization Lu et al. (2021). These applications require predic-
tors to exhibit invariance with respect to hypothetical manipulations of the data generating process
(DGP) Peters et al. (2016); Heinze-Deml et al. (2018); Rojas-Carulla et al. (2018); Arjovsky et al.
(2019); Bühlmann (2020). In image classification, for instance, we want a model that “would have
made the same prediction, if the object position had been different with everything else being equal”.
Similarly, in algorithmic fairness Kilbertus et al. (2017); Kusner et al. (2017) introduce notions of
interventional and counterfactual fairness, based on certain invariances in the DGP of the causal
relationships between observed variables.

Counterfactual invariance has the significant advantage that it incorporates structural knowledge
of the DGP. However, enforcing this notion in practice is very challenging, since it is untestable
in real-world observational settings, unless strong prior knowledge of the DGP is available. In-
spired by problems in natural language processing (NLP), Veitch et al. (2021) provide a method to
achieve counterfactual invariance based on distribution matching via the maximum mean discrep-
ancy (MMD). This method enforces a necessary, but not sufficient condition of counterfactual in-
variance during training. Consequently, it is unclear whether this method achieves actual invariance
in practice, or just an arguably weaker proxy. Furthermore, the work by Veitch et al. (2021) only
considers discrete random variables when enforcing counterfactual invariance, and it only applies to
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specific, selected causal graphs. To overcome the aforementioned problems, we propose a general
definition of counterfactual invariance and a novel method to enforce it. Our main contributions can
be summarized as follows:

• Based on a structural causal model (SCM), we provide a new definition of counterfactual invari-
ance (cf. Definition 2.2) that is more general than that of Veitch et al. (2021).

• We establish a connection between counterfactual invariance and conditional independence that is
provably sufficient for counterfactual invariance (cf. Theorem 3.2).

• We propose a new objective function that is composed of the loss function and on the flexible
Hilbert-Schmidt Conditional Independence Criterion (HSCIC) Park & Muandet (2020), to en-
force counterfactual invariance in practice. Our method works well for both categorical and con-
tinuous covariates and outcomes, as well as in multivariate settings.

2 PRELIMINARIES AND BACKGROUND

Counterfactual invariance. We introduce structural causal models as in Pearl (2000).

Definition 2.1 (Structural causal model (SCM)). A structural causal model is a tuple (U,V, F,PU)
such that U is a set of background variables that are exogenous to the model; V is a set of observable
(endogenous) variables; F = {fV }V ∈V is a set of functions from (the domains of) pa(V ) ∪ UV to
(the domain of) V , where UV ⊂ U and pa(V ) ⊆ V \ {V } such that V = fV (pa(V ), UV ); (iv)
PU is a probability distribution over the domain of U. Further, the subsets pa(V ) ⊆ V \ {V } are
chosen such that the graph G over V where the edge V ′ → V is in G if and only if V ′ ∈ pa(V ) is a
directed acyclic graph (DAG).

We always denote with Y ⊂ V the outcome (or prediction target), and with Ŷ a predictor for that
target. The predictor Ŷ is not strictly part of the SCM, because we get to tune fŶ. Since it takes
inputs from V, we often treat it as an observed variable in the SCM. As such, it also “derives its
randomness from the exogenous variables”, i.e., is defined on the same probability space. Each SCM
implies a unique observational distribution over V (Pearl, 2000), but it also entails interventional
distributions. Given a variable A ∈ V, an intervention A ← a amounts to replacing fA in F with
the constant function A = a. This yields a new SCM, which induces the interventional distribution
under intervention A ← a. Similarly, we can intervene on multiple variables V ⊇ A ← a. We
then write Y∗

a for the outcome in the intervened SCM, also called potential outcome. Note that the
interventional distribution PY∗

a
(y) differs in general from the conditional distribution PY|A(y | a).

This could for instance happen due to unobserved confounding effects.1 We can also condition on a
set of variables W ⊆ V in the (observational distribution of the) original SCM before performing an
intervention, which we denote by PY∗

a |W(y | w). This is a counterfactual distribution: “Given that
we have observed W = w, what would Y have been had we set A← a, instead of the value A had
actually taken?” Note that the sets A and W need not be disjoint. We can now define counterfactual
invariance.

Definition 2.2 (Counterfactual invariance). Let A, W be (not necessarily disjoint) sets of nodes
in a given SCM. A predictor Ŷ is counterfactually invariant in A with respect to W, if
PŶ∗

a |W
(y | w) = PŶ∗

a′ |W
(y | w) almost surely, for all a,a′ in the domain of A and all w in the

domain of W.2

A counterfactually invariant predictor can be viewed as robust to changes of A, in the sense that
the (conditional) post-interventional distribution of Ŷ does not change for different values of the
intervention. Our Definition 2.2 is more general than previously considered notions of counter-
factual invariance. For instance, the invariance in Definition 1.1 by Veitch et al. (2021) requires
Ŷ∗

a = Ŷ∗
a′ almost surely for all a,a′ in the domain of A. First, it does not allow to condition on

observed evidence, i.e., it cannot consider “true counterfactuals” and is thus unable to promote—for

1We use P for distributions as is common in the kernel literature (Muandet et al., 2021) and the potential
outcome notation Y∗

a instead of Y | do(a) for conciseness when mixing conditioning with interventions.
2With a mild abuse of notation, if W = ∅ then the requirement of conditional counterfactual invariance

becomes PŶ∗
a
(y) = PŶ∗

a′
(y) almost surely, for all a,a′ in the domain of A.
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example—counterfactual fairness, see Definition 3.6 (Kusner et al., 2017). Second, it may appear
stronger in that it asks for equality of random variables instead of equality of distributions. How-
ever, (a) contrary to their definition, Veitch et al. (2021) only enforce equality of distributions in
practice (via MMD), and (b) since Ŷ∗

a, Ŷ
∗
a′ are (deterministic) functions of the same exogenous

(unobserved) random variables, distributional equality is a natural choice for counterfactual invari-
ance. We remark that a notion of invariance has been studied by Mouli & Ribeiro (2022). In this
work, the authors focus on learning classifiers that are counterfactually invariant to distribution shift
using asymmetry learning. To the best of our knowledge, however, our work is the first attempt to
provide a general graphical criterion for invariance, which can be verified from observational data.

Kernel mean embeddings and conditional measures. Our new objective function heavily relies
on kernel mean embeddings (KMEs). We now highlight the main concepts pertaining KMEs and
refer the reader to Smola et al. (2007); Schölkopf et al. (2002); Berlinet & Thomas-Agnan (2011);
Muandet et al. (2017) for more details. Fix a measurable space Y with respect to a σ-algebra FY ,
and consider a probability measure P on the space (Y ,FY ). LetH be a reproducing kernel Hilbert
space (RKHS) with a bounded kernel kY : Y × Y → R, i.e., kY is such that supy∈Y k(y,y) <
+∞. The kernel mean embedding µP of P is defined as the expected value of the function k( · ,y)
with respect to y, i.e., µP := E [k( · ,y)]. The definition of KMEs can be extended to conditional
distributions (Fukumizu et al., 2013; Grünewälder et al., 2012; Song et al., 2009; 2013). Consider
two random variables Y, Z, and denote with (ΩY,FY) and (ΩZ,FZ) the respective measurable
spaces. These random variables induce a probability measure PY,Z in the product space ΩY × ΩZ.
Let HY be a RKHS with a bounded kernel kY(·, ·) on ΩY. We define the KME of a conditional
distribution PY|Z(· | z) via µY|Z=z := E [kY( · ,y) | Z = z]. Here, the expected value is taken
over y. KMEs of conditional measures can be estimated from samples. To illustrate this, consider
i.i.d. samples (y1, z1), . . . , (yn, zn). Denote with K̂Y the kernel matrix with entries [K̂Y]i,j :=
kY(yi,yj). Furthermore, let kZ be a bounded kernel on ΩZ. Then, µY|Z=z can be estimated as

µ̂Y|Z=z :=

n∑
i=1

ŵ
(i)
Y|Z(z)kY(·,yi) , ŵY|Z(·) := (K̂Z − nλI)−1 [kZ(·, z1), · · · , kZ(·, zn)]T (1)

where, I is the identity matrix and λ is a regularization parameter. Here, ŵ(i)
X|A(·), the i-th entry of

ŵX|A(·), are the coefficients of kernel ridge regression (Grünewälder et al., 2012).

3 COUNTERFACTUALLY INVARIANT PREDICTORS

We now establish a simple graphical criterion to express counterfactual invariance as a conditional
independence in the observational distribution, rendering it estimable from i.i.d. data. We first repeat
the notion of blocked paths (Pearl, 2000).
Definition 3.1. Consider a path π of causal graph G. A set of nodes Z blocks π, if π contains a triple
of consecutive nodes connected in one of the following ways: Ni → Z → Nj , Ni ← Z → Nj , or
Ni →M ← Nj , with Ni, Nj /∈ Z, Z ∈ Z, and neither M nor any descendent of M is in Z.

Theorem 3.2. Let G be a causal diagram, and let A, W be two (not necessarily disjoint) sets of
nodes in G. Let Z be a set of nodes that blocks all non-causal3 paths from A ∪W to Y. Then,
for any SCM compatible with G, any predictor Ŷ that satisfies Ŷ ⊥⊥ A | Z is counterfactually
invariant in A with respect to W.

The proof is deferred to Appendix A. Our key observation is that the valid set Z as in Theorem 3.2
acts as a d-separator for certain random variables in a graph that allows reasoning about dependen-
cies among pre- and post-interventional random variables. This graph simplifies the counterfactual
graph by Shpitser & Pearl (2008), and it generalizes the augmented graph structure described in
Theorem 1 by Shpitser & Pearl (2009). We can then combine the Markov property with covariate
adjustment to prove the claim. However, our proof does not rely on identification of the counterfac-
tual distributions (e.g., by simply applying the do-calculus (Pearl, 2000)). Crucially, the existence of
a measurable set Z as in Theorem 3.2 does not imply the identifiability of counterfactual distribu-
tions PY∗

a
(y) (see Figure 1(a) for a counterexample). In particular, the assumptions do not rule out

3A non-causal paths from A ∪ W to Y is a path connecting A ∪ W and Y in which at least one edge
points against causal ordering. Shpitser et al. (2012)
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Figure 1: (a) An example for Theorem 3.2, where PY∗
a
(y) is unidentifiable, due to the confounding

effect denoted by the dashed double arrow. However, by Theorem 3.2 any predictor Ŷ such that
Ŷ ⊥⊥ A | Z with Z = {X} is counterfactually invariant in A. Hence, the criterion in Theorem 3.2
is weaker than identifiability. (b)-(c) Causal and anti-causal structure as in Veitch et al. (2021).
The variable X is decomposed in three parts. X⊥

A the part of X that is not causally influenced by
A, X⊥

Y is the part that does not causally influence Y, and X∧ is the remaining part, that is both
influenced by A and that influences Y.

hidden confounding in the model. Hence, our method is applicable even when (certain parameters
of) PY∗

a
(y) or PY∗

a |W(y) cannot be learned from observational data.

Counterfactually invariant predictors. We propose to use the HSCIC(Ŷ,A | Z), to promote
counterfactual invariance by encouraging the sufficient conditional independence Ŷ ⊥⊥ A | Z.
Given a loss function L(Ŷ), we propose to minimize the following loss

LTOTAL(Ŷ) = L(Ŷ) + γ · HSCIC(Ŷ,A | Z) , (2)

with a parameter γ ≥ 0, regulating the trade-off between accuracy and counterfactual invariance.
There is no principled way to choose the "right" trade-off parameter. However, in practice we can
use a standard approach, which consists of two steps: (i) learn a collection of models on the Pareto
frontier using different values of γ; (ii) from a collection of models choose the best one following,
i.e., Muandet et al. (2021). Next, we develop and justify using the HSCIC, (see Corollary 3.5) for
which HSCIC(Ŷ,A | Z) = 0 if and only if Ŷ ⊥⊥ A | Z.

Hilbert-Schmidt Conditional Independence Criterion (HSCIC). Consider two random vari-
ables Y and A, and denote with (ΩY,FY) and (ΩA,FA) the respective measurable spaces. Sup-
pose that we are given two RKHSs HY, HA over the support of Y and A respectively. The tensor
product spaceHY⊗HA is defined as the space of functions of the form (f⊗g)(y,a) := f(y)g(a),
for all f ∈ HY and g ∈ HA. The tensor product space yields a natural RKHS structure, with
kernel k defined by k(y ⊗ a,y′ ⊗ a′) := kY(y,y′)kA(a,a′). We refer the reader, i.e., to Szabó &
Sriperumbudur (2017) for more details on tensor product spaces. With this notation we define:

Definition 3.3 (HSCIC, following Definition 5.3 by Park & Muandet (2020)). For (sets of) random
variables Y, A, Z the HSCIC between Y and A given Z is defined as the real-valued random
variable HSCIC(Y,A | Z) = HY,A|Z ◦ Z. Here, HY,A|Z is a real-valued deterministic function,
defined as HY,A|Z(z) :=

∥∥µY,A|Z=z − µY|Z=z ⊗ µA|Z=z

∥∥, with ∥·∥ the norm induced by the
inner product of the tensor product spaceHX ⊗HA.

Our Definition 3.3 differs slightly from Park & Muandet (2020), who define HSCIC using the
Bochner conditional expected value. While it is functionally equivalent (with the same implemen-
tation, see eq. (3)), it has the benefit of bypassing some technical assumptions required by Park &
Muandet (2020). We refer readers to Appendix C and D for a comparison with previous approaches.
The HSCIC has the following important property.

Theorem 3.4 (following Theorem 5.4 by Park & Muandet (2020)). If the kernel k of HX ⊗HA is
characteristic4, HSCIC(Y,A | Z) = 0 almost surely if and only if Y ⊥⊥ A | Z.

A proof is in Appendix B. We remark that “most interesting” kernels such as the Gaussian and
Laplacian kernel are characteristic. Furthermore, if kernels are translation-invariant and characteris-
tic, then their tensor product is also a characteristic kernel (Szabó & Sriperumbudur, 2017). Hence,
this natural assumption is non-restrictive in practice. Combining Theorems 3.2 and 3.4, we can now
use HSCIC to promote counterfactual invariance.

Corollary 3.5. Consider an SCM with causal diagram G and fix two (not necessarily disjoint) sets
of nodes A, W. Let Z be a set of nodes in G that blocks all non-causal paths from A ∪W to

4The tensor product kernel k is characteristic if the mapping PY,A 7→ Ey,a [k( · ,y ⊗ a)] is injective.
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Y. Then, any predictor Ŷ that satisfies HSCIC(Ŷ,A | Z) = 0 almost surely is counterfactually
invariant in A with respect to W.

We do not require A, W, Z or Y to be binary or categorical, a major improvement over existing
methods (Chiappa, 2019; Xu et al., 2020), which cannot handle continuous multi-variate attributes.

Estimating the HSCIC from samples. Given n samples {(yi,ai, zi)}ni=1, denote by K̂Ŷ and K̂A

the corresponding kernel matrices for Ŷ and A (see eq. (1)). We then estimate the HŶ,A|X as

Ĥ2
Ŷ,A|Z(·) = ŵT

Ŷ,A|Z(·)
(
K̂Ŷ ⊙ K̂A

)
ŵŶ,A|Z(·)− 2

(
ŵT

Ŷ|Z(·)K̂YŵŶ,A|X(·)
)

(3)

·
(
ŵT

A|X(·)K̂AŵŶ,A|Z(·)
)
+
(
ŵT

Ŷ|Z(·)K̂ŶŵŶ|Z(·)
)(

ŵT
A|Z(·)K̂AŵA|Z(·)

)
,

where ⊙ is element-wise multiplication. The vectors ŵŶ|Z(·), ŵA|Z(·), and ŵŶ,A|Z(·) are found

via kernel ridge regression. Caponnetto & Vito (2007) the convergence (and rates) of Ĥ2
Ŷ,A|Z(·)

to H2
Ŷ,A|Z(·) under mild conditions. In practice, computing the HSCIC approximation Ĥ2

Ŷ,A|Z(·)
may be time-consuming. To speed it up, we can use random Fourier features to approximate the
matrices K̂Ŷ and K̂A (Rahimi & Recht, 2007; Avron et al., 2017). We emphasize that eq. (3) allows
us to consistently estimate the HSCIC from observational i.i.d. samples, without prior knowledge
of the counterfactual distributions.

Measuring counterfactual invariance. Besides predictive performance, e.g., mean squared error
(MSE) for regression, our key metric of interest is the level of counterfactual invariance achieved by
the predictor Ŷ, i.e., a measure of how the distribution of Ŷ∗

a changes for different values of a and
across all conditioning values w. We quantify the overall counterfactual variance as a single scalar,
the Variance of CounterFactuals (VCF):

VCF(Ŷ) = Ew∼PW

[
vara′∼PA

[EŶ∗
a′ |W=w(ŷ | w)]

]
. (4)

That is, we look at how the average outcome varies with the interventional value a at conditioning
value w and average this variance over w. For deterministic predictors (i.e., point estimators),
which we use in all our experiments, the variance term in eq. (4) is zero if and only if counterfactual
invariance holds at w for (almost) all a′ in the support of PA (i.e., the prediction remains constant).
Since the variance is non-negative, VCF (we often drop the argument) is then zero if and only if
counterfactual invariance holds almost surely. To estimate VCF in practice, we pick d datapoints
(wi)

d
i=1 from the observed data, and for each compute the counterfactual outcomes Ŷ∗

a′ | wi for
k different values of a′. The inner expectation is simply the predictor output. We use empirical
variances with k examples for each of the d chosen datapoints, and the empirical mean of the d
variances for the outer expectation. Crucially, VCF requires access to ground-truth counterfactual
distributions, which by their very nature are unavailable in practice (neither for training nor at test
time). Hence, we can only assess VCF, as a direct measure of counterfactual invariance, in synthetic
scenarios. We demonstrate in our experiments, that HSCIC (estimable from the observed data)
empirically serves as a proxy for VCF.

Applications of counterfactual invariance. We briefly outline potential applications of counter-
factual invariance, which we will subsequently study empirically on real-world data.

Image classification. Counterfactual invariance serves as a strong notion of robustness in high-
dimensional settings, such as image classification: “Would the truck have been classified correctly
had it been winter in this exact situation instead of summer?” For concrete demonstration, we
will use the dSprites dataset (Matthey et al., 2017), which consists of relatively simple, yet high-
dimensional, square black and white images of different shapes (squares, ellipses, etc.), sizes, and
orientations (rotation) in different xy-positions.

Counterfactual fairness. The popular definition of counterfactual fairness (Kusner et al., 2017) is
an incarnation of our counterfactual invariance (see Definition 2.2). It is captured informally by
the following question after receiving a consequential decision: “Would I have gotten the same
outcome had I been a different gender, race, or age with all else being equal?”. Again, we denote
the outcome by Y ⊂ V and so-called protected attributes by A ⊆ V \ Y such as gender, race,
or age protected under anti-discrimination laws (see, e.g., Barocas & Selbst (2016)). Collecting all
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Figure 2: (a) Assumed causal structure for the synthetic experiments (see Section 4.1). The pre-
cise corresponding generative random variables are described in Appendix E. (b) Assumed causal
structure for the Adult dataset, where A consists of the protected attributes gender and age.(c)
Causal structure for the constructed dSprites ground truth, where A = {Pos.X}, U = {Scale},
C = {Shape, Pos.Y}, X = {Color,Orientation}, and Y = {Outcome}. U is unobserved.

remaining observed covariates into W := V \ Y, the definition of counterfactual fairness clearly
becomes a special case of our counterfactual invariance.

Definition 3.6 (Counterfactual Fairness, Definition 5 by Kusner et al. (2017)). A predictor Ŷ is
counterfactually fair if under any context W = w and A = a, it holds PŶ∗

a |W,A(y | w,a) =

PŶ∗
a′ |W,A(y | w,a), for all y and for any value a′ attainable by A.

Text classification. Veitch et al. (2021) motivate the importance of counterfactual invariance in text
classification tasks. We now provide a detailed comparison with our method on the (limited) causal
models studied by Veitch et al. (2021), emphasizing that our definition and method applies to a
much broader class of causal models. Specifically, we consider the causal and anti-causal structures
(Figure 1 in Veitch et al. (2021)). Both diagrams consist of a protected attribute Z, an observed
covariate X, and the outcome Y. Veitch et al. (2021) provide necessary conditions for counterfactual
invariance. They prove that if Ŷ∗

z = Ŷ∗
z′ almost surely, then assuming their proposed causal and

anti-causal structures (see Figure 1(b-c)) it holds Ŷ ⊥⊥ Z and Ŷ ⊥⊥ Z | Y, respectively. That is,
in practice they enforce a consequence of the desired criterion instead of a prerequisite. Our work
complements the results by Veitch et al. (2021), as shown in the following corollary, which is a
direct consequence of Theorem 3.2.
Corollary 3.7. Under the causal and anti-causal graph, suppose that Z and Y are not confounded.
If Ŷ ⊥⊥ Z, it holds PŶ∗

z
(y) = PŶ∗

z′
(y) almost surely, for all z, z′ in the domain of Z.

We remark that the notion of invariance studied by Veitch et al. (2021) is enforced on the true
counterfactuals. Our definition, and Corollary 3.7, on the other hand, only requires invariance of the
resulting distribution, which is a weaker requirement than Veitch et al. (2021). However, we provide
experiments in Appendix E.6 to show that our method, based on Corollary 3.7, and the method by
Veitch et al. (2021) have a similar effect in practice.

4 EXPERIMENTS

4.1 SYNTHETIC EXPERIMENTS

We begin our empirical assessment of HSCIC on synthetic datasets, where ground truth is known
and systematically study how performance is influenced by the dimensionality of the variables. We
simulate different datasets following to the causal graphical structure in Figure 2(a). The datasets
are composed of four sets of observed continuous variables: (i) the prediction target Y, (ii) the
variable(s) we want to be counterfactually invariant in A, (iii) observed covariates that mediate
effects from A on Y, and (iv) observed confounding variables Z. The goal is to learn a predictor
Ŷ that is counterfactually invariant in A with respect to W := A ∪X ∪ Z. We consider various
artificially generated datasets for this example, which mainly differ in the dimension of the observed
variables and their correlations. A detailed description of each dataset is deferred to Appendix E.

Model choices and parameters. For all synthetic experiments, we train the model using fully
connected networks (MLPs). We use the MSE loss LMSE(Ŷ) as the predictive loss L in eq. (2) for
continuous outcomes Y. We generate 4k samples from the observational distribution in each setting
and use an 80 to 20 train to test split. All metrics reported are on the test set. We perform hyper-
parameter tuning for MLP hyperparameters based on a random strategy (see Appendix E for details).
The HSCIC(Ŷ,A | Z) term is computed as in eq. (3) using a Gaussian kernel with amplitude 1.0
and length scale 0.1. The regularization parameter λ for the ridge regression coefficients in eq. (1)
is set to λ = 0.01. We set d = 1000 and k = 500 in the estimation of VCF.
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Figure 3: (Left) variance of the counterfactual distributions for 100 random datapoints with
lines representing 3rd-order polynomial regression and shaded areas being 95% confidence intervals.
(Center) trade-off between the accuracy and counterfactual invariance. We observe that the
HSCIC decreases, as the MSE increases. Vertical bars denote standard errors over 15 different
random seeds. (Right) Correspondence between the HSCIC and the VCF, for increasing γ.
Again, vertical bars denote standard errors over 15 different random seeds.

Model performance. We first perform a set of experiments to study the effect of the HSCIC, and to
highlight the trade-off between accuracy and counterfactual invariance. For this set of experiments,
we generate a dataset as described in Appendix E.1. Figure 3 (left) shows the variance term of VCF
for different regularization parameters γ, as a function of the values of Z (i.e., before taking the outer
expectation). We observe that increasing values of γ lead to a consistent decrease of the variances
w.r.t. the interventional value a. Figure 3 (center) shows the values attained by the HSCIC and MSE
for increasing γ, demonstrating the expected trade-off in raw predictive performance and enforcing
counterfactual invariance. Finally, Figure 3 (right) highlights the usefulness of HSCIC as a measure
of counterfactual invariance, being in strong agreement with VCF (see discussion after eq. (4)).

Comparison with baselines. We now compare our method against baselines in two settings, which
we refer to as Scenario 1 and Scenario 2. These two settings differ in how the conditioning set Z
affects the outcome Y, with Scenario 1 exhibiting higher correlation of Z with both the mediator
X and the outcome Y (see Appendix E.2 for details). Since counterfactually invariant training has
not received much attention yet, our our choice of baselines for experimental comparison is highly
limited. Corollary 3.7 together with the fact that Veitch et al. (2021) in practice only enforce distribu-
tional equality implies that our method subsumes theirs in the causal setting they have proposed. We
benchmarked our method against Veitch et al. (2021) in the limited causal and anti-causal settings
of Figure 6(b-c) in Appendix E.6, showing that our method performs on par or better than theirs.
Since counterfactual fairness is a special case of counterfactual invariance, we also compare against
two methods proposed by Kusner et al. (2017) (in applicable settings). We compare to the Level 1
(only use non-descendants of A as inputs to Ŷ) and the Level 3 (assume an additive noise model
and in addition to non-descendants, only use the residuals of descendants of A after regression on
A as inputs to Ŷ) approaches of Kusner et al. (2017). We refer to these two baselines as CF1 and
CF2 respectively. We summarize the results on the two scenarios in Table 1. For a suitable choice
of γ, our method outperforms the baseline CF2 in both MSE and VCF simultaneously. While CF1
satisfies counterfactual invariance perfectly by construction (VCF = 0), its MSE is substantially
higher than for all other methods. Our method provides to flexibly trade predictive performance for
counterfactual invariance via a single tuning knob λ and pareto-dominates existing methods.

Multi-dimensional variables. We perform a third set of experiments to assess HSCIC’s perfor-
mance in higher dimensions. We consider simulated datasets (described in Appendix E.3), where
we independently increase the dimension of Z and A in two different simulations, leaving the rest
of the variables unchanged. The results in Tables 2 for different regularization coefficients γ and
different dimensions of A and Z demonstrate that HSCIC can handle multi-dimensional variables
while maintaining performance, as counterfactual invariance is approached when γ increases. We
provide results where both A and Z are multivariate in Appendix E.3.

4.2 HIGH-DIMENSIONAL IMAGE EXPERIMENTS

We consider the image classification task on the dSprites dataset (Matthey et al., 2017). Since this
dataset is fully synthetic and labelled (we know all factors for each image), we consider a causal
model as depicted in Figure 2(c). The full structural equations are provided in Appendix E.4,
where we assume a causal graph over the determining factors of the image, and essentially look
up the corresponding image in the simulated dataset. This experiment is particularly challenging
due to the mixed categorical and continuous variables in C (shape, y-pos) and X (color,
orientation), continuous A (x-pos). All variables except for scale are assumed to be ob-
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Table 1: Performance of the HSCIC against baselines CF1 and CF2 on two synthetic datasets
(see Appendix E.2). Notably, for γ = 5 in Scenario 1 and γ = 13 in Scenario 2 we outperform CF2
in MSE and VCF simultaneously.

Scenario 1 Scenario 2

MSE ×103 HSCIC
×105

VCF×103 MSE×103 HSCIC
×105

VCF×103

γ = 0 0.36± 0.50 1600± 6 20.33± 1.00 2.00± 0.10 1700± 20 239.0± 0.4
γ = 5 17.00± 0.03 877± 3 6.84± 1.00 43.00± 8.00 1410± 80 230.0± 6.0
γ = 10 19.80± 2.00 816± 4 5.89± 0.60 50.00± 8.00 1210± 50 190.0± 3.0
γ = 13 22.00± 1.00 790± 8 5.78± 0.50 133.00± 6.00 990± 30 157.0± 7.0

CF1 24.44± 3.00 790± 5 0.00 218.00± 10.00 80± 5 0.0
CF2 19.50± 2.00 1400± 10 7.50± 1.00 137.00± 4.00 1770± 30 167.0± 2.0

Table 2: Results of the MSE (×105 for readability), HSCIC, VCF for increasing dimension
of A (top) and Z (bottom), on synthetic datasets as in Appendix E.3. All other variables are one-
dimensional in both cases.

dimA=2 dimA=5 dimA=10 dimA=20

γ MSE HSCIC VCF MSE HSCIC VCF MSE HSCIC VCF MSE HSCIC VCF

0 35 0.0230 0.025 1.53 0.0177 0.013 10 0.0150 0.004 1.45 0.0126 0.0010
1
2 86 0.0214 0.022 1580 0.0157 0.010 40 0.0135 0.002 33 0.0115 0.0004
1 210 0.0200 0.022 1450 0.0144 0.008 100 0.0127 0.001 60 0.0111 0.0003

dimZ=2 dimZ=3 dimZ=5

γ MSE HSCIC VCF MSE HSCIC VCF MSE HSCIC VCF

0 20 0.002024 6.15 × 10−5 11 0.03407 0.023 53.9 0.033180 0.0062
1
2 20 0.002023 1.29 × 10−5 49 0.03406 0.016 21.9 0.033178 0.0061

1 20 0.002019 4.40 × 10−6 57 0.03403 0.009 18 0.033176 0.0039

served, and all variables jointly with the actual high-dimensional image determine the outcome Y.
Our goal is to learn a predictor Ŷ that is counterfactually invariant in the x-position with respect to
all other observed variables. In the chosen causal structure, {shape,y-pos} ∈ C block all non-
causal paths from A ∪C ∪U to Y. Hence, we seek to achieve Ŷ ⊥⊥ x-pos | {shape,y-pos}
via the HSCIC operator. To accommodate the mixed input types, Ŷ puts an MLP on top of fea-
tures extracted from the images via convolutional layers concatenated with features extracted from
the remaining inputs via an MLP. Figure 4 demonstrates that HSCIC achieves improved VCF as γ
increases up to a certain point while affecting MSE, an inevitable trade-off.

4.3 FAIRNESS WITH CONTINUOUS PROTECTED ATTRIBUTES

We apply our method to the popular UCI Adult dataset (Kohavi & Becker, 1996). Our goal is to
predict whether an individual’s income is above a certain threshold Y ∈ {0, 1} based on a collection
of (demographic) information including protected attributes such as gender and age. We follow Nabi
& Shpitser (2018); Chiappa (2019), where a subset of variables are selected from the dataset and
a causal structure is assumed as in Figure 2(b) (see Appendix E.5 and Figure 7 for details). We
choose gender (considered binary in this dataset) and age (considered continuous) as the protected
attributes A. We denote the marital status, level of education, occupation, working hours per week,
and work class jointly by X and combine the remaining observed attributes in C. Our goal is to
learn a predictor Ŷ that is counterfactually invariant in A with respect to W = C ∪X. We remark
that achieving fairness for continuous or even mixed categorical and continuous protected attributes
is an ongoing line of research (even for non-causal fairness notions) (Mary et al., 2019; Chiappa &
Pacchiano, 2021), but directly supported by HSCIC.

We use an MLP with binary cross-entropy loss for Ŷ. Since this experiment is based on real data, the
true counterfactual distribution cannot be known. Hence, we follow Chiappa & Pacchiano (2021)
and estimate a possible true SCM by inferring the posterior distribution over the unobserved vari-
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Figure 4: Results of MSE, HSCIC operator and VCF for the dSprites image dataset exper-
iment. The HSCIC operator decreases steadily with higher values of γ. Similarly, a necessary
increase of MSE can be observed. For both γ = 0.5 and γ = 1 an overall decrease of VCF is
observed compared to the not-regularized setting.

Accuracy HSCIC VCF

γ = 0 (81.725 ± 0.0481)% 0.01067 ± 3.4 × 10−5 0.06685 ± 0.006

γ = 1 (81.547 ± 0.0745)% 0.00739 ± 6.8 × 10−5 0.05156 ± 0.003

Figure 5: (Left) Distribution of VCF values (unnormalized) for different choices of γ. We observe
less variance and more mass near zero for regularization parameter γ = 1. (Right) Results on
accuracy, HSCIC and VCF, showing a considerable improvement of HSCIC and VCF for γ = 1.

ables using variational autoencoders (Kingma & Welling, 2014). Even though this only provides
approximate VCF, Figure 5 (left) shows that HSCIC achieves more counterfactually fair outcome
distributions (more mass near zero) than an unconstrained classifier (γ = 0). Figure 5 (right) high-
lights once more that the HSCIC operator is in agreement with the VCF, again trading off accuracy.

5 DISCUSSION AND FUTURE WORK

We studied the problem of learning predictors Ŷ that are counterfactually invariant in changes of
certain covariates. We put forth a formal definition of counterfactual invariance and described how
it generalizes existing notions. Next, we provided a novel sufficient graphical criterion to charac-
terize counterfactual invariance and reduce it to a conditional independence statement in the obser-
vational distribution. Our method does not require identifiability of the counterfactual distribution
or exclude the possibility of unobserved confounders. Finally, we propose an efficiently estimable,
model-agnostic regularization term to enforce this conditional independence (and thus counterfac-
tual invariance) based on kernel mean embeddings of conditional measures, which works for mixed
continuous/categorical, multi-dimensional variables. We demonstrate the efficacy of our method in
regression and classification tasks involving controlled detailed simulation studies, high-dimensional
images, and in a fairness application, where it outperforms existing baselines.

The main limitation of our work, shared by all studies in this domain, is the assumption that the
causal graph is known. Another limitation is that our methodology is applicable only when our
graphical criterion is satisfied, requiring a certain set of variables to be observed (albeit unobserved
confounders are not generally excluded). From an ethics perspective, the increased robustness of
counterfactually invariant (or societal benefits of counterfactually fair) predictors are certainly desir-
able. However, this presupposes that all the often untestable assumptions are valid. Overall, causal
methodology should not be applied lightly, especially in high-stakes and consequential decisions.
A critical analysis of the broader context or systemic factors may hold more promise for societal
benefits, than a well-crafted algorithmic predictor.

In light of these limitations, an interesting and important direction for future work is to assess the
sensitivity of our method to misspecifications of the causal graph or insufficient knowledge of the
required blocking set. Finally, we believe our graphical criterion and KME-based regularization
can also be useful for causal representation learning, where one aims to isolate causally relevant,
autonomous factors underlying the data generating process of high-dimensional data.
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Figure 6: (a) A causal graph G, which embeds information for the random variables of the model
in the pre-interventional world. (b) The corresponding graph G′ for the set W = {A,X}. The
variables A and X are copies of A and X respectively. (c) The post-interventional graph G′a. By
construction, any intervention of the form A← a does not affect the group W = {A,X}.

A MISSING PROOF OF THEOREM 3.2

In this section, we give proof of Theorem 3.2, which we restate for completeness.

A.1 OVERVIEW OF THE PROOF TECHNIQUES

Theorem 3.2. Let G be a causal diagram, and let A, W be two (not necessarily disjoint) sets of
nodes in G. Let Z be a set of nodes that blocks all non-causal5 paths from A ∪W to Y. Then,
for any SCM compatible with G, any predictor Ŷ that satisfies Ŷ ⊥⊥ A | Z is counterfactually
invariant in A with respect to W.

Our proof technique generalizes the work of Shpitser & Pearl (2009). To understand the proof
technique, note that conditional counterfactual distributions of the form PY∗

a |W(y | w) involve
quantities from two different worlds. The variables W belong to the pre-interventional world, and
the interventional variable Y∗

a belongs to the world after performing the intervention intervention
A ← a. Hence, we study the identification of conditional counterfactual distributions using a
diagram that embeds the causal relationships between the pre- and the post-interventional world.
After defining this diagram, we prove that some conditional measures in this new model provide
an estimate for PY∗

a |W(y | w). We then combine this result with the properties of Z to prove the
desired result.

A.2 A GRAPHICAL CRITERION FOR CONDITIONAL INDEPENDENCE

In this section, we discuss a well-known criterion for conditional independence, which we will then
use to prove Theorem 3.2. To this end, we use the notion of a blocked path, which we restate for
clarity.

Definition 3.1. Consider a path π of causal graph G. A set of nodes Z blocks π, if π contains a triple
of consecutive nodes connected in one of the following ways: Ni → Z → Nj , Ni ← Z → Nj , or
Ni →M ← Nj , with Ni, Nj /∈ Z, Z ∈ Z, and neither M nor any descendent of M is in Z.

Using Definition A.1, we define the concept of d-separation as follows.

Definition A.1 (d-Separation). Consider a a causal graph G. Two sets of nodes X and Y of G are
said to be d-separated by a third set Z if every path from any node of X to any node of Y is blocked
by Z.

Definition A.1 is a graphical criterion for conditional independence. In fact, the following well-
known results holds (Pearl, 2000).

5A non-causal paths from A ∪ W to Y is a path connecting A ∪ W and Y in which at least one edge
points against causal ordering. Shpitser et al. (2012)
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Lemma A.2 (d-Separation Criterion). Consider a a causal graph G, and suppose that two sets of
nodes X and Y of G are d-separated by Z. Then, X is independent of Y given Z in any model
induced by the graph G.

We use the notation X ⊥⊥G Y | Z to indicate that X and Y are d-separated by U in G.

A.3 IDENTIFIABILITY OF CONDITIONAL COUNTERFACTUAL DISTRIBUTIONS

A natural way to study the relationships between the pre- and the post-interventional world is to use
the counterfactual graph (Shpitser & Pearl, 2008). However, the construction of the counterfactual
graph is rather intricate. For our purposes it is sufficient to consider a simpler construction. Consider
an SGM with causal graph G, and fix a set of observable random variables W. We define the
corresponding graph G′ in the following three steps:

1. define G′ to be the same graph as G;
2. add a new node W to G′, for each node W of the set W;
3. for each node W of the set W and for each parent W ′ of W , if W ′ ∈W then add an edge
W →W

′
to G′; if W ′ /∈W add an edge W ′ →W to G′.

An illustration of this graph is presented in Figure 6. Note that any node W defined as above does
not have any descendants in G′. In the reminder of this section, we denote with W the set of all
nodes W in G′ defined as above. We remark that this construction generalizes the work by Shpitser
& Pearl (2009).

Fix a second set A of nodes of G, and consider interventions of the form A← a, as in the statement
of Theorem 3.2. We prove that any conditional counterfactual distribution of the form PY∗

a |W(y |
w) are identifiable in G if and only if the corresponding probability distributions PY|W(y | w) are
identifiable in G′a. The following theorem generalizes Theorem 1 by Shpitser & Pearl (2009).
Theorem A.3. Let G be a causal diagram, and consider two sets of nodes A, W (not necessarily
disjoint). Consider the corresponding graph G′ as defined above. If the distribution PY∗

a |W(y | w)
is identifiable in G, then the distribution PY|W(y | w) is identifiable in G′a, for any model induced
by G. Furthermore, the estimand PY|W(y | w) in G′a is correct for PY∗

a |W(y | w).

To prove Theorem A.3, we introduce additional concepts. We first introduce the notion of a C-forest
and the notion of an edge (Shpitser & Pearl, 2006).
Definition A.4 (C-Forest). Let G be a causal diagram, and consider a complete sub-graph H of
G. Denote with R the maximal root set of H. We say that H is a R-rooted C-forest if a subset of
its bi-directed arcs forms a spanning tree over all vertices in H, and all the observable nodes of H
have at most one child.

In our analysis we also use the following definition.
Definition A.5 (Edge). Let G be a causal diagram, and fix a set of nodes A. Consider two R-rooted
C-forests H, K of G such that (i) H is a sub-graph of K; (ii) H and K do not contain any variable
in A; (iii) the nodes of R are ancestors of Y in the graph Ga. Then, we say that H and K form an
edge for PY∗

a
(y) in G.

There is a connection between these concepts and the identifiability of counterfactual distributions,
as shown in the following theorem.
Theorem A.6 (Theorem 4 by Shpitser & Pearl (2006)). Let G be a causal diagram, and fix a set of
nodes A. Suppose that there exist two sub-graphs of G that form an edge for PY∗

a
(y). Then, PY∗

a
(y)

is not identifiable in G.

Using these concepts, we can prove Theorem A.3.

Proof of Theorem A.3. For simplicity, denote with P∗ the induced measure on G′a. We first prove
that PY∗

a |W(y | w) is identifiable in G if and only if P∗
Y|W(y | w) is identifiable in G′a. We

distinguish two cases, based on whether W is d-separated from Y in G′a or not.

14



Case 1: W is d-separated from Y in G′a. By Lemma A.2 we have that Y is independent of W.
Hence, P∗

Y|W(y | w) is identifiable if and only if

P∗
Y|W(y | w) = P∗

Y(y) = PY∗
a
(y) (5)

is identifiable in G′a. Suppose that PY∗
a |W(y | w) is not identifiable. Then, PY∗

a
(y) is not identifi-

able, and P∗
Y|W(y | w) is also not identifiable by eq. (5).

Case 2: W is not d-separated from Y in G′a. Assume without loss of generality that any variable
of A ∪W is not a descendent of Y in G (otherwise it has no effect on Y). Under this assumption,
there exists a set of random variables U ⊆W such that there exists an edge for P(Y∪U)∗a

(y,u) =

P∗
Y,U

(y,u) in G′. It follows that P∗
Y,U

(y,u) is not identifiable. Since U ⊆W, it follows that the
distribution P∗

Y,W
(y,w) is also not identifiable.

We conclude by showing that the estimand expression is correct. To this end, note that since G′ is
just a causal diagram, the estimand of the post-interventional distribution P∗

Y|W(y | w) is correct

for PY∗
a,x|A,X(y | a′,x). Since the set W only contains variable copies of A ∪X, as claimed.

A.4 VALID ADJUSTMENTS FOR CONDITIONAL INTERVENTIONAL DISTRIBUTIONS

Here we discuss a criterion for the identification of conditional distributions, which we will then
use to prove Theorem 3.2. We follow Pearl (2000) to this end, and use the d-separation criterion to
define valid adjustment sets for conditional counterfactual distributions.

Consider a model with causal graph G, and fix a set of observed variables A. We define an auxiliary
graph GI, by adding to G an additional node I. This node is a parent of the nodes in the set A, and it
has no other neighbour. We modify the structural assignments of the nodes A, so that for I = 0 the
values of A are determined as in G, whereas for I = 1 the values of A are set to A = a. The node I
corresponds to a Bernoulli distribution, with I = 1 indicating that the intervention took place. This
construction is important, because the following lemma holds.
Lemma A.7. Consider an SGM G and fix two disjoints groups of observed variables X and Y.
Denote with GI the auxiliary graph as defined above, with respect to an intervention A← a. Let Z
a set of nodes of G such that Y ⊥⊥GI

I | A,Z. Then, it holds
P∗
Y|Z(y | z) = PY|A,Z(y | a, z).

Here, P∗ the post-interventional distribution, after assigning A← a.

Proof. It holds
P∗
Y|Z(y | z) = P∗

Y|A,Z(y | a, z) (by definition of P∗)

= PY|I,A,Z(y | i = 1,a, z) (by the definition of I)

= PY|I,A,Z(y | i = 0,a, z) (by Lemma A.2)

= PY|A,Z(y | a, z), (by the definition of I)
as claimed.

The following lemma characterizes all sets Z that fulfills the condition as in Lemma A.7.
Lemma A.8. Consider an SGM G, and denote with GI the auxiliary graph as defined above, with
respect to an intervention A ← a. Let Z a set of nodes that blocks all non-causal paths from A to
Y. Then, it holds Y ⊥⊥GI

I | A,Z. In particular, it holds P∗
Y|Z(y | z) = PY|A,Z(y | a, z).

Proof. Denote with π any path from I to Y in GI. Since I is a parent of every node in A, and
since I has no parents, then any path π can be decomposed into two paths π1, π2, where π1 is a
single edge from I to A, and π2 is a path from A to Y. If π is a causal path, then A acts as a
separator for this path. If π is not a causal path from I to Y, then it must be undirected (since I
has no parents). It follows that π2 is an undirected path from A to Y, which is d-separated by Z.
Hence, π is d-separated. We conclude that Y ⊥⊥GI

I | A,Z. The second part of the claim follows
by Lemma A.7.
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A.5 PROOF OF THEOREM 3.2

Theorem A.3 tells us that we can identify conditional counterfactual distributions in G, by identifying
distributions on G′. We can combine this observation with the notion of a valid adjustment set to
derive a closed formula for the identification of the distributions of interest.

Proof of Theorem 3.2. Let G′ be the augmented graph obtained by adding nodes W to G, as de-
scribed in Section A.3. Denote with P∗ the induced measure on G′a. Suppose that it holds

PY∗
a |W(y | w) =

∫
PY|A,Z(y | a, z)dP∗

Z|W(z | w) (6)

for any intervention A ← a, and for any possible value w attained by W. Then the claim follows.
In fact, assuming that eq. (6) holds, we have that

PY∗
a |W(y | w) =

∫
PY|A,Z(y | a, z)dP∗

Z|W(z | w) (assuming eq. (6))

=

∫
PY|A,Z(y | a′, z)dP∗

Z|W(z | w) (since Y ⊥⊥ A | Z)

= PY∗
a′ |W

(y | w). (assuming eq. (6))

Hence, the proof of Theorem 3.2 boils down to proving eq. (6). To this end, since Z breaks all
non-causal paths from W to Y, then by construction Z is a d-separator between W and Y in the
post-interventional graph G′a. Hence, it holds

P∗
Y,W

(y | w) =

∫
P∗
Y|W,Z

(y | w, z)dP∗
Z|W(z | w) (by conditioning)

=

∫
P∗
Y|Z(y | z)dP

∗
W,Z

(w, z) (since Y ⊥⊥G′
a
W | Z)

=

∫
PY|A,W,Z(y | a,w, z)dP

∗
Z|W(z | w). (by Lemma A.7)

The claim follows by applying Theorem A.3 to the equation above, since it holds P∗
Y|W(y | w) =

PY∗
a |W(y | w).

B MISSING PROOF OF THEOREM 3.4

We prove that the HSCIC can be used to promote conditional independence, using a similar tech-
nique as Park & Muandet (2020). The following theorem holds.
Theorem 3.4 (following Theorem 5.4 by Park & Muandet (2020)). If the kernel k of HX ⊗HA is
characteristic6, HSCIC(Y,A | Z) = 0 almost surely if and only if Y ⊥⊥ A | Z.

Proof. By definition, we can write HSCIC(Y,A | Z) = HY,A|Z ◦ Z, where HY,A|Z is a real-
valued deterministic function. Hence, the HSCIC is a real-valued random variable, defined over the
same domain ΩZ of the random variable X.

We first prove that if HSCIC(Y,A | Z) = 0 almost surely, then it holds Y ⊥⊥ A | Z. To this end,
consider an event Ω′ ⊆ ΩX that occurs almost surely, and such that it holds (HY,A|X ◦X)(ω) = 0
for all ω ∈ Ω′. Fix a sample ω ∈ Ω′, and consider the corresponding value zω = Z(ω), in the
support of Z. It holds∫

k(y ⊗ a, · )dPY,A|Z=zω
= µY,A|Z=zω

(by definition)

= µY|Z=zω
⊗ µA|Z=zω

(since ω ∈ Ω′)

=

∫
kY(y, · )dPY|Z=zω

⊗
∫
kA(a, · )dPA|Z=zω

(by definition )

=

∫
kY(y, · )⊗ kA(a, · )dPY|Z=zω

PA|Z=zω
, (by Fubini’s Theorem)

6The tensor product kernel k is characteristic if the mapping PY,A 7→ Ey,a [k( · ,y ⊗ a)] is injective.
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with kY and kA the kernels of HY and HA respectively. Since the kernel k of the tensor product
space HY ⊗ HA is characteristic, then the kernels kY and kA are also characteristic. Hence, it
holds PY,A|Z=zω

= PY|Z=zω
PA|Z=zω

for all ω ∈ Ω′. Since the event Ω′ occurs almost surely, then
PY,A|Z=zω

= PY|Z=zω
PA|Z=zω

almost surely, that is Y ⊥⊥ A | Z.

Assume now that Y ⊥⊥ A | Z. By definition there exists an event Ω′′ ⊆ ΩZ such that PY,A|Z=zω
=

PY|Z=zω
PA|Z=zω

for all samples ω ∈ Ω′′, with zω = Z(ω). It holds

µY,A|Z=zω
=

∫
k(y ⊗ a, · )dPY,A|Z=zω

(by definition)

=

∫
k(y ⊗ a, · )dPY|Z=zω

PA|Z=zω
(since ω ∈ Ω′)

=

∫
kY(y, · )kA(a, · )dPY|Z=zω

PA|Z=zω
(by definition of k)

=

∫
kY(y, · )dPY|Z=zω

⊗
∫
kA(a, · )dPA|Z=zω

(by Fubini’s Theorem)

= µY|Z=zω
⊗ µA|Z=zω

. (by definition)

The claim follows.

C CONDITIONAL KERNEL MEAN EMBEDDINGS AND THE HSCIC

The notion of conditional kernel mean embeddings has already been studied in the literature. We
show that, under stronger assumptions, our definition is equivalent to the definition by Park & Muan-
det (2020).

C.1 CONDITIONAL KERNEL MEAN EMBEDDINGS AND CONDITIONAL INDEPENDENCE

We show that, under stronger assumptions, the HSCIC can be defined using the Bochner conditional
expected value. The Bochner conditional expected value is defined as follows.
Definition C.1. Fix two random variables Y, Z taking value in a Banach spaceH, and denote with
(Ω,F ,P) their joint probability space. Then, the Bochner conditional expectation of Y given Z is
anyH-valued random variable X such that∫

E

YdP =

∫
E

XdP

for all E ∈ σ(Z) ⊆ F , with σ(Z) the σ-algebra generated by Z. We denote with E [Y | Z] the
Bochner expected value. Any random variable X as above is a version of E [Y | Z].

The existence and almost sure uniqueness of the conditional expectation is shown in Dinculeanu
(2000). Given a RKHS H with kernel k over the support of Y, Park & Muandet (2020) define the
corresponding conditional kernel mean embedding as

µY|Z := E [k(·,y) | Z] .

Note that, according to this definition, µY|Z is an H-valued random variable, not a single point of
H. Park & Muandet (2020) use this notion to define the HSCIC as follows.
Definition C.2 (The HSCIC according to Park & Muandet (2020)). Consider (sets of) random
variables Y, A, Z, and consider two RKHS HY, HA over the support of Y and A respectively.
The HSCIC between Y and A given Z is defined as the real-valued random variable

ω 7→
∥∥µY,A|Z(ω)− µY|Z(ω)⊗ µA|Z(ω)

∥∥ ,
for all samples ω in the domain ΩZ of Z. Here, ∥·∥ the metric induced by the inner product of the
tensor product spaceHY ⊗HZ.

We show that, under more restrictive assumptions, Definition C.2 can be used to promote conditional
independence. To this end, we use the notion of a regular version.
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Definition C.3 (Regular Version, following Definition 2.4 by Çinlar & ðCınlar (2011)). Consider
two random variables Y, Z, and consider the induced measurable spaces (ΩY,FY) and (ΩZ,FZ).
A regular version Q for PY|Z is a mapping Q : ΩZ × FY → [0,+∞] : (ω,y) 7→ Qω(y) such that:
(i) the map ω 7→ Qω(x) is FA-measurable for all y; (ii) the map y 7→ Qω(y) is a measure on
(ΩY,FY) for all ω; (iii) the function Qω(y) is a version for E

[
⊮{Y=y} | Z

]
.

The following theorem shows that the random variable as in Definition C.2 can be used to promote
conditional independence.
Theorem C.4 (Theorem 5.4 by Park & Muandet (2020)). With the notation introduced above, sup-
pose that the kernel k of the tensor product space HX ⊗ HA is characteristic. Furthermore, sup-
pose that PY,A|X admits a regular version. Then,

∥∥µY,A|Z(ω)− µY|Z(ω)⊗ µA|Z(ω)
∥∥ = 0 almost

surely if and only if Y ⊥⊥ A | Z.

Note that the assumption of the existence of a regular version is essential in Theorem C.4. In this
work, HSCIC is not used for conditional independence testing but as a conditional independence
measure.

C.2 EQUIVALENCE WITH OUR APPROACH

The following theorem, shows that under the existence of a regular version, conditional kernel mean
embeddings can be defined using the Bochner conditional expected value. To this end, we use the
following theorem.
Theorem C.5 (Following Proposition 2.5 by Çinlar & ðCınlar (2011)). Following the notation in-
troduced in Definition C.3, suppose that PY|Z(· | Z) admits a regular version Qω(y). Consider a
kernel k over the support of Y. Then, the mapping

ω 7→
∫
k(·,y)dQω(y)

is a version of E [k(·,y) | Z].

As a consequence of Theorem C.5, we prove the following result.
Lemma C.6. Fix two random variables Y, Z. Suppose that PY|Z admits a regular version. Denote
with ΩZ the domain of Z. Then, there exists a subset Ω ⊆ ΩZ that occurs almost surely, such that
µY|Z(ω) = µY|Z=Z(ω) for all ω ∈ Ω. Here, µY|Z=Z(ω) is the embedding of conditional measures
as in Section 2.

Proof. Let Qω(y) be a regular version of PY|Z. Without loss of generality we may assume that it
holds PY|Z(y | {Z = Z(ω)}) = Qω(y). By Theorem C.5 there exists an event Ω ⊆ ΩZ that occurs
almost surely such that

µY|Z(ω) = E[k(y, · ) | Z](ω) =
∫
k(y, · )dQω(y), (7)

for all ω ∈ Ω. Then, for all ω ∈ Ω it holds

µY|Z(ω) =

∫
k(x, · )dQω(x) (it follows from eq. (7))

=

∫
k(x, · )dPX|A(x | {A = A(ω)}) (Qω(y) = PY|Z(y | {Z = Z(ω)}))

= µX|{A=A(ω)}, (by definition as in Section 2)

as claimed.

As a consequence of Lemma C.6, we can prove that the definition of the HSCIC by Park & Muandet
(2020) is equivalent to ours. The following corollary holds.
Corollary C.7. Consider (sets of) random variables Y, A, Z, and consider two RKHS HY, HA

over the support of Y and A respectively. Suppose that PY,A|Z(· | Z) admits a regular version.
Then, there exists a set Ω ⊆ ΩA that occurs almost surely, such that∥∥µX,A|Z(ω)− µX|Z(ω)⊗ µA|Z(ω)

∥∥ = (HY,A|Z ◦ Z)(ω).
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Here, HY,A|Z is a real-valued deterministic function, defined as

HY,A|Z(z) :=
∥∥µY,A|Z=z − µY|Z=z ⊗ µA|Z=z

∥∥ ,
and ∥·∥ is the metric induced by the inner product of the tensor product spaceHX ⊗HA.

We remark that the assumption of the existence of a regular version is essential in Corollary C.7.

D CONDITIONAL INDEPENDENCE AND THE CROSS-COVARIANCE OPERATOR

In this section, we show that under additional assumptions, our definition of conditional KMEs is
equivalent to the definition based on the cross-covariance operator, under more restrictive assump-
tions.

The definition of KMEs based on the cross-covariance operator requires the use of the following
well-known result.

Lemma D.1. Fix two RKHS HX and HZ, and let {φi}∞i=1 and {ψj}∞j=1 be orthonormal bases of
HX and HZ respectively. Denote with HS(HX,HZ) the set of Hilbert-Schmidt operators between
HX and HZ. There is an isometric isomorphism between the tensor product space HX ⊗HZ and
HS(HX,HZ), given by the map

T :

∞∑
i=1

∞∑
j=1

ci,jφi ⊗ ψj 7→
∞∑
i=1

∞∑
j=1

ci,j⟨ · , φi⟩HX
ψj .

For a proof of this result see i.e., Park & Muandet (2020). This lemma allows us to define the
cross-covariance operator between two random variables, using the operator T .

Definition D.2 (Cross-Covariance Oprator). Consider two random variables X, Z. Consider cor-
responding mean embeddings µX,Z, µX and µZ, as defined in Section 3. The cross-covariance
operator is defined as ΣX,Z := T (µX,Z − µX ⊗ µZ). Here, T is the isometric isomorphism as in
Lemma D.1.

It is well-known that the cross-covariance operator can be decomposed into the covariance of the
marginals and the correlation. That is, there exists a unique bounded operator ΛY,Z such that

ΣY,Z = Σ
1/2
Y,Y ◦ ΛY,Z ◦ Σ1/2

Z,Z

Using this notation, we define the normalized conditional cross-covariance operator. Given three
random variables Y, A, Z and corresponding kernel mean embeddings, this operator is defined as

ΛY,A|Z := ΛY,A − ΛY,Z ◦ ΛZ,A. (8)

This operator was introduce by Fukumizu et al. (2007). The normalized conditional cross-covariance
can be used to promote statistical independence, as shown in the following theorem.

Theorem D.3 (Theorem 3 by Fukumizu et al. (2007)). Following the notation introduced above,
define the random variable Ä := (A,Z). Let PZ be the distribution of the random variable Z, and
denote with L2(PZ) the space of the square integrable functions with probability PZ. Suppose that
the tensor product kernel kY ⊗ kA ⊗ kZ is characteristic. Furthermore, suppose that HZ + R is
dense in L2(PZ). Then, it holds

ΛY,Ä|Z = 0 if and only if Y ⊥⊥ A | X.

Here, ΛY,Ä|Z is an operator defined as in eq. (8).

By Theorem D.3, the operator ΛY,Ä|Z can also be used to promote conditional independence. How-
ever, our method is more straightforward since it requires less assumptions. In fact, Theorem D.3
requires to embed the variable Z in a RKHS. In contrast, our method only requires the embedding
on the variables Y and A.
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E EXPERIMENT SETTINGS

Additional information about the experiments is now provided. The interested reader may refer to
the source code provided in the supplementary material. In all cases, the experiments were per-
formed on an Apple M1 Pro. No external GPU sources were used for the experimental setup.

E.1 DATASETS FOR MODEL PERFORMANCE WITH THE USE OF THE HSCIC

The first set of synthetic experiments involves three different dataset simulations. The data-
generating mechanism corresponding to the results in Figure 3 is the following:

Z ∼ N (0, 1) A = Z2 + εA

X = exp

{
−1

5
A

}
A+ sin (2Z) +

1

5
εX

Y =
1

2
exp {−XZ} · sin (2XZ) + 5A+

1

5
εY,

where εA ∼ N (0, 1) and εY, εX
i.i.d.∼ N (0, 0.1).

In the first experiment, Figure 3 shows the results of feed-forward neural networks consisting of 8
hidden layers with 20 nodes each, connected with a rectified linear activation function (ReLU) and
a linear final layer. Mini-batch size of 256 and the Adam optimizer with a learning rate of 10−3 for
100 epochs were used. We set the range of trade-off parameter γ ∈ [0, 1] for all the experiments
except the comparison against baselines CF1 and CF2.

E.2 DATASETS FOR COMPARISON WITH BASELINES

The simulation procedure for the Scenario 1 and Scenario 2 in Table 1 respectively are the following.
Scenario 1:

Z ∼ N (0, 1) A = Z2 + εA

X =
1

2
A · εX + 2Z

Y =
1

2
exp {−XZ} · sin (2XZ) + 5A+

1

5
εY,

where εA, εX
i.i.d.∼ N (0, 1) and εY

i.i.d.∼ N (0, 0.1). Scenario 2:

Z ∼ N (0, 1) A = Z2 + εA

X =
1

5
A · εX + 2 exp

{
−1

2
Z2

}

Y = exp
{
−Z2

}
+AX+

1

5
εY,

where εA, εX
i.i.d.∼ N (0, 1) and εY

i.i.d.∼ N (0, 0.1).

Analysing the results in Table 1, the same hyperparameters as in the previous setting. This also
holds for the baseline methods CF1 and CF2. In this table, both Scenario 1 and Scenario 2 were
considered. The results shown in Figure 3 and Table 1 are the average and standard deviation
resulting from respectively 10 and 4 random seeds runs.
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E.3 DATASETS FOR MULTI-DIMENSIONAL VARIABLES EXPERIMENTS

The data-generating mechanisms for the multi-dimensional settings of Tables 2 are now shown.
Analysing the results in Table 2 (top), given dimA = D1 ≥ 2, the datasets were generated from:

Z ∼ N (0, 1) Ai = Z2 + εiA for i ∈ {1, D1}

X = exp

{
−1

2
A1

}
+

D1∑
i=1

Ai · sin(Z) + 0.1 · εX

Y = exp

{
−1

2
A2

}
·

D1∑
i=1

Ai +XZ+ 0.1 · εY,

where εX, εY
i.i.d∼ N (0, 0.1) and ε1A, ..., ε

D1

A
i.i.d∼ N (0, 1). In this setting, the mini-batch size

chosen is 64 and the same hyperparameters are used as in the previous setting. The neural network
architecture is trained for 70 epochs.

For the results in Table 2 (bottom) the following data-generating process is used:

Z1,Z2, ...,ZD2

i.i.d.∼ N (0, 1) A =

D2∑
i=1

Z2
i + εA

X = exp

{
−1

2
A

}
+ sin

(
D2∑
i=1

Zi

)
·A+ 0.1 · εX

Y = exp

{
−1

2
A

}
·A+

D2∑
i=1

Zi +A+XZ1 + 0.1 · εY,

with dimZ = D2 ≥ 2 and εA ∼ N (0, 1), εX, εY
i.i.d.∼ N (0, 0.1). Here, we used mini-batch size

of 32, a learning rate of 10−4 and a number of epochs of 500.

The results in Tables 2 are the average obtained from three random seeds runs on the same data-split.

We tested the method on a further setting, consisting of bi-dimensional Z and A (dimA = 2, dimZ =
2). Specifically, we have Z = {Z1,Z2} and A = {A1,A2}. The data-generating mechanism is the
following:

Z1 ∼ N (0, 1) Z2 ∼ N (3, 0.1) A1 = Z2
1 + εA1 A2 = exp {−0.1 · (Z1 + Z2)}+ εA2

X = exp

{
−1

2
A

}
· sin (2 ·A1) + (Z1 + Z2) · (A1 +A2) + 0.1 · εX

Y = exp

{
−1

2
A2

1

}
· sin

(
2 ·A2

2

)
+X · (Z1 + Z2) + 5 ·A1 ·A2 + 0.1 · εY,

where εY, εX, εA1
, εA2

i.i.d∼ N (0, 0.1). In Table 3, the trade-off between accuracy and counter-
factually invariant predictions is once again shown, implying that the proposed method can also be
applied in settings where both Z and A are not unidimensional. In Table 3 the average and standard
deviation of the results from four runs with random seed and re-sampled data are presented.
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Table 3: Results of MSE, HSCIC, VCF (all times 105 for readability) on synthetic data with
bi-dimensional A and Z. Here dimZ = 2, dimA = 2, dimX = 1, dimY = 1.

MSE HSCIC VCF
γ = 0 0.315± 0.055 13854.1± 8.47 24.6± 1.17
γ = 1

2 0.336± 0.0525 13854.0± 8.46 22.9± 0.69
γ = 1 0.393± 0.162 13853.9± 8.46 20.4± 2.02

E.4 HIGH-DIMENSIONAL IMAGE DATASET

The simulation procedure for the results shown in Section 4.2 is the following.

shape ∼ P(shape)
y-pos ∼ P(y-pos)
color ∼ P(color)

orientation ∼ P(orientation)
x-pos = round(x), where x ∼ N (shape+ y-pos, 1)

scale = round
((x-pos

24
+
y-pos

24

)
· shape+ ϵS

)
Y = eshape · x-pos+ scale2 · sin(y-pos) + ϵY ,

where ϵS ∼ N (0, 1) and ϵY ∼ N (0, 0.01). The data has been generated via a matching procedure
on the original dSprites dataset.

In Table 4, the hyperparameters of the layers of the convolutional neural network are presented.
Each of the convolutional groups also has a ReLU activation function and a dropout layer. Two
MLP architectures have been used. The former takes as input the observed tabular features. It is
composed by two hidden layers of 16 and 8 nodes respectively, connected with ReLU activation
functions and dropout layers. The latter takes as input the concatenated outcomes of the CNN and
the other MLP. It consists of three hidden layers of 8, 8 and 16 nodes, respectively. Figure 4 presents
the averaged results of four random seeds runs with new sampled data.

E.5 FAIRNESS WITH CONTINUOUS PROTECTED ATTRIBUTES

The pre-processing of the UCI Adult dataset was based upon the work of (Chiappa & Pacchiano,
2021). Referring to the causal graph in Figure 7, a variational autoencoder (Kingma & Welling,
2014) was trained for each of the unobserved variables Hm, Hl and Hr. The prior distribution of
these latent variables is assumed to be standard Gaussian. The posterior distributions P(Hm|V ),
P(Hr|V ), P(Hl|V ) are modelled as 10-dimensional Gaussian distributions, whose means and vari-
ances are the outputs of the encoder.

A M L R Y

Hm Hl HrC

Figure 7: Assumed causal graph for the Adult dataset, as in Chiappa & Pacchiano (2021). The
variables Hm, Hl, Hr are unobserved, and jointly trained with the predictor Ŷ.
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Table 4: Architecture of the convolutional neural network used for the image dataset, as described
in Appendix E.4.

layer # filters kernel size stride size padding size
convolution 16 5 2 2
max pooling 1 3 2 0

convolution 64 5 1 2
max pooling 1 1 2 0

convolution 64 5 1 2
max pooling 1 2 1 0

convolution 16 5 1 3
max pooling 1 2 2 0

The encoder architecture consists of a hidden layer of 20 hidden nodes with hyperbolic tangent ac-
tivation functions, followed by a linear layer. The decoders have two linear layers with hyperbolic
tangent activation function. The training loss of the variational autoencoder consists of a recon-
struction term (Mean-Squared Error for continuous variables and Cross-Entropy Loss for binary
ones) and the Kullback–Leibler divergence between the posterior and the prior distribution of the
latent variables. For training, we used the Adam optimizer with learning rate of 10−2, 30 epochs,
mini-batch size 128.

The predictor Ŷ is the output of a feed-forward neural network consisting of a hidden layer with
hyperbolic tangent activation function and a linear final layer. In the training we used the Adam
optimizer with learning rate 10−3, mini-batch size 128, and trained for 100 epochs. The choice of
the network architecture is based on the work of (Chiappa & Pacchiano, 2021).

The estimation of counterfactual outcomes is based on a Monte-Carlo approach. Given a data point,
500 values of the unobserved variables are sampled from the estimated posterior distribution. Given
an interventional value for A, a counterfactual outcome is estimated for each of the sampled unob-
served values. The final counterfactual outcome is estimated as the average of these counterfactual
predictions. In this experiment setting, we have k = 100 and d = 1000.

In the causal graph presented in Figure 7, A includes the variables age and gender, C includes
nationality and race, M marital status, L level of education, R the set of working class, occupation,
and hours per week and Y the income class. Compared to (Chiappa & Pacchiano, 2021), we include
the race variable in the dataset as part of the baseline features C. The loss function is the same as
Equation 2 but Binary Cross-Entropy loss is used instead of Mean-Squared Error loss:

LTOTAL(Ŷ) = LBCE(Ŷ) + γ · HSCIC
(
Ŷ, {Age,Gender}

∣∣∣Z) , (9)

where the set Z blocks all the non-causal paths from W ∪ A. In this example we have W =
{C ∪M ∪ L ∪ R}. The results in Figure 5 (center, right) refer to one run with conditioning set
Z = {Race,Nationality}. The results in Table 5 (right) are the average and standard deviation of
four random seeds.

E.6 BASELINE EXPERIMENTS

We provide an experimental comparison against the method by Veitch et al. (2021).To this end, we
consider the following artificial causal structure (see Figure 1(b)):

Z ∼ N (0, 1) A = Z2 + εA

X = exp

{
−1

2
A

}
sin (A) +

1

10
εX

Y =
1

2
exp {−XZ} · sin (2XZ) + 5A+

1

10
εY,
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Table 5: Results of the MSE, HSCIC, VCF of our method and the baseline Veitch et al. (2021)
applied to the causal and anti-causal structure in Figure 1(b-c). Although the graphical assumptions
are not satisfied, our method shows an overall decrease of HSCIC, VCF in both of the graphical
structures, outperforming Veitch et al. (2021) in terms of accuracy and counterfactual invariance.

MSE ×103 HSCIC ×103 VCF×102

γ = 0 1.20 ± 0.03 22.88 ± 1.42 89 ± 0.50
γ = 1

2 3.72 ± 0.17 21.14 ± 1.50 89 ± 0.30
γ = 1 10.45 ± 0.35 18.62 ± 1.43 87 ± 0.93

Our Method Veitch et al. (2021)

MSE ×102 HSCIC ×103 VCF×102 MSE×102 HSCIC ×103 VCF×102

γ = 1
2 69.78 ± 1.10 20.20 ± 0.53 50.63 ± 0.25 70.23 ± 1.14 22.16 ± 0.57 50.69 ± 0.26

γ = 1 69.99 ± 1.10 18.81 ± 0.53 50.78 ± 0.26 70.60 ± 1.24 19.59 ± 0.58 50.85 ± 0.28

where εX, εA
i.i.d∼ N (0, 1) and εY

i.i.d∼ N (0, 0.1). The data-generating mechanism of the anti-
causal structure is the following (see Figure 1(c)):

Z ∼ N (0, 1)

Y = exp

{
1

5
Z

}
+

3

10
εY A = Z2 +

3

10
εA

X = exp

{
−1

2
A2

}
+

1

5
Y +

1

10
εX

where εY, εA
i.i.d∼ N (0, 0.1) and εX

i.i.d∼ N (0, 1). We compare our method with different choices
for the trade-off parameter γ, against the method by Veitch et al. (2021). In the causal settings pre-
sented in Figure 1(b-c), an unobserved confounder Z between A and Y is included. In the graphical
structure Figure 1(b), our method presents as regularization term in the model training HSIC(Ŷ,A),
as the independence Ŷ ⊥⊥ A is enforced. Here, HSIC is the Hilbert-Schmidt Independence Crite-
rion, which is commonly used to promote independence (see, i.e., Gretton et al. (2005); Fukumizu
et al. (2007)). In the selected graphical sstructure, this is the same independence criterion enforced
by Veitch et al. (2021), leading the two methods to converge. In the anti-causal graphical setting
presented in Figure 1(c) proposed by Veitch et al. (2021), the regularization term used in our method
is sill HSIC(Ŷ,A), while in the method of Veitch et al. (2021) is HSCIC(Ŷ,A | Y). In Table 5,
the results of accuracy, HSCIC(Ŷ,A | Z) and VCF are presented.

In the experiments, the predictor Ŷ is a feed-forward neural network consisting of 8 hidden layers
with 20 nodes each, connected with a rectified linear activation function (ReLU) and a linear final
layer. Mini-batch size of 256 and the Adam optimizer with a learning rate of 10−4 for 500 epochs
were used.

E.7 COMPARISON HEURISTIC METHODS EXPERIMENTS

We provide an experimental comparison of the proposed method with some heuristic methods,
specifically data-augmentation based methods. We consider the same data-generating procedure
and causal structure as presented in E. The heuristic methods considered are data augmentation
and causal-based data augmentation. In the former, data augmentation is performed by generat-
ing N = 50 samples for every data-point by sampling new values of A as a1, ..., aN

i.i.d∼ PA and
leaving Z,X,Y unchanged. Differently, in the latter causal-based data augmentation method, we
also take into account the causal structure given by the known DAG. Indeed, when manipulating the
variable A, its descendants (in this example X) will also change. In this experiment, a predictor for
X as X̂ = fθ(A,Z) is trained on 80% of the original dataset. In the data augmentation mechanism,
for every data-point {a, x, z, y}, N = 50 samples are generated by sampling new values of A as
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Table 6: Results of MSE and VCF (all times 102 for readability) on synthetic data of our method
with trade-off parameters γ = 1

2 and γ = 1 with the heuristic methods data augmentation and
causal-based data augmentation.

VCF MSE
data augmentation 3.12± 0.16 0.003± 0.001
causal-based data augmentation 3.04± 0.16 0.013± 0.012
γ = 1

2 2.80± 0.13 0.044± 0.022
γ = 1 2.34± 0.19 0.19± 0.072

a1, ..., aN
i.i.d∼ PA, estimating the values of X as x1 = fθ(a1, z), ..., xN = fθ(aN , z), while leaving

the values of Z and Y unchanged. Heuristic methods such as data-augmentation methods do not
theoretically guarantee to provide counterfactually invariant predictors. The results of an empirical
comparison are shown in Table 6. It can be shown that these theoretical insights are supported by
experimental results, as the VCF metric measure counterfactual invariance is relevantly lower in
both of the two settings of the proposed methods (γ = 1

2 and γ = 1).

In these experiments, a dataset of n = 1000 is used, along with k = 500 and d = 500. The
architecture used for predicting X and Y are feed-forward neural networks consisting of 8 hidden
layers with 20 nodes each, connected with a rectified linear activation function (ReLU) and linear
final layer. Mini-batch size of 256 and the Adam optimizer with a learning rate of 10−3 for 100
epochs were used.
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