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Figure 1: Image customization results of our method, which enables the recreation of a specified conceptual subject under
unstylized text guidance, while also providing the flexibility to dynamically edit the subject with challenging stylized prompt.

ABSTRACT
Image customization involves learning the subject from provided
concept images and generating it within textual contexts, typically
yielding alterations of attributes such as style or background. Pre-
vailing methods primarily rely on fine-tuning technique, wherein
a unified latent embedding is employed to characterize various
concept attributes. However, the attribute entanglement renders
customized result challenging to mitigate the influence of subject-
irrelevant attributes (e.g., style and background). To overcome these
issues, we propose Equilibrated Diffusion, an innovative method
that achieves equilibrated image customization by decoupling en-
tangled concept attributes from a frequency-aware perspective, thus
harmonizing textual and visual consistency. Unlike conventional
approaches that employ a shared latent embedding and tuning pro-
cess to learn concept, our Equilibrated Diffusion draws inspiration

∗Guo-Jun Qi is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0686-8/24/10
https://doi.org/10.1145/3664647.3680729

from the correlation between high- and low-frequency components
with image style and content, decomposing concept accordingly in
the frequency domain. Through independently optimizing concept
embeddings in the frequency domain, the denoising model not only
enriches its comprehension of style attribute irrelevant to subject
identity but also inherently augments its aptitude for accommodat-
ing novel stylized descriptions. Furthermore, by combining different
frequency embeddings, our model retains the spatially original cus-
tomization capability. We further design a diffusion process guided
by subject masks to alleviate the influence of background attribute,
thereby strengthening text alignment. To ensure subject-related
information consistency, Residual Reference Attention (RRA) is
incorporated into the denoising model of spatial attention computa-
tion, effectively preserving structural details. Experimental results
demonstrate that Equilibrated Diffusion surpasses other competi-
tors with better subject consistency while closely adhering to text
descriptions, thus validating the superiority of our approach. The
code is available at https://github.com/MAPLE-AIGC/EqDiff.
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1 INTRODUCTION
Text-to-Image (T2I) customization aims to customize a Text-to-
Image diffusion model using a handful of provided concept images
to generate diverse images aligned with the target prompts. This
technology can support a variety of downstream applications, span-
ning from virtual photography to personalized e-commerce product
design. It is noteworthy that the primary challenge in this task lies
in striking a balance betweenmaintaining consistency in the subject
identity and coherence with the target prompts.

Current T2I customization paradigm mainly encompasses two
main approaches: model finetuning and encoder-based pretraining.
Encoder-based approaches [12, 43, 47] usually leveraged large-scale
datasets tailored to specific domains to learn concepts. However,
these methods face challenges in generalization across diverse do-
mains and necessitate substantial image datasets, thereby com-
promising their adaptability. In contrast, finetuning-based meth-
ods [1, 11, 20, 24, 32, 42] established associations between concept
and latent textual embedding through denoising optimization. How-
ever, textual representations are constrained to overfit given con-
cept and lead to entanglement with identity-unrelated style and
background attributes, which undermines its capacity to accommo-
date new textual descriptions during customization. Although some
works [3, 6] aim to mitigate the interference of identity-related in-
formation by leveraging distinct embeddings. They primarily focus
on spatial attributes such as pose and are unable to address the
influence of style attribute. Furthermore, textual representations
lack spatial expressiveness, resulting in poor image alignment. We
attribute the challenge of achieving the trade-off between image-
and stylized prompt-alignment in customization to the interplay
between content and style during the optimization. This interplay
necessitates the fitting of model parameters representing specific
concepts to both content and style, making it difficult to prevent
identity-related attribute from being influenced by the style at-
tribute of original concept image.

In this paper, we propose Equilibrated Diffusion to address afore-
mentioned issues, which succeed in image- and text-aligned cus-
tomization as shown in fig. 1. It incorporates a comprehensive
training strategy comprising Frequency-aware Decoupled Textual
Embedding (FDTE) and a Mask Guided Diffusion Process (MGDP)
to enhance text-alignment by disentanglement between identity-
irrelevant attributes (e.g., style and background) with identity-
relevant one, along with the Residual Reference Attention (RRA)
to enhance image alignment. Motivated by the fact that image
style and content can be represented by high- and low-frequency
components [15], FDTE decouples the concept into different tex-
tual embeddings, each bound to the denoising process of different
frequency bands of the input image. Through the independent op-
timization of content and style embeddings and denoising learning
applied to image inputs across various frequency bands, the denois-
ing model not only enhances its understanding of style attributes

unrelated to subject identity but also intrinsically augments its
ability to accommodate novel stylized descriptions as evidenced by
results presented in fig. 8. Furthermore, MGDP utilizes the mask of
subject to restrict concept denoising learning in the subject region,
allowing the model to focus on learning the subject’s concept and
eliminate background interference. Finally, to improve the spatial
details preservation of subject concept, our proposed RRA employs
a spatial attention mechanism to explicitly inject spatial structural
details from encoded reference into denoising features.

In summary, our approach aims to achieve subject consistency
and alignment with textual descriptions in the customization of
image concepts, offering the following contributions. Firstly, we
propose FDTE and MGDP in our training strategy to mitigate in-
terference from irrelevant attributes such as style and background
on concepts. These techniques aid the model in learning identity-
related concepts while excluding interference from style and back-
ground attributes irrelevant to identity. Secondly, we design RRA
to preserve texture details of the subject concept in generated im-
ages with spatial attention mechanisms. Finally, we demonstrate
that Equilibrated Diffusion outperforms prior methods in achieving
consistency between identity and prompt, showing qualitative and
quantitative advantages.

2 RELATEDWORK
2.1 Diffusion-based Text-to-Image Generation
Diffusion models [16, 31, 36, 38] constitute a category of genera-
tive models that learn to simulate the generation process through
sequential denoising process, which restores the noisy data dis-
turbed by forward diffusion. Significant advancements have been
achieved in image generation based on diffusion models. Subse-
quent endeavors have focused on enhancing the controllability of
generated outputs by incorporating additional conditional infor-
mation [41, 44] (such as semantic map, sketch, and text, etc.) to
govern the generation process. Among these, text conditioning
inherently offers superior editability and flexibility. Concurrently,
with advancements in large language models, the understanding
of text has also improved, thereby fostering the development of
text-to-image generation models [25, 29, 33]. Nevertheless, despite
the potential for diverse image generation guided by text, text-
conditioned image generation models encounter difficulties in tai-
lored image synthesis related to specific concepts. Customizing
images entails preserving the identity information correlated with
the provided textual descriptions, posing a significant challenge for
text-to-image generation models.

2.2 Image Customization
Leveraging the power of text-to-image diffusion model, image cus-
tomization [1–3, 6, 10–13, 20, 24, 32, 42] has witnessed rapid devel-
opment in controllability and faithfulness. Given a set of concept
images, image customization is designed to produce new images
of a given subject that adhere to textual descriptions. The core
of image customization largely revolves around the adjustment
of parameters within the foundational text-to-image generation
model or incorporating additional parameters. Such modifications
involves fine-tuning text embedding [1, 11, 42], adjusting parame-
ters within the full or partial U-Net network [8, 23, 32, 39], as well
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as integrating extra encoder components [7, 9, 14, 18, 34, 43, 45, 47].
Early methods [1, 10, 11, 13, 42] capture the concept of the subject
through text embeddings represented by specific token. Typically,
Textual Inversion [11] encapsulates the concept with optimized
token embedding and generates the customized concept image
by composing the optimized token with target prompt. Dream-
Booth [32] and Custom diffusion [20] has opted for fine-tuning
the U-Net parameters, which results in improved subject fidelity.
Another line of work has focused on exploring fast customization
generation by additional encoder which requires substantial data
and usually focuses on close-domain datasets such as human face.
Our work mainly involves general customization and thus is com-
pared with open-domain method Elite [45] in the experiment. In
response to the limited expressiveness of spatial structures in text
embeddings, several methods [4, 17, 24, 37] have explored injecting
concept information at the self-attention layer. However, the gen-
erated results tend to entirely retain the reference subject, leading
to the loss of text alignment. Recently, some works [3, 6] propose
to distinguish identity-irrelevant attributes from identity-relevant
ones. While they mainly focus on the impact of pose and back-
ground on the subject, our method prioritizes stylistic attributes.

3 PRELIMINARY
Diffusion Models. Our method is based on the pretrained Stable

Diffusion (SD) [31], which is a popular text-to-image model and
comprises two main components. Initially, an autoencoder with
encoder E(·) and decoder D(·) learns to compress input image
𝐼 into a lower-dimensional latent space 𝑧0 = E(𝐼 ), which is then
decoded back into image D(E(𝐼 )) ≈ 𝐼 . Subsequently, a conditional
diffusion model 𝜖𝜃 is trained on this latent space to denoise noisy
latent codes conditioned on textual input 𝑦. The training process
involves employing a basic mean-squared loss, denoted as:

L𝐿𝐷𝑀 = E𝑧0∼E(𝐼 ),𝑦,𝜖,𝑡
[
∥𝜖 − 𝜖𝜃 (𝑧𝑡 , 𝑡, 𝑦)∥22

]
, (1)

where 𝜖 ∼ N(0, 𝐼 ) signifies unscaled noise, 𝑧𝑡 denotes the latent
state at time step 𝑡 . During inference, Gaussian noise 𝑧𝑇 is progres-
sively diminished to 𝑧0 and then decoded back into image output.

Conditional diffusion model 𝜖𝜃 of SD is based on a U-Net ar-
chitecture, which comprises convolution layers, cross attention
layers and self attention layers [40]. Among them, the self atten-
tion layers capture the spatial relationship of image features within
themselves. Formally, after projecting the latent features in timestep
𝑡 into queries 𝑞𝑡 , keys 𝑘𝑡 and values 𝑣𝑡 , the self attention calculation
is expressed as follows:

SA(𝑞𝑡 , 𝑘𝑡 , 𝑣𝑡 ) = SoftMax(𝑞𝑡𝑘𝑡
𝑇

√
𝑑

)𝑣𝑡 , (2)

where 𝑑 is the feature dimension of 𝑞𝑡 , 𝑘𝑡 , and 𝑣𝑡 .

Image Customization. Image customization [1, 11, 12, 20, 24, 32,
43] learns a trainable text embedding 𝑆∗ to represent the specific
concept based on user-provided concept images. Leveraging 𝑆∗,
novel images embodying the desired concept can be synthesized
under diverse textual descriptions. Previous methods [20, 24, 32]
further enhance concept representation during optimization by

updating weights of projection matrix of key and value in the cross-
attention layer or the entire U-Net’s parameters. To effectively
integrate 𝑆∗ into the generative process, the input text prompt 𝑦 is
formulated as ’Photo of a 𝑆∗ [class]’, where [class] corresponds to
the specific class name of the designated concept.

Image Fourier Transformation. The Fourier transform of images
constitutes a fundamental technique widely used in image pro-
cessing and computer vision fields [19, 22, 27, 35]. It serves as a
powerful tool for analyzing the frequency components of an image
and extracting important features for various applications. For an
image 𝐼 ∈ 𝑅𝐻×𝑊 ×𝐶 , the Fourier transform is defined as:

F (𝐼 ) (𝑢, 𝑣) = 1
√
𝐻𝑊

𝐻−1∑︁
ℎ=0

𝑊 −1∑︁
𝑤=0

𝐼 (ℎ,𝑤)𝑒− 𝑗2𝜋
(
ℎ
𝐻
𝑢+ 𝑤

𝑊
𝑣

)
, (3)

where F denotes the frequency-domain representation of the image
andF −1 signifies the corresponding inverse Fourier transformation.
High-pass and low-pass filters are conventionally applied to the
frequency-domain representation of images to isolate specific fre-
quency bands. The high-pass filter, denoted as𝐻 (𝑢, 𝑣), serves to sup-
press low-frequency components while retaining high-frequency
details. Conversely, the low-pass filter 𝐿(𝑢, 𝑣) is designed to pre-
serve low-frequency information while mitigating high-frequency
noise. These filters are formulated as follows:

𝐻 (𝑢, 𝑣) =
{
0 if

√︁
(𝑢 − 𝑢0)2 + (𝑣 − 𝑣0)2 ≤ 𝑓𝑐

1 if
√︁
(𝑢 − 𝑢0)2 + (𝑣 − 𝑣0)2 > 𝑓𝑐

,

𝐿(𝑢, 𝑣) = 1 − 𝐻 (𝑢, 𝑣),
(4)

where (𝑢0, 𝑣0) represents the center of the Fourier frequency map
and 𝑓𝑐 is the cutoff frequency. In our work, we utilize Fourier trans-
formation to acquire conceptual images characterized by high and
low frequencies, subsequently leveraging them to enhance the
model’s denoising capacity across various frequency spectra.

4 METHODOLOGY
4.1 Frequency-aware Decoupled Textual

Embedding
Essentially, conventional methods for customizing images through
fine-tuning rely on a single text embedding and diffusion learning
process applied to the original image to capture image concept.
However, these approaches struggle to adapt the concept repre-
sentation derived from text embedding to customize images un-
der significantly different stylized textual descriptions from the
original image. We attribute this challenge to the model’s failure
to explicitly decouple image content from semantic style during
the concept learning process, resulting in a tightly coupled repre-
sentation. Consequently, we propose Frequency-aware Decoupled
Textual Embedding to address this issue. FDTE decouples high-
frequency style and low-frequency content information from a
frequency-domain perspective, thereby learning and reinforcing
separate conceptual representations of content and style through
corresponding diffusion learning processes on different frequency
bands. As shown in fig. 2, FDTE first transforms the original image
𝐼
𝑔

𝑜𝑟𝑖
into high-frequency and low-frequency components 𝐼𝑔

𝐻𝐹
and

𝐼
𝑔

𝐿𝐹
through image Fourier transformation, accompanied by two
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Figure 2: Method overview. In the training stage, the Frequency-aware Decoupled TextualEmbedding (FDTE) decomposes the
original image 𝐼

𝑔

𝑜𝑟𝑖
into low frequency (LF) and high frequency (HF) bands, which are selectively formed into the input of

denoising UNet along with their corresponding text embeddings including 𝑆∗
𝐿𝐹

and 𝑆∗
𝐻𝐹

. After encoding into the latent space,
the target features undergo forward diffusion added with noise in Mask Guided Diffusion Process (MGDP), thereby mitigating
the impact of background elements. Subsequently, Residual Reference Attention (RRA) integrates spatial details from the
reference image 𝐼𝑟 into the result to enhance image consistency. During inference, we first generate corresponding spatial
domain embedding 𝑆∗ by optimized high-frequency and low-frequency text embeddings. Then, the sampled Gaussian noise 𝑧𝑔

𝑇
is iteratively denoised into generation result aligned with the text for 𝑇 steps.

learnable text embeddings 𝑆∗
𝐻𝐹

and 𝑆∗
𝐿𝐹

to indicate respective de-
noising conditions. Specifically, 𝑆∗

𝐻𝐹
encapsulates considerations

regarding high-frequency aware style attribute, while 𝑆∗
𝐿𝐹

attends to
low-frequency content attribute. Additionally, to maintain denois-
ing efficacy for the original image 𝐼𝑔

𝑜𝑟𝑖
, we retain it as a candidate

input for the model, represented by textual embeddings 𝑆∗
𝑜𝑟𝑖

that
calculated by the sum of frequency-aware embeddings. Formally,
the input candidates of denoising model are denoted as follows:

𝐼𝑔 = R𝑝𝑙 ,𝑝ℎ,𝑝𝑜 [𝐿(F (𝐼𝑔
𝑜𝑟𝑖

)), 𝐻 (F (𝐼𝑔
𝑜𝑟𝑖

)), 𝐼𝑔
𝑜𝑟𝑖

],
𝑆∗ = R𝑝𝑙 ,𝑝ℎ,𝑝𝑜 [𝑆∗𝐿𝐹 , 𝑆

∗
𝐻𝐹 , 𝑆

∗
𝑜𝑟𝑖 ],𝑤ℎ𝑒𝑟𝑒𝑆

∗
𝑜𝑟𝑖 = 𝑆∗𝐿𝐹 + 𝑆∗𝐻𝐹 ,

(5)

where the operation symbolized by R𝑝𝑙 ,𝑝ℎ,𝑝𝑜 [·, ·, ·] entails the ran-
dom selection of one of the three candidates based on probabilities
𝑝𝑙 , 𝑝ℎ , 𝑝𝑜 to serve as the output. During the training phase, these
inputs are randomly selected to constitute 𝐼𝑔 , from which the latent
encoding 𝑧𝑔0 is derived. Subsequently, their corresponding text em-
beddings, which respectively represent high-frequency perception,
low-frequency perception, and the original image, are integrated
into the fine-tuning process. Notably, during the inference stage,
the text embedding 𝑆∗

𝑜𝑟𝑖
corresponding to the original image serves

as a conditional input to ensure that the generated outcomes adhere
closely to real images.

4.2 Mask Guided Diffusion Process
While FDTE aids in diminishing the model’s reliance on the original
image style, direct learning of conceptual representations during
the image diffusion process may be interfered by subject-irrelevant

Figure 3: Illustration of Mask Guided Diffusion Process. To
eliminate background interference on the concept represen-
tation S*, we exclusively apply noise addition and prediction
to the subject region indicated by subject mask𝑀𝑔.

background attribute. Although previous works [2, 20] have ex-
plored strategies wherein the computation of diffusion loss is con-
fined exclusively within the subject region guided by accurate mask,
the generated results are not promising as shown in fig. 8. Inspired
by SmartBrush [46], we propose a mask-guided diffusion process
guided by the subject mask 𝑀𝑔 , thus compelling the model to fo-
cus on learning the conceptual representation of the subject itself.
Specifically, as shown in fig. 3, we conduct noise addition and pre-
diction within the subject mask region in the diffusion process and
retain clean background information inputted into UNet, which
prompts the learning of subject concept. Mathematically, the input
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Figure 4: Framework of Residual Reference Attention (RRA).

Figure 5: (a) Reference Attention is capable of attending to
reasonable texture information from reference features. (b)
The aggregated reference attention map closely reassembles
the ground truth subject mask duringL𝑟𝑎 calculation eq. (10).
(c) Reference Mask 𝑀𝑓 predicted in RRA accurately distin-
guishes the subject from the background.

noisy latent of UNet is formulated as follows:

𝑧
′
𝑡 = 𝑀𝑔 ∗ 𝑧𝑡 + (1 −𝑀𝑔) ∗ 𝑧0, (6)

Finally, we reformulate the denoising objective to be aligned with
masked diffusion loss [2] and express it as follows:

L𝑀𝑎𝑠𝑘−𝐿𝐷𝑀 = E𝑧0∼E(𝐼 ),𝑦,𝜖,𝑡

[
𝑀𝑔 ∗

𝜖 − 𝜖𝜃

(
𝑧
′
𝑡 , 𝑡, 𝑦

)2
2

]
. (7)

4.3 Residual Reference Attention
As illustrated in fig. 4, we propose Residual Reference Attention
to enhance image alignment by incorporating spatial details of
the subject from reference image with reference attention. In the
training process of the model, the features of the reference image
𝐼𝑟 are initially encoded to obtain the latent code 𝑧𝑟0 , which is then
perturbed with Gaussian noise of 𝑡 step to obtain 𝑧𝑟𝑡 . This noisy
latent code is then fed into a frozen SD UNet 𝜖𝑟 . Before the self-
attention module of 𝜖𝑟 , reference features are extracted and merged
with the corresponding features at the positions of UNet 𝜖𝜃 con-
taining trainable parameters through RRA, ensuring the proximity
and effectiveness of feature fusion in the feature space. During the
inference phase, features from the reference image are injected into
the denoising network, gradually incorporating spatial information
from the reference image during the denoising process over𝑇 steps.

In typical personalized tasks, occlusions and variations in view-
point often occur between reference images and generated results.
Consequently, simple fusion of reference image features may in-
troduce interference. Previous approaches [17, 24] only focused
on the foreground regions of the subject, neglecting the influence

of backgrounds and mismatched foregrounds, or requiring addi-
tional forward processes [4] during inference to obtain the subject’s
mask for fusion. To address this issue and mitigate additional in-
ference overhead, RRA learns explicit fusion masks and adaptively
determines fusion coefficients during the optimization process. As
illustrated in Figure fig. 4, RRA projects reference appearance fea-
tures 𝐹𝑟 ∈ Rℎ𝑤×𝑑 into keys and values, sharing the same queries
from target features 𝐹𝑔 ∈ Rℎ𝑤×𝑑 within the corresponding self-
attention modules. Subsequently, the attention computation results
from both reference attention and self attention modules are con-
catenated as inputs for reference mask𝑀 𝑓 prediction and feature
calculation, which is formulated as follows

𝐹𝑟
𝑙
= H𝑟 ( [SA(𝐹𝑔, 𝐹𝑟 , 𝐹𝑟 ), SA(𝐹𝑔, 𝐹𝑔, 𝐹𝑔)])

𝐹𝑟𝑅𝐴, 𝑀
𝑓 = ⟨𝐹𝑟

𝑙
⟩0:𝑑 , 𝜙 (⟨𝐹𝑟𝑙 ⟩𝑑 :𝑑+1)

𝐹
𝑔

𝑆𝐴
= H𝑠 (SA(𝐹𝑔, 𝐹𝑔, 𝐹𝑔)),

(8)

where ⟨·⟩ and [·] mean the feature splitting and concatenation oper-
ations, respectively. 𝜙 (·) denotes the clamp function, constraining
the results to the interval (0, 1) for generating reference mask𝑀 𝑓

as visualized in fig. 5 (c). Reference attention mask 𝑀 𝑓 ∈ Rℎ𝑤×1

and reference feature 𝐹𝑟
𝑅𝐴

∈ Rℎ𝑤×𝑑 are calculated by linear layer
H𝑟 : R2𝑑 → R𝑑+1, which is trainable and zero initialized to pro-
mote the training stability at the beginning. The target feature 𝐹𝑔

𝑆𝐴

is acquired by frozen linear layer H𝑠 : R𝑑 → R𝑑 . The reference
attention output can be regarded as the residual information for
appearance reference, which is adaptively fused to make the best
use of accessible information and is conducted as follows:

𝐹𝑅𝑅𝐴 = 𝐹
𝑔

𝑆𝐴
∗ (1 −𝑀 𝑓 ) + 𝐹𝑟𝑅𝐴 ∗𝑀 𝑓 . (9)

Reference Attention Loss. The preservation of subject details is
built on the precise correspondence learned by reference attention.
To facilitate the target feature attend more relevant area in refer-
ence feature map, we introduce the Reference Attention Loss that
encourages the target features within the subject area to have a
high attention score distributed in the corresponding subject area
of paired reference. The detailed formulation of the loss function is
denoted as follows:

L𝑟𝑎 =

ℎ𝑤∑︁𝑗=1A𝑖 𝑗 ⊙ 𝑀𝑟 −𝑀𝑔


2

=

ℎ𝑤∑︁𝑗=1
{
SoftMax

(
𝐹𝑔 · 𝐹𝑟𝑇

√
𝑑

)}
𝑖 𝑗

⊙ 𝑀𝑟 −𝑀𝑔


2

,

(10)

where reference attention map A ∈ Rℎ𝑤×ℎ𝑤 is calculated by the
target feature 𝐹𝑔 and reference feature 𝐹𝑟 . 𝑀𝑟 ∈ Rℎ𝑤×1 and 𝑀𝑔

denote the subject foreground mask of reference and target image
extracted by Grounded-SAM [30], respectively. ⊙ represents the
Hadamard product. As depicted in Figure fig. 5 (b), the upper sub-
figure illustrates𝑀𝑔 , whereas the lower sub-figure showcases the
aggregated reference attention scores during the training process,
denoted as the first term of L𝑟𝑎 . Notably, the visual result of them
closely aligns, thereby underscoring the effectiveness of reference
attention loss. This affirms its capability to facilitate reference at-
tention in better leveraging the subject information present in the
reference image, consequently fostering identity preservation.
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5 EXPERIMENTS
5.1 Experimental Settings

Datasets. Our experiment is conducted at DreamBooth dataset [32],
which comprises 30 subjects spanning various categories, including
both non-live and live subjects. In addition, we also include an
commonly used case called "cat toy," which has been utilized in
many previous works [8, 11, 24, 45]. Each subject consists of 4 to 6
images paired with 55 unstylized prompts from [24] and another
22 stylized prompts generated by LLM [26] for customization. A
complete prompt list is provided in supplementary material.

Metrics. Our evaluation follows the same setup and calculation
procedures as CustomDiffusion [20], which employs three com-
mon metrics to assess the effectiveness of models in aligning text
and images: CLIP-T, CLIP-I, and DINO-I. CLIP-T measures text-
alignment by the feature similarity between the CLIP [28] visual
representation of the generated image and the CLIP textual repre-
sentation of the corresponding prompt. For the image-alignment
assessment, CLIP-I and DINO-I are used to evaluate the visual
similarity between generated image and concept image using the
features extracted from pretrained CLIP and DINO [5] models.

Implementation Details. We follow previous method [32] to em-
ploy Stable Diffusion v1.4 as the text-to-image model for fair com-
parison. Our model is trained by an A100 GPU with the AdamW
optimizer [21] for 600 steps and the learning rate is set to 1e-5.
Data augmentation techniques are applied to reference images to
enhance the disparity with the denoising image, including image
cropping, rotation, and flipping, etc. During the inference phase, the
images are generated using 50 steps of DDIM [36] with classifier-
free guidance scale set to 12.5.

5.2 Qualitative Evaluation
The qualitative comparison results with prior methods are pre-
sented in fig. 6. As can be seen, our method achieves superior cus-
tomization performance in stylized prompt alignment and subject
identity preservation. For textual stylization alignment, our ap-
proach excels in handling various challenging stylistic descriptions
compared to existing methods. In cases where the style description
closely resembles the original image, our method adeptly preserves
the local details of the original image while undergoing stylization
(e.g, the can in the 1st row of fig. 6), thereby enhancing its iden-
tity consistency throughout the stylization process. In contrast, for
more unrealistic stylistic descriptions, our method adeptly main-
tains crucial semantic elements of the subject while enabling flexible
and intricate style editing, a tradeoff that remains elusive to other
methodologies. For instance, unlike other approaches, our method
successfully disentangles from the influence of the original image’s
style (see the 3rd, 5th, and 7th rows of fig. 6), thereby avoiding
the tendency to generate outcomes resembling the original colors
and style, thus demonstrating adaptability to novel stylistic descrip-
tions. Regarding the preservation of subject identity, our method
leverages the proposed RRA technique, effectively retaining the
crucial texture structures of the concept. More qualitative results
can be found in supplementary material.

Method CLIP-T (↑) CLIP-I (↑) DINO-I (↑)

Textual Inversion (TI) [11] 0.725 0.765 0.537
0.742 0.698 0.418

DreamBooth [32] 0.777 0.788 0.616
0.795 0.696 0.467

CustomDiffusion (CD) [20] 0.770 0.792 0.634
0.774 0.718 0.505

ELITE [45] 0.756 0.777 0.589
0.718 0.741 0.548

DreamMatcher [24] 0.768 0.792 0.637
0.766 0.703 0.503

Ours 0.782 0.810 0.670
0.790 0.755 0.584

Table 1: Quantitative comparison under unstylized and styl-
ized prompts. The best and the second best results are bold-
faced and underlined.

5.3 Quantitative Evaluation
Following this, we conduct a comprehensive evaluation of our
method from a quantitative perspective to validate its efficacy. The
baseline method for our approach is the custom diffusion. As de-
picted in table 1, we achieved the highest CLIP-I and DINO-I scores
with both stylized and unstylized textual descriptions. This indi-
cates that our method excels in preserving texture information of
the subject and maintains superiority in retaining subject identity.

Furthermore, our method demonstrates close-to-leading results
in stylized scenarios compared to Dreambooth, while exhibiting
optimal CLIP-T score in non-stylized prompts, showcasing its abil-
ity for text alignment. This showcases our method’s capability
for superior textual editability. In summary, our method’s lead-
ing performance across these metrics attests to its effectiveness in
preserving subject identity and aligning with textual descriptions.

5.4 Ablation Study
In this section, we conduct ablation study on the core components
of our method to verify their contributions. Visual comparison
results of various ablation models are presented in fig. 8, while
numerical analyses are provided in fig. 7. The evaluation settings
of each experiment remain the same as in section 5.1.

Effect of Residual Reference Attention and L𝑟𝑎 . Compared to the
baseline, the visual results in fig. 8 indicate that the variant model
B better preserves the main structural details in conceptual images
after incorporating RRA, such as the patterns on jars or the appear-
ance of cats. Additionally, improvements are observed in metrics
like CLIP-I and DINO-I, which indicate enhanced subject consis-
tency, highlighting the significant efficacy of the proposed RRA.
Analysis of the reference attention heatmaps further reveals that
the generated results accurately attend to corresponding positions
in the reference images, validating the effectiveness of the RRA.

Moreover, reference attention loss L𝑟𝑎 further improves image-
alignment metrics. Visual analysis of the aggregated reference at-
tention maps demonstrates that the subject area can effectively
focus on the corresponding areas in the reference, as evidenced by
the comparison between the aggregated reference attention map
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Figure 6: Qualitative comparison with prevalent methods. Please zoom in for a better view.

and the ground truth attention map in fig. 5 (B), thus proving the
effectiveness of reference attention loss.

Effect of Frequency-aware Decoupled Textual Embedding. Subse-
quently, we conduct an analysis of FDTE’s impact on the effective-
ness of stylized descriptions. As depicted in fig. 8, the absence of
FDTE results in generated outputs that are still entrenched in the

original conceptual style, thereby struggling to conform to new
stylized textual descriptions (as evidenced by the cat in fig. 8 main-
taining its original image style). Conversely, FDTE facilitates the
expression of stylistic effects. Additionally, FDTE also leads to a
discernible enhancement in the CLIP-T score, as shown in fig. 7.
This affirms FDTE’s capability in bolstering textual coherence.
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Ablation Models CLIP-T (↑) CLIP-I (↑) DINO-I (↑)

A Baseline (CD [20]) 0.770 0.792 0.634
0.774 0.718 0.505

B A + RRA 0.755 0.822 0.690
0.746 0.755 0.591

C B + L𝑟𝑎
0.755 0.823 0.691
0.749 0.757 0.595

D C + FDTE 0.758 0.805 0.656
0.772 0.717 0.513

E D + MDL [2] 0.760 0.811 0.670
0.765 0.726 0.537

F D + MGDP (Ours) 0.782 0.810 0.670
0.790 0.755 0.584

Figure 7: The best and the second best results are bold-
faced and underlined. (Upper) Numerical analysis with
unstylized and stylized prompts. (Lower) Metrics across all
classes are visualized, while the averaged metrics are high-
lighted on the right. Compared to other model variants, our
model tends towards the upper-right quadrant, indicative of
achieving superior text- and image-alignment trade-offs.

To investigate FDTE’s hyperparameter settings in detail, we an-
alyze the probabilities of selecting high-frequency, low-frequency,
and original images. For unstylized and stylized scenarios, using
𝑝𝑙 , 𝑝ℎ, 𝑝𝑜 = [0.1, 0.1, 0.8] achieves superior metrics, indicating an
optimal balance between image fidelity and textual coherence.

Effect of Mask Guided Diffusion Process. Finally, we analyze the
efficacy of MGDP in mitigating the interference of background on
the generated results. As illustrated in fig. 8, RRA tends to capture
spatial information from concept images directly, thereby rendering
the background more similar to the conceptual image (see A and
B in fig. 8). Exclusion of MGDP leads to overfitting to the concept

Figure 8: Visualization results of ablation study.

CLIP-T

CLIP-I

DINO-I

[0.40, 0.40, 0.20]

[0.25, 0.25, 0.50]

[0.10, 0.10, 0.80]

[0.20, 0.00, 0.80]

[0.00, 0.20, 0.80]

Unstylized Stylized

Figure 9: Numerical analysis of FDTE. 𝑝𝑙 , 𝑝ℎ , and 𝑝𝑜 represent
the probability of choosing low-frequency, high-frequency
and original images, respectively.

image’s background in the result. Although MDL introduces con-
straints on background regions in loss objectives, it still struggles to
mitigate the influence of background attributes. Conversely, MGDP
exhibits superior capability in decoupling backgrounds from the
subject, aligning the generated results more closely with textual
descriptions (see the galaxy background in the last column of fig. 8).

Notably, our goal is to strike a balance between aligning images
and text. Although our full setting shown in the upper table of fig. 7
does not yield optimal scores across all metrics compared to other
model variations, the lower figure of fig. 7 reveals that our approach
is positioned closer to the upper-right quadrant. This observation
demonstrates the superiority of our method in achieving the desired
trade-off between image- and text-alignment.

6 CONCLUSION
In conclusion, we propose Equilibrated Diffusion to customize
images for better image consistency and stylized text alignment.
Specifically, by decoupling content and style through frequency-
aware decoupled textual embedding, we decompose the original dif-
fusion optimization process across different frequency bands. This
enhances the model’s ability to understand content represented by
low frequencies and style represented by high frequencies, which
is guided by decoupled text embeddings and enhances text con-
sistency expression. The mask guided diffusion process mitigates
the influence of the concept image background on the results and
further enhances text alignment. Moreover, the residual reference
attention and reference attention loss better transfer spatial details
from reference concepts, promoting texture consistency.
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