
Data subsampling for Poisson regression
with pth-root-link

Han Cheng Lie
Institut für Mathematik

Universität Potsdam
Germany

hanlie@uni-potsdam.de

Alexander Munteanu
Department of Statistics
TU Dortmund University

Germany
alexander.munteanu@tu-dortmund.de

Abstract

We develop and analyze data subsampling techniques for Poisson regression, the
standard model for count data y ∈ N. In particular, we consider the Poisson
generalized linear model with ID- and square root-link functions. We consider the
method of coresets, which are small weighted subsets that approximate the loss
function of Poisson regression up to a factor of 1± ε. We show Ω(n) lower bounds
against coresets for Poisson regression that continue to hold against arbitrary data
reduction techniques up to logarithmic factors. By introducing a novel complexity
parameter and a domain shifting approach, we show that sublinear coresets with
1 ± ε approximation guarantee exist when the complexity parameter is small.
In particular, the dependence on the number of input points can be reduced to
polylogarithmic. We show that the dependence on other input parameters can
also be bounded sublinearly, though not always logarithmically. In particular,
we show that the square root-link admits an O(log(ymax)) dependence, where
ymax denotes the largest count presented in the data, while the ID-link requires a
Θ(
√
ymax/ log(ymax)) dependence. As an auxiliary result for proving the tightness

of the bound with respect to ymax in the case of the ID-link, we show an improved
bound on the principal branch of the Lambert W0 function, which may be of
independent interest. We further show the limitations of our analysis when pth
degree root-link functions for p ≥ 3 are considered, which indicate that other
analytical or computational methods would be required if such a generalization is
even possible.

1 Introduction

Random sampling is arguably one of the most popular approaches to reduce large amounts of data
to save memory, runtime, and further downstream resources such as communication bandwidth and
energy. In contrast, classic statistical learning theory often uses uniform sampling and provides only
asymptotic approximation guarantees. These guarantees often require strict assumptions such as i.i.d.
data and for model assumptions to be met exactly. However, data collected from real applications
often violate these conditions: only finite samples are available, independence might not be satisfied,
and the model may deviate from reality. When model fitting algorithms are applied to such data, we
are not only interested in reducing the above-mentioned resource requirements, but also in providing
rigorous worst-case guarantees on approximation.

Arguably, the most popular approach is the Sensitivity Framework [26, 19], which provides a general-
purpose importance sampling scheme that yields a weighted subsample — or coreset — that given a
data matrix X approximates some loss function f(Xβ) within a factor (1± ε) for any query point
β. This guarantee can be stated as follows: a significantly smaller subset K ⊆ X, k := |K| ≪ |X|

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

together with corresponding weights w ∈ Rk is a (1± ε)-coreset for X if it satisfies

∀β ∈ Rd : |f(Xβ)− fw(Kβ)| ≤ ε · f(Xβ). (1)

We point the interested reader to [37, 35, 32] for a gentle introduction and overview on coresets.

Our aim is of course not only to obtain good approximation accuracy as stated in Equation (1),
but also for the subsample achieving the bound to be sublinear in the input size. Unfortunately,
most generalized linear models do not admit strongly sublinear data summaries with reasonable
approximation guarantees [36, 31]. This also holds for the Poisson models considered in this paper.

To go beyond the worst-case setting and enable meaningful data reduction, a natural approach is
to parameterize the analysis with a quantity that captures the fit of data to the statistical model and
quantifies the achievable size of succinct data summaries [36]. Another ingredient that is commonly
used to tackle data reduction for generalized linear models is to relate their loss to ℓp norms, for which
ℓp sensitivities or leverage scores yield viable importance sampling distributions [16, 12, 36, 34].

1.1 Our contributions

We provide the first rigorous analysis for (1± ε)-approximate data reduction for Poisson models:

1. We show Ω(n) lower bounds against coresets for Poisson regression (Lemma 6.1), showing
that changing the link function alone does not resolve the problem of bounding the com-
plexity of coresets for the log-link, which is incompressible. Our lower bound extends to
arbitrary data reduction techniques up to a log(n) factor (Lemma 6.2).

2. We introduce a novel complexity parameter ρ that captures the compressibility of data under
a Poisson pth-root-link model (Equation (2)). This parameter corresponds naturally to the
statistical model assumptions and establishes a relationship between these assumptions and
an optimization perspective of the compressibility problem.

3. We conduct a parameterized analysis, showing that sublinear coresets exist under the
statistically natural assumption of small ρ parameter (Theorem 3.8), and using a novel
domain shift idea for their optimization (Theorem 4.2).

4. We prove a square root upper bound for the Lambert W0 function over [−1/e, 0)
(Lemma 6.3) that allows us to prove tight bounds for the slope of a linear lower enve-
lope (Lemma 6.4). This justifies an Θ̃(

√
ymax)

1 dependence for the ID-link, which is
contrasted by an O(log (ymax)) dependence for the square root-link.

5. We show the limitation of our domain shifting approach, showing that the error of this method
cannot be bounded to give the required (1 + ε) approximation for p ≥ 3 (Lemma 6.5).
This indicates a limitation to the common choices p ∈ {1, 2}, and suggests that different
techniques than the ones we develop below may be needed to overcome this limitation.

1.2 Our techniques

The general outline of our analysis follows the established method of sensitivity sampling [26, 19].
Several steps along this outline require novel ideas due to peculiarities of the Poisson loss function
defined in Equations (3) and (4) below. A VC dimension bound of d2 is easy to obtain by counting
the number of arithmetic operations required to compare an individual loss to a given threshold as a
measure of complexity [4]. A near-linear Õ(d/ε) bound is obtained by a more fine-grained analysis,
by grouping and rounding the associated count data (respectively, sensitivity scores) to powers of
(1 + ε) (resp. to powers of 2). This results in a surrogate loss function that admits group-wise linear
VC dimension, by splitting the domain of each loss function at its unique global minimum into
two regions such that the restriction of the function to each region is monotone, and connecting
the resulting construction to hyperplane classifiers. Approximating the surrogate finally implies the
desired (1± ε) approximation for the original loss as well.

For bounding the sensitivities, the domain of the loss function g(z) is split into three intervals: 1) one
interval consisting of ‘moderate’ values of z, such that the g(z) values are bounded above and below
within constants and can be treated using simple uniform sampling; 2) one interval where z has large

1Õ(·) hides lower order log terms, analogous notation applies to all Landau symbols.

2

values, in which case g(z) is closely related to zp; 3) one interval, where z is close to 0, in which
case the negative logarithm dominates the loss.

Tackling the interval in 2) requires relating the loss function gy(z) to zp. Specifically we would
like to bound zp ≥ gy(z) ≥ zp/λ for sufficiently large z and for some value of λ. This requires
special care, since the loss function gy(z) is translated polynomially towards larger values of z with
growing y, but the minimum of gy(z) grows only logarithmically with y. Informally speaking, the
loss function ‘widens’, and its minimum ‘moves mainly to the right’, so for large y, we would need a
very flat lower bound, which requires large λ ≈ y (ignoring polylogarithmic terms). However, this is
undesirable, since λ appears to be a crucial parameter for bounding the subsample size. Specifically,
this would yield a

∑
i∈[n] yi = Ω(n) dependence in the coreset size. So instead, we bound the loss

roughly as zp ≥ gy(z) ≥ (z − y1/p)p/λ, which amounts to translating the lower envelope with
growing y as well. Additionally, we introduce a novel complexity parameter ρ which balances the
translated (z − y1/p)p lower bound with the zp upper bound. We stress that these translation and
balancing arguments are not artificial or just used to make calculations go through, but they are
naturally consistent with the statistical model (see the discussion below Equation (2)). This proof
strategy eventually captures the loss function within interval 2) more closely and yields sublinear
bounds for λ as well.

We remark that in contrast to µ-complexity in previous work [36, 34], a bounded balancing complexity
parameter ρ does not handle the asymmetry between intervals 2) and 3). Tackling the interval in 3)
thus also requires completely new ideas, as the negative logarithm has an infinite asymptote at 0,
which we exploit to prove Ω̃(n) lower bounds on subsample size in Lemma 6.1 and Lemma 6.2. Such
asymptotes have not been mentioned or analyzed in previous related work on sensitivity sampling for
GLMs. To circumvent the lower bound, we avoid this interval by introducing a novel domain shifting
approach, requiring all feasible solutions to satisfy z > η for a suitable η > 0 for optimization.
Choosing η in the order of ε, we can argue that the solution in the shifted domain is a (1 + ε)
approximation. Avoiding the asymptote enables a coreset construction for the shifted domain.

We believe that the domain shifting approach is necessary: if an instance consists of the extreme
points on the convex hull, and all but a small (sublinear) number of points are separated by an ε
distance to the boundary, then required structure is already in the data. But if non-extremal points are
allowed to be arbitrarily close to the boundary, and we do not shift the domain, then we will not avoid
high sensitivity points that are strictly inside the convex hull. Then the coreset size would necessarily
depend on the distance of these non-extremal points to the boundary, and crucially on the number of
points that are very close to the boundary of the convex hull, which again can be Ω(n).

Exploiting the asymmetry between the intervals 2) and 3) where the loss exhibits zp and − log(z)

growth respectively, we prove Ω̃(n) lower bounds on subsample size, by adapting known reduction
techniques [31, 36, 41]. We also provide lower bounds on parameters used in our analysis, showing
their tightness. In particular, the aforementioned λ slope parameter is of size Θ(

√
y/ log(y)) in the

case p = 1. The proof is conducted by an exact characterization of the tangent point between our
linear lower envelope and the loss function. Since this requires balancing between z and log(z) and
examining the log(y!) function, further bounds rely on Stirling’s approximation and the principal
branch of the Lambert W0 function. Recent bounds in [38] for the Lambert W0 function imply our
square root upper bound but only a cubic root lower bound. We thus significantly tighten their bound
in an appropriate interval. This result may be of independent interest, since the Lambert function
cannot be expressed in terms of elementary functions and has many important applications in various
fields. As a result, we obtain a matching square root lower bound on λ in our context.

1.3 Related work

Classic work on data subsampling started with linear ℓ2 regression [16] and was extended to linear
ℓp regression [12]. More recently, the study continued with non-linear transformations such as in
generalized linear regression models. The first guaranteed finite subsample bounds for logistic regres-
sion appeared in [36], while impossibility results for Poisson regression were given in [31]. Research
on generalized linear models was continued for Probit regression [34]. Asymptotic properties of
subsampling for generalized linear models, including for Poisson regression, were studied in [3, 27].
A finite-sample size result is given in [3, Theorem 5] that exhibits O(

√
d) approximation error. [13]

3

studied a sampling-based feature space reduction for a wide array of generalized linear models with
additive errors. However, parts of their assumptions specifically do not apply to Poisson regression.

2 Preliminaries and the Poisson pth-root-link model

Poisson regression models aim to predict a count variable Y ∈ N0 using a generalized linear model
with link function h : R → R, i.e.,

h(E(Y | x)) = xβ ,

where x = (1, x(1), . . . , x(d−1)) ∈ Rd is a row vector, and β ∈ Rd is a column vector carrying the
model parameters that in particular include an intercept β1 [30]. Common choices for h are the
canonical log-link h(v) = ln(v), the ID-link h(v) = v, and the root-link h(v) = v1/2. The latter
two can be cast into a general framework by introducing the pth-root-link h(v) = v1/p, for any
R ∋ p ≥ 1, where the ID-link and root-link correspond to p ∈ {1, 2} [10].

Subsampling for the log-link is not possible with the multiplicative (1 + ε) error guarantees that
we aim for, since it entails preserving the exp(xβ) function [31]. We will also show impossibility
results for the pth-root-link. However, we parameterize our analysis with a data-dependent parameter
that reflects naturally how well the realized data distribution is captured by the Poisson model. This
parameter is inspired from previous work [36]: we will refer to data X, y as being ‘ρ-complex’, if
there exists a 0 < ρ < ∞ such that denoting by xj the j-th row of the data matrix X ∈ Rn×d and by
yj the j-th entry of the vector y ∈ Nn

0 , it holds that

sup
β∈Rd

∑n
j=1 |xjβ|p∑n

j=1 |xjβ − y
1/p
j |

p ≤ ρ. (2)

We may interpret the parameter ρ as follows. The rate parameter of the predicted Poisson distribution
is E(Y | x) = (xβ)p. Hence, the mean and variance of Yj given xj is (xjβ)

p, for each j = 1, . . . , n.
To obtain the maximum likelihood estimator of β, we seek β such that for every j = 1, . . . , n, xjβ is
as close as possible to y

1/p
j , since y

1/p
j minimizes the jth summand gyj of the loss function specified

in Equations (3) and (4) below. However, choosing β so that |xjβ − y
1/p
j | is small will imply that

each summand in the numerator of Equation (2) will be close to y
1/p
j . In this case, the variance

of the (Yj)
n
j=1 will not be captured effectively by the Poisson model, and ρ will be large. Thus,

smaller values of ρ, i.e., values of ρ that are closer to 1, indicate that the true data distribution is
better captured by the Poisson model. Thus the ρ parameter in Equation (2) plays a similar role of
quantifying model fit as the µw(X) parameter from [36, Section 2]; see in particular the comments at
the end of that section.

Assuming that the value of ρ is small allows us to use the proximity of the negative log-likelihood
to ℓp norms, together with some novel optimization ideas involving a shifted domain. This yields
the first provable finite and sublinear subsample size with rigorous (1 + ε) approximation guarantee.
We focus on the special cases p ∈ {1, 2} since they are the most popular (in fact the only practical)
alternatives to the intractable log-link [10, 31]. The ID-link has been used in epidemiology [40, 29].
The root-link function has been applied to forecasting for queueing systems [39] and to account for
misspecification bias in maximum likelihood estimation [17]. When the estimated mean count of the
data is zero, then the canonical log-link causes problems that can be avoided by using the root-link;
see e.g. [28, Section 5.4]. We also discuss in our lower bounds section other choices for p, and show
that for any natural number p ≥ 3 the bound implied by our novel shifting idea must fail. This bound
is crucial to obtain our final approximation, indicating that other methods would be required to tackle
a generalization for p ≥ 3, if this is even possible.

Given parameters β and an input x, the rate parameter of the predicted Poisson distribution is
µ := E(Y | x) = (xβ)p,

which corresponds to its mean and variance. Its probability mass function is P(Y = y) = Poisson(y |
xβ) = µye−µ

y! = (xβ)py e−(xβ)p

y! . Given a set of i.i.d. observations expressed as the rows xi of a data
matrix X ∈ Rn×d with corresponding labels y ∈ Nn

0 we can obtain a maximum likelihood estimate
of the parameter β by minimizing the negative log-likelihood, which takes the form

fy(Xβ) :=
∑n

i=1
gyi(xiβ) =

∑n

i=1
(xiβ)

p − pyi ln(xiβ) + ln(yi!) (3)

4

where
gyi(xiβ) := (xiβ)

p − pyi log(xiβ) + log(yi!). (4)
For any pth-root-link, the loss function includes a log(xβ) term, which restricts the feasible set to
all β such that for all xi, i ∈ [n] it holds that xiβ > 0. We note that for summands corresponding to
yi = 0, the function g0(z) simplifies to g0(z) = zp > 0 with well-known properties of the ℓp norm.
We thus focus on summands gyi for yi ∈ N below.

For arbitrary y ∈ N, the function gy(z) = zp − py ln(z) + ln(y) on R>0 is strictly convex with
first and second derivatives g′y(z) = pzp−1 − py

z and g′′y (z) = p(p− 1)zp−2 + py
z2 > 0 respectively.

Thus gy(z) decreases on the interval z ∈ (0, y1/p), increases on z ∈ (y1/p,∞), and has a unique
minimizer at z∗ = y1/p with corresponding value y − y log(y) + log(y!) ≈ 1

2 log(y) + Θ(1) ≥ 1
by Stirling’s approximation. We shall use the following lower bounds to capture the y-dependence.
Lemma 2.1. It holds for all z ∈ R>0, p ∈ [1,∞), y ∈ N that

gy(z) = zp − py log(z) + log(y!) ≥ max

{
1,

1

3
(1 + p log(z))

}
.

The next two results bound the individual loss contributions from above and below by roughly a
value of zp. For the lower bound, however, we note that as the value of y grows, the loss function
is translated polynomially towards larger z values, since its minimum is attained at z∗ = y1/p.
However, by Lemma 2.1, and the properties above, the increase of gy(z∗) is only logarithmic in z∗,
and thus also logarithmic in y. Denote by λ the scaling parameter of the lower bound on gy given
in Lemma 2.2. Then the logarithmic growth of gy(z∗) implies that we would need λ ≈ y/ log(y).
Unfortunately, the value of λ will affect the coreset size, which is undesirable, since it can become
linear simply due to large values of y. We thus require a sublinear dependence on ymax, i.e., the
largest value of y presented in the data. To this end, we shift the lower envelope by the minimizer
z∗ = y1/p. The value of λ can subsequently be bounded in a desirable way, but differs significantly
depending on the value of p: in the case p = 1 we prove λ ∈ O(

√
y/ log(y)) to be sufficient, while

the case p = 2 even constant λ = 1 will suffice. In Section 6, we will show a separation by a
superconstant and matching square root lower bound on the value of λ in the dominating case p = 1.

Lemma 2.2. For any p ≥ 1 and y ∈ N it holds that zp ≥ gy(z) for z > y1/p. If p = 1, then for

some λ ∈ O(
√
y/ log(y)), it holds that gy(z) ≥ (z−y1/p)p

λ for z > y1/p.

Lemma 2.3. Let p ≥ 2 and y ∈ N, and λ = 1. Then gy(z) ≥ (z−y1/p)p

λ for z > y1/p.

3 Coreset construction

We begin by summarizing some key aspects of the sensitivity framework. Formal definitions for the
sensitivity framework (including sensitivities, the VC dimension, and the main subsampling theorem)
are given in Appendix A. In the sensitivity framework, the goal is to obtain coresets using importance
sampling techniques to approximate loss functions [26]. Given a loss function whose value depends
on a collection of input points, the main idea of the framework is to measure the sensitivity of any
input point in terms of its worst-case contribution to the loss function. More precisely, given a point
xj , its sensitivity for the loss function of the form f(Xη) =

∑
j∈[n] g(xjη) is given by

σj = sup
η

g(xjη)

f(Xη)
.

The main subsampling theorem, Proposition A.5, combines the sensitivities together with the theory
of VC dimension. The idea is to sample points according to probabilities that are proportional to
the sensitivities, in order to create an appropriately reweighted subsample of the initial collection of
points. Suppose the total sensitivity S =

∑
j∈[n] σj of the points and the VC dimension ∆ associated

with a set system based on the summands g(xiη) in the loss function f(Xη) are bounded, and choose
a failure probability δ. If the subsample is of size k = O(S

ε2 (∆ log(S) + log(1δ))), then it is in fact
a (1 + ε)-coreset [19] with probability at least 1 − δ. Unfortunately, it is often just as difficult to
compute the exact sensitivities as it is to solve the original problem. The remedy is to exploit the fact
that one does not need the exact sensitivities themselves: it suffices to use any upper bounds on the

5

sensitivities, provided that the upper bounds are not too loose, since a larger upper bound will lead to
a larger coreset. Thus, we can reduce the task of coreset construction to two tasks: control of the VC
dimension and sensitivity estimation of the loss function. This is handled in the following sections.

3.1 Bounding the VC dimension

We prove two different bounds on the VC dimension. The first one is a simple quadratic bound of
O(d2). Our proof in the appendix simply counts the number of operations required to compare the
loss function to a given threshold. The VC dimension bound then follows from a standard result in
the context of bounding the VC dimension of neural networks [4, Thm. 8.14].
Lemma 3.1. The VC dimension of the range space associated with the class of Poisson loss functions
as in Equation (3) is bounded by ∆(RF∗) ≤ O(d2).

It is noteworthy that the quadratic dependence is implied already only from one single application
of the exponential function, which is sufficient but likely not necessary in our context. Hence, we
show in the remainder a more refined near-linear bound of O(dε log(n) log(ymax)) = Õ(d/ε), while
keeping the dependence on other input parameters—namely, on n and ymax—logarithmic.

To this end, we subdivide the set of input functions into groups of growing values of their response
parameter yi, and of their sensitivity ςi in a geometric progression. By rounding these values in
each group to their next power in the geometric progression, we obtain disjoint sets of functions that
closely approximate the original weighted loss functions, and whose VC-dimension can be bounded
in O(d). Since there is only a logarithmic number of groups in both progressions, we obtain the
claimed VC dimension bound.

Recall the responses (yi)i are nonnegative integers. We define their largest value (for a given input)
to be ymax = max{yi | i ∈ [n]}. Therefore, they are naturally bounded between 0 ≤ yi ≤ ymax

for all i ∈ [n] and there are at most ymax + 1 different values of yi. Also note that the sensitivity
values are naturally bounded by 0 ≤ ςi ≤ 1, but since they are continuous, they must be bounded
away from 0 in order for the geometric progression to end in a finite (logarithmic) number of steps.
If we increase each sensitivity by 1/n then the total sensitivity grows only by a constant, since
S′ =

∑
i∈[n](ςi + 1/n) = S + 1. For these reasons, we can thus assume that 1/n ≤ ςi ≤ 1.

Now, we would like to increase the sensitivities even more to their next power of 2, which will clearly
increase the total sensitivity by no more than

2S′ = 2S + 2 ≤ 3S. (5)
By our above upper and lower bounds on the sensitivities, this will result in O(log(n)) groups, where
in each group all sensitivities are equal. Note that in Proposition A.5, the reweighting of points
depends only on fixed terms except for the sensitivities. Thus, in each group, all weights are constant.
We have the following bound that applies to each group and for any fixed y ∈ N0.
Lemma 3.2. The VC dimension of the range space induced by the set of functions Fc = {gi(β) =
c · gyi

(xiβ) | i ∈ [n]} with equal weight c ∈ R≥0, and equal yi = y ∈ N0 for all i ∈ [n] satisfies
∆(RFc

) = O(d).

For the values of yi, we proceed in a very similar way. However, unlike the sensitivities, a constant
approximation as in Equation (5) provided by powers of 2 will not suffice. Instead, we group the
values of yi into powers of (1 + ε) and round all yi that belong to the same group to the next larger
power. We argue that this preserves a (1±O(ε)) approximation to the original loss function. Indeed,
this claim even holds for each summand gyi if yi is large enough, as the following lemma shows.
Lemma 3.3. Let y ≥ 8 and 1 ≥ ε > 0. Let y < y′ ≤ (1 + ε)yi. Then for arbitrary z > 0 it holds
that (1− 3ε)gy(z) ≤ gy′(z) ≤ (1 + 3ε)gy(z).

A direct consequence of Lemma 3.3 is that any coreset for the rounded version is a coreset for the
original loss function and vice versa, up to an additional (1±O(ε)) error. We can therefore work
with the rounded version of the loss function, which yields better bounds for the VC dimension.

A general theorem for bounding the VC dimension of the union or intersection of t range spaces,
each of bounded VC dimension at most D, was given in [6]. Their result yields O(tD log(t)). Here,
we give a bound of O(tD) for the special case that the range spaces are disjoint2.

2The same bound and proof also appeared in [20] in a different context.

6

Lemma 3.4. Let F be any family of functions, and let F1, . . . , Ft ⊆ F be nonempty sets that form a
partition of F , i.e., their disjoint union satisfies

⋃̇
i∈[t] = F . Let the VC dimension of the range space

induced by Fi be bounded by D for all i ∈ [t]. Then the VC dimension of the range space induced by
F satisfies ∆(RF) ≤ tD.

As a result of our previous partition into groups and the O(d) bound on each group, we obtain the
desired result.

Lemma 3.5. Let F be the set of functions in the Poisson model. We can round and group the values
of yi and the associated sensitivities ςi to obtain F∗ such that each function in F∗ is weighted by
0 < wi ∈ W := {u1, . . . , ut} for t ∈ O(ε−1 log(n) · log(ymax)). The range space induced by F∗

satisfies ∆(RF∗) ≤ O(dε log(n) log(ymax)).

As a direct corollary of Lemmas 3.1 and 3.5, we obtain the following combined bound.

Corollary 3.6. The VC dimension ∆(RF∗) of the range space associated with the class of Poisson
loss functions as in Equation (3) is bounded by

∆(RF∗) ≤ O

(
d ·min

{
d,

log(n) log(ymax)

ε

})
.

3.2 Bounding the sensitivities

We split the loss function into two parts:

fy(Xβ) :=
∑

i:xiβ≤η

gyi
(xiβ) +

∑
i:xiβ>η

gyi
(xiβ) (6)

We will ignore the first sum, since we will see later in the main approximation of Section 4, that by
shifting the hyperplanes defined by parameter vectors in the solution space, everything can be shifted
to the second sum where xiβ ≥ η. In this way, we preserve a (1 + ε)-approximation, if η = Θ(ε) is
small enough. We note that this shifting technique still requires the extreme points on the convex
hull Ext(X) to be maintained; we address this issue in Section 5. We will focus on bounding the
sensitivities for the remaining points with xiβ ≥ η. In the next lemma we require the concept of a
well-conditioned-basis [12]. Let q ∈ {2,∞} denote the dual norm of p ∈ {1, 2}, respectively. We
say that U is a ‘(α, γ, p)-well-conditioned basis’ for the column span of X = UR if U ∈ Rn×d

satisfies
∥U∥p ≤ α, , ∀z ∈ Rd : ∥z∥q ≤ γ∥Uz∥p. (7)

Lemma 3.7. Let X ∈ Rn×d, y ∈ Nn
0 be a ρ-complex dataset, i.e., Equation (2) holds. Let p ∈ {1, 2}.

Let λ ≥ 1 be the slope parameter from either Lemma 2.2 or Lemma 2.3 depending on the value
of p. Let γ be a conditioning parameter and η > 0 be arbitrary. Then the sensitivity for each xi

with xiβ > η is bounded by ςi ≤ λργp∥Ui∥pp + 2/n. Their total sensitivity is bounded by S ≤
O
(
ρd
√
ymax/log(ymax) + log log(1/η)

)
for p = 1, and S ≤ O(ρd+ log (ymax) + log log(1/η))

for p = 2.

3.3 Combining the results into the sensitivity framework

Putting all steps (VC dimension, total sensitivity) together into the sensitivity framework, Propo-
sition A.5 yields the following computational result, where in particular ℓp well-conditioning is
established constructively using ℓ2 subspace embeddings [9], resp. using ℓ1 spanning sets [44].

Theorem 3.8. Let X ∈ Rn×d, y ∈ Nn
0 be a ρ-complex dataset, i.e., Equation (2) holds. We can

compute a weighted coreset (K,w) ∈ Rk×d × Rk
≥0 for the pth-root-link Poisson regression problem

with p ∈ {1, 2} on D(η) := {β ∈ Rd : ∀i, xiβ > η}. The size of the coreset is bounded by
k = Õ(ε−2d ·min{d, ε−1 log(n) log(ymax)} ·m), where

m =

{
ρd log log(d)

√
ymax/log(ymax) + log log(1/η) p = 1

ρd+ log (ymax) + log log(1/η) p = 2.

7

4 Main approximation result

In the previous section, we developed a coreset for the sum of individual losses where xiβ ≥ η, i.e.,
for the second sum of Equation (6). Since we cannot bound the remaining first sum where xiβ < η,
we choose to simply avoid it instead, by shifting each solution by η. Define for any η ≥ 0

D(η) := {β ∈ Rd : ∀i, xiβ > η}.3

The original domain of optimization is D(0) and the shifted domain is D(η). Shifting the domain
does not remove the need to store the extreme points on the convex hull of the input, since we need
these points to determine the feasible domain D(η) during optimization. However, shifting removes
the need to approximate the first sum in Equation (6) over points with unbounded sensitivity located
in a small slab of width η within the convex hull.

Since we have a (1 ± ε) coreset for D(η), we need to find a suitable choice for η and show that
the optimizer (β′)∗ ∈ D(η) is a (1 +O(ε)) approximation for the optimizer in the original domain
β∗ ∈ D(0). We thus define

β̃∗ := argminβ′∈D(η)f(Xβ′), β∗ := argminβ∈D(0)f(Xβ). (8)

Lemma 4.1. It holds for sufficiently small η > 0 that

f(Xβ∗) ≤ f(Xβ̃∗) ≤ (1 +O(η))f(Xβ∗).

Now we combine the preceding results, namely the coreset and the domain shifting bound, for our
main theorem.
Theorem 4.2. Let ε ∈ (0, 1/14). Let (C,w) be a coreset according to Theorem 3.8. Let β̃ :=
argminβ∈D(ε) fw(Cβ), β∗ := argminβ∈D(0) f(Xβ). Then

f(Xβ∗) ≤ f(Xβ̃) ≤ (1 + ε)f(Xβ∗).

5 Extreme points on the convex hull

In the previous sections, we argued that for obtaining a (1 + ε) approximation, it suffices to calculate
a coreset that is valid for all β ∈ D(ε), and then to minimize our loss function over β ∈ D(ε) using
the coreset instead of the full data. Note that for the optimizer to stay in the feasible set D(ε), one
must store the extreme points on the convex hull of the input points denoted by Ext(X). This is true
even when ε = 0, i.e., even when the original function is considered and no shifting occurs. Note
that there exist datasets such as our ‘points on a circle’ example considered in the lower bounds of
Section 6, such that |Ext(X)| = n.

There are several ways to either characterize |Ext(X)| for typical inputs in a sublinear way, or to
approximate the convex hull by a smaller sublinear subset, called an ε-kernel, with an error of at most
ε. Since these methods are usually relative to the diameter of the data, and since we need an additive
error for our shifting approach, we first normalize the data to be within the unit ball. We note that this
does not change the value of the loss function, since this involves scaling by a fixed value C ≥ 1, and
since we can use the fact that

f(Xβ) = f

((
X

C

)
(Cβ)

)
,

as well as the one-to-one correspondence between any β and Cβ. Thus, we can run the algorithm on
the rescaled data, obtain a good or optimal solution Cβ∗, and rescale Cβ∗ to obtain the corresponding
β∗. Rescaling steps such as normalizing data to zero mean and unit variance are standard in statistical
data analysis [22].

Smoothed complexity of the convex hull Instead of the worst case |Ext(X)| over all possible
datasets X ∈ Rn×d, in smoothed complexity we consider

sup
X∈Rn×d

EΞ∼N |Ext(X + Ξ)|,

3Such domain restrictions do not lead to feasibility issues, as discussed in Appendix F due to page limitations.

8

where N denotes the distribution over matrices Ξ with the same dimensions as X and with i.i.d.
Gaussian entries with mean 0 and variance σ2, i.e., Ξi,j ∼ N(0, σ2) for all i ∈ [n], j ∈ [d] [11]. This
is motivated by the fact that many datasets are recorded with measurement errors, which can often be
assumed to be Gaussian. Specifically for the convex hull, [11, Chapter 4] showed that for normalized
data in the unit cube, the supremum above is bounded by

O

(
log

3
2d−1(n)

σd
+ logd−1(n)

)
,

which is sublinear in n, though exponential in d.

ε-kernels The purpose of ε-kernels is to approximate the extent of a point set up to an error of 1− ε
for any direction in Rd based on a subset of the data. They were introduced by [1] and improved by
[8] to optimal Θ(1/ε(d−1)/2) size, see the survey [2]. Since we assume our data to be normalized
within the unit ball, this translates to an additive error that is bounded by ε. Thus, the boundary of the
convex hull of the ε-kernel can be smaller than the boundary of the original convex hull by at most ε.

Improvement for structured data It is known that ε-kernels can have size up to Ω(1/ε(d−1)/2) in
the worst case. Beyond the worst case, the structure of the given data may allow for much smaller
ε-kernels to exist, even in high dimensions. Motivated by this, [5] developed a ‘greedy clustering’
approach that produces an ε-kernel of size O(kmin/ε

2), where kmin = kmin(X, ε) denotes the
smallest possible size of a subset that gives the required ε-kernel guarantee for the original input X .

Using ε-kernels for optimizing Poisson models The above options include the possibility to calculate
the convex hull and rely on the sublinear smoothed complexity bound, if this is reasonable in the
given context. Otherwise, if we have access to any of the above ε-kernel constructions, we shift the
hyperplane away from the approximation of the convex hull, provided by the ε-kernel, by a distance
of η = 2ε instead of just ε. As a result, the hyperplane will be shifted away from the original convex
hull by at least ε and at most 2ε. Thus, we still compute a (1 + Θ(ε)) approximation in this way.

6 Lower bounds

We complement our coreset constructions for the variants of the Poisson model by a series of lower
bounds. Our bounds in Lemma 6.1 and Lemma 6.2 are specifically for the pth-root-link, and not for
the log-link, which was studied in [31]. We use similar constructions of the bad dataset as those used
frequently in previous literature, e.g., in [31, Theorem 6], and in [36, 41, 23, 21]. However, each of
these references require specific adaptations to the respective loss function that do not directly apply
to our setting. Our arguments are thus adapted to the Poisson pth-root-link model to show that it does
not admit sublinear coresets without imposing assumptions on the data or restricting the model.

The hard instance consists of n equidistant points on the unit circle. Recall that in the Poisson
regression formulation, every point has an additional intercept coordinate which is 1, and the
corresponding parameter of β determines the affine translation; see Section 2. For every i ∈ [n], let
xi = (1, cos(2πin), sin(2πin)), and yi = 1. Recall that any feasible β must satisfy xiβ > 0,∀i ∈ [n].
The hyperplane parameterized by β is thus always outside the point set and β points in the direction
of the (xi)i∈[n].

The idea for showing that any point has sensitivity 1 is that if β points to the center of the point set,
and the hyperplane is translated to just ‘touch’ point xi, then xiβ is arbitrarily close to 0, implying
that the cost is arbitrarily large. All other points are sufficiently bounded away from the hyperplane,
but also not too far away, so their cost is bounded. This implies that the sensitivity of point xi can be
made arbitrarily close to 1. By symmetry of our construction, this holds for any point.
Lemma 6.1. Consider a number n ≥ 8 of points equidistant on a unit circle in a 2-dimensional
affine subspace embedded in Rd, d ≥ 3, each with label yi = 1. Then the sensitivity of each point
for the Poisson model with pth-root-link for p ∈ {1, 2} is arbitrarily close to 1. Consequently, any
coreset for the Poisson regression model must comprise all Ω(n) input points.

Below, we prove an even more interesting statement, i.e., that no compression is possible below
Ω(n) bits. While this statement appears to give a weaker Ω(n/ log(n)) bound against coresets, it
in fact gives a stronger bound in some sense. This is because the bound holds against any possible
data reduction algorithm and against any data structure that answers negative log-likelihood queries

9

to within a small error, independent of what (possibly randomized) operations the data reduction
algorithm performs. For example, the algorithm could subsample, it could select input points as
coreset constructions do, or it could take linear combinations as in linear sketching. More generally,
the bound holds against any sort of bit encoding that represents the reduced data. The reduction is
based on the same data example of equidistant points on a circle embedded in d ≥ 3 dimensions.
Lemma 6.2. Let ΣD be a data structure for D = [X, y] ∈ Rn×d × Rn, d ≥ 3, that approximates
negative log-likelihood queries ΣD(β) for Poisson regression with the pth-root-link for p ∈ {1, 2},
such that for some φ ≥ 1 it holds that

∀β ∈ Rd : f(Xβ) ≤ ΣD(β) ≤ φ · f(Xβ).

If φ < n
8 log(n) then ΣD requires Ω(n) bits of memory.

Next, we prove that the parts of our analysis that are specific to the Poisson model are tight. In
particular, the scale parameter λ is only a constant for p = 2, but in the case p = 1 we only have a√
y/log(y) upper bound. Since ymax, i.e., the largest y, can potentially be very large, one may ask if

we can do better. Our next result exactly characterizes the smallest possible parameter λ such that
our linear lower envelope approximation is tangent to the actual loss function, in order to show a
tight λ = Θ(

√
y/log(y)) bound. This characterization of tangent points relies on properties of the

principal branch W0 of the Lambert function, which is defined by the equation

W0(x)e
W0(x) = x, for x ≥ −1/e.

The only approximations that the final bounds obey follow from Stirling’s approximation and from
the following upper bound on the Lambert function W0 by a square root function. This upper bound
improves the recent cubic root bound of [38, Theorem 3.2] within a small region, and is crucial to
obtaining a tight square root (rather than cubic root) lower bound on λ.

Lemma 6.3. For all x ∈ [−1/e, 0), it holds that W0(x) ≤
√
2(1 + ex)− 1.

The above bound on the W0 function is novel and may be of independent interest. In our context, it
allows us to prove the following tight bound on λ that resembles the same asymptotic upper bound as
in Lemma 2.2, and establishes a matching lower bound.

Lemma 6.4. Let y ∈ N be arbitrary, p = 1, and τ = y1/p in the definition Equation (4) of
gy. Let hλ(z) := (z−y1/p)p

λ for z > 0. Then gy and hλ are tangent to each other if and only if
λ = λ∗(y) = (W0(

−y
(y!)1/y exp(2)

)+1)−1, in which case the unique tangent point is z∗(y) = yλ∗(y)
λ∗(y)−1 .

In addition, λ∗(y) = Θ(
√
ymax/ log(ymax)).

The next lemma shows for p ≥ 3 that there exists no constant C such that the domain shifting
approach that we developed in Section 4 yields a 1 +Cε error bound. As this error bound is a crucial
sufficient condition for our main approximation results given in Lemma 4.1 and Theorem 4.2 to hold,
the lemma suggests that different techniques may be needed. It indicates a limitation of our analysis
to the most common values p ∈ {1, 2}, which are the main parameterizations considered in our work.
Lemma 6.5. Let p ∈ N, p ≥ 3. Then there does not exist an absolute constant C ≥ 0 such that for
all sufficiently small η > 0 and for all β ∈ D(0), β′ := β + ηe1 ∈ D(η) satisfies

f(Xβ′) ≤ f(Xβ) + ηpn+ ηCf(Xβ). (9)

7 Concluding remarks

In Section 1.3, we recalled that previous finite sample size results had either unbounded or O(
√
d)

error instead of our (1 + ε) approximation. Our lower bounds on the parameters, together with
linear VC dimension, linear sensitivity, and linear ρ dependence in our main quantitative bounds of
Theorem 3.8, leave no room for improvement (up to polylogarithmic factors) if one uses a black-box
application of the sensitivity framework. We remark that recent improvements on ℓp sensitivity
sampling [33] suggest that the dimension dependence can be improved to linear as well. Exploiting
the fact that our coreset gives a guarantee for all β ∈ D(ε), it would be interesting to extend
the statistical treatment to the Bayesian setting, inferring the distribution of parameters over this
(sub-)domain, as was recently accomplished in the case of logistic and probit regression [14].

10

Acknowledgments and Disclosure of Funding

The authors thank the reviewers for their constructive feedback and discussions. We also thank Simon
Omlor for valuable discussions that inspired the domain shift idea and Tim Novak for help with
experiments. The research of HCL has been partially funded by the DFG — Project-ID 318763901
— SFB1294. AM was mainly supported by the German Research Foundation (DFG) — grant MU
4662/2-1 (535889065) and by the TU Dortmund - Center for Data Science and Simulation (DoDaS).
AM acknowledges additional travel funding by the University of Cologne.

References
[1] Pankaj K. Agarwal, Sariel Har-Peled, and Kasturi R. Varadarajan. Approximating extent measures of

points. J. ACM, 51(4):606–635, 2004.

[2] Pankaj K Agarwal, Sariel Har-Peled, Kasturi R Varadarajan, et al. Geometric approximation via coresets.
Combinatorial and computational geometry, 52(1):1–30, 2005.

[3] Mingyao Ai, Jun Yu, Huiming Zhang, and HaiYing Wang. Optimal subsampling algorithms for Big Data
regressions. Statistica Sinica, 31(2):pp. 749–772, 2021.

[4] Martin Anthony and Peter L. Bartlett. Neural Network Learning - Theoretical Foundations. Cambridge
University Press, 2002.

[5] Avrim Blum, Sariel Har-Peled, and Benjamin Raichel. Sparse approximation via generating point sets.
ACM Trans. Algorithms, 15(3):32:1–32:16, 2019.

[6] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K. Warmuth. Learnability and the
Vapnik-Chervonenkis dimension. J. ACM, 36(4):929–965, 1989.

[7] Vladimir Braverman, Dan Feldman, and Harry Lang. New frameworks for offline and streaming coreset
constructions. CoRR, abs/1612.00889, 2016.

[8] Timothy M Chan. Faster core-set constructions and data stream algorithms in fixed dimensions. In
Proceedings of the twentieth annual symposium on Computational geometry, pages 152–159, 2004.

[9] Kenneth L Clarkson and David P Woodruff. Low-rank approximation and regression in input sparsity time.
Journal of the ACM, 63(6):1–45, 2017.

[10] W. G. Cochran. The analysis of variance when experimental errors follow the Poisson or binomial laws.
The Annals of Mathematical Statistics, 11(3):335–347, 1940.

[11] Valentina Damerow. Average and smoothed complexity of geometric structures. PhD thesis, University of
Paderborn, 2006.

[12] Anirban Dasgupta, Petros Drineas, Boulos Harb, Ravi Kumar, and Michael W. Mahoney. Sampling
algorithms and coresets for ℓp regression. SIAM J. Comput., 38(5):2060–2078, 2009.

[13] Gregory Dexter, Rajiv Khanna, Jawad Raheel, and Petros Drineas. Feature space sketching for logistic
regression. CoRR, abs/2303.14284, 2023.

[14] Zeyu Ding, Simon Omlor, Katja Ickstadt, and Alexander Munteanu. Scalable Bayesian p-generalized
probit and logistic regression. Advances in Data Analysis and Classification, pages 1–35, 2024.

[15] Petros Drineas, Malik Magdon-Ismail, Michael W. Mahoney, and David P. Woodruff. Fast approximation
of matrix coherence and statistical leverage. J. Mach. Learn. Res., 13:3475–3506, 2012.

[16] Petros Drineas, Michael W. Mahoney, and S. Muthukrishnan. Sampling algorithms for l2 regression and
applications. In Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1127–1136, 2006.

[17] Bradley Efron. Poisson overdispersion estimates based on the method of asymmetric maximum likelihood.
Journal of the American Statistical Association, 87(417):98–107, 1992.

[18] Dan Feldman and Michael Langberg. A unified framework for approximating and clustering data. In
Proceedings of the 43rd ACM Symposium on Theory of Computing (STOC), pages 569–578. ACM, 2011.

[19] Dan Feldman, Melanie Schmidt, and Christian Sohler. Turning Big Data into tiny data: Constant-size
coresets for k-means, PCA, and projective clustering. SIAM J. Comput., 49(3):601–657, 2020.

11

https://gepris.dfg.de/gepris/projekt/318763901

[20] Susanne Frick, Amer Krivosija, and Alexander Munteanu. Scalable learning of item response theory
models. In Proceedings of The 27th International Conference on Artificial Intelligence and Statistics
(AISTATS), pages 1234–1242, 2024.

[21] Sariel Har-Peled, Dan Roth, and Dav Zimak. Maximum Margin Coresets for Active and Noise Tolerant
Learning. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), page
836–841, 2007.

[22] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning. Springer
Series in Statistics. Springer New York Inc., 2001.

[23] Jonathan Huggins, Trevor Campbell, and Tamara Broderick. Coresets for scalable Bayesian logistic
regression. In Advances in Neural Information Processing Systems (NIPS), volume 29, 2016.

[24] Michael J. Kearns and Umesh V. Vazirani. An Introduction to Computational Learning Theory. MIT Press,
1994.

[25] Ilan Kremer, Noam Nisan, and Dana Ron. On randomized one-round communication complexity. Compu-
tational Complexity, 8(1):21–49, 1999.

[26] Michael Langberg and Leonard J. Schulman. Universal epsilon-approximators for integrals. In Proceedings
of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 598–607, 2010.

[27] JooChul Lee, Elizabeth D. Schifano, and HaiYing Wang. Fast optimal subsampling probability approxima-
tion for generalized linear models. Econometrics and Statistics, 29:224–237, 2024.

[28] John Maindonald and W. John Braun. Data analysis and graphics using R – an example-based approach,
volume 10 of Camb. Ser. Stat. Probab. Math. Cambridge: Cambridge University Press, 3rd edition, 2010.

[29] Ian C. Marschner. Stable computation of maximum likelihood estimates in identity link Poisson regression.
Journal of Computational and Graphical Statistics, 19(3):666–683, 2010.

[30] P. McCullagh and J. A. Nelder. Generalized Linear Models. Chapman & Hall, London, 1989.

[31] Alejandro Molina, Alexander Munteanu, and Kristian Kersting. Core dependency networks. In Proceedings
of the Thirty-Second AAAI Conference on Artificial Intelligence (AAAI), pages 3820–3827, 2018.

[32] Alexander Munteanu. Coresets and sketches for regression problems on data streams and distributed data.
In Machine Learning under Resource Constraints, Volume 1 - Fundamentals, pages 85–98. De Gruyter,
2023.

[33] Alexander Munteanu and Simon Omlor. Optimal bounds for ℓp sensitivity sampling via ℓ2 augmentation.
In Forty-first International Conference on Machine Learning (ICML), 2024.

[34] Alexander Munteanu, Simon Omlor, and Christian Peters. p-Generalized probit regression and scalable
maximum likelihood estimation via sketching and coresets. In Proceedings of the 25th International
Conference on Artificial Intelligence and Statistics (AISTATS), pages 2073–2100, 2022.

[35] Alexander Munteanu and Chris Schwiegelshohn. Coresets-methods and history: A theoreticians design
pattern for approximation and streaming algorithms. Künstliche Intell., 32(1):37–53, 2018.

[36] Alexander Munteanu, Chris Schwiegelshohn, Christian Sohler, and David P. Woodruff. On coresets for
logistic regression. In Advances in Neural Information Processing Systems 31 (NeurIPS), pages 6562–6571,
2018.

[37] Jeff M Phillips. Coresets and sketches. In Handbook of discrete and computational geometry, pages
1269–1288. Chapman and Hall/CRC, 2017.

[38] Biel Roig-Solvas and Mario Sznaier. Euclidean distance bounds for LMI analytic centers using a novel
bound on the Lambert function, 2022. arXiv:2004.01115.

[39] Haipeng Shen and Jianhua Z. Huang. Forecasting time series of inhomogeneous Poisson processes with
application to call center workforce management. The Annals of Applied Statistics, 2(2):601 – 623, 2008.

[40] Donna Spiegelman and Ellen Hertzmark. Easy SAS Calculations for Risk or Prevalence Ratios and
Differences. American Journal of Epidemiology, 162(3):199–200, 2005.

[41] Elad Tolochinsky, Ibrahim Jubran, and Dan Feldman. Generic coreset for scalable learning of monotonic
kernels: Logistic regression, sigmoid and more. In International Conference on Machine Learning (ICML),
pages 21520–21547, 2022.

12

[42] Vladimir N. Vapnik. The Nature of Statistical Learning Theory. Springer, New York, USA, 1995.

[43] Ruosong Wang and David P. Woodruff. Tight bounds for ℓ1 oblivious subspace embeddings. ACM Trans.
Algorithms, 18(1):8:1–8:32, 2022.

[44] David P. Woodruff and Taisuke Yasuda. New subset selection algorithms for low rank approximation:
Offline and online. In Proceedings of the 55th Annual ACM Symposium on Theory of Computing (STOC),
pages 1802–1813, 2023.

13

A Details on the Sensitivity Framework

Definition A.1 (Coreset, cf. [19]). Let X ∈ Rn×d be a set of points {x1, . . . , xn}, weighted
by w ∈ Rn

>0. For any η ∈ Rd, let the cost of η w.r.t. the point xi be described by a function
wi · f (xiη) mapping from R to (0,∞). Thus, the cost of η w.r.t. the (weighted) set X is fw (Xη) =∑

i wi · f (wiη). Then a set K ∈ Rk×d, (re)weighted by u ∈ Rk
>0 is a (1 + ε)-coreset of X for the

function fw if k ≪ n and

∀β ∈ Rd : |fw (Xη)− fu (Kη)| ≤ ε · fw (Xη) .

In our analysis we use sampling based on so-called sensitivity scores, the range space induced by the
set of functions, and the VC-dimension. We define these notions next.

Definition A.2 (Sensitivity, [26]). Consider a family of functions F = {g1, . . . , gn} mapping from Rd

to [0,∞) and weighted by w ∈ Rn
>0. The sensitivity of gℓ for the function fw(η) =

∑
ℓ∈[n] wℓgℓ(η),

where η ∈ Rd, is

ςℓ = sup
wℓgℓ(η)

fw(η)
. (10)

The total sensitivity is S =
∑

ℓ∈[n] ςℓ.

Definition A.3 (Range space; VC dimension). A range space is a pair R = (F , ranges), where F
is a set and ranges is a family of subsets of F . The VC dimension ∆(R) of R is the size |G| of the
largest subset G ⊆ F such that G is shattered by ranges, i.e., |{G ∩R : R ∈ ranges}| = 2|G|.

Definition A.4 (Induced range space). Let F be a finite set of functions mapping from Rd to R≥0.
For every x ∈ Rd and r ∈ R≥0, let rangeF (x, r) = {f ∈ F : f(x) ≥ r}, and ranges(F) =
{rangeF (x, r) : x ∈ Rd, r ∈ R≥0}. Let RF = (F , ranges(F)) be the range space induced by F .

To construct coresets for Poisson models, we use a framework that combines sensitivity scores with
the theory of VC dimension, originally proposed by [18, 7]. We use a more recent and slightly
updated version as stated in the following theorem.

Proposition A.5 ([19], Theorem 31). Consider a family of functions F = {f1, . . . , fn} mapping
from Rd to [0,∞) and a vector of weights w ∈ Rn

>0. Let ε, δ ∈ (0, 1/2). Let si ≥ ςi. Let
S =

∑n
i=1 si ≥ S. Given si one can compute in time O(|F|) a set R ⊂ F of

O

(
S

ε2

(
∆ log(S) + log

(
1

δ

)))
weighted functions such that with probability 1− δ we have for all η ∈ Rd simultaneously∣∣∣∣∣∣

∑
f∈F

wifi(η)−
∑
f∈R

uifi(η)

∣∣∣∣∣∣ ≤ ε
∑
f∈F

wifi(η),

where each element of R is sampled i.i.d. with probability pj =
sj
S from F , ui =

Swj

|R|sj denotes the
weight of a function fi ∈ R that corresponds to fj ∈ F , and where ∆ is an upper bound on the VC
dimension of the range space RF∗ induced by F∗ that can be obtained by defining F∗ to be the set
of functions fj ∈ F where each function is scaled by Swj

|R|sj .

B Proofs for Poisson pth-root-link model

Lemma 2.1. It holds for all z ∈ R>0, p ∈ [1,∞), y ∈ N that

gy(z) = zp − py log(z) + log(y!) ≥ max

{
1,

1

3
(1 + p log(z))

}
.

Proof of Lemma 2.1. For y = 1 a direct calculation yields gy(z) ≥ gy(y
1/p) = 1.

14

For all other y ∈ N \ {1} we get from Stirling’s approximation

log(y!) ≥ y log(y)− y +
1

2
log(2πy) +

1

12y + 1

≥ y log(y)− y +
1

2
log(y) +

1

2
log(2π)

≥ y log(y)− y +
1

2
log(y) +

9

10
.

Since gy has a unique minimizer at z∗ = y1/p, it follows that

gy(z) ≥ gy(y
1/p) = y − y log(y) + log(y!) ≥ 9

10
+

1

2
log(y) > 1 .

To prove the claimed bound generalizing to all z ∈ R>0, we first argue that

9

10
+

1

3
log(y) ≥ 1

3
(1 + log(y + 1)), (11)

which is equivalent to showing for arbitrary y ∈ N it holds that

1

3

(
1 + log

(
y + 1

y

))
=

1

3

(
1 + log

(
1 +

1

y

))
≤ 1

3
+

1

3y
≤ 2

3
≤ 9

10
,

where the first inequality follows from the inequality 1 + x ≤ ex for all values of x. We see that by
monotonicity of the functions h(z) = 1

3 (1 + log(zp)) and the above properties of gy(z), we have for
all z ≤ (y + 1)1/p that

gy(z) ≥
9

10
+

1

2
log(y) ≥ 9

10
+

1

3
log(y)

Equation (11)
≥ 1

3
(1 + log(y + 1)) ≥ h(z),

where the first inequality above follows from the inequality one line above Equation (11). Finally for
z ≥ (y + 1)1/p the function gy grows at least as fast as the lower bound, since

g′y(z) = pzp−1 − py

z
= p

(
zp−1 − y

z

)
= p

(
zp − y

z

)
≥ p

y + 1− y

z
≥ p

3z
= h′(z).

Lemma 2.2. For any p ≥ 1 and y ∈ N it holds that zp ≥ gy(z) for z > y1/p. If p = 1, then for

some λ ∈ O(
√
y/ log(y)), it holds that gy(z) ≥ (z−y1/p)p

λ for z > y1/p.

Proof of Lemma 2.2. We start with the upper bound. Using the fact that the assumption z > y1/p

implies log z > 0, and setting yi = 1 in Equation (4) yields

g1(z) = zp − p log(z) + log 1 < zp.

It remains to prove the claim for y ≥ 2. From Stirling’s approximation we get

log(y!) ≤ y log(y)− y +
1

2
log(y) +

1

2
log(2π) +

1

12
.

Now, note that since the derivative of the function y 7→ 1
2 log y − y is strictly negative over the

interval [2,∞), it follows that the function itself is decreasing over the same interval. By rearranging
terms and replacing yi in Equation (4) with an arbitrary y ≥ 2, it follows that

gy(z) = zp − y log(zp) + log(y!) ≤ zp − y log(y) + log(y!)

≤ zp +
1

2
log(y)− y +

1

2
log(2π) +

1

12

≤ zp +
1

2
log(2)− 2 +

1

2
log(2π) +

1

12

= zp +
1

2
log(π)− 23

12
< zp,

15

where the last inequality holds since π < e2, and thus 1
2 log(π) < log(e) = 1.

In the remainder, let p = 1. Let

LB(y) := max

{
1,

1

3
(1 + log(y))

}
be the lower bound given in Lemma 2.1. Now, we want to prove that gy(z) ≥ z−y

λ =: h(z) for λ ≥ 1
as small as possible.

To this end, we consider the derivatives g′y(z) = 1− y
z and h′(z) = 1

λ , and find that

1− y

z
≥ 1

λ
⇐⇒ z ≥ y

(
1 +

1

λ− 1

)
.

Next, we see that since h(y) = 0, we can guarantee h(z) ≤ LB(y) ≤ gy(z) for all z ∈ [y, y +∆],
where ∆ := λ · LB(y).

To obtain a general lower bound on gy(z), we want both conditions to hold simultaneously, which is
true whenever

y

λ− 1
≤ ∆ ⇐⇒ y ≤ λ(λ− 1)LB(y)

Solving for λ yields that gy(z) ≥ z−y
λ holds for all λ ≥ 1

2

(√
4y

LB(y) + 1 + 1
)
.

Lemma 2.3. Let p ≥ 2 and y ∈ N, and λ = 1. Then gy(z) ≥ (z−y1/p)p

λ for z > y1/p.

Proof of Lemma 2.3. First we define for τ > 0 the function hλ, and compute its derivatives:

hλ(z) :=
(z − τ)p

λ
, h′

λ(z) = p
(z − τ)p−1

λ
, h′′

λ(z) = p(p− 1)
(z − τ)p−2

λ
, z ∈ R>0. (12)

Setting τ = y1/p in Equation (12), we obtain

hλ(y
1/p) =

(y1/p − y1/p)p

λ
= 0 <

1

2
log(2πy) < gy(y

1/p),

where the second inequality follows from the fact that the minimizer of gy is y1/p and from Stirling’s
approximation:

1

2
log(2πy) +

1

12y + 1
< min

z>0
gy(z) = y − y log y + log y!.

Thus, gy(y1/p) ≥ hλ(y
1/p), and a sufficient condition for gy(z) ≥ hλ(z) to hold for z > y1/p is that

gy(z)− h(z) is nondecreasing on z > y1/p, i.e.

0 ≤ g′y(z)− h′(z) = p

[(
zp−1 − y

z

)
− (z − y1/p)p−1

λ

]
⇐⇒ zp−1 ≥ y

z
+

(z − y1/p)p−1

λ
.

Note that

z > y1/p =⇒ y

z
+

(z − y1/p)p−1

λ
≤ y

y1/p
+

(z − y1/p)p−1

λ
,

so a sufficient condition for g′y(z)− h′
λ(z) to be nonnegative for all z > y1/p is

zp−1 ≥ (z − y1/p)p−1

λ
+ (y1/p)p−1, ∀z > y1/p.

If λ ≥ 1, then a further sufficient condition for g′y(z)− h′
λ(z) to be nonnegative for all z > y1/p is

zp−1 ≥ (z − y1/p)p−1 + (y1/p)p−1, ∀z > y1/p,

which is equivalent to (
z

y1/p

)p−1

≥
(

z

y1/p
− 1

)p−1

+ 1, ∀z > y1/p. (13)

16

For x ∈ R, let ⌊x⌋ := sup{p ∈ Z : p ≤ x} be the floor of x. We will prove that Equation (13) holds.
We have(

z

y1/p

)p−1

=

(
z

y1/p

)p−1−⌊p−1⌋(
z

y1/p

)⌊p−1⌋

=

(
z

y1/p

)p−1−⌊p−1⌋(
z

y1/p
− 1 + 1

)⌊p−1⌋

=

(
z

y1/p

)p−1−⌊p−1⌋ ⌊p−1⌋∑
m=0

(
⌊p− 1⌋

m

)(
z

y1/p
− 1

)m

binomial thm., p ≥ 2

≥
(

z

y1/p

)p−1−⌊p−1⌋
((

z

y1/p
− 1

)⌊p−1⌋

+ 1

)
z

y1/p
> 1

=

(
z

y1/p

)p−1−⌊p−1⌋(
z

y1/p
− 1

)⌊p−1⌋

+

(
z

y1/p

)p−1−⌊p−1⌋

≥
(

z

y1/p
− 1

)p−1−⌊p−1⌋(
z

y1/p
− 1

)⌊p−1⌋

+

(
z

y1/p

)p−1−⌊p−1⌋

r ≥ 0 ⇒ d
dxx

r ≥ 0

>

(
z

y1/p
− 1

)p−1

+ 1
z

y1/p
> 1,

as desired.

C Proofs for coreset construction

Lemma 3.1. The VC dimension of the range space associated with the class of Poisson loss functions
as in Equation (3) is bounded by ∆(RF∗) ≤ O(d2).

Proof of Lemma 3.1. Because we use the coreset approach, we need to consider weighted subsets of
the data, and thus weighted sums

∑n
i=1 wigyi

(xiβ) that allow for different weights in Equation (3).
In determining the VC dimension we range over all r ∈ R, β ∈ Rd, and need to check whether
wigyi(xiβ) > r. Note that the log factorial terms are independent of xiβ. In particular, for each
r ∈ R, there exists R ∋ s := r − wi log(yi!). We can thus instead count the number of operations
required for evaluating each summand

wi((xiβ)
p − pyi ln(xiβ)) ≥ s.

This can be rearranged to

xiβ ≤ exp

(
(xiβ)

p − s/wi

pyi

)
which can be accomplished using (at most) the following operations

• 1 division to compute s/wi

• d multiplications and d− 1 additions to compute xiβ

• p− 1 multiplications of xiβ to compute (xiβ)
p

• 1 subtraction to compute (xiβ)
p − s/wi

• 1 multiplication to compute pyi (0 for p = 1)

• 1 division by pyi

• 1 exponential function evaluation to compute exp
(

(xiβ)
p−s/wi

pyi

)
• 1 operation to verify whether xiβ ≤ exp

(
(xiβ)

p−s/wi

pyi

)
holds

17

• 1 operation to output 0 or 1 depending on whether xiβ ≤ exp
(

(xiβ)
p−s/wi

pyi

)
holds

for a total of t = 2d+ p+ 5 operations, exactly q = 1 of which is an exponential function evaluation.
Putting these quantities into the final conclusion of [4, Thm. 8.14] yields

∆(RF∗) ≤ (d(q + 1))2 + 11d(q + 1)(t+ log2((9d(q + 1)))

= (2d)2 + 22d(2d+ p+ 5 + log2(18d)) = O(d2).

Lemma 3.2. The VC dimension of the range space induced by the set of functions Fc = {gi(β) =
c · gyi

(xiβ) | i ∈ [n]} with equal weight c ∈ R≥0, and equal yi = y ∈ N0 for all i ∈ [n] satisfies
∆(RFc

) = O(d).

Proof of Lemma 3.2. We split the functions gi into subfunctions g≤y
1/p
i

(xiβ) and g
>y

1/p
i

(xiβ) de-

pending on whether xiβ ≤ y
1/p
i or xiβ > y

1/p
i . Since gi is minimized when xiβ = y

1/p
i , and due to

strict convexity, the two subfunctions g≤y
1/p
i

: (0, y
1/p
i] → [g(y

1/p
i),∞) and g

>y
1/p
i

: (y
1/p
i ,∞) →

[g(y
1/p
i),∞) are strictly monotonic and invertible on their respective ranges and domains.

Now fix an arbitrary subset G ⊆ Fc. Let Ω = Rd × R≥0. We have the following bound:

|{G ∩R | R ∈ ranges(Fc)}| = |{rangeG(β, r) | β ∈ Rd, r ∈ R≥0}|

=

∣∣∣∣∣∣
⋃

(β,r)∈Ω

{{gi ∈ G | gi(β) ≥ r}}

∣∣∣∣∣∣
=

∣∣∣∣∣∣
⋃

(β,r)∈Ω

{{gi ∈ G | c · g≤y
1/p
i

(xiβ) ≥ r ∨ c · g
>y

1/p
i

(xiβ) ≥ r}}

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
⋃

(β,r)∈Ω

{{gi ∈ G | xiβ ≥ g−1

≤y
1/p
i

(r/c)}}

∣∣∣∣∣∣ ·
∣∣∣∣∣∣
⋃

(β,r)∈Ω

{{gi ∈ G | xiβ ≥ g−1

>y
1/p
i

(r/c)}}

∣∣∣∣∣∣ . (14)

The inequality holds, since each non-empty set in the collection on the LHS satisfies either of the
conditions of the sets in the collections on the RHS, or both, and is thus the union of two of the sets,
one from each collection. It can thus comprise at most all unions obtained from combining any two
of these sets.

Now, note that both sets are of the form {gi ∈ G | xiβ ≥ s1} where s1 = g−1

≤y
1/p
i

(r/c) maps any

real r to a value of some subset of the reals s ∈ D ⊂ R as specified above. Extending the domain
of s and xiβ to the reals, we obtain exactly the points that are shattered by the affine hyperplane
classifier xi 7→ 1{xiβ−s≥0}. The VC dimension of the set of hyperplane classifiers is d+ 1 [24, 42].
The argument holds verbatim for s2 = g−1

>y
1/p
i

(r/c).

We conclude the claimed bound on ∆(RFc
) by showing that the above term Equation (14) is strictly

less than 2|G| for |G| = 10(d+ 1). By a bound on the growth of the sets (see [6, 24]), we have for
this particular choice∣∣∣∣∣∣

⋃
(β,r)∈Ω

{{gi ∈ G | xiβ ≥ g−1

≤y
1/p
i

(r/c)}}

∣∣∣∣∣∣ ·
∣∣∣∣∣∣
⋃

(β,r)∈Ω

{{gi ∈ G | xiβ ≥ g−1

>y
1/p
i

(r/c)}}

∣∣∣∣∣∣
≤
∣∣{{gi ∈ G | xiβ − s1 ≥ 0} | β ∈ Rd, s1 ∈ R}

∣∣ · ∣∣{{gi ∈ G | xiβ − s2 ≥ 0} | β ∈ Rd, s2 ∈ R}
∣∣

≤

((
e|G|
d+ 1

)(d+1)
)2

<
(
30(d+1)

)2
= 22(d+1) log2(30) ≤ 210(d+1) = 2|G|

which implies that ∆(RFℓ1
) < 10(d+ 1).

18

Lemma 3.3. Let y ≥ 8 and 1 ≥ ε > 0. Let y < y′ ≤ (1 + ε)yi. Then for arbitrary z > 0 it holds
that (1− 3ε)gy(z) ≤ gy′(z) ≤ (1 + 3ε)gy(z).

Proof of Lemma 3.3. Recall that

gy′(z) = (z)p − py′ log(z)︸ ︷︷ ︸
(i)

+ log(y′!)︸ ︷︷ ︸
(ii)

.

We bound the two parts separately. The first part (i) is straightforward from the assumption on y′.
We only need to distinguish two cases, depending on which either the upper or the lower bound of
the assumption y < y′ ≤ (1 + ε)yi applies: If log(z) ≥ 0, then there is nothing to prove since in that
case

zp − py′ log(z) ≤ zp − py log(z),

given the hypothesis that y < y′. Suppose that log(z) < 0. Then

zp − py′ log(z) ≤ zp − (1 + ε)py log(z) ≤ (1 + 3ε)(zp − py log(z)),

where the first inequality follows from the hypothesis that y′ ≤ (1 + ε)yi and the second inequality
follows since 1 + 3ε > 1 + ε > 1.

For the second part (ii) we need some technical claims. Since y, y′ ∈ N0, it must hold that y′ ≥ y+1.
Then

1

12y′
≤ 1

12(y + 1)
≤ 1

12y + 1
.

Further, for any x ≥ e it holds that

log((1 + ε)x) = log(x) + log(1 + ε) ≤ log(x) + ε · 1 ≤ (1 + ε) log(x),

where the last inequality uses the condition that x ≥ e.

With this in place, and using y′ > y ≥ 8 > e2, we apply Stirling’s approximation with a constant
C := 1

2 log(2π) that is independent of y, y′, and that is common to both the upper and lower bounds
from Stirling’s approximation for the factorial function. We thus obtain

log(y′!) ≤ y′ log(y′)− y′ +
1

2
log(y′) +

1

12y′
+ C

= y′(log(y′)− 1) +
1

2
log(y′) +

1

12y′
+ C

= y′(log(y′/e)) +
1

2
log(y′) +

1

12y′
+ C

≤ (1 + ε)2y log(y/e) + (1 + ε)
1

2
log(y) +

1

12y + 1
+ C

≤ (1 + ε)2
(
y log(y/e) +

1

2
log(y) +

1

12y + 1
+ C

)
≤ (1 + 3ε) log(y!)

where the first inequality follows from the upper bound in Stirling’s approximation for the factorial,
the second inequality follows from the hypothesis that y′ ≤ (1+ε)y and the inequality 1

12y′ ≤ 1
12y+1

proven above, and the last inequality follows from the lower bound in Stirling’s approximation of the
factorial and from the fact that (1 + ε)2 = 1 + 2ε+ ε2 ≤ 1 + 3ε. The lower bound can be treated in
a similar way. Overall, our claim follows.

Lemma 3.4. Let F be any family of functions, and let F1, . . . , Ft ⊆ F be nonempty sets that form a
partition of F , i.e., their disjoint union satisfies

⋃̇
i∈[t] = F . Let the VC dimension of the range space

induced by Fi be bounded by D for all i ∈ [t]. Then the VC dimension of the range space induced by
F satisfies ∆(RF) ≤ tD.

19

Proof of Lemma 3.4. We prove the claim by contradiction. To this end suppose the VC dimension
for F is strictly larger than tD. Then there exists a set G of size |G| > tD that is shattered by the
ranges of RG . Consider its intersections Gi = G ∩ Fi, i ∈ [t] with the sets Fi. By their disjointness,
each Gi must be shattered by the ranges of RFi

. Note, that at least one Gi must therefore satisfy
|Gi|/t > D, which contradicts the assumption that their VC dimension is bounded by D. Our claim
thus follows.

Lemma 3.5. Let F be the set of functions in the Poisson model. We can round and group the values
of yi and the associated sensitivities ςi to obtain F∗ such that each function in F∗ is weighted by
0 < wi ∈ W := {u1, . . . , ut} for t ∈ O(ε−1 log(n) · log(ymax)). The range space induced by F∗

satisfies ∆(RF∗) ≤ O(dε log(n) log(ymax)).

Proof of Lemma 3.5. We partition our input functions gyi
, i ∈ [n] into disjoint sets with boundaries

that increase in a geometric progression, depending on the sensitivities resp. weights, and on the
response values

Gij = {gyk
| 8 · (1 + ε)i ≤ yk < ⌊8 · (1 + ε)i+1⌋, 2jςmin ≤ ςk < 2j+1ςmin},

i ∈ [0, O(log1+ε(ymax))], j ∈ [0, O(log(n))].

Additionally, we put the remaining values of y into a constant number of disjoint sets

Hyj = {gyk
| yk = y, 2jςmin ≤ ςk < 2j+1ςmin}, y ∈ {0, 1, 2, . . . , 7}, j ∈ [0, O(log(n))].

In particular, we note that

F =

(⋃̇
ij
Gij

)
∪̇
(⋃̇

yj
Hyj

)
forms a partition of the whole function family, since the sets are disjoint and cover all functions by
construction.

Each member of a set is of the same form, i.e., after rounding the weights and yi, all members of
a subset have equal yi = y, and they have equal weight. The assumptions are thus satisfied for
invoking Lemma 3.2 to bound the VC dimension for each of the induced range spaces by O(d). By
construction, the subsets are disjoint and their number is bounded by

t = O(log2(n) · log1+ε(ymax)) = O

(
log(n) · log(ymax)

log(1 + ε)

)
= O(ε−1 log(n) log(ymax)).

We can thus invoke Lemma 3.4 to obtain

∆(RF∗) ≤ O(dt) = O

(
d

ε
log(n) log(ymax)

)
= Õ

(
d

ε

)
.

Recall the condition Equation (7) for an (α, γ, p)-well-conditioned basis.

Lemma 3.7. Let X ∈ Rn×d, y ∈ Nn
0 be a ρ-complex dataset, i.e., Equation (2) holds. Let p ∈ {1, 2}.

Let λ ≥ 1 be the slope parameter from either Lemma 2.2 or Lemma 2.3 depending on the value
of p. Let γ be a conditioning parameter and η > 0 be arbitrary. Then the sensitivity for each xi

with xiβ > η is bounded by ςi ≤ λργp∥Ui∥pp + 2/n. Their total sensitivity is bounded by S ≤
O
(
ρd
√
ymax/log(ymax) + log log(1/η)

)
for p = 1, and S ≤ O(ρd+ log (ymax) + log log(1/η))

for p = 2.

Proof of Lemma 3.7. Case 1: yi = 0: We start with the special case where yi = 0. Recall that
xiβ > 0. Then,

gyi(xiβ) = (xiβ)
p ≤ ∥Ui∥pp∥Rβ∥pq ≤ ∥Ui∥pp(γ∥URβ∥q)p

= γp∥Ui∥pp∥URβ∥pp = γp∥Ui∥pp∥Xβ∥pp = γp∥Ui∥pp
∑n

j=1
gyj

(xjβ).

Next, we consider 0 ̸= yi ∈ N, and divide this into two sub-cases.

Case 2(i): yi ∈ N, η < xiβ ≤ y
1/p
i :

20

We start with the case 0 < η ≤ xiβ ≤ y
1/p
i .

For gyi
defined in Equation (4),

gyi
(xiβ) := (xiβ)

p − pyi log(xiβ) + log(yi!)

it holds using Lemma 2.1, the bounds on xiβ and the monotonicity of gy(z) in the interval that

1 ≤ gyi(xiβ) ≤ ηp + yi log

(
1

ηp

)
+ log(yi!) =: UB(yi).

Let G = {i ∈ [n] | 1 ≤ gyi
(xiβ) ≤ UB(ymax)}. We subdivide G =

⋃̇l

j=1 Gj into disjoint sets

Gj = {i ∈ G | UB(ymax) · 2−j < gyi
(xiβ) ≤ UB(ymax) · 2−j+1}, j ∈ {1, . . . , l}.

Since gyi
(xiβ) ∈ [1,UB(ymax)], there can be at most l ≤ ⌈log2(UB(ymax))⌉ groups. So

l ≤ log2

(
ηp + ymax log

(
1

ηp

)
+ log(ymax!)

)
≤ O

(
log(ymax) + log log

(
ymax

η

))
Now let nj = |Gj |. We can bound the sensitivity (see Definition A.2) for each summand gyi

(xiβ) for
i ∈ Gj by

ςi := sup
β

gyi
(xiβ)∑n

i=1 gyi
(xiβ)

≤ sup
β

gyi
(xiβ)∑

i∈Gj
gyi(xiβ)

≤ UB(ymax) · 2−j+1

njUB(ymax) · 2−j
=

2

nj

Summing over i ∈ G yields∑
i∈G

ςi =
∑l

j=1

∑
i∈Gj

2

nj
=
∑l

j=1

2nj

nj
= 2l ≤ O

(
log(ymax) + log log

(
ymax

η

))
≤ O

(
log(ymax) + log log

(
1

η

))
.

Case 2(ii): yi ∈ N, xiβ > y
1/p
i :

Now we take care of the remaining region where xiβ > y1/p.

In particular, by Lemmas 2.2 and 2.3 for some scaling λ = λp that depends on p ∈ {1, 2}, we have
that

(z − y
1/p
i)p

λ
≤ gyi

(z) ≤ zp

in that region.

Let UR be a decomposition of X , so that xiβ = UiRβ, and U is again a p-well conditioned basis, in
the sense of Equation (7).

Now, using our assumption given in Equation (2), we have the following inequalities

gyi(xiβ) ≤ (xiβ)
p ≤ ∥Ui∥pp∥Rβ∥pq ≤ γp∥Ui∥pp∥URβ∥pp

= γp∥Ui∥pp
∑n

j=1
(xjβ)

p ≤ ργp∥Ui∥pp
∑n

j=1
(xjβ − y

1/p
j)

p

≤ λργp∥Ui∥pp
∑n

j=1
gyj (xjβ) .

Summing over all sensitivities, we get that the total sensitivity is bounded by

S ≤ ρλ(αγ)p +O

(
log(ymax) + log log

(
ymax

η

))
.

21

For the first summand, there exists for each p ∈ [1, 2], a so-called Auerbach basis attaining α = d, γ =
1, see [43, Lemma 2.22]. For the special case p = 2, we even have that any orthonormal basis satisfies
α =

√
d, γ = 1 since ∥U∥F =

√
d, and for any z ∈ Rd : ∥Uz∥2 =

√
zTUTUz =

√
zT z = ∥z∥2.

Thus, in both cases we have suitable bases with (αγ)p = d.

For p = 1 Lemma 2.2 yields λ ≤ O(
√
ymax/log ymax). With this, the overall bound simplifies to

S ≤ O
(
ρd
√
ymax/log ymax + log log(1/η)

)
.

For p = 2 we have that λ = 1 suffices by Lemma 2.3. With this, the overall bound simplifies to

S ≤ O(ρd+ log (ymax) + log log(1/η)).

Theorem 3.8. Let X ∈ Rn×d, y ∈ Nn
0 be a ρ-complex dataset, i.e., Equation (2) holds. We can

compute a weighted coreset (K,w) ∈ Rk×d × Rk
≥0 for the pth-root-link Poisson regression problem

with p ∈ {1, 2} on D(η) := {β ∈ Rd : ∀i, xiβ > η}. The size of the coreset is bounded by
k = Õ(ε−2d ·min{d, ε−1 log(n) log(ymax)} ·m), where

m =

{
ρd log log(d)

√
ymax/log(ymax) + log log(1/η) p = 1

ρd+ log (ymax) + log log(1/η) p = 2.

Proof of Theorem 3.8. We put our bounds from Corollary 3.6 and Lemma 3.7 together into the main
theorem of the sensitivity framework Proposition A.5. That is, we calculate the sensitivity upper
bounds si, take a sample according to the distribution pi = si/

∑n
j=1 sj of the respective size, and

reweight them accordingly. Then, the calculated bounds on the VC dimension and total sensitivity
yield a bound on the required size, such that Proposition A.5 yields with constant probability that the
reweighted subsample gives a (1± η)-approximation uniformly over β ∈ D(η).

Since the Auerbach basis used in the sensitivity calculations of Lemma 3.7 can be expensive to
compute depending on the value of p, we use more efficient approximation techniques here.

In the case p = 2, we use a sparse oblivious ℓ2 subspace embedding by [9], which was explicitly
proven in [34, Lemma 2.14], to give a (

√
2d,

√
2, 2)-well-conditioned basis. This is within absolute

constant factors to the (
√
d, 1, 2)-conditioning of the Auerbach basis. Thus, the complexities given in

Lemma 3.7 do not change in O-notation.

In the case p = 1, we use a more recent technique introduced in [44], called (α, γ, p)-well-conditioned
spanning sets. This is a relaxation of the well-conditioned basis U given in Equation (7), where
U ∈ Rn×s and z ∈ Rs, are allowed to have slightly increased dimension s > d. We also note that we
only need to bound norms of vectors of the form Xβ in the columnspan of the data matrix whose rank
is bounded by d. We thus require the bounds to hold only for y ∈ Rs, s > d that actually represent
vectors Xβ in a different basis. Other aspects of Equation (7) remain unchanged.

Our proof is nearly verbatim to [44, Theorem 1.11]. Their algorithm constructs a matrix R ∈ Rd×s.
We set U = XR ∈ Rn×s. By [44, Lemma 4.1], this can be done with s = O(d log log(d)), such that
each column U (i), for i ∈ [s] satisfies ∥U (i)∥p = 1, and for every ∥Xβ∥p = 1 there exists a vector
y ∈ Rs, such that Xβ = Uy and ∥y∥2 = O(1).

For p = 1, this yields that U is an (α, γ, 1)-well-conditioned spanning set, where α =
O(d log log(d)), and γ = O(1). For the bound on α, it holds that

∥U∥1 =

s∑
i=1

∥U (i)∥1 = s = O(d log log(d)).

For the bound on γ, note that the Hölder dual for p = 1 is q = ∞. Now, it follows for every y ∈ Rs

that represents any Xβ as a linear combination of columns of U that,

∥y∥∞ ≤ ∥y∥2 ≤ O(1) = O(1)∥Xβ∥1 = O(1)∥Uy∥1.

As a consequence in the case p = 1, this computational result replaces the d factor from the Auerbach
basis in the proof of Lemma 3.7 by a factor (αγ)p = O(d log log(d)), as we have claimed.

22

D Proofs for main approximation result

Recall Equation (8):

β̃∗ := argminβ′∈D(η)f(Xβ′), β∗ := argminβ∈D(0)f(Xβ).

Lemma 4.1. It holds for sufficiently small η > 0 that

f(Xβ∗) ≤ f(Xβ̃∗) ≤ (1 +O(η))f(Xβ∗).

Proof of Lemma 4.1. Recall from Section 2 that we choose X to be the design matrix that includes an
intercept, i.e., every row of X is of the form x = (1, x(1), x(2), . . . , x(d−1)). Note that by definition
we have that D(η) ⊂ D(0) is a proper subset. Thus, f(Xβ∗) ≤ f(Xβ̃∗) follows immediately.

Next, define for every β ∈ D(0) its shifted version to be in one-to-one correspondence with a unique
β′ ∈ D(η) via the translation

β′ := β + ηe1, (15)
where e1 is the first standard basis vector. Recall that we choose the first column of X to be
(1, . . . , 1) ∈ Rn.

Now consider (β∗)′ ∈ D(η) to be the shifted version of the global optimizer β∗ ∈ D(0). Since β̃∗

minimizes the loss function over D(η), it follows that f(Xβ̃∗) ≤ f(X(β∗)′).

Finally, we claim that there exists an absolute constant C ≥ 0 such that for all sufficiently small
η > 0 we have for all β that Equation (9) holds, i.e.,

f(Xβ′) ≤ f(Xβ) + ηpn+ ηCf(Xβ).

By summing the result of Lemma 2.1 over all n inputs, we have that f(Xβ∗) ≥ n. Applying our
claim to β∗ thus yields

f(X(β∗)′) ≤ f(Xβ∗) + ηpn+ ηCf(Xβ∗) ≤ (1 + η + Cη)f(Xβ∗) = (1 +O(η))f(Xβ∗).

This proves that Lemma 2.1 and Equation (9) imply the upper bound of the lemma.

It remains to prove our claim of Equation (9) for p = 1, and p = 2 separately.

Case p = 1: We have

f(Xβ′) =
∑
i∈[n]

(xiβ + η)− yi log(xiβ + η) + log(yi!)

≤
∑
i∈[n]

xiβ − yi log(xiβ) + log(yi!) + η = f(Xβ) + ηn,

which satisfies Equation (9) with C = 0.

Case p = 2: We have

f(Xβ′) =
∑
i∈[n]

(xiβ)
2 + 2ηxiβ + η2 − 2yi log(xiβ + η) + 2yi log(xiβ)− 2yi log(xiβ) + log yi!

=
∑
i∈[n]

(xiβ)
2 + 2ηxiβ + η2 − 2yi log

xiβ + η

xiβ
− 2yi log(xiβ) + log yi!

=f(Xβ) +
∑
i∈[n]

2ηxiβ + η2 − 2yi log
xiβ + η

xiβ

=f(Xβ) +
∑
i∈[n]

2ηxiβ + η2 − 2yi log

(
1 +

η

xiβ

)

=f(Xβ) + nη2 + 2η
∑
i∈[n]

xiβ − yi
η
log

(
1 +

η

xiβ

)
.

23

Now using that log(1 + x) ≥ x
1+x ,∀x > −1, we bound the error for every y ∈ N by a function

ϕ = ϕy .

z − y

η
log
(
1 +

η

z

)
≤ z − y

η

η

z

z

z + η
= z − y

z + η
=: ϕ(z), (16)

The first and second derivatives are given by

ϕ′(z) = 1 +
y

(z + δ)2
≥ 1,

ϕ′′(z) = −2y(z + δ)

(z + δ)4
< 0,

from which we know that the function is monotonically increasing and concave. On the other hand,
we know that gy(z) is convex, monotonically increasing on z ∈ [y1/2,∞) and is bounded below by
1. We can thus show the claim for C = 3 by comparing the functions as well as their derivatives at
z = y1/2 + 1.

First note that by monotonicity, we have for all z ≤ y1/2 + 1 that

ϕ(z) ≤ ϕ(y1/2 + 1) =
(y1/2 + 1)2 + η(y1/2 + 1)− y

y1/2 + 1 + η
=

y + 2y1/2 + 1 + ηy1/2 + η − y

y1/2 + 1 + η

=
y1/2 + 1 + η + (1 + η)y1/2

y1/2 + 1 + η
= 1 +

(1 + η)y1/2

y1/2 + 1 + η

≤ 1 +
(1 + η)y1/2

y1/2
= 1 + 1 + η ≤ 3 · 1 ≤ 3g(z).

In particular this holds for z = y1/2 + 1 as well.

It remains to compare the derivatives for the choice of z = y1/2 + 1. We have

ϕ′(y1/2 + 1) = 1 +
y

(y1/2 + 1 + δ)2
≤ 1 +

y

(y1/2)2
= 2,

which implies that we also have

3g′(y1/2 + 1) = 3 · 2(y
1/2 + 1)2 − y

y1/2 + 1

= 3 · 2y + 2y1/2 + 1− y

y1/2 + 1

= 3 · 22y
1/2 + 1

y1/2 + 1
≥ 3 · 2 > 2 ≥ ϕ′(y1/2 + 1).

This completes the proof of ϕ(z) ≤ 3g(z) for all z by convexity of g and concavity of ϕ.

Overall, the claim of Equation (9) follows with C = 3(p − 1), for both p ∈ {1, 2}, which also
concludes the proof of the lemma.

Theorem 4.2. Let ε ∈ (0, 1/14). Let (C,w) be a coreset according to Theorem 3.8. Let β̃ :=
argminβ∈D(ε) fw(Cβ), β∗ := argminβ∈D(0) f(Xβ). Then

f(Xβ∗) ≤ f(Xβ̃) ≤ (1 + ε)f(Xβ∗).

Proof of Theorem 4.2. We invoke Lemma 4.1 with η = ε to show that the shifted version of β∗, i.e.,
βgood := (β∗)′ = β∗ + ηe1 is a (1 + ε)-approximation and βgood ∈ D(η). Thus, the optimizer
(β′)∗ ∈ D(η) cannot be worse than a (1 + ε)-approximation.

The coreset construction of Theorem 3.8 works uniformly over D(η). It thus yields a coreset C ⊂ X
of size k with weights w ∈ Rk such that if we denote the weighted loss on the coreset by fw(Cβ), it
satisfies

∀β ∈ D(η) : (1− ε)f(Xβ) ≤ fw(Cβ) ≤ (1 + ε)f(Xβ) (17)

24

Then defining βgood := β∗ + ηe1, we have f(Xβ̃) ≥ f(Xβ∗) since D(η) ⊂ D(0). Moreover,
assuming 0 < ε ≤ 1

2 we have

f(Xβ̃) ≤ 1

1− ε
fw(Cβ̃) ≤ 1

1− ε
fw(Cβgood)

≤ 1 + ε

1− ε
f(Xβgood) ≤

(1 + ε)2

1− ε
f(Xβ∗) ≤ (1 + 7ε)f(Xβ∗)

rescaling ε finishes our main result.

E Proofs for lower bounds

Lemma 6.1. Consider a number n ≥ 8 of points equidistant on a unit circle in a 2-dimensional
affine subspace embedded in Rd, d ≥ 3, each with label yi = 1. Then the sensitivity of each point
for the Poisson model with pth-root-link for p ∈ {1, 2} is arbitrarily close to 1. Consequently, any
coreset for the Poisson regression model must comprise all Ω(n) input points.

Proof of Lemma 6.1. We first note that our construction can be embedded arbitrarily in d ≥ 3
dimensional spaces. For simplicity, we describe the construction for d = 3, where the first dimension
corresponds to the affine translation and the other two describe the location in the 2-dimensional
subspace.

Recall that our point set is given by xi = (1, cos(2πin), sin(2πin)), i ∈ [n], and yi = 1 for every
i ∈ [n]. By symmetry of the construction, it suffices to analyze w.l.o.g. the sensitivity of point
xn = (1, cos(2π), sin(2π)) = (1, 1, 0). Since the sensitivity is defined as the supremum over all β,
it also suffices to find one β for which the sensitivity is arbitrarily close to 1. To this end, for a small
η > 0 yet to be determined, we choose

β = (1 + η,− cos(2π),− sin(2π))T = (1 + η,−1, 0)T ,

where 1 + η represents a translation term and (−1, 0)T represents a ‘normal’ term that lives within
the 2-dimensional subspace mentioned above. This normal term defines a hyperplane H (which is in
fact a line) within the 2-dimensional subspace. The normal points towards the center of the point set,
and the hyperplane H is at distance exactly xnβ = 1 + η − 1 = η from xn.

A simple trigonometric calculation yields that the separation between xn and the neighboring points
x1 and xn−1 along the direction orthogonal to H is exactly 1 − cos(2π/n). Since n ≥ 8, it holds
that (2π/n)2/3 ≤ 1 − cos(2π/n) ≤ (2π/n)2/2 by a second order Taylor series expansion of the
cosine function. All other points are even farther away from xn than x1 and xn−1, and therefore also
further from H . Also note that if we let x′

n = (1,−1, 0) be the antipodal point of xn on the circle,
we see that the distances of all points from H are less than x′

nβ = 1 + η + 1 = 2 + η < 3.

Recall that for arbitrary p ≥ 1, the function gy defined in Equation (4) is minimized at y1/p, which
in this case equals yi = 1. We have that roughly half of the points are at distance at least 1 + η and
distance at most 3 from H . By strict convexity, we have that g1 is also strictly increasing on the
interval [1,∞). We can thus upper bound the contribution of each of these points by at most

g1(xiβ) ≤
n

2
g1(3) = (3p − p log(3)) ≤ 9− 1 = 8 ≤ 8 log(n). (18)

For the other half of the points (except xn) the contribution is upper bounded by the loss that occurs
closest to H . By strict convexity again, we have that g1 is also strictly decreasing on the interval
(0, 1]. We argued that the points are sufficiently separated, so we get that each of their contributions
is bounded by

g1(xiβ) ≤ g1(1− cos(2π/n)) ≤ g1((2π/n)
2/3) ≤ g1(1/n

2)

≤ 1/n2p − 2p log(1/n) = 1/n2 + 2p log(n)

≤ 1 + 4 log(n) ≤ 8 log(n). (19)

Now, choosing η = exp(−n2), we have that the cost of the point xn is lower bounded by

g1(xnβ) = g1(η) ≥
(

1

exp(n2)

)p

+ p log(exp(n2)) ≥ n2.

25

Thus, we have that

ςn = sup
β′

g1(xnβ
′)∑n

i=1 g1(xiβ′)
≥ n2

n2 + 8n log(n)

n→∞−→ 1.

Since there is no sensitivity upper bound below 1 that holds for arbitrarily large n and for each point,
[41, Lemma A.1] implies that the coreset must comprise all Ω(n) points.

Lemma 6.2. Let ΣD be a data structure for D = [X, y] ∈ Rn×d × Rn, d ≥ 3, that approximates
negative log-likelihood queries ΣD(β) for Poisson regression with the pth-root-link for p ∈ {1, 2},
such that for some φ ≥ 1 it holds that

∀β ∈ Rd : f(Xβ) ≤ ΣD(β) ≤ φ · f(Xβ).

If φ < n
8 log(n) then ΣD requires Ω(n) bits of memory.

Proof of Lemma 6.2. We reduce from the indexing problem for which we know that it has one-way
randomized communication complexity Ω(n) [25]. We construct a protocol as follows. Alice is given
a vector b ∈ {0, 1}n. She produces for every i with bi = 1 the points xi = (1, cos(2πin), sin(2πin))
in canonical order. The corresponding counts are set to yi = 1. She builds and sends ΣD to Bob,
whose task is to guess the bit bj . Let the size of ΣD in bit complexity be s(n) bits, and note
that s(n) corresponds to the amount of bits that have been communicated. Bob chooses to query
β = (1 + η,− cos(2πjn),− sin(2πjn)).

By symmetry of the construction, we can assume w.l.o.g. that the upper bounds Equations (18)
and (19) on the costs in the proof of Lemma 6.1 continue to hold.

Thus, if bj = 0, then xj does not exist and the cost of all other points is bounded from above by

f(Xβ) ≤ 8n log(n).

If bj = 1, then xj is at distance exactly

xjβ =

(
1, cos

(
2πj

n

)
, sin

(
2πj

n

))
·
(
1 + η,− cos

(
2πj

n

)
,− sin

(
2πj

n

))T

= 1 + η − cos

(
2πj

n

)2

− sin

(
2πj

n

)2

= 1 + η − 1 = η.

Thus, choosing η = exp(−n2), the cost is bounded below by f(Xβ) ≥ g1(η) ≥ n2 as in the proof
of Lemma 6.1.

Given that φ < n2

8n log(n) =
n

8 log(n) , Bob can distinguish these two cases based on the data structure
only, by deciding whether ΣD(β) is strictly smaller or larger than n2. Consequently, it holds that
s(n) ≥ Ω(n), since this solves the indexing problem.

Lemma 6.3. For all x ∈ [−1/e, 0), it holds that W0(x) ≤
√
2(1 + ex)− 1.

Proof of Lemma 6.3. First we claim that

τ − log(1 + τ) ≥ −1

2
log(1− τ2) = − log(

√
1− τ2), τ ∈ (−1, 0]. (20)

Define l(τ) := τ − log(1 + τ) + 1
2 log(1− τ2). Then l(0) = 0. The derivative of l is

l′(τ) = 1− 1

1 + τ
− 1

2
· 2τ

1− τ2
=

1− τ2 − 1 + τ − τ

1− τ2
=

−τ2

1− τ2
< 0, ∀τ ∈ (−1, 0]

which implies that for every τ ∈ (−1, 0] we have l(τ) ≥ 0. This proves Equation (20). Next, we
follow the proof strategy of [38, Theorem 3.2]: define a new variable τ = τ(x) := −(W0(x) + 1),
so that −W0(x) = 1 + τ . Since W0(x)e

W0(x) = x for x ≥ −1/e, the definition of τ implies that
(1+ τ)e−(1+τ) = −x. Let x ∈ [−1/e, 0) be arbitrary. Then since W0(0) = 0 and W0(−1/e) = −1,
we have τ(x) ∈ (−1, 0], and thus

(1 + τ)e−(1+τ) = −x ⇐⇒ τ − log(1 + τ) =− log(−x)− 1

26

=⇒ − log(
√
1− τ2) ≤− log(−x)− 1 by Equation (20)

⇐⇒ 1 + log(−x) ≤ log(
√
1− τ2).

The last inequality is equivalent to

1 ≤ log

(√
1− τ2

−x

)
⇐⇒ e ≤

√
1− τ2

−x
⇐⇒ −ex ≤

√
1− τ2.

Now since (
√
1− τ2)2 = 1− τ2 ≤ 1− τ2 + (τ

2

2)2 = (1− τ2

2)2 for every τ ∈ (−1, 0], it follows
that

−ex ≤ 1− τ2

2
⇐⇒ τ2

2
≤ 1 + ex ⇐⇒ |W0(x) + 1| ≤

√
2(1 + ex),

where the rightmost equivalence above follows from the definition τ := −(W0(x)+1). The inequality
on the right-hand side above implies the desired conclusion.

Recall the function gyi
defined in Equation (4).

Lemma 6.4. Let y ∈ N be arbitrary, p = 1, and τ = y1/p in the definition Equation (4) of
gy. Let hλ(z) := (z−y1/p)p

λ for z > 0. Then gy and hλ are tangent to each other if and only if
λ = λ∗(y) = (W0(

−y
(y!)1/y exp(2)

)+1)−1, in which case the unique tangent point is z∗(y) = yλ∗(y)
λ∗(y)−1 .

In addition, λ∗(y) = Θ(
√
ymax/ log(ymax)).

Proof of Lemma 6.4. A point of tangency z̃ of the curves gy and hλ is defined as a point where the
functions agree and their derivatives agree. To identify the point where the derivatives of gy and hλ

agree, we observe

g′y(z̃) = 1− y

z
=

1

λ
= h′

λ(z̃) ⇐⇒ 1− 1

λ
=

y

z̃
⇐⇒ z̃ =

λy

λ− 1
.

Since gy(z) ≥ 1
2 log(2πy) and hλ(z) < 0 for z < y if τ = y, the tangent point cannot lie in the

interval (0, y]. Hence, z̃ > y must hold. Combining this observation with the equation z̃ = λy
λ−1 for

the point where the derivatives agree, we conclude that λ > 1.

Now suppose that z̃ is a point where the functions gy and hλ agree:

hλ(z̃) =gy(z̃)

⇐⇒ y log(z̃)− z̃ +
z̃

λ
=
y

λ
+ log(y!)

⇐⇒ y log(z̃)− z̃
λ− 1

λ
=
y

λ
+ log(y!)

⇐⇒ log(z̃)− z̃

(
λy

λ− 1

)−1

=
1

λ
+

1

y
log(y!)

⇐⇒ z̃ exp

(
−z̃

(
λy

λ− 1

)−1
)

=exp

(
1

λ

)
(y!)1/y

⇐⇒

(
−z̃

(
λy

λ− 1

)−1
)
exp

(
−z̃

(
λy

λ− 1

)−1
)

=−
(

λy

λ− 1

)−1

exp

(
1

λ

)
(y!)1/y.

If z̃ is a point of tangency, then by the equivalent condition above for g′y = h′
λ, it follows that

z̃ = λy
λ−1 . Substituting this into the last equation above yields

−1 exp(−1) =−
(

λy

λ− 1

)−1

exp

(
1

λ

)
(y!)1/y

⇐⇒ − y

(y!)1/y
exp(−1) =− λ− 1

λ
exp

(
1

λ

)

27

⇐⇒ − y

(y!)1/y
exp(−2) =

(
1

λ
− 1

)
exp

(
1

λ
− 1

)
.

The last equation above yields that

1

λ
− 1 = Wk

(
−y

(y!)1/y exp(2)

)
, k ∈ Z. (21)

We can further specify the branches of the Lambert W function as follows. By definition of the
factorial, 1 ≤ y

(y!)1/y
for all y ∈ N. On the other hand, by Stirling’s approximation,

exp(1− 1
12y2)

(2πy)1/(2y)
<

y

(y!)1/y
<

exp(1− 1
12y2+y)

(2πy)1/(2y)
< exp(1), y ∈ N \ {1}. (22)

Hence,
− exp(−1) < − y

(y!)1/y
exp(−2) ≤ − exp(−2), y ∈ N.

This implies that the argument of the Lambert W function in Equation (21) lies in the interval
(−e−1,−e−2]. By definition of the Lambert W function, this in turn implies that in Equation (21),
we need to consider only k = 0 and k = −1, which means that

1

λ∗ =
1

λ∗(y)
∈
{
Wk

(
−y

(y!)1/y exp(2)

)
+ 1 : k ∈ {0,−1}

}
For all x ∈ [− exp(−1),− exp(−2)], W0(x) ≥ W−1(x), with equality holding only for x =
− exp(−1). This follows from the definition of W0 as the principal branch of the Lambert W
function. Hence,

λ∗(y) =
1

W0

(
−y

(y!)1/y exp(2)

)
+ 1

, y ∈ N,

which proves the first statement of Lemma 6.4.

Next, we show that λ∗(y) = Θ(
√
ymax/ log(ymax)). We use a lower bound for the principal branch

W0 of the Lambert W function for negative arguments from [38, Theorem 3.2]:

(ex+ 1)1/2 − 1 ≤ W0(x), ∀x ∈ [−e−1, 0]. (23)

Since we showed above that the argument of the Lambert W function in Equation (21) lies in the
interval (−e−1,−e−2], we may apply Equation (23).

Combining Lemma 6.3 with Equation (23), implies that for all x ∈ [−e−1, 0],
√
ex+ 1− 1 ≤ W0(x) ≤

√
2(1 + ex)− 1 ⇔ 1√

2(1 + ex)
≤ 1

W0(z) + 1
≤ 1√

(1 + ex)
.

By Equation (22), we may thus set x = − y
(y!)1/y

e−2 in the above inequalities, which yields

2−1/2

(
−y

(y!)1/y
e−1 + 1

)−1/2

≤ 1

W0

(
−y

(y!)1/y
e−2
)
+ 1

= λ∗(y) ≤
(

−y

(y!)1/y
e−1 + 1

)−1/2

(24)
for all y ∈ N. Again by Equation (22),

1− exp

(
− 1

12y2 + y
− 1

2y
log(2πy)

)
<

−y

(y!)1/y
e−1 + 1 < 1− exp

(
− 1

12y2
− 1

2y
log(2πy)

)
.

Note that
0 <

1

12y2 + y
+

1

2y
log(2πy) <

1

12y2
+

1

2y
log(2πy).

Since y 7→ 1
12y2 + 1

2y log(2πy) is decreasing on [1,∞) and has the value 1
12 + log(2π)

2 < 1
2 at y = 1,

it suffices to consider the quantity 1− exp(−x) for x ∈ [0, 1
2]. By Taylor’s approximation, we have

x

2
< 1− exp(−x) < x, ∀x ∈ [0, 1] (25)

28

and applying the lower bound in Equation (25) to the lower bound for − y
(y!)1/y

e−1 + 1 below
Equation (24) yields

−y

(y!)1/y
e−1 + 1 > 1− exp

(
− 1

12y2 + y
− 1

2y
log(2πy)

)
>

1

2

(
1

12y2 + y
+

1

2y
log(2πy)

)
=

1

2
· 1 + 6(y + 1/12) log(2πy)

12y2 + y

for all y ∈ N. Applying this to the upper bound for λ∗(y) in Equation (24) yields for all y ∈ N

λ∗(y) ≤
(
2 · 12y2 + y

1 + 6(y + 1/12) log(2πy)

)1/2

≤
(

26y2

6y log(2πy)

)1/2

= O

(√
y

log(y)

)
.

Applying the upper bound in Equation (25) to the upper bound for − y
(y!)1/y

e−1 + 1 below Equa-
tion (24) yields

−y

(y!)1/y
e−1 + 1 <

1

12y2
+

1

2y
log(2πy) =

1 + 6y log(2πy)

12y2
<

12y log(2πy)

12y2

where the rightmost inequality follows since the function y 7→ 6y log(2πy) is increasing on [1,∞)
and has a value strictly larger than 1 at y = 1. Applying the inequality above to the lower bound for
λ∗(y) in Equation (24) yields

λ∗(y) ≥
(
1

2

y2

y log(2πy)

)1/2

= Ω

(√
y

log(y)

)
, ∀y ∈ N.

This completes the proof that λ∗(y) = Θ(
√
ymax/ log(ymax)).

Lemma 6.5. Let p ∈ N, p ≥ 3. Then there does not exist an absolute constant C ≥ 0 such that for
all sufficiently small η > 0 and for all β ∈ D(0), β′ := β + ηe1 ∈ D(η) satisfies

f(Xβ′) ≤ f(Xβ) + ηpn+ ηCf(Xβ). (9)

Proof of Lemma 6.5. First note that

f(Xβ′) =
∑
i∈[n]

(xiβ + η)p − pyi log(xiβ + η) + log(yi!)

=
∑
i∈[n]

(
(xiβ)

p + ηp +

p−1∑
ℓ=1

(
p
ℓ

)
(xiβ)

ℓηp−ℓ

)
− pyi log(xiβ + η) + log(yi!)

=f(Xβ) + ηpn+
∑
i∈[n]

p−1∑
ℓ=1

(
p
ℓ

)
(xiβ)

ℓηp−ℓ − pyi log

(
xiβ + η

xiβ

)
,

where the last equation follows by the definition of f(Xβ), given the hypothesis on p. Define for
every y ∈ N the auxiliary function

φ1,y,p(z) :=
1

η

(
p−1∑
ℓ=1

(
p
ℓ

)
zℓηp−ℓ − py log

(
z + η

z

))
, z > 0. (26)

Then the inequality Equation (9) is equivalent to∑
i∈[n]

φ1,yi,p(xiβ) ≤ C
∑
i∈[n]

gyi(xiβ) ⇐⇒ 0 ≤
∑
i∈[n]

Cgyi(xiβ)− φ1,yi,p(xiβ),

which implies the following statement: there exists C, η∗ > 0 such that for every n ∈ N, (yi)i∈[n] ∈
Nn, η ≤ η∗, and (zi)i∈[n] ∈

∏
i∈[n][y

1/p
i ,∞), it holds that

0 ≤
∑
i∈[n]

Cgyi
(zi)− φ1,yi,p(zi). (27)

29

This statement yields the following necessary condition for Equation (9): there exists C, η∗ > 0

such that for every n ∈ N, (yi)i∈[n] ∈ Nn, η ≤ η∗, and (zi)i∈[n] ∈
∏

i∈[n][y
1/p
i ,∞), at least one

summand on the right-hand side must satisfy 0 ≤ Cgyi(zi)− φ1,yi,p(zi). This is because if every
summand in the sum in Equation (27) were strictly negative, then the sum itself must be strictly
negative. If the necessary condition above does not hold, then by considering the contrapositive, we
conclude that Equation (9) does not hold either.

We now show that the necessary condition does not hold, by proving that for every C, η > 0 and
n ∈ N, there exists (yi)i∈[n] ∈ Nn such that for every i ∈ [n], Cgyi

(y
1/p
i) − ϕ1,yi,p(y

1/p
i) < 0.

Indeed, for every i ∈ [n], suppose that every yi ∈ N satisfies

2C

p(p− 1)η
<

y(p−2)/p

1
2 log(2πy) +

1
12y

. (28)

By the hypothesis that p ≥ 3 and by the fact that the denominator of the right-hand side grows
more slowly than the numerator, it follows that there exist infinitely many values of yi that satisfy
Equation (28). Thus it remains to show that Equation (28) implies Cgy(y

1/p)− ϕ1,y,p(y
1/p) < 0.

By the inequality x
1+x ≤ log(1 + x), x > 0, we obtain

−y

z
= −y

η

η

z
≤ −y

η
log
(
1 +

η

z

)
, ∀η, z > 0.

Rewrite the auxiliary function φ1,y,p from Equation (26) and bound it from below, first by using the
lower bound above, and then by using the hypothesis that p ∈ N, p ≥ 3:

φ1,y,p(z) =

p−1∑
ℓ=1

(
p
ℓ

)
zℓηp−ℓ−1 − p

y

η
log

(
z + η

z

)

≥
p−1∑
ℓ=1

(
p
ℓ

)
zℓηp−ℓ−1 − p

y

z
> pzp−1 +

p(p− 1)

2
zp−2η1 − p

y

z
.

Setting z = y1/p, it thus suffices to show that

Cgy(y
1/p) < p

(
y(p−1)/p + η

p− 1

2
y(p−2)/p − y1−1/p

)
= pη

p− 1

2
y(p−2)/p. (29)

Using (4) to evaluate gy(y
1/p) and using the upper bound on log(y!) from Stirling’s approximation,

we conclude that gy(y1/p) < 1
2 log(2πy) +

1
12y . Now Equation (28) implies Equation (29), because

C

(
1

2
log(2πy) +

1

12y

)
< pη

p− 1

2
y(p−2)/p ⇐⇒ 2C

p(p− 1)η
<

y(p−2)/p

1
2 log(2πy) +

1
12y

.

This completes the proof.

F On the shifted domain and feasibility

In this section, we show that the restriction to D(η) in Theorem 3.8 and Section 4 do not lead to
feasibility issues.

First recall that we had defined for any η ≥ 0

D(η) := {β ∈ Rd : ∀i, xiβ > η}.

Also recall that for the ID- and square root-link — and in fact for any pth-root-link — the loss
function as defined in Equations (3) and (4) includes a log(xβ) term, which restricts the feasible
region to β such that for all xi, i ∈ [n] it holds that xiβ > 0. Thus β ∈ D(0) is the natural domain
induced by the model. In particular, this restriction is not our choice.

Our domain shift idea restricts the domain even further to β ∈ D(η) ⊂ D(0), for η > 0. Clearly,
some solutions that are feasible in the problem formulated over D(0) are no longer feasible in the

30

problem formulated over D(η). But as we prove in Appendix D, we can construct a coreset that holds
for all β ∈ D(η), and D(η) contains at least one β that is a (1 + ε)-approximation for the optimal
solution β∗ of the problem on the original domain D(0), and evaluated on the full dataset. These
two parts are combined to prove that the final minimizer β̃ ∈ D(η) optimized on the coreset is a
(1 +O(ε))-approximation compared to the value of β∗, when both are evaluated on the full dataset.

In the other direction, no infeasible solution can become feasible because of the proper subset relation
D(η) ⊂ D(0). Finally, note that for any data and any fixed η < ∞, both, D(η) and D(0) are
non-empty, since they consist of all β that parameterize hyperplanes that put the convex hull of input
points (respectively, the additive η-inflation of the convex hull of input points) in the positive open
halfspace. Thus there always exist feasible solutions, which means that no instance can become
completely infeasible by means of our methods.

G Pseudocode, data and experimental results

G.1 Pseudocode

Here we give pseudocode for our coreset construction Algorithm 1 and for the subsequent optimization
procedure Algorithm 2:

Algorithm 1 Coreset algorithm for pth-root-link Poisson regression.
Input: data X ∈ Rn×d, Y ∈ Nn

0 , number of rows k (see Theorem 3.8).
Output: coreset C = (X ′, Y ′, w) ∈ Rk′×d × Nk′ × Rk′

with k′ = k + |Ext(X)| rows
1: Let XCH be the extreme points Ext(X) on the convex hull of X or their ε-kernel approximation

(cf. Section 5), let YCH be their corresponding labels
2: Assign weight vector wCH = 1 corresponding to all points in XCH , YCH

3: Let X = X \XCH , Y = Y \ YCH

4: if p = 1 then
5: Calculate a well-conditioned spanning set B (see [44, Lemma 4.1])
6: Set Q = XB
7: else for p = 2
8: Sketch the data to obtain X̃ = ΠX (see [9])
9: Calculate the QR decomposition of the sketch X̃ = Q̃R

10: Set Q = XR−1 (see [15, 34])
11: Approximate the ℓp sensitivities by si := ∥Qi∥pp + 1/n

12: Sample k rows of X and Y i.i.d. with probability pi = si/
∑

j sj to obtain Xcore ∈ Rk×d and
their corresponding labels Ycore ∈ Nk

13: Set wcore ∈ Rk such that wcore,j = 1/(kpi) if sample j corresponds to row i
14: Concatenate XCH with Xcore to obtain X ′

15: Concatenate YCH with Ycore to obtain Y ′

16: Concatenate wCH with wcore to obtain w
17: return C = (X ′, Y ′, w)

Algorithm 2 Domain shift optimizer for pth-root-link Poisson regression.
Input: data X ∈ Rn×d, Y ∈ Nn

0 , error parameter ε ∈ (0, 1
3).

Output: (1 + ε)-approximate solution β̃.
1: Run Algorithm 1 with input X,Y and k as specified to obtain the coreset (X ′, Y ′, w). Let XCH

be defined as in Algorithm 1.
2: Run any convex optimization algorithm to find the optimal solution β̃ for the pth-root-link

Poisson regression objective on (X ′, Y ′, w) under the constraint that ∀xi ∈ XCH : xiβ > ε (see
Theorem 4.2)

3: return β̃.

31

G.2 Synthetic data generation

We generated for each p ∈ {1, 2} a dataset with dimensions n = 100 000, d = 7 with n labels
corresponding to each point.

• Construction of X:

1. Start with 6 standard basis vectors (zi)6i=1 and add the all zero vector z0 = 0 to be the
extreme points on the convex hull.

2. Construct a matrix in R(n−7)×d with i.i.d. standard Gaussian entries. Translate and
rescale the rows of this matrix so that the resulting rows lie in the interior of the convex
hull of the points (zi)6i=0. Concatenate the matrix with the resulting to the matrix with
rows given by (zi)

6
i=0 generated by the first step. Call the resulting matrix Z ∈ Rn×d.

3. Horizontally concatenate a column of length n consisting only of ones to the left of the
matrix Z (add an intercept) to get X ∈ Rn×(d+1).

• Construction of β:

1. Draw one sample β̃ ∼ 101/p ·N(0, Id), with d = 6 as above.

2. Find mini∈[n](Zβ̃)i for Z from the construction of X

3. Compute b := max{1, 21/p · |mini(Zβ̃)i|}
4. Define β := (b, β̃) ∈ Rd+1.

• Construction of y:

1. Compute λ := (Xβ)p ∈ Rn

2. For each i = 1, . . . , n, draw Yi ∼ Poisson(λi), and store the resulting vector as y.

G.3 Experimental illustration

All experiments were run on a commodity machine with Intel Core i7-7700K processor (4 cores,
4.2GHz, 32GB RAM) and took overall around 50 minutes to complete. The Python code of [34]
was adapted to the Poisson regression setting.4 We applied it with the appropriate p ∈ {1, 2} to the
datasets with dimensions n = 100 000, d = 7 generated as detailed in the previous section.

We compared our method to uniform sampling as a baseline, which is widely popular due to its
simplicity and general applicability.

We varied the reduced size between 50 and 600 in equal increments of size 50. For each reduced size
and each method, we performed 201 independent repetitions.

Our results are shown in Figure 1. The red (Poisson with pth-root-link) and blue (uniform sampling)
solid lines display the median approximation ratio across 201 independent repetitions for each reduced
size. The shaded areas below and above the solid lines indicate 2× standard errors of the respective
medians.

For both p ∈ {1, 2} the results look widely similar, although the case p = 1 is slightly more
distinctive. We thus focus our further description on the case p = 1.

Our novel Poisson subsampling method generally outperforms uniform sampling, and their 2×
standard error intervals are very narrow.

The shaded blue area under the blue solid line indicates that the 2× standard error for uniform
sampling is slightly more narrow than the 2× standard error for 1-Poisson regression, i.e., Poisson
regression with ID-link. However, this error is optimistically calculated only on repetitions that
succeed in providing a valid approximation when applied to the original full data.

The shaded blue area above the blue solid line is unbounded, which indicates that some of the
repetitions yield solutions that are infeasible for the original full data problem, and thus fail to give an
appropriate approximation. Even in a few feasible cases, approximation ratios were 1.5− 2.5× 109,
which may be explained by missing points that are very close to the boundary of the convex hull,
thus causing huge errors. The fraction of repetitions leading to infeasible solutions was always

4Our new code is available at https://github.com/Tim907/poisson-regression/.

32

https://github.com/Tim907/poisson-regression/

100 200 300 400 500 600
reduced size

1.000

1.002

1.004

1.006

1.008

1.010

m
ed

ia
n

ap
pr

ox
im

at
io

n
ra

ti
o

Synthetic, p=1

1-Poisson

uniform

100 200 300 400 500 600
reduced size

1.000

1.005

1.010

1.015

1.020

m
ed

ia
n

ap
pr

ox
im

at
io

n
ra

ti
o

Synthetic, p=2

2-Poisson

uniform

Figure 1: Experimental results for two synthetic data sets with p = 1 (left), respectively p = 2 (right).
Our method is presented in red and compared against uniform sampling, which is presented in blue.
Solid lines indicate the median and shaded areas indicate ±2 standard errors around the median taken
across 201 independent repetitions for each reduced size between 50 and 600 in equal increment
steps of 50. For the blue shaded area below the blue solid line, only feasible repetitions were counted,
while the blue shaded area above represents the unbounded standard error without this restriction.
For some lower reduced sizes, even the median was infinite, which results in an interrupted blue solid
line. This indicates that more than half of the repetitions gave infeasible results when using uniform
sampling with low sample sizes, while our method never produced infeasible results.

non-negligible and we note that the solid blue line was interrupted below a reduced size of 250
(respectively 150 for p = 2) meaning that even the median was infinite, indicating that more than
half of the repetitions of uniform sampling were infeasible for the original problem.

In contrast to that, our method produced feasible results in all repetitions, across all reduced sizes,
confirming our discussion in Appendix F, and giving approximation ratios very close to 1.

33

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We state the contributions of our work in the abstract and also in Section 1.1.
We support our claims with proven theoretical results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We prove several lower bounds in Section 6 that indicate the limitations of
constructing coresets for Poisson models in general, as well as limitations of our specific
approach and analysis.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

34

Answer: [Yes]

Justification: The proof of every lemma and theorem is given in the supplementary material.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: This information is provided in Appendix G. Experiments and data can be
reproduced statistically as well as exactly using the code in the public repository.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

35

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: See the Git code repository https://github.com/Tim907/
poisson-regression/, which contains all required code and instructions to install and
reproduce all experiments.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: This information is provided in Appendix G.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report 2SE of the median in our plots. See the caption for Figure 1 and the
detailed description in Appendix G.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

36

https://github.com/Tim907/poisson-regression/
https://github.com/Tim907/poisson-regression/
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Computing resources and total runtime are detailed in Appendix G. We only
used standard commodity hardware on which all experiments could be carried out in around
50 minutes.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research does not involve human subjects or human participants, and
addresses all data-related concerns in the NeurIPS Code of Ethics. We do not anticipate any
potentially harmful consequences of our research.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

37

https://neurips.cc/public/EthicsGuidelines

Justification: We consider the research in this paper to be foundational research that is
not tied to any particular application or deployment. We do not anticipate any negative
application unique to the research presented in this paper.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The risks posed by the Poisson model analyzed in this paper are no greater
than the risks posed by other statistical models used in regression, for example. No datasets
were released as part of this paper.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We only used existing code for which one of the authors has full rights to
modify and reuse. The original source was appropriately cited.

Guidelines:

38

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The new codes are published in an open GitHub repository and documented so
as to allow installing, running and reusing them.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]

39

paperswithcode.com/datasets

Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

40

	Introduction
	Our contributions
	Our techniques
	Related work

	Preliminaries and the Poisson pth-root-link model
	Coreset construction
	Bounding the VC dimension
	Bounding the sensitivities
	Combining the results into the sensitivity framework

	Main approximation result
	Extreme points on the convex hull
	Lower bounds
	Concluding remarks
	Details on the Sensitivity Framework
	Proofs for Poisson pth-root-link model
	Proofs for coreset construction
	Proofs for main approximation result
	Proofs for lower bounds
	On the shifted domain and feasibility
	Pseudocode, data and experimental results
	Pseudocode
	Synthetic data generation
	Experimental illustration

