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ABSTRACT

LLM-powered conversational interfaces (e.g., ChatGPT, Claude, and Gemini)
support iterative text generation, enabling users to easily generate tailored texts (e.g.,
texts that should address domain-specific constraints) through a series of follow-up
text editing requests. However, generating such tailored texts that address the
user-specified constraints across multiple different contexts requires repetitive text
generation efforts, which is cumbersome, inefficient, and demanding. To address
this challenge, we introduce the concept of GPT shortcuts, which is designed to 1)
learn iterative text generation patterns from a dialogue and 2) apply these learned
patterns to directly generate the tailored text. GPT shortcuts generate texts that
address necessary constraints while maintaining similar structural appearance to
the target text in the dialogue, across different contexts. To assess the capability
of language models in generating GPT shortcuts, we present SHORTCUTBENCH,
a benchmark consisting of 250 crowdsourced iterative text generation dialogues
across five text generation tasks. Using SHORTCUTBENCH, we conducted an
analysis using six LLMs and four prompting methods, varying ways to specify
necessary constraints to address in the prompt. We found that 1) larger models
generally outperform smaller models, 2) self-explanatory constraints within the
target text are effective, and 3) precisely specifying necessary constraints to address
is critical for improving the performance.1

1 INTRODUCTION

Large Language Models (LLMs) have been utilized for various types of text generation tasks (Lin
et al., 2024). Users can generate texts addressing varying constraints, such as domain-specific
requirements (e.g., writing a clinical report following specific diagnostic rules (Wang et al., 2024))
and structure of the text (e.g., including “unusual observations” and “treatment plan” in the clinical
report as a numbered list), depending on their context and preferences. To generate such tailored
texts with conversational LLMs (e.g., ChatGPT, Claude, and Gemini), users refine and revise the
generated texts through multiple turns until they get the desired texts (Figure 1-a). Unlike single-turn
generation, conversational text generation offers an easy and interactive way to create texts through
incremental revisions.

However, iterative text generation poses significant challenges to users when repetitively generating
tailored text across different contexts (e.g., writing clinical reports that address hospital-specific
medical guidelines in a consistent format for multiple patients). It requires a case-by-case review and
revision process to address them, which is cumbersome, time-consuming, and demanding. These
challenges can be mitigated by allowing users to directly generate target texts that address the
constraints specified in the iterative text generation dialogue, which we represent as a shortcut. The
shortcut allows users to bypass the need for repeatedly specifying the desired constraints, streamlining
future text generation tasks. Despite the potential, the concept of shortcut in the context of the iterative
text generation has not been explored yet.

We introduce a GPT shortcut generation task, aiming at generating a function that directly generates
texts resembling the target text in an iterative text generation dialogue (Figure 1-b). Specifically, the
generated text should address the user-specified constraints while maintaining a similar appearance

1Demo: http://43.202.150.120:5173/
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Here’s a tomato pasta recipe for 4 
people.

 

Ingredients: 400g pasta, 1 onion, 1tbsp 
tomato paste, 1 tsp dried oregano, ...

 

Instructions
 Cook the pasta: Bring a large pot ..
 Prepare the sauce: In a large skillet, 

..
 Combine pasta and sauce: ..
 Serve: Garnish with fresh basil ...

Here’s the recipe for one portion, using 
just one pan.

 

Ingredients: 100g pasta, 1 small onion, 
1/2 tbsp tomato paste, 1/2 tsp dried 
oregano,  ...

 

Instructions
 Cook the pasta: In the single pan, ..
 Prepare the sauce: In the same pan, ..
 Combine pasta and sauce: ..
 Serve: Garnish with fresh basil ...

Yes, you can make a quick tomato pasta 
within 10 minutes.

 

Ingredients: 100g pasta, 1/4 small onion 
(finely chopped), 1/2 tbsp tomato paste, ...

 

Instructions:
 Boil the Water First (0-2 mins) : ..
 Cook Pasta and Start the Sauce (2-7 mins): ..
 Make the Sauce in the Same Pan (7-10 mins): ..
 Finish and Serve (10 mins): ...

 Give me a tomato pasta recipe

 Give me a tomato risotto recipe

 Give me a ragu pasta recipe

 Can I do it 
within 10 minutes?

 I need one portion.  
Also, I have only one pan

No problem! 
Here’s how you can adjust the recipe:



Ingredients: 100g pasta, 1/4 small onion (finely 
chopped), 200g crushed tomatos, ... 


Instructions
 Boil the Water (0-2 mins): ..
 Cook Pasta and Start the Sauce (2-7 mins): ..
 Make the Sauce in the Same Pan (7-10 mins): ..
 Finish and Serve (10 mins): ...

Target Text

a) 

b) c)
Here’s a simple one-pan tomato risotto recipe for one 
portion, without tomato paste, that you can make 
within 10 minutes: 

 

Ingredients: 100g rice, 1/4 small onion (finely 
chopped), 200g crushed tomatos, ... 
 

Instructions
 Boil the Water (0-2 mins): ..
 Cook Pasta and Start the Sauce (2-7 mins): ..
 Make the Sauce in the Same Pan (7-10 mins): .
 Finish and Serve (10 mins): ...

Here’s a simple one-pan ragù pasta recipe for one 
portion, without tomato paste, that you can make 
within 10 minutes: 

 

Ingredients: 75g pasta, 100g ground beef, 1 small 
clove garlic, 1/4 small onion (finely chopped), 1/2 cup 
crushed tomatoes, ... 
 

Instructions
 Boil the Water (0-2 mins): Start boiling water in your pan ..
 Cook Pasta and Start the Ragù (2-7 mins): Once the water ..
 Simmer and Combine (7-10 mins): Once the beef is 

browned, ..
 Finish and Serve (10 mins): Once the pasta is fully coated ...

 I don’t have a 
tomato paste

Shortcut 
Saved!

GPT shortcut
Generating the desired recipe directly

Figure 1: A visual illustration of the GPT shortcut. a) Initially, the target text ( ) is generated
through iterative revisions of LLM-generated texts through a multi-turn dialogue. In this case, the
user requests a tomato pasta recipe tailored to their circumstances where the constraints were not
immediately obvious at the first place but emerged after reading the generated text. The GPT shortcut
can be created from the process, learning the iterative text generation patterns. b) The GPT shortcut
directly produces the desired texts for different inputs (e.g., “Give me a tomato risotto recipe” or
“Give me a ragu pasta recipe”). c) In this example, the GPT shortcut directly generates personalized
recipes for tomato risotto and ragu pasta. The generated recipes address the user-specified constraints
( ) and have similar structural appearance to the target text. GPT shortcuts streamline the
text generation process, offering easier, more efficient, and more reliable experience compared to
manual iterations.

and structure to the target text (Figure 1-c). The GPT shortcut generation task requires challenging
steps, namely 1) identifying user-specified constraints to address from the iterative text generation
dialogue and 2) developing text generation pipelines that reliably generate the texts resembling the
target text. This paper explores the capability of off-the-shelf LLMs in performing the GPT shortcut
generation task to understand the limitations and gain insights into developing novel methods.

Since there are no existing benchmarks for evaluating GPT shortcut generation capabilities, we
introduce SHORTCUTBENCH, a benchmark dataset that consists of 250 crowdsourced iterative text
generation dialogues across five text generation tasks. SHORTCUTBENCH includes 1) iterative text
generation dialogues using an input text (e.g., a dialogue that produces a news article summary), 2)
three different input texts per task as test cases (e.g., alternative news articles to summarize), and 3)
checklists representing necessary constraints to address in the generated text (e.g., the summary of a
news article should contain the timeline). The performance of GPT shortcuts has been computed by
two metrics: 1) SBcon, measuring an average proportion of the necessary constraints addressed, and
2) SBapp, measuring the similarity in structural appearance between the generated text and target text.
SBcon was computed by prompting GPT-4o2 as a judge, assessing whether each of the necessary
constraints has been addressed. SBapp was computed by comparing the sequence of line lengths
between the generated text and the target text.

2gpt-4o-2024-05-13 was used.
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Figure 2: The performance of six LLMs and four prompting methods. Overall, larger models
outperformed smaller models. +GTC consistently achieved the best SBcon score and comparable
SBapp score with other methods. It highlights the importance of precisely capturing the constraints, a
representation of the iterative text generation pattern. +EUR did not improve both SBcon and SBapp

scores compared to +UR, highlighting the limitation of Chain-of-Thought approach in capturing and
applying the patterns.

Using SHORTCUTBENCH, we conducted an ablation study using six off-the-shelf LLMs, GPT-{3.5-
turbo, 4o-mini, 4o} and Llama3.1-{8B, 70B, 405B}. We compared four one-shot prompting methods:
prompting with the target text as an example output only (OneShot), with the list of user utterances
in the dialogue as explicit constraints in addition to the target text (+UR), with Chain-of-Thought
instructions for identifying necessary constraints to address in the user utterances (+EUR), and
with the ground-truth constraints (+GTC). Figure 2 shows an overall performance of the LLMs and
methods. Overall, larger models outperformed smaller models for both SBcon and SBapp, illustrating
the requirements of reasoning capability (Table 2). Small models, in particular, struggled to generate
texts with similar appearance (Figure 5). One-shot prompting was effective when the example
output (i.e., the target text) is self-explanatory, clearly revealing the necessary constraints. However,
it struggled with complex dialogues and example outputs that lack such explanations. Providing
explicit constraints in addition to the example significantly improved SBcon in these cases (Table 3).
Moreover, specifying precise constraints (i.e., correct constraints to address) in the prompt further
improved SBcon with comparable SBapp. However, the Chain-of-Thought approach (Wei et al., 2022)
for precisely identifying the necessary constraints from the user utterances did not improve SBcon and
even degraded SBapp (Table 2). To sum up, our findings suggest that LLMs can apply the iterative
text generation patterns to different contexts, and precisely capturing these patterns is important for
improving performance, especially for small models.

GPT shortcuts can provide practical value by streamlining the iterative text generation process,
allowing users to easily create task automation that aligns with their specific needs by simply
demonstrating the text generation process. This can be seen as a Programming-by-Demonstration
approach (Cypher & Halbert, 1993; Cambronero et al., 2023) within prompt programming (Liang
et al., 2024; Beurer-Kellner et al., 2023), which has been recognized as an effective approach for
end-users to create customized task automation (Li et al., 2017a;b). For example, by demonstrating
how to write clinical summaries in specific cases, medical professionals can create GPT shortcuts
that produce consistent summaries for different patients, addressing complex regulatory requirements
and including necessary medical terminologies (Van Veen et al., 2023; Lee et al., 2023). Developers
can leverage GPT shortcuts to produce consistent code reviews that follow the company-specific
coding standards and review formats (Yang et al., 2024; Lu et al., 2023), by demonstrating the code
review generation for specific code. We believe that our work represents a promising starting point for
enabling the complex yet powerful task automation by formalizing the problem as learning iterative
text generation patterns and evaluating the capabilities of LLMs.

To sum up, this paper makes the following contributions:
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• Introducing an important yet underexplored task of learning iterative text generation patterns
from a user dialogue — GPT shortcut generation task.

• SHORTCUTBENCH, a benchmark dataset that consists of 250 iterative text generation dialogues
across five text generation tasks, designed to evaluate the capability of language models in
generating GPT shortcuts, along with two metrics SBcon and SBapp.

• Empirical results showing the performance of the GPT shortcut generation task across six
language models and four prompting methods, highlighting the effectiveness of self-explanatory
constraints within the target text, the benefits of specifying explicit constraints especially for
complex dialogues, and the importance of precisely identifying constraints in the dialogue.

2 RELATED WORK

Conversational LLMs. LLM-powered conversational agents have made significant success in
addressing diverse text generation needs (Achiam et al., 2023). Despite the ease of use and flexibility
of the conversational interaction (Flohr et al., 2021), research has shown that novice users face
challenges in creating effective prompts to generate the desired texts (Zamfirescu-Pereira et al., 2023;
Kim et al., 2023; Dang et al., 2022). Iterative text generation allows users to more easily create
the desired texts by a step-by-step approach, prompting LLMs to further address constraints (Wen
et al., 2024) in multi-turn dialogues. Despite the needs of consistently addressing the constraints
specified in the dialogue, applying the iterative text generation patterns in a different context remains
unexplored. We address the challenge by introducing the concept of GPT shortcut, which learns the
iterative text generation patterns and applies them to a different context.

Evaluating LLM capabilities. Research has extensively evaluated the capabilities of LLMs in
various task categories, including knowledge retrieval (Vu et al., 2023; Chen et al., 2024), question
and answering (Zhuang et al., 2023; Alonso et al., 2024), reasoning (Rein et al., 2023; Liu et al., 2024),
evaluation (Zheng et al., 2023; Zhou et al., 2024), and novel idea generation (Si et al., 2024; Radensky
et al., 2024). However, most benchmarks focus on single-turn interactions where a prompt is given
and LLM response is assessed. Recently, WILDBENCH (Lin et al., 2024) examined performance of
LLMs in supporting challenging tasks using real multi-turn dialogues (Zhao et al., 2024), but it is still
limited as a benchmark for the GPT shortcut generation task in terms of dialogue complexity (89%
has ≤ 2 turns) and coherency across tasks. To evaluate LLM capabilities in GPT shortcut generation
task through more complex dialogues, we introduce SHORTCUTBENCH, a crowdsourced benchmark
that consists of 250 iterative text generation dialogues (≥ 3 turns) across five text generation tasks.

Identifying input-output relations. Research has investigated methods for effectively identifying
the relationship between an input and output text. Existing approaches include prompting LLMs
to describe these relationships (Honovich et al., 2022) and optimizing prompts by sampling (Shin
et al., 2020; Zhou et al., 2022). The GPT shortcut generation task can be seen as identifying the
relationship between the input and output text by analyzing the iterative text generation dialogue,
which involves more practically useful and complex patterns compared to simpler relationships
discussed in existing benchmarks, such as negating the input sentence (Honovich et al., 2022). As the
first step, we evaluate the capability of LLMs in capturing and applying the iterative text generation
patterns using SHORTCUTBENCH.

3 GPT SHORTCUT TASK

We define the GPT shortcut generation task as follows: Given a user dialogue d, which demonstrates
iterative text generation producing a target text y when given input x (d : x → y), a GPT shortcut
is defined as fd(x′), which directly generates target text y′ for a new input x′, where d : x′ → y′.
Figure 1-a) shows a dialogue d that generates target text y from the input x, and Figure 1-b)
demonstrates the GPT shortcut fd(x′) directly generating target text y′ from given a new input x′.
GPT shortcuts enable users to perform the text generation tasks in an easy, efficient, reliable way
while avoiding repetitive conversations in varying contexts.

GPT shortcuts can be implemented in different ways such as code (Cai et al., 2023), a prompt (Hon-
ovich et al., 2022; Zhou et al., 2022), and a chain of prompts (Wei et al., 2022; Wu et al., 2022),
which ensures generating texts that meet necessary constraints in the user dialogue while maintaining
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Table 1: Statistical comparison between SHORTCUTBENCH and WILDBENCHEditing, a subset of
WILDBENCH filtered for dialogues tagged “Editing” in either the primary or secondary categories.
SHORTCUTBENCH has more dialogues and turns, which is better suited for GPT shortcut generation
tasks requiring multi-turn dialogues. Also, SHORTCUTBENCH focuses on five text generation tasks
with clear goals while WILDBENCHEditing consists of less coherent tasks with different goals.

Dataset # Dialogues # Turns # Tasks # Metrics
Sum Avg Median

WILDBENCHEditing 124 340 2.74 2 8 1 (Checklists)
SHORTCUTBENCH 250 2094 8.37 8 5 2 (Checklists, Appearance)

the structure of the target text. In this paper, we focus on the prompting methods to implement GPT
shortcuts and evaluate the performance of the methods.

4 SHORTCUTBENCH

SHORTCUTBENCH is a benchmark dataset for assessing the capability of language models in the
GPT shortcut generation task, which consists of 1) 250 iterative text generation dialogues across
5 text generation tasks, 2) a source text (for creating GPT shortcuts) and three candidate texts (for
testing GPT shortcuts) for each dialogue, and 3) checklists for assessing whether the generated text
from each of the candidate texts addresses necessary user-specified constraints in the dialogue.

4.1 DATA COLLECTION PROCEDURE

Our goal was to collect iterative text generation dialogues via crowdsourcing so that the dataset
captures realistic and diverse human intents and behavior in iterative text generation. We selected
five tasks that 1) crowd workers can easily engage in without any significant barrier and 2) have
been widely studied in NLP: text summarization (Nallapati et al., 2016), text simplification (Surya
et al., 2018), essay grading (Wang et al., 2022b), story generation (Fan et al., 2018), and QA (Fan
et al., 2019). For each task, we chose one dataset to select a source text (for creating GPT shortcuts)
and three candidate texts (for testing GPT shortcuts). Then we collected 50 iterative text generation
dialogues for each task via crowdsourcing on the Prolific platform. To collect multi-turn dialogues,
we asked each participant to improve the generated text by their preferences at least two times so that
the collected dialogues contain at least three user utterances. Specifically, participants were required
to select at least three text generation outcomes that they liked and considered to have improved over
the turns. More detailed task selection process, algorithms for choosing the source and candidate
texts, and the data collection interface are included in Appendix A.

With the collected iterative text generation dialogues, we generated checklists for each dialogue,
which captures necessary constraints (e.g., “Include timeline on the summary.”) that the target text
addresses. It is important to note that not all the user-specified constraints in the dialogue have been
addressed in the target text. To make sure that the checklists cover the addressed constraints, we took
a two-step approach. First, we identified all the requested constraints. Specifically, we leveraged
GPT-4o to generate all the user-specified constraints from the dialogue, similar to prior approaches to
creating such checklists (Lin et al., 2024). Then we manually reviewed the checklists by examining
their coverage and generalizability to make sure that the checklists are not too specific to the source
text but applicable to other input texts (e.g., for a story generation task where the source story contains
DVDs, we revised a constraint “make DVDs antique” into “make a commonly used item in the past
become an antique”). Second, we evaluated whether the target text addresses each of the constraints
using GPT-4o as a judge. We conducted the evaluation ten times for each constraint and filtered
constraints that have been determined as addressed at least seven times.

4.2 STATISTICS

Table 1 shows the statistics of SHORTCUTBENCH and WILDBENCHEditing, a subset of WILD-
BENCH (Lin et al., 2024), filtered to include dialogues tagged with “Editing” in either the primary or
secondary categories. To the best of our knowledge, WILDBENCHEditing is the only benchmark that
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includes multi-turn text editing dialogues. How-
ever, it is not sufficient for evaluating the ca-
pability of GPT shortcut generation tasks due
to the limited number of turns (2.7 on average,
counting both the user and assistant utterances).
Furthermore, the goal of the dialogue is not nec-
essarily focused on iteratively generating a single
text, which doesn’t align with the goal of evalua-
tion. SHORTCUTBENCH, on the other hand, con-
sists of 250 dialogues focused on iterative text
generation, enabling clear evaluation of the GPT
shortcut generation capability. Figure 3 com-
pares the turn distributions. SHORTCUTBENCH Figure 3: Comparison of the turn distribution.
consists of dialogues with more number of turns, demonstrating more complex iterative text generation
patterns. By focusing on five distinct text generation tasks, the evaluation can also highlight how
GPT shortcut generation techniques account for the specific nature of each task.

4.3 METRICS

Since the goal of GPT shortcuts is to generate texts resembling the target text in the dialogue, the
generated texts are expected to not only address the necessary constraints in the dialogue but also to
be structurally similar to the target text. SHORTCUTBENCH computes the overall performance by
taking an average of two scores: SBcon and SBapp.

SBcon is the proportion of necessary constraints addressed, which is computed by

SBcon =
The number of necessary constraints addressed

The total number of necessary constraints to address

where the necessary constraints refer to a set of user-specified constraints that have been addressed in
the target texts. SHORTCUTBENCH includes the checklists to verify each of the necessary constraints.

SBapp measures to what extent the generated text structurally resembles the target text. One of the
reasons for including SBapp is to account for implicit constraints that the user has not explicitly
requested but are present in the target text. For instance, when asked to grade a student essay, the
output may include bullet points outlining grading criteria, even though the user did not explicitly
ask for this. Since the user may prefer such structured texts over a plain text in future generations,
we use SBapp to incorporate these implicit preferences into the evaluation, even when the input
differs. However, we recognize that generating texts with similar formats may not always be desirable,
depending on the use cases of GPT shortcuts.

We compare the sequence of line lengths between the generated text and target text. Specifically, we
compute the normalized value of the minimum edit distance between the sequences where the edit
distance is computed by

SED(a, b) =

|a|∑
i=1

|ai − bi|+
|b|∑

i=|a|+1

bi

where a and b are the sequence of line lengths and |a| ≤ |b|. The minimum edit distance can be
computed by Dynamic Programming where the recurrence relation is defined by

MSED(i, j) =


MSED(i− 1, j − 1) if ai = bj

min


MSED(i, j − 1) + bj ,

MSED(i− 1, j) + ai,

MSED(i− 1, j − 1) + |ai − bj |

 otherwise
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where MSED(i, j) denotes the minimum sequence edit distance between two sequences (a1, a2, ..., ai)
and (b1, b2, ..., bj). Finally, SBcon is computed by normalizing the minimum sequence edit distance
as follows.

SBapp = 1− MSED(|g|, |t|)∑
g +

∑
t

where g and t are the sequence of line lengths of the generated text and target text, respectively.

5 METHODS FOR GENERATING GPT SHORTCUTS

Conceptually, GPT Shortcuts are functions that produce a target text from a set of input texts.
Identifying potential input texts within the iterative text generation dialogue requires analyzing the
dialogue along with the task demonstration and the target text. In this paper, we consider a simple
case where the function takes a single input text. The following methods were used to generate GPT
shortcuts. See Appendix B for the prompts used for the methods.

5.1 TEXT GENERATION METHODS

OneShot. Given the input text and target text in the iterative text generation dialogue, one-shot
learning can produce the desired text for another input text. This is a simple but effective approach,
given its remarkable performance and ability to generate texts similarly formatted to the target text.
To produce the desired text, LLMs are expected to address user-specified constraints that have been
implicitly presented in the target text.

OneShot+UserRequests (+UR). A limitation of OneShot is the lack of information about task
demonstrations. Therefore, we provide the list of user utterances in the dialogue to illustrate how
the target text has been generated from the input text. LLMs are expected to address effective user
requests, which is a subset of the list of user requests that have been addressed in the target text.

OneShot+EffectiveUserRequests (+EUR). Naively putting the entire list of user requests could
confuse LLMs as only the subset of user requests should be addressed. Using the Chain-of-Thought
approach (Wei et al., 2022), we prompted LLMs to (1) evaluate whether each user request is addressed
in the target text, (2) list the effective user requests, and (3) produce an output text that addresses the
identified effective user requests. In this way, we expect LLMs can be less confused about which user
requests to address.

OneShot+GroundTruthConstraints (+GTC). We put the ground-truth constraints in the checklists
in the prompt, expecting to yield the ceiling performance of the other methods as it clearly informs
correct constraints without any confusion.

5.2 LANGUAGE MODELS

We evaluated six off-the-shelf language models for the GPT shortcut generation task: GPT-{3.5-turbo,
4o-mini, 4o} and Llama3.1-{7B, 70B, 405B} to assess the general performance and the impact of
scales.

6 EVALUATION RESULTS

In general, larger models outperformed smaller models for both SBcon and SBapp scores. Table 2
shows the overall performance with SBcon and SBapp scores for the language models and methods
where the overall score was computed by taking the average of the two scores. +UR outperformed
OneShot, but +EUR showed worse performance than +UR. Inspecting the performance, +EUR
achieved a lower SBapp score with a comparable SBcon score, compared to +UR. We observed that
the Chain-of-Thought approach of +EUR often produced lengthy texts compared to the target texts.
Llama3.1-8B showed a significant performance reduction on +EUR, which aligns with the findings
that CoT prompting is not effective for small models (Wei et al., 2022). For the overall score, +GTC
consistently achieved the best overall scores across all the language models. OneShot achieved the
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Table 2: The overall performance of the six LLMs and four methods. The overall score was computed
by taking the average of SBcon and SBapp scores. The SBcon and SBapp scores represent the average
scores of the five text generation tasks (see Appendix D for the scores for each text generation task).
The bold phased and underlined scores are the best score and worst score between the methods,
respectively.

Metric Method GPT Models Llama Models
GPT-3.5 GPT-4o-mini GPT-4o Llama3.1-8B Llama3.1-70B Llama3.1-405B

Overall

OneShot 0.773 0.880 0.893 0.851 0.891 0.899
+UR 0.789 0.894 0.896 0.840 0.911 0.911
+EUR 0.767 0.881 0.899 0.758 0.897 0.904
+GTC 0.826 0.907 0.914 0.871 0.912 0.917

SBcon

OneShot 0.841 0.908 0.924 0.900 0.907 0.916
+UR 0.862 0.936 0.939 0.899 0.946 0.944
+EUR 0.851 0.937 0.960 0.768 0.936 0.947
+GTC 0.908 0.961 0.968 0.936 0.955 0.953

SBapp

OneShot 0.706 0.853 0.862 0.801 0.874 0.882
+UR 0.716 0.852 0.853 0.780 0.876 0.878
+EUR 0.683 0.824 0.838 0.747 0.857 0.861
+GTC 0.743 0.853 0.861 0.805 0.868 0.880

worst overall scores, particularly low SBcon scores, but performed well in terms of SBapp scores. The
detailed SBcon and SBapp scores for each of the text generation tasks are included in Appendix D.
We report the following in-depth observations.

Including explicit constraints in the prompt significantly helps, especially for complex dialogues.
OneShot achieved reasonably high SBcon score (≥ 0.9 except for GPT-3.5), which implies that LLMs
are able to capture the necessary constraints just with the target output as an example. As a possible
reason, we observed that the example output is often self-explanatory. For example, LLM responses
tend to contain an introductory statement that explains the text to generate, such as “Sure, here are
the key points you should remember for your test!”, which clearly describes the necessary constraints.
Also, structured texts like a numbered list with headers also specifically guide which kinds of texts to
generate at each point. However, OneShot significantly underperformed compared to other methods
when the target text did not clearly imply the necessary constraints. For instance, the gap of SBcon

scores between OneShot and +GTC was 4.5 times larger on average when the dialogue contained
more than four constraints compared to fewer (Table 3). The performance gap was the largest in the
story generation task, likely because the generated stories tend to be long texts consisting of multiple
paragraphs without such explicit cues. This highlights the importance of comprehensively presenting
the necessary constraints, especially for complex text generation tasks.

Precise constraints in the prompt improve SBcon scores with comparable SBapp scores. For all
the language models, +GTC achieved higher SBcon score than both +UR and +EUR. It suggests
that precisely identifying the necessary constraints in the dialogue is important. +EUR improved the
overall performance a bit for large models (GPT-4o and Llama3.1-405B), but for the other models the
overall performance degraded. Notably, GPT-3.5 achieved a significant gain on SBcon with +GTC
compared to +UR when the target text does not imply the necessary constraints (i.e., a dialogue with
more than four constraints and the story writing task). It highlights the potential of running GPT
shortcuts using the small models as ‘tool users’ while using more powerful models for generating
GPT shortcuts as ‘tool makers’ (Cai et al., 2023). For the appearance, +GTC consistently achieved
comparable SBapp scores with OneShot for all the language models while +UR and +EUR generally
hurt the score. Even +GTC improved SBapp score for GPT-3.5 compared to OneShot. It suggests
that less precise constraints negatively impact the appearance of the generated text.

Small models struggle to generate texts with similar appearance. Figure 5 shows the cumulative
distribution of SBapp for each model. In general, the cumulative lines become steeper for the
larger model, which means that larger models are better at generating texts with similar appearance
while addressing the necessary constraints. Small models (GPT-3.5 and Llama3.1-8B) showed the
cumulative percentage 25.2% and 14.33% on average at SBapp = 0.6 where the appearance of
target text and generated text are significantly different (see Appendix C for the examples). We also
observed notable differences in the appearance of generated texts between the small models. GPT-3.5
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Table 3: SBcon scores for simple dialogues (# constraints ≤ 4), complex dialogues (# constraints
≥ 5), four text generation tasks (excluding the story writing task), and story generation task. The
performance of the four text generation tasks was aggregated by taking the average. We used boldface
for delta scores that are five times larger than the delta of the other case (i.e., Simple vs. Complex,
Non-Story vs. Story). The detailed scores are included in Appendix D.

Method GPT Models Llama Models
GPT-3.5 GPT-4o-mini GPT-4o Llama3.1-8B Llama3.1-70B Llama3.1-405B

Simple Dialogue

OneShot 0.874 0.938 0.950 0.905 0.930 0.940
+UR 0.909 0.933 0.947 0.917 0.955 0.958
+GTC 0.907 0.957 0.964 0.928 0.952 0.949
Delta (GTC-OneShot) +0.033 +0.019 +0.014 +0.023 +0.022 +0.009
Delta (GTC-UR) -0.002 +0.024 +0.017 +0.011 -0.003 -0.009

Complex Dialogue

OneShot 0.774 0.861 0.907 0.912 0.899 0.893
+UR 0.781 0.899 0.937 0.900 0.951 0.933
+GTC 0.910 0.965 0.967 0.956 0.955 0.973
Delta (GTC-OneShot) +0.136 +0.104 +0.060 +0.044 +0.056 +0.080
Delta (GTC-UR) +0.129 +0.066 +0.030 +0.056 +0.004 +0.040

Non-Story Generation

OneShot 0.879 0.930 0.941 0.899 0.921 0.933
+UR 0.896 0.943 0.938 0.887 0.947 0.944
+GTC 0.908 0.961 0.965 0.934 0.954 0.946
Delta (GTC-OneShot) +0.029 +0.031 +0.024 +0.035 +0.033 +0.013
Delta (GTC-UR) +0.012 +0.018 +0.027 +0.047 +0.007 +0.002

Story Generation

OneShot 0.691 0.817 0.857 0.906 0.852 0.852
+UR 0.724 0.910 0.944 0.945 0.940 0.944
+GTC 0.907 0.965 0.980 0.947 0.961 0.980
Delta (GTC-OneShot) +0.216 +0.148 +0.123 +0.041 +0.109 +0.128
Delta (GTC-UR) +0.183 +0.055 +0.036 +0.002 +0.021 +0.036

often generated significantly shorter texts (e.g., generating only three sentences when the target text
in the example spans more than ten paragraphs) whereas Llama3.1-8B often generated overly long
texts. Llama3.1-8B occasionally showed odd text generation behavior, such as producing texts that
were not properly finished, repeating a few sentences over and over.

Llama3.1-8B outperformed the other language models for the story generation task. Figure 4
shows the overall performance on the story gen-
eration task. In OneShot, Llama3.1-8B signifi-
cantly outperformed the other language models,
showing the largest performance gap compared
to the other methods. It implies that Llama3.1-
8B could capture important features in a story
example better than larger models. It is worth
further investigating why Llama3.1-8B can be
comparable, when properly optimized (Lin et al.,
2024), and even outperform larger models in
creative tasks. The gap of SBapp score was
larger than that of SBcon between Llama3.1-8B
and Llama3.1-{70B, 405B}. GPT-3.5+GTC
performed significantly worse than Llama3.1-
8B+OneShot, likely due to GPT-3.5’s tendency
to generate overly short texts (e.g., generating
only a two-sentence story while the example
story consists of more than three paragraphs).

Figure 4: The overall performance for the story
generation task, along with statistical test results
(Welch’s t-test (Welch, 1947), p<0.01) comparing
Llama3.1-8B with other models using the same
method. The detailed scores including SBcon and
SBapp are included in Appendix D.

7 CONCLUSION AND FUTURE WORK

Conclusion. We introduced the concept of GPT shortcuts, which learns iterative text generation
patterns from a dialogue so that users can directly generate the target text in the dialogue in different
contexts. Our evaluation highlights the capabilities and limitations of the language models in
generating GPT shortcuts. As the iterative text generation through conversational LLMs is a natural
user interaction, there exists diverse user needs and iterative text generation patterns. Developing
robust methods for learning such diverse and complex patterns could serve as a foundational step
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Figure 5: Cumulative distribution of SBapp scores for each method and model. Models with steeper
lines generate texts with closer structural appearance of target text. The distribution shows that small
models struggle to generate texts with the closer appearance.

towards more efficient generation of complex texts, enabling new applications in domains with
specialized requirements, such as technical writing, education, marketing, and law.

Limitations and future work. This work focused on five text generation tasks that have been actively
investigated in the NLP community, but considering more tasks in evaluation could inform broader
perspectives about the performance of GPT shortcuts. Also, we believe that considering more complex
iterative text generation dialogues can offer richer insights into how language models capture the
complex patterns, but collecting complex dialogues at scale is challenging. Designing a crowdsourcing
workflow for collecting complex iterative text generation dialogues could be interesting future work.
Starting from the crowdsourced utterances in SHORTCUTBENCH, synthetically generating complex
dialogues is another promising approach. Finally, future work could develop novel GPT shortcut
generation methods by effectively capturing and applying the iterative text generation process.
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Iñigo Alonso, Maite Oronoz, and Rodrigo Agerri. Medexpqa: Multilingual benchmarking of large
language models for medical question answering. arXiv preprint arXiv:2404.05590, 2024.

Luca Beurer-Kellner, Marc Fischer, and Martin Vechev. Prompting is programming: A query
language for large language models. Proceedings of the ACM on Programming Languages, 7
(PLDI):1946–1969, 2023.

Tianle Cai, Xuezhi Wang, Tengyu Ma, Xinyun Chen, and Denny Zhou. Large language models as
tool makers. arXiv preprint arXiv:2305.17126, 2023.
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A DATA COLLECTION

A.1 TASK SELECTION PROCESS FOR THE EVALUATION

Table 4: A list of tasks identified in the task selection process. Tasks with bold phase were selected
for evaluation.

Meta-category Task category (Dataset)

QA Question Answering (Data generated using GPT-4)
Mathematics

Summarization Summarization (CNN/Daily Mail Dataset (Nallapati et al., 2016))
Title Generation

Translation Text Simplification (PubMed 20K (Dernoncourt & Lee, 2017)
Data to Text

Evaluation Text Quality Evaluation (ASAP Dataset (Hamner et al., 2012))
Answer Verification

Creation Story Completion (ROCStories (Mostafazadeh et al., 2016))
Dialogue Generation

We carefully selected five text generation tasks from the following process. We started with a list of
NLP task types in prior literature (Wang et al., 2022a). For each type of the tasks, we filtered tasks
that require open-ended text generations without a definite answer to support iterative text generation
scenarios. Then we further filtered tasks that crowd workers can perform iterative text generations,
which requires judging the text generation results and asking specific requests for improving the
text, without expertise. Finally, we focused on tasks where producing a long text (e.g., multiple
paragraphs) makes sense. As a result, ten task categories have been identified as a suitable iterative
text generation task to be conducted via crowdsourcing (Table 4).

For each of the meta-category, we selected one task category for the task diversity. Then we designed
iterative text generation tasks that crowd workers can easily engage in, using an existing dataset
except for the QA task. Long-form open-ended QA task is one of the most practically useful tasks
using LLM-powered conversational agents. Therefore, we generated questions by asking GPT-4
to generate Why and How questions, two most popular questions reported in prior research (Fan
et al., 2019).3 Using GPT-4, we prompted “Generate 10 why/how questions that spark curiosity in
laypeople”.

For the evaluation, we need to prepare other input texts (candidate texts) as testcases, which are
different from the source text (i.e., the text used in the dialogue). For a clear evaluation, the user
requests (i.e., constraints) in the dialogue should be applicable to the candidate texts so that addressing
the user requests for the candidate texts makes sense. To this end, we prepared three “similar” texts
with the source text. Specifically, we randomly chose three texts from the dataset for QA (why and
how question), text simplification (medical literature), and Text quality evaluation (essay group 8,
randomly chosen) task as the dataset already contains texts within a certain scope. CNN/Daily Mail
Dataset and ROCStories datasets consist of texts in diverse topics. Therefore, we first randomly
sampled 2,000 texts as a pool and chose three closest texts with the source text by computing cosine
similarity using BERT embeddings (Devlin et al., 2018).

3The dataset was not available.
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A.2 DATA COLLECTION PROCESS

Figure 6: An interface for collecting iterative text generation dialogues. Participants are asked to
perform the iterative text generation tasks, starting from a source text. Marked responses are what the
participants liked as results, being improved over the turns. We used the response with the final mark
as the target response for GPT Shortcuts. We randomly assigned three text generation tasks where
participants created dialogues for each task.

We collected iterative text generation dialogues via crowdsourcing at Prolific. Figure 6 shows the
interface used in the data collection study. In the crowdsourcing task, we asked participants to create
three dialogues that iteratively generate texts. We provided a source text (e.g., a news article to
summarize) to perform the iterative text generations. During the conversation, participants were
asked to mark at least three responses, representing participants like the marked responses and the
quality is getting better for them. We used the response with the final mark as the target response in
the GPT shortcut.

To make sure that participants are already familiar with having conversations with LLMs, we
conducted a pre-screening that asks participants to share three conversations with more than ten turns.
Then all the participants passed the pre-screening were invited to the data collection study. We also
provided an introductory material that shows an example of iterative text generations. We offered 1.5
pound for the pre-screening and 3.58 pound for the data collection task as compensations.

Overall, we collected 250 dialogues (50 dialogues for each text generation task, 10 dialogues that
perform an iterative text generation task for each source text, 5 source texts for a text generation
task).
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B PROMPTS

B.1 PROMPTS OF GPT SHORTCUT GENERATION METHODS'

&

$

%

[[ Example Input Text ]]
{{ EXAMPLE INPUT }}

[[ Example Output Text ]]
{{ EXAMPLE OUTPUT }}

[[ Input Text ]]
{{ USER INPUT }}

[[ Instruction ]]
Given the "Input Text", produce an "Output Text" by referring
to "Example Input Text" and "Example Output Text". Just produce
the "Output Text" following a similar format and length with the
"Example Output Text" as much as possible, without providing any
explanations.

[[ Output Text ]]

Figure 7: Prompt for OneShot method

'

&

$

%

[[ Example Input Text ]]
{{ EXAMPLE INPUT }}

[[ Example User Requests for Producing Example Output Text from
Example Input Text ]]
{{ USER UTTERANCES }}

[[ Example Output Text ]]
{{ EXAMPLE OUTPUT }}

[[ Input Text ]]
{{ USER INPUT }}

[[ Instruction ]]
Given the "Input Text", produce an "Output Text" by applying
effective user requests from the "Example User Requests" where
effective user requests are those addressed in the "Example Output
Text". Just produce the "Output Text" following a similar format
and length with the "Example Output Text" as much as possible,
without providing any explanations.

[[ Output Text ]]

Figure 8: Prompt for OneShot+UR method
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'

&

$

%

[[ Example Input Text ]]
{{ EXAMPLE INPUT }}

[[ Example User Requests for Producing Example Output Text from
Example Input Text ]]
{{ USER UTTERANCES }}

[[ Example Output Text ]]
{{ EXAMPLE OUTPUT }}

[[ Input Text ]]
{{ USER INPUT }}

[[ Instruction ]]
Given the "Input Text", produce an "Output Text" by applying
effective user requests from the "Example User Requests" where
effective user requests are those addressed in the "Example Output
Text". When responding,
(1) For each user request in "Example User Requests", evaluate
whether the request has been addressed in the "Example Output
Text" for "Example Input Text". Then effective user requests are
those addressed.
(2) List the effective user requests.
(3) Produce the "Output Text" that addresses the effective
user requests, following a similar format and length with the
"Example Output Text" as much as possible, without providing any
explanations.

[[ Output Text ]]

Figure 9: Prompt for OneShot+EUR method

'

&

$

%

[[ Example Input Text ]]
{{ EXAMPLE INPUT }}

[[ Constraints that Example Output Text addresses ]]
{{ CONSTRAINTS }}

[[ Example Output Text ]]
{{ EXAMPLE OUTPUT }}

[[ Input Text ]]
{{ USER INPUT }}

[[ Instruction ]]
Given the "Input Text", produce an "Output Text" that addresses
"Constraints" together that "Example Output Text" address. Just
produce the "Output Text" following a similar format and length
with the "Example Output Text" as much as possible, without
providing any explanations.

[[ Output Text ]]

Figure 10: Prompt for OneShot+GCT method
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B.2 PROMPT FOR AUTOMATIC EVALUATION'

&

$

%

[[ Input Text ]]
{{ INPUT TEXT }}

[[ Output Text ]]
{{ CONSTRAINTS }}

[[ Criteria ]]
{{ Criteria }}

[[ Instruction ]]
Evaluate whether the Output Text addresses the criteria. The
Output Text is a {{OBJECT}} of the Input Text. For each
constraint,
(1) first say a summary of analysis about whether the output
text addresses the constraint in bullet points. Start with the
constraint number.
(2) then, say "*Evaluation*: Yes/No" for reporting the evaluation
result for the constraint.
After evaluating all the constraints, repeat the list of
evaluation results using the format ‘**Overall Result**:
["Result1", "Result2", ...]’ in the last line.

Figure 11: Prompt for an automatic evaluation using GPT-4o. We put the object name of the result
(e.g., “summary” for the text summarization task) to the {{OBJECT}} placeholder.
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C TEXT GENERATION EXAMPLES WITH SBapp SCORE

Table 5: Text generation examples with SBapp score (text summarization task)

Target Text, SBapp: 1.000

- Ed Miliband changed his energy supplier to First Utility from E.On due to a high bill.
- Miliband’s proposal to freeze energy prices worries First Utility’s CEO.
- The CEO, Ian McCaig, believes the price freeze could bankrupt small suppliers like his.
- First Utility has its prices frozen until after winter and wants large companies to do the same.

Method: Llama3.1-405B, SBapp: 0.942

- The Labour party plans to end its 90-year-old tie with the Cooperative Bank.
- The party is considering moving its current account and £1.2million loan to Unity Trust Bank.
- The move is due to the Co-op Bank’s financial crisis and strained relations with Labour.
- The Tories claim the switch would give trade unions more control over the Labour party.

Method: Llama3.1-70B, SBapp: 0.828

- The Labour party is considering ending its 90-year-old tie with the Cooperative Bank due to financial struggles.
- Labour officials are looking to move the party’s current account and a £1.2million loan to the trade union-controlled Unity Trust Bank.
- The move is seen as a result of strained relations between Labour and the Co-op, which has faced big losses and scandals.
- The Tories have criticized the potential switch, saying it would give trade unions more control over the Labour party.

Method: gpt-4o-mini, SBapp: 0.738

- The Labour Party plans to end its 90-year relationship with the Co-operative Bank due to financial troubles.
- Ed Miliband is considering moving the party’s accounts to Unity Trust Bank, which is controlled by trade unions.
- The Co-operative Bank has faced significant losses and a leadership crisis, leading to concerns about its stability.
- Labour insists the decision is based on commercial reasons, while opponents claim it increases union influence over the party.
- Conservative chairman Grant Shapps criticized the move, arguing it would give unions too much control over Labour’s finances.

Method: gpt-4o, SBapp: 0.684

- The Labour Party plans to end its 90-year-old association with the Cooperative Bank.
- They aim to move their account and a £1.2 million loan to the Unity Trust Bank, which is controlled by trade unions.
- This move comes after the Cooperative Bank faced significant financial losses and scandals involving its former chairman, Paul Flowers.
- The Cooperative Bank reported a £2.5 billion loss for 2013, primarily due to a £1.5 billion hole discovered in its finances.
- The Conservative Party criticized the move, claiming it would increase union influence over Labour.
- Labour insists the switch is for commercial reasons and routinely reviews its financial arrangements.

Method: gpt-3.5, SBapp: 0.550

- The Labour party is considering ending its long-standing relationship with the troubled Cooperative Bank.
- Ed Miliband’s officials are looking to switch the party’s account and loan to the Unity Trust Bank.
- The move would sever a financial tie dating back to the 1920s, potentially giving more power to trade unions according to the Tories.
- The Co-op bank has faced significant losses and scandals, prompting Labour to seek alternative banking options.
- The Co-op Group reported massive losses, leading to doubts about the bank’s future.
- Labour’s decision is said to be driven by commercial reasons, but it may strain relations with the Co-op.
- The potential switch to Unity Trust Bank, largely owned by trade unions, is criticized by the Conservatives.
- Grant Shapps of the Conservative party warns that this move would give even more control to the trade unions over the Labour Party and its leader, Ed Miliband.

Method: Llama3.1-8B, SBapp: 0.423

- The Labour party is considering ending its 90-year-old tie with the Cooperative Bank.
- Ed Miliband’s officials are looking to move the party’s current account and a £1.2million loan to the Unity Trust Bank.
- The move would mark the end of a financial link dating back to the 1920s, but the Tories say it would hand more power to the unions.
- Over 30 Labour MPs are sponsored by the Co-operative Party, but relations have been strained due to the bank’s crisis.
- The Labour party is moving its business away from the Co-Op bank after more than 90 years due to commercial reasons.
- The Co-op Group revealed catastrophic losses of £2.5billion for 2013, leading to the resignation of chairman Paul Flowers and acting chief executive Richard
Pennycook’s warning that the bank may not exist.
- Labour leader Ed Miliband is considering putting the party’s finances in the hands of the union-controlled Unity Trust Bank.
- The bulk of the losses relate to the Co-op’s banking arm after a £1.5 billion hole was discovered in its finances.
- The Cooperative Movement and Labour joined as parties in the 1920s and the link-up with the banking arm is believed to have started then.
- The Tories are criticising the move, saying it would give the trade unions even more control over Ed Miliband and the Labour Party.
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Table 6: Text generation examples with SBapp score (text summarization task)

Target Text, SBapp: 1.000

Syrian President Bashar al-Assad, in a rare interview with ABC, denied responsibility for the violence in Syria and claimed no command was given for military actions
against protesters. Despite international condemnation and ongoing violence, Assad distanced himself from the actions of his forces while the UN and world powers
called for an immediate end to the brutality and political dialogue.

Method: Llama3.1-70B, SBapp: 0.987

A member of Iraq’s governing coalition expects Tariq Aziz, Iraq’s top diplomat under Saddam Hussein, to be executed next year, despite international opposition to the
death penalty. Aziz’s lawyer and human rights groups, including Amnesty International and the Vatican, have expressed concerns that the execution will lead to more
conflict and undermine national reconciliation in Iraq.

Method: gpt-4o-mini, SBapp: 0.973

Iraq’s former top diplomat Tariq Aziz is expected to be executed next year, according to a member of Iraq’s governing coalition, following the withdrawal of American
forces. Critics argue that his execution would undermine national reconciliation efforts and exacerbate sectarian tensions, while Amnesty International and the Vatican
have both opposed the death sentence, calling for a more humane approach to justice.

Method: gpt-4o, SBapp: 0.959

A member of Iraq’s governing coalition stated that Tariq Aziz, Saddam Hussein’s former top diplomat, is expected to be executed next year post the withdrawal of
American troops. Despite opposition from Aziz’s lawyer, Amnesty International, and the Vatican, the Justice Ministry clarified that the execution is not influenced by
U.S. presence or political pressures.

Method: gpt-3.5, SBapp: 0.945

Tariq Aziz, Iraq’s former top diplomat under Saddam Hussein, is expected to be executed next year according to a member of Iraq’s governing coalition. The decision is
anticipated to occur after the American troops depart Iraq, despite concerns about potential repercussions on national reconciliation and increased internal conflicts
among Iraqi factions.

Method: Llama3.1-405B, SBapp: 0.453

A member of Iraq’s governing coalition expects Tariq Aziz, Iraq’s top diplomat under Saddam Hussein, to be executed next year, despite concerns from Aziz’s lawyer
and human rights groups. The execution is set to take place after the Americans leave Iraq, pending ratification from the Presidency Council and the Justice Ministry.

Key points/takeaways:
* Tariq Aziz, Iraq’s former foreign minister and deputy prime minister, is expected to be executed next year.
* The execution is pending ratification from the Presidency Council and the Justice Ministry.
* Aziz’s lawyer and human rights groups, including Amnesty International and the Vatican, have expressed opposition to the death sentence.
* A new law is under consideration that would require death sentences to be ratified by the president within 15 days of being handed down.
* Aziz was sentenced to death in 2010 for his role in eliminating religious parties during Hussein’s regime.
* The execution is seen as a potential source of conflict among Iraqi factions and a challenge to national reconciliation.

Method: Llama3.1-8B, SBapp: 0.397

Iraqi officials expect Tariq Aziz, Saddam Hussein’s top diplomat, to be executed next year, despite opposition from his lawyer and international human rights groups.
The execution, which could be carried out after the US military leaves Iraq, has been criticized as a move that could lead to more conflict among Iraqi factions and
undermine national reconciliation.

Key points/takeaways for the article:
- Tariq Aziz, Saddam Hussein’s top diplomat, is expected to be executed next year in Iraq.
- Aziz’s lawyer and international human rights groups, including Amnesty International and the Vatican, have opposed the execution.
- The execution could be carried out after the US military leaves Iraq, which has been criticized as a move that could lead to more conflict among Iraqi factions.
- A new law is under consideration that would require death sentences to be ratified by the president within 15 days of being handed down.
- Aziz was sentenced to death in 2010 for his role in eliminating religious parties during Saddam Hussein’s regime.

Short 2-sentence summary of the article:
Iraqi officials expect Tariq Aziz, Saddam Hussein’s top diplomat, to be executed next year, despite opposition from his lawyer and international human rights groups.
The execution, which could be carried out after the US military leaves Iraq, has been criticized as a move that could lead to more conflict among Iraqi factions and
undermine national reconciliation.
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Table 7: Text generation examples with SBapp score (text simplification task)

Target Text, SBapp: 1.000

Certainly! The text describes a scientific study that tested whether a substance called platelet-rich fibrin (PRF) can help prevent a painful dental condition called dry
socket after people have their wisdom teeth removed. The study had two groups: one got the PRF treatment, and the other did not. Everyone involved, including the
doctors and patients, didn’t know who was receiving the PRF to keep the results unbiased.

They compared the two groups to see which one had fewer cases of dry socket. They found that the group that received the PRF treatment had fewer dry sockets than the
group that did not. It suggests that PRF could be a helpful treatment in reducing the risk of getting dry socket after wisdom tooth removal.

Method: Llama3.1-70B, SBapp: 0.923

The text describes a study that tested a new program to help kids with asthma manage their condition at school. The program was designed to help both the kids and the
schools they attend. The study involved over 130 schools and more than 1,300 kids with asthma. The researchers looked at how well the kids were doing after a year,
and how supportive the schools were of kids with asthma after 14 months.

They found that the kids in the program did better than those who didn’t participate. They missed fewer days of school, didn’t need urgent care as often, and had a better
quality of life. The schools that participated in the program also became more supportive of kids with asthma. The study suggests that this type of program can really
help kids with asthma manage their condition and have a better life.

Method: Llama3.1-8B, SBapp: 0.867

The text describes a scientific study that tested whether a school-based asthma program can help children with asthma manage their condition better. The study had two
groups: one received the asthma program, and the other did not. Everyone involved, including the teachers and families, didn’t know who was receiving the program to
keep the results unbiased.

They compared the two groups to see which one had better outcomes. They found that the group that received the asthma program had fewer children visiting urgent
care for asthma, fewer school absences, and improved quality of life. It suggests that the asthma program could be a helpful tool in reducing the burden of asthma on
children and their families, and in creating a supportive school environment that allows children with asthma to thrive.

Method: Llama3.1-405B, SBapp: 0.797

The text describes a scientific study that tested a school-based program to help children with asthma manage their condition. The study involved 130 schools and over
1,300 children with asthma. The program aimed to create a supportive environment for children with asthma and teach them how to manage their condition effectively.

The study found that the program was successful in reducing the number of school absences and urgent care visits for asthma. Children in the program also reported
improved quality of life and fewer days of interrupted activity. Additionally, schools that implemented the program were more likely to have practices in place to
support children with asthma. Overall, the study suggests that a multifaceted school-based program can help children with asthma become successful managers of their
condition and reduce the burden of the disease.

Method: gpt-4o, SBapp: 0.719

Certainly! The text discusses a comprehensive study aimed at improving asthma management in schools. Asthma is a critical chronic condition in children, and often
schools are where kids first manage their own asthma. Unfortunately, many children lack adequate preparation for this task. The study assessed a school-based asthma
program involving students with asthma and the wider school community, conducted in 130 elementary schools including 1316 children and their families.

They looked at several outcomes after one year, such as urgent care visits, school absences due to asthma, inhaler usage, and quality of life for the children, as well as
how supportive the school environment was at 14 months. Results showed that children in the intervention group had fewer school absences, required less urgent care,
experienced fewer days with interrupted activities, and reported a better quality of life compared to the control group. Additionally, schools in the intervention group
were more likely to implement practices that created an asthma-friendly environment.

In summary, the implementation of a comprehensive, school-based asthma program can make schools more accommodating for children with asthma, helping them
manage their condition better and improving their overall quality of life.

Method: gpt-4o-mini, SBapp: 0.669

The text describes a research study that investigated the effectiveness of a school-based asthma program designed to help children with asthma better manage their
condition. The program aimed not only at the students but also involved the wider school community, acknowledging the role schools play in children’s health
management.

In the study, 130 schools participated, involving over a thousand children with asthma and their families. The researchers looked at several outcomes, including the
frequency of urgent care visits, school absenteeism, and improvements in inhaler technique and quality of life one year after implementing the program.

The results showed notable improvements for the children in the program group. Specifically, there were fewer absences due to asthma, reduced urgent care visits, and
improved quality of life scores. Additionally, schools that participated in the program adopted better practices to create a supportive environment for students with
asthma. Overall, the study suggests that implementing a comprehensive asthma program in schools can significantly enhance the management of asthma for children and
improve their overall well-being.

Method: gpt-3.5, SBapp: 0.484

Absolutely! The text highlights a study that examined the effectiveness of a school-based asthma program in improving outcomes for children with asthma and creating
a supportive environment within schools. The program targeted both students with asthma and the wider school community. Through a randomized trial involving 130
schools and 1316 children with asthma, positive results were seen at both the child and school level for the intervention group. Children in the intervention group had
lower rates of school absences, urgent care visits for asthma, and interruptions in daily activities compared to the control group. Additionally, they reported an improved
quality of life. Schools in the intervention group also demonstrated better practices to support an asthma-friendly environment. The findings suggest that implementing a
multifaceted school-based asthma program can lead to asthma-friendly schools that benefit children with asthma in managing their condition and improving their quality
of life.
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Table 8: Text generation examples with SBapp score (text simplification task)

Target Text, SBapp: 1.000

The study detailed that the treatment group, which received Huangqi injection, showed statistically significant improvements compared to the control group, with
specific mention of (P < 0.05). The notation ”(P < 0.05)” refers to the p-value obtained in statistical tests, which in this context indicates a less than 5% probability that
the observed differences happened by chance. This threshold is commonly accepted in scientific research to infer that the results are statistically significant.

With this in mind, the treatment group had:
1. A significantly lower incidence of infection (P < 0.05), meaning that the reduction in infection rates compared to the control group was unlikely to be due to random
variation.
2. A shorter duration of infection (P < 0.05), showing that the treatment with Huangqi injection helped in faster recovery from infections.
3. Higher neutrophil count after chemotherapy (P < 0.05), suggesting that Huangqi injection was effective in mitigating chemotherapy-induced neutropenia.
4. Lower incidence rates of respiratory tract infection, urinary tract infection, blood infection, and skin and soft tissue infections (P < 0.05), indicating a broad protective
effect against various infections.
5. A significantly lower positive rate of pathogenic bacteria in secretion among those who were infected (P < 0.05), supporting the idea that Huangqi injection helped
reduce bacterial colonization or proliferation.

Overall, these p-values suggest strong evidence that Huangqi injection was beneficial for children with ALL undergoing remission induction chemotherapy in reducing
infection risks and improving neutrophil counts.

Method: Llama3.1-405B, SBapp: 0.924

The study detailed that the treatment group, which received thread-moxa in Zhuang folk medicine (TM) combined with acupuncture and external application drugs,
showed statistically significant improvements compared to the control group. The notation ”(P < 0.05)” refers to the p-value obtained in statistical tests, which in this
context indicates a less than 5% probability that the observed differences happened by chance. Similarly, ”(P < 0.01)” indicates a less than 1% probability, showing
stronger evidence for the observed differences.

With this in mind, the treatment group had:
1. A significantly higher markedly effective rate (86.7% vs. 53.3%, P < 0.01), indicating that the treatment was more effective in a larger proportion of patients
compared to the control group.
2. No statistical difference in the total effective rate between the two groups (96.7% vs. 80.0%, P > 0.05), suggesting that while the treatment group had a higher rate,
the difference was not significant enough to rule out chance.
3. Significantly lower post-treatment visual analog scale score (VAS), indicating less pain, and a better sleep quality score (QS), indicating improved sleep quality (P <
0.05, P < 0.01).
4. The time for pain disappearance, skin repair, and crusting were significantly shorter in the treatment group (P < 0.05, P < 0.01), showing that the treatment helped in
faster recovery.
5. A significantly lower 1-year postherpetic neuralgia incidence rate (P < 0.05, P < 0.01), indicating that the treatment had a long-term beneficial effect in reducing the
risk of postherpetic neuralgia.

Overall, these p-values suggest strong evidence that TM combined with acupuncture and external application drugs was beneficial for AIDS patients with herpes zoster
in reducing pain, improving sleep quality, and lowering the risk of postherpetic neuralgia.

Method: Llama3.1-8B, SBapp: 0.873

The study detailed that the treatment group, which received TM combined with acupuncture and Jingwanhong Scald Ointment, showed statistically significant
improvements compared to the control group, with specific mention of (P < 0.05) and (P < 0.01). The notation ”(P < 0.05)” refers to the p-value obtained in statistical
tests, which in this context indicates a less than 5% probability that the observed differences happened by chance. This threshold is commonly accepted in scientific
research to infer that the results are statistically significant.

With this in mind, the treatment group had:
1. A significantly higher markedly effective rate (86.7% vs. 53.3%, P < 0.01), meaning that the treatment with TM combined with acupuncture and Jingwanhong Scald
Ointment was more effective in treating AHZ patients compared to the control group.
2. A higher total effective rate (96.7% vs. 80.0%, P > 0.05), showing that the treatment was effective in treating AHZ patients, although the difference was not
statistically significant.
3. Significantly lower post-treatment VAS (P < 0.05), QS (P < 0.01), and time for pain disappearance (P < 0.05), skin repair (P < 0.05), and crusting (P < 0.05),
indicating that the treatment with TM combined with acupuncture and Jingwanhong Scald Ointment relieved pain quickly and shortened the course of disease.
4. A significantly lower 1-year postherpetic neuralgia incidence rate (P < 0.05), suggesting that the treatment with TM combined with acupuncture and Jingwanhong
Scald Ointment was effective in preventing long-term complications of AHZ.

Overall, these p-values suggest strong evidence that TM combined with acupuncture and Jingwanhong Scald Ointment was beneficial for AHZ patients in relieving pain,
shortening the course of disease, and improving quality of sleep.

Method: Llama3.1-70B, SBapp: 0.835

The study detailed that the treatment group, which received thread-moxa in Zhuang folk medicine (TM) combined with acupuncture and Jingwanhong Scald Ointment,
showed statistically significant improvements compared to the control group, with specific mention of (P < 0.01) and (P < 0.05). The notation ”(P < 0.01)” and ”(P <
0.05)” refer to the p-value obtained in statistical tests, which in this context indicate a less than 1% and 5% probability, respectively, that the observed differences
happened by chance. These thresholds are commonly accepted in scientific research to infer that the results are statistically significant.

With this in mind, the treatment group had:
1. A significantly higher markedly effective rate (86.7% vs. 53.3%, P < 0.01), meaning that the improvement in treatment efficacy compared to the control group was
unlikely to be due to random variation.
2. No statistical difference in the total effective rate between the two groups (96.7% vs. 80.0%, P > 0.05), indicating that both treatments were effective but the
difference in total efficacy was not statistically significant.
3. Significantly lower post-treatment VAS (P < 0.05), QS (P < 0.05), and time for pain disappearance, skin repair, and crusting (P < 0.05, P < 0.01), suggesting that
TM combined with acupuncture and Jingwanhong Scald Ointment was effective in relieving pain and improving the quality of sleep.
4. A significantly lower 1-year postherpetic neuralgia incidence rate (P < 0.05), indicating a long-term protective effect against neuralgia.

Overall, these p-values suggest strong evidence that TM combined with acupuncture and Jingwanhong Scald Ointment was beneficial for AIDS patients with herpes
zoster in relieving pain, shortening the course of disease, and improving the quality of sleep.
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Method: gpt-3.5, SBapp: 0.786

The study illustrated that the treatment group, which received thread-moxa in Zhuang folk medicine (TM) combined with acupuncture and external application drugs,
had significantly better outcomes compared to the control group, specifically mentioning (P < 0.05). The notation ”(P < 0.05)” signifies a p-value less than 0.05,
indicating a high level of statistical significance in the results.

The treatment group exhibited:
1. A markedly higher markedly effective rate compared to the control group (86.7% vs. 53.3%, P < 0.01), reinforcing the substantial improvement due to the treatment.
2. Similar total effective rates between both groups (96.7% vs. 80.0%, P > 0.05), indicating overall effectiveness across the study.
3. Lower post-treatment VAS, QS, shorter pain disappearance time, skin repair time, and reduced incidence of postherpetic neuralgia compared to the control group (P
< 0.05, P < 0.01), demonstrating the comprehensive benefits of TM combined with acupuncture and Jingwanhong Scald Ointment for AHZ patients.

In conclusion, the combination therapy was shown to be effective in providing rapid pain relief, shortening the disease course, and enhancing sleep quality in AIDS
patients with herpes zoster.

Method: gpt-4o, SBapp: 0.709

The study observed the efficacy of thread-moxa in Zhuang folk medicine (TM) combined with acupuncture and external application drugs for AIDS patients with herpes
zoster (AHZ). In this randomized controlled clinical trial of 60 patients, the treatment group received TM combined with acupuncture and Jingwanhong Scald Ointment,
while the control group was treated with Famciclovir Tablet, nimesulide dispersible tablet, vitamin B1, and ribavirin ointment. Both groups underwent 14 days of
treatment.

The treatment group showed a significantly higher markedly effective rate than the control group (86.7% vs. 53.3%, P < 0.01). While the total effective rate between
the two groups did not differ significantly (96.7% vs. 80.0%, P > 0.05), the post-treatment visual analog scale (VAS), sleep quality score (QS), the time for pain
disappearance, skin repair, crusting, and 1-year postherpetic neuralgia incidence rate were significantly lower in the treatment group compared to the control group (P <
0.05, P < 0.01).

The notation ”(P < 0.05)” and ”(P < 0.01)” indicate the p-values obtained in statistical tests, meaning there is less than a 5% and 1% probability respectively that the
observed differences happened by chance. This suggests strong evidence of a statistically significant effect.

In essence, TM combined with acupuncture and Jingwanhong Scald Ointment was markedly effective for treating AHZ patients. It significantly relieved pain more
quickly, shortened the disease course, and improved sleep quality compared to the control treatment.

Method: gpt-4o-mini, SBapp: 0.560

The study evaluated the effectiveness of thread-moxa in Zhuang folk medicine combined with acupuncture and external application drugs for AIDS patients with herpes
zoster. A total of 60 patients were randomized into a treatment group (n = 30) receiving thread-moxa with acupuncture and Jingwanhong Scald Ointment, and a control
group (n = 30) receiving standard medication including Famciclovir Tablet and nimesulide dispersible tablet. After a 14-day treatment course, outcomes were assessed
based on clinical efficacy, significant efficiency visual analog scale (VAS) scores, sleep quality scores, and incidence of postherpetic neuralgia after one year.

The treatment group exhibited a markedly effective rate of 86.7%, significantly higher than the control group’s 53.3% (P < 0.01), indicating that the combined treatment
was much more beneficial. However, there was no statistical difference in the total effective rate between the two groups (96.7% for treatment vs. 80.0% for control, P
> 0.05). Furthermore, post-treatment VAS and quality of sleep scores, as well as the duration until pain disappearance, skin repair, and crusting, were significantly
improved in the treatment group (P < 0.05, P < 0.01).

Overall, these statistical findings suggest that thread-moxa combined with acupuncture and Jingwanhong Scald Ointment offers a quick relief from pain and accelerates
healing for AHZ patients, indicating its effective application in managing this condition. The notation ”(P < 0.01)” signifies that there is less than a 1% probability that
the observed differences occurred by chance, making these results statistically significant.
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Table 10: Text generation examples (story generation task)

Target Text, SBapp: 1.000

Gabriel was super nervous about his big concert. His hands were so shaky that when he went to get his violin out of its case, it slipped right through his fingers and
landed on the floor with a loud noise.

For a second, Gabriel felt really scared that he had broken it. But when he picked it up, he saw it was only a little scratched. Feeling relieved but still a bit embarrassed,
he knew he couldn’t let this mess-up ruin his night.

Taking a deep breath to calm himself, he walked out on stage, ready to play. He lifted his violin, started with the first note, and the music just flowed out. Gabriel played
every note just right, showing that even when things go wrong, you can still make them turn out okay.

Method: Llama3.1-405B, SBapp: 0.985

The boy was lying in bed, thinking about what to do that day. He turned on the TV and saw an ad for some really cool skates. He wanted them so badly that he decided
to start saving up his money.

For a moment, the boy felt a little impatient, wanting the skates right away. But then he thought about how good it would feel to earn them himself. Feeling determined,
he got out of bed and started making a plan to save his money.

Taking a deep breath, he walked over to his piggy bank and started counting his coins. He made a goal to save a little each week, and soon he’d have enough for the
skates. The boy felt excited, knowing that with some hard work, he could get the skates he really wanted.

Method: Llama3.1-70B, SBapp: 0.974

I was lying in bed, trying to decide what to do today. I flipped through the channels and saw a commercial for some awesome skates. I really wanted them, so I decided
to start saving up my money.

For a moment, I felt a little worried that it would take forever to save up enough. But then I thought about how cool it would be to ride those skates, and I felt more
determined. I knew I could do it if I tried hard.

Taking a deep breath, I got out of bed and started making a plan to save my money. I would do extra chores and be more careful with my spending. I was excited to get
those skates and ride them with my friends. I knew that with a little patience and hard work, I could make my dream come true.

Method: Llama3.1-8B, SBapp: 0.882

The Skates.

A boy was lying in bed, thinking about what to do today. He turned on the TV and saw a commercial for some cool skates. He really wanted them, so he decided to save
up his money for them.

The boy was super excited about his new skates. He was thinking about them all day. He went to the store and bought them. When he got home, he put them on and felt
like he was flying.

The boy was so happy with his new skates. He knew he would have a lot of fun with them. He started to skate around the house, feeling the wind in his hair. He was so
glad he had saved up for them.

Method: gpt-4o-mini, SBapp: 0.515

A boy lay in bed, daydreaming about what he could do today. He turned on the TV and saw a bright ad for a pair of skates. He felt a rush of excitement and knew he
wanted them. So, he decided to save up his allowance to buy those cool skates. Daydreaming quickly turned into a plan, and he couldn’t wait to skate around with his
friends once he had enough money.

Method: gpt-4o, SBapp: 0.415

A boy was lying in bed thinking about what to do today. He turned on the TV and saw a commercial for some skates. He wanted them so much, so he decided to save up
his money to buy them.

Method: gpt-3.5, SBapp: 0.350

The boy lay in bed, thinking about his day ahead. On TV, a skate commercial caught his eye. Determined to get a pair, he decided to save up his money.
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Table 11: Text generation examples with SBapp score (QA task)

Target Text, SBapp: 1.000

When you cut an onion, it releases a gas that, when it reaches your eyes, forms a weak acid that irritates your eyes and makes them water as a defense to wash away the
irritant. Using a sharp knife or chilling the onion can help reduce tears by slowing down the release of the gas.

Method: gpt-4o-mini, SBapp: 0.961

The ocean is salty mainly because of rivers that carry minerals and salts from the land into the sea. Rainwater erodes rocks, releasing sodium and chloride, which are the
main components of salt. Over time, these salts accumulate in the ocean, making it salty.

Method: Llama3.1-405B, SBapp: 0.900

When seawater evaporates, it leaves behind salt and other minerals that increase the ocean’s saltiness. Freshwater from rain and rivers helps dilute the salt, but the ocean
remains salty due to the constant process of evaporation.

Method: Llama3.1-70B, SBapp: 0.860

When you dissolve salt and minerals from the Earth’s crust into seawater, it becomes salty. The main source of salt is from the Earth’s crust, which is carried to the
ocean through rivers and other water sources.

Method: gpt-4o, SBapp: 0.759

The ocean is salty due to the minerals and salts that are washed into it from rocks on land. Rivers carry these minerals to the ocean, and over time, the salt has built up.

Method: Llama3.1-8B, SBapp: 0.634

When you cut an onion, it releases a gas that, when it reaches your eyes, forms a weak acid that irritates your eyes and makes them water as a defense to wash away the
irritant. Using a sharp knife or chilling the onion can help reduce tears by slowing down the release of the gas.

The ocean is salty because of the high concentration of dissolved salts and minerals, primarily sodium chloride, that come from various sources such as underwater
volcanoes, hydrothermal vents, and the weathering of rocks on land. These salts are carried into the ocean by rivers and eventually become dissolved in the water.

Method: gpt-3.5, SBapp: 0.473

The ocean is salty because rivers wash mineral salts from rocks on land into the ocean.
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D DETAILED RESULTS

D.1 THE PERFORMANCE ACROSS TEXT GENERATION TASKS

Table 12: The overall performance across the five text generation tasks.

Task Method GPT Models Llama Models
GPT-3.5 GPT-4o-mini GPT-4o Llama3.1-8B Llama3.1-70B Llama3.1-405B

Text Summarization

OneShot 0.826 0.886 0.888 0.772 0.895 0.910
+UR 0.840 0.890 0.886 0.778 0.906 0.906
+EUR 0.817 0.864 0.891 0.647 0.893 0.897
+GTC 0.847 0.898 0.903 0.843 0.910 0.913

Text Simplification

OneShot 0.785 0.877 0.884 0.861 0.882 0.896
+UR 0.784 0.880 0.875 0.829 0.888 0.894
+EUR 0.713 0.877 0.882 0.709 0.857 0.876
+GTC 0.782 0.894 0.895 0.877 0.904 0.906

Essay Grading

OneShot 0.885 0.924 0.934 0.848 0.929 0.934
+UR 0.887 0.916 0.926 0.799 0.932 0.929
+EUR 0.868 0.897 0.925 0.710 0.926 0.928
+GTC 0.910 0.925 0.933 0.816 0.918 0.925

Story Generation

OneShot 0.571 0.830 0.855 0.910 0.850 0.851
+UR 0.602 0.882 0.895 0.924 0.909 0.914
+EUR 0.648 0.878 0.891 0.927 0.906 0.900
+GTC 0.758 0.911 0.922 0.933 0.910 0.923

QA

OneShot 0.800 0.885 0.903 0.864 0.899 0.904
+UR 0.831 0.903 0.898 0.868 0.920 0.913
+EUR 0.791 0.886 0.906 0.796 0.903 0.919
+GTC 0.831 0.907 0.920 0.886 0.916 0.916

Table 13: SBcon score across the five text generation tasks.

Task Method GPT Models Llama Models
GPT-3.5 GPT-4o-mini GPT-4o Llama3.1-8B Llama3.1-70B Llama3.1-405B

Text Summarization

OneShot 0.896 0.939 0.944 0.865 0.913 0.930
+UR 0.914 0.966 0.947 0.831 0.946 0.943
+EUR 0.879 0.946 0.967 0.611 0.936 0.931
+GTC 0.915 0.966 0.967 0.915 0.956 0.938

Text Simplification

OneShot 0.842 0.916 0.936 0.882 0.902 0.922
+UR 0.844 0.931 0.925 0.891 0.923 0.934
+EUR 0.756 0.938 0.947 0.681 0.887 0.921
+GTC 0.855 0.951 0.950 0.925 0.955 0.950

Essay Grading

OneShot 0.905 0.957 0.950 0.939 0.949 0.954
+UR 0.911 0.939 0.953 0.914 0.959 0.957
+EUR 0.916 0.932 0.953 0.786 0.961 0.963
+GTC 0.935 0.970 0.971 0.943 0.943 0.943

Story Generation

OneShot 0.691 0.817 0.857 0.906 0.852 0.852
+UR 0.724 0.910 0.944 0.945 0.940 0.944
+EUR 0.832 0.934 0.970 0.967 0.958 0.954
+GTC 0.907 0.965 0.980 0.947 0.961 0.980

QA

OneShot 0.872 0.909 0.933 0.909 0.922 0.924
+UR 0.916 0.936 0.927 0.912 0.961 0.943
+EUR 0.874 0.937 0.961 0.797 0.939 0.964
+GTC 0.927 0.955 0.971 0.952 0.962 0.955
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Table 14: SBapp score across the five text generation tasks.

Task Method GPT Models Llama Models
GPT-3.5 GPT-4o-mini GPT-4o Llama3.1-8B Llama3.1-70B Llama3.1-405B

Text Summarization

OneShot 0.757 0.833 0.831 0.679 0.876 0.890
+UR 0.766 0.815 0.826 0.725 0.865 0.869
+EUR 0.756 0.782 0.816 0.683 0.849 0.864
+GTC 0.778 0.830 0.838 0.770 0.864 0.888

Text Simplification

OneShot 0.728 0.839 0.833 0.840 0.861 0.870
+UR 0.724 0.830 0.826 0.768 0.853 0.854
+EUR 0.670 0.816 0.817 0.737 0.826 0.830
+GTC 0.709 0.836 0.840 0.829 0.853 0.862

Essay Grading

OneShot 0.864 0.891 0.917 0.756 0.909 0.913
+UR 0.864 0.894 0.899 0.683 0.904 0.901
+EUR 0.819 0.862 0.897 0.635 0.891 0.893
+GTC 0.885 0.881 0.895 0.688 0.893 0.907

Story Generation

OneShot 0.452 0.842 0.853 0.913 0.847 0.851
+UR 0.481 0.853 0.847 0.903 0.879 0.885
+EUR 0.464 0.823 0.811 0.888 0.854 0.845
+GTC 0.609 0.858 0.864 0.918 0.860 0.866

QA

OneShot 0.727 0.861 0.873 0.819 0.876 0.884
+UR 0.747 0.871 0.869 0.824 0.879 0.883
+EUR 0.708 0.836 0.852 0.794 0.867 0.874
+GTC 0.735 0.860 0.869 0.821 0.870 0.878
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D.2 THE PERFORMANCE FOR SIMPLE AND COMPLEX DIALOGUES

Table 15: The performance for simple and complex dialogues. Simple dialogues are those with
less than or equal to four constraints. Complex dialogues are those with more than or equal to five
constraints.

Score Type Dialogue Type Method GPT Models Llama Models
GPT-3.5 GPT-4o-mini GPT-4o Llama3.1-8B Llama3.1-70B Llama3.1-405B

Overall Score

Simple Dialogue

OneShot 0.808 0.896 0.903 0.838 0.904 0.914
+UR 0.825 0.897 0.905 0.840 0.917 0.915
+EUR 0.780 0.894 0.906 0.725 0.903 0.912
+GTC 0.825 0.904 0.911 0.861 0.910 0.915

Complex Dialogue

OneShot 0.723 0.860 0.886 0.880 0.879 0.878
+UR 0.734 0.879 0.893 0.853 0.918 0.906
+EUR 0.748 0.867 0.896 0.827 0.906 0.899
+GTC 0.830 0.905 0.919 0.905 0.912 0.917

SBcon

Simple Dialogue

OneShot 0.874 0.938 0.950 0.905 0.930 0.940
+UR 0.909 0.933 0.947 0.917 0.955 0.958
+EUR 0.892 0.956 0.970 0.749 0.948 0.961
+GTC 0.907 0.957 0.964 0.928 0.952 0.949

Complex Dialogue

OneShot 0.774 0.861 0.907 0.912 0.899 0.893
+UR 0.781 0.899 0.937 0.900 0.951 0.933
+EUR 0.816 0.914 0.960 0.839 0.942 0.945
+GTC 0.910 0.965 0.967 0.956 0.955 0.973

SBapp

Simple Dialogue

OneShot 0.742 0.853 0.856 0.770 0.877 0.888
+UR 0.741 0.860 0.863 0.763 0.879 0.871
+EUR 0.667 0.833 0.843 0.701 0.858 0.862
+GTC 0.744 0.852 0.859 0.793 0.869 0.881

Complex Dialogue

OneShot 0.672 0.859 0.865 0.848 0.860 0.864
+UR 0.688 0.859 0.850 0.806 0.885 0.879
+EUR 0.680 0.819 0.833 0.815 0.870 0.853
+GTC 0.749 0.845 0.871 0.854 0.868 0.861
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