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Abstract

Training data attribution (TDA) methods aim to measure how training data im-
pacts a model’s predictions. While gradient-based attribution methods, such as
influence functions, offer theoretical grounding, their computational costs make
them impractical for large-scale applications. Representation-based approaches
are far more scalable, but typically rely on heuristic embeddings that are not op-
timized for attribution, limiting their fidelity. To address these challenges, we
propose AirRep, a scalable, representation-based approach that closes this gap
by learning task-specific and model-aligned representations optimized explicitly
for TDA. AirRep introduces two key innovations: a trainable encoder tuned for
attribution quality, and an attention-based pooling mechanism that enables accurate
estimation of group-wise influence. We train AirRep using a ranking objective over
automatically constructed training subsets labeled by their empirical effect on tar-
get predictions. Experiments on instruction-tuned LLMs demonstrate that AirRep
achieves performance on par with state-of-the-art gradient-based approaches while
being nearly two orders of magnitude more efficient at inference time. Further
analysis highlights its robustness and generalization across tasks and models. Our
code is available at https://github. com/sunnweiwei/AirRep.

1 Introduction

The remarkable success of large language models (LLMs) has been demonstrated across a wide range
of tasks. However, a fundamental question remains open in machine learning: how does the behavior
of LLMs depend on their training data? More specifically, what training examples cause models to
generalize well—or underperform—on specific inputs or tasks? Training Data Attribution (TDA), the
process of measuring the impact of specific parts of the training data on the predictions of machine
learning models, is an important step to answering this question [1]. TDA is crucial for ensuring
transparency and accountability in Al systems by revealing how data influences model outputs.

Existing approaches to TDA can broadly be categorized as either gradient-based or representation-
based. Gradient-based approaches, rooted in influence estimation [2, 3], aim to quantify the impact
of individual training points on model predictions. Their core idea is to use gradients and the
inverse Hessian of the loss function to make a first-order approximation of how a model’s predictions
would change if a certain example was removed from the training set [3]. While these methods are
theoretically well-motivated, they are typically computationally expensive and rely on assumptions of
loss convexity and model optimality — both of which are violated in modern neural networks [4, 5].

In contrast, representation-based methods estimate influence based on similarity in the representation
space. The core assumption is that training examples whose representations are close to a test input are
likely to have influenced its prediction [6]. Recent works have explored various notions of similarity
based on model hidden states [7, 6], n-gram features [8], and text embeddings [9, 10]. Compared
to gradient-based TDA, representation-based approaches are more computationally efficient and
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Figure 1: Performance comparison of gradient-based and representation-based training data attribution
(TDA) approaches. Left: Average linear data model score (LDS) [1] on 4 unseen datasets (FLAN,
Alpaca, Tulu, SafeRLHF). AirRep outperforms state-of-the-art gradient-based methods such as LoGra
(which uses 48 x more storage). Right: Inference speed (encoded examples per second on a single
GPU). AirRep is nearly two orders of magnitude more efficient than gradient-based methods during
inference.

scalable, making them well-suited for large-scale applications, such as curating pre-training data for
LLMs [8, 11]. However, the quality of a representation-based method depends heavily on the selected
feature space. This problem is compounded by the fact that existing work utilizes heuristically
designed representations that are not tailored to the particular target task or model [12].

Finally, a persistent challenge in both method families is is how these methods are extended to
estimate the collective influence of a group of training examples. Most past work extends single-
example attribution methods to the group setting by simply summing over individual attribution
scores within the group. However, this additive assumption fails to capture groupwise interactions
and may lead to inaccurate influence estimation [13].

The advantages and shortcomings of existing methods raise a natural question: Can we develop a
method that provides the best of both worlds?

We answer this question by introducing the Attentive Influence Ranking Representation (AirRep), a
new representation-based approach that incorporates two novel mechanisms to improve performance
over prior representation-based methods. First it uses a trainable encoder that produces task- and
model-specific text representations, ensuring that the feature space is optimized for data attribution
estimation. Second, it introduces an attention-based pooling mechanism that effectively aggregates
multiple examples into a single representation for more accurate group influence estimation. AirRep
is optimized to produce scores that accurately reflect the influence of particular groups of training
examples on a model’s predictions. To achieve this, we device a automatic pipeline to construct
pairwise comparison dataset where data subsets are ranked based on their contributions to a model’s
predictions on specific target examples. We optimize AirRep on the dataset with a weighted pairwise
ranking objective so that the learned representations and aggregation accurately represent the influence
of data on the model’s predictions.

Building on the setup of datamodels [1], we apply our approach on FLAN [14], an instruction-tuning
dataset, and UltraChat [15], a large-scale dialogue generation dataset, and evaluate the model on five
unseen instruction-tuning test set (FLAN, Alapca, Tulu, SafeRLHF) that do not appear in the training
data. Figure 1 shows the main evaluation results. Notably, in the standard Linear Datamodeling
Score (LDS) evaluation [1], AirRep significantly outperforms existing gradient-based approach [16],
despite being ~80x more computationally efficient and ~50x more storage efficient at inference
time. Our evaluation additionally shows consistent patterns across various downstream TDA tasks,
including data selection, data source identification, and task classification. AirRep also exhibits strong
generalizabilty to new tasks and models, which further underscoring the effectiveness of AirRep
(Section 5). Finally, we show that the inference efficiency of AirRep can effectively amortizes the
cost of AirRep training [17] (Section 9).



2 Preliminaries

We consider a framework that is applicable to different applications of TDA but focuses on the
training of language models (LMs) as a concrete example. Let S = (z1, 29, ..., 2, ) represent a
training set of n data points, where z; is a training example that includes both an input and an output.
In the context of language models, we refer to the input as a “prompt” and the output as a response.
Furthermore, let x denote a test example. The goal of TDA is to understand how the training examples
in S contribute to the model’s prediction on x.

Formally, let 6 represent the parameters of the LM. The model is fine-tuned on S, aiming to find

* . .
0* = arg min Z 0(z;0), (D
z; €S

where £(-) denotes the cross-entropy token prediction loss. As language model training is non-convex,
we use 6* to denote the optimized parameters after fine-tuning, regardless of whether a true minimum
has been found. We define the model’s “prediction outcome” on x as the cross-entropy loss computed
on z, given by r(z,S) = £(x;0*), i.e. the evaluation loss on the test example x for the model
fine-tuned on the dataset .S. Here, we use the cross-entropy loss instead of task-specific metrics like
the accuracy, F1 score, or ROUGE [18] because the loss is a generic metric that is defined for all
NLP tasks and has been found to be correlated with task-specific metrics [19].

A data attribution model, denoted by f(z,S), aims to estimate the actual retraining outcome
r(x, S)—i.e., the loss of the model on example x after training on dataset .S. Existing methods can be
generally categorized into two groups: gradient-based methods and representation-based methods.

Gradient-based methods Gradient-based methods largely stem from influence functions [2, 3],
which approximate how € would change in response to infinitesimal perturbations in the weighting
of training instances. Specifically, influence functions quantify the influence from a single training
example z; to an evaluation example = with a closed form expression:

fie(x, 2) = —=Vol(x;0) T H™ 1 Vgl(2;;0). )
where H™! is the inverse Hessian of the training loss wrt model parameters. The derivation of Eq. 2
is given by first-order Taylor approximation of ¢(x; #) around 6* [20] (see Appendix A for details).

The size of model neural networks makes the computation and inversion of the Hessian intractable.
Consequently, practical influence function-based methods often use an approximation of the Hes-
sian [12, 21]. Recent techniques have also considered techniques like gradient projection [16] and
model ensembling [22, 23]. As a representative approach in LLM application, LoGra [16] define the
influence of a training example z; on z is computed as:

fa(@,z:) = ¢(x) " - ¢(20), 3)

where ¢(z) is the projected, Hessian-corrected, and unit-normalized gradient for the input example z,
given model parameters 6:

1

o(z) = norm[H§_5vé£(z;9)]2, 4)

where norm [z} 0= ﬁ is a unit normalization operation [24]; 6 denotes the trainable weights of a

LoGra module [16] with PCA initialization for gradient projection; V ;£(z; ) is the gradient of the

loss with respect to 6; and H@_% is computed on 6 and is approximated based on the Kronecker-

Factored Approximate Curvature (KFAC) algorithm [21]. Further, under first-order approximation,
the group influence fgp(z,.S) is estimated as the summation of individual influences.

Representation-based methods Representation-based methods encode examples as embedding
vectors, eliminating the need for gradient computation. The influence score of a training example z;
to « can then be computed as:

Trep(T,2i) = Enc(:z:)T - Enc(z;) 5)
where Enc(z) denotes a continuous embedding of input z encoded by encoder model Enc. Group
influence is usually defined as summation of individual influence under a linear assumption [1].

In term of the encoding function Enc, existing work in the text domain has investigated different
heuristic designs including (last-layer) hidden states of a language model [7, 6], n-gram representa-
tions [8], TF-IDF representations [25, 26], and text embeddings [11, 27]. See Appendix C for further
comparison of the two types of TDA methods.
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Figure 2: Model Architecture and Optimization. The test example x and the training subsets .57 and
So are encoded by an encoder with a pooler to obtain embeddings. The score is computed as the
inner product of the embeddings. The overall model is trained based on pairwise comparisons to
distinguish the usefulness of different subsets with respect to the test example x.

3 AirRep

To bridge the gap between gradient- and representation-based data attribution, we introduce AirRep,
a novel data-driven approach to enhance representational influence models. At a high level, AirRep
consists of a trainable encoder Enc for embedding input examples and a pooling layer Agg that
aggregates the representation of individual examples to produce a group representation. The influence
score between a training set S and a target example x is then computed as

fairkep(,5) = Enc(m)T - Agg(Enc(z;) | z; € 5) (6)

Specifically, AirRep incorporates two novel mechanisms to improve performance over standard
representation-based methods: First, we introduce an effective attention-based pooling mechanism
that better reflects group influence effect (Section 3.1). Second, we optimize the model on auto-
generated data so that AirRep’s score better reflects the underlying models predictions (Section 3.2).

3.1 Attention-based Pooling

Recall that data attribution methods typically include a mechanism for aggregating the contributions
of elements of z; € S when performing group influence. For this purpose, AirRep uses a pooling
layer to aggregate the representations Enc(z;) into a single embedding. The design of this pooling
layer is crucial for modeling the relationships between group of data samples.

In AirRep, we propose a simple yet effective pooling techniques: attention-based influence pool-
ing. Specifically, AirRep’s aggregation method incorporates an attention-like operation to capture
interactions between elements of x and S:

Fairep(x, §) = Enc(z) " - o Enc(z),
i=1

. ™
exp(| Enc(z) ' - Enc(z;)|)

e exp(| Enc(z) T - Enc(z:)|)”

where Enc(z) denotes the sentence embedding predicted by a BERT-based sentence encoder [28, 29],
«; denotes the attention score of example z;, and | - | denotes the absolute value operation.

where «; =

Remark Empirically, we observe that influence scores are sparse, where each test example relies
on only a few training points, while others add noise. This supports the need for selective pooling,
consistent with prior findings [1, 12, 30]. Additionally, the proposed attention-based influence pooling
can also related to high-order group influence functions. Specifically, Basu et al. [13] showed that
second-order terms capture additional relationship between samples. Extending this, we show that
high-order group influence introduces sample-wise weights, akin to our attention-based pooling (see
Appendix B.1 for more discussion).

3.2 Optimization

Both the Enc and Agg components of AirRep are trainable modules that together take as input x
and S and output a scalar score f(x,S). Ultimately, the objective of data attribution is that f(x, S)



is correlated to r(z, 5), i.e., the actual prediction on = of model trained on S. Since AirRep is
overall trainable, we therefore formulate a training objective that aims to make f(z, S) reflect r(z, S).
Given a ground-truth collection of r(x, S) scores for different datasets .S, we could in principle train
f(z,S) to match these scores as a regression problem. However, in data attribution we care less
about matching the exact values of (z, .S) than we do reflecting the ranking of different example
groups (datasets), since ultimately we aim to answer questions like “which group had the largest
influence on this example?”. We therefore formulate training as a pairwise ranking problem — that is,
given two different data subsets S; and S, whether the score of f(xz,S1) and f(x, S2) reflect the
true data preference r(x, S1) and r(x, S2). In this section, we will first introduce the data generation
pipeline we used for collecting ground-truth r(x, S) scores and then describe the specific training
objective we formulated.

Data Generation To construct data for training AirRep, we assume access to a large corpus
of example datapoints. Then, we generate cross-validation-style data and compute ground-truth
attribution scores. Specifically, we first sample NV,, examples as a validation split and N; examples as a
training split. Then, from the training split, we randomly sample M subsets of data with replacement,
denoted as S = {S1,52,...,S5m}, where each subset S; contains n training examples. For each
training subset .5;, we finetune a language model on it as in Eq. 1 to obtain a model checkpoint 6;.
We then evaluate the trained model on each example x in the validation subset to calculate the loss:
£(x; 0;). After training M models and calculating the loss, we compute the negative normalized loss
for each z in the validation set as

£(z;60;) — Mean ({Z(az;ﬂj) |7 € [M}})
Var ({£(;6;) | j € [M]}) ’

where the original loss ¢(z; 6;) is normalized by the mean and variance across models to stabilize the
training signal, ensuring that the distribution of scores for each target x is on a similar scale.

Pz, 8:) = — (8)

Training Objective Given a target example x from our validation set, M training subsets S =
{51, 52,...,5m}, and the corresponding normalized loss values {7(z,S;);i € [M]}, AirRep
estimates the normalized loss values for each subset as f(z,.S;). For brevity, we use r; and f; to
represent these scores, respectively. Our proposed training objective is a pairwise ranking loss that
encourages the difference between the model-predicted scores, f; — f;, to better align with the
difference in precomputed scores, r; — 7.

In practice, the label r; is noisy due to the stochastic nature of LM training. To mitigate the impact of
noisy labels, we adopt a weighted pairwise ranking loss, inspired by importance reweighting [31, 32],
which assigns lower weights to uncertain labels while prioritizing more reliable ones:

L(x,S8) =— Z Ly, >r; wij logo(fi — f5),
ijEM
] ©))
07 if |7"i — 7"‘7'| < Tmin7

min{|r; — 75|, Tmax}, if Tmin < |75 — 151

where w; ; = {

o is sigmoid function, w; ; is a weighting function that depends on the absolute difference in ground
truth scores, |r; — r;|, and is clipped using thresholds 71y, and Thax to avoid training on 4, j pairs
with incorrect ordering and to mitigate the impact of outliers.

4 Experimental Setup

Model Our experiments focus on LM finetuning, using the Qwen2.5 model family [36] as our base
LMs. During training, we start with the base LM and fine-tune it using a batch size of 32 and the
AdamW optimizer [37] with a learning rate of 2e-5 for two epochs.

Data Generation For AirRep training, we utilize two datasets, each representing distinct scenar-
ios: instruction tuning on standard NLP tasks and training to improve conversational abilities: (i)
FLAN [14], an instruction-tuning dataset for language models, and (ii) UltraChat [15], a large-scale
dataset of instructional conversations covering a wide range of topics. To generate training signal, we
set N, = 10* and N; = 10°. The training subsets number is M = 100, with each subsets containing
n = 1,000 samples. We construct 100 cross-validation instances. Thus, in total, the data includes



Table 1: LDS Evaluation Results of Qwen2.5-0.5B on four Datasets. Avg denotes the average score.
Dim refers to the dimensionality of the embeddings (which corresponds to storage size).

Method Dim Avg FLAN Alpaca Tulu SafeRLHF
TracIn [22] 18432 (48x) 11.33 14.75 9.21 10.75 10.60
LESS [25] 8196 (21x) 16.16 16.40 9.59 13.02 25.63
LoGra [16] 1152 3x) 13.78 13.32 6.87 10.16 24.76
LoGra [16] 18432 (48x) 18.45 19.75 12.38 14.88 26.82
Dsdm [33] 18432 (48x) 18.02 19.67 12.15 1431 25.94
TF-IDF [34] - 9.98 2.52 724 524 24.94
DSIR [8] - -0.02 0.49 201 -049 -2.10
RDS [6] 896 (2.3x) 3.86 0.74 0.87 1.89 11.94
GTE-Small [35] 384 (1x)  17.65 0.92 1.74 1.14 26.80
AirRep (Ours) 384 (I1x) 2623 21.11 22.58 15.14 46.08

10* unique training subsets and 107 training examples. The Qwen2.5-0.5B LM is then fine-tuned on
these training subsets and evaluated on the corresponding validation subset to obtain the label r (-, -).

AirRep Training Details We initialize AirRep using the GTE-Small, a 30M parameter embedding
model [35], and apply a randomly initialized projection matrix on top. AirRep is trained separately
on FLAN and UltraChat. To construct the data for each training step of AirRep, we randomly
select one cross-validation instance, then sample 1,000 examples from its validation subset and 32
training subsets. Distributed training is employed to maximize GPU memory utilization. The clipping
thresholds, Ty and Ty, are set to 0.1 and 5.0, respectively. The model is optimized for up to 2,000
steps using the AdamW optimizer with a learning rate of 1 x 1074

Evaluation Datasets We use the following datasets for evaluation: (i) FLAN [14]: The evaluation
data of FLAN contains 66 NLP tasks spanning diverse categories. (ii) Alpaca [38]: An instruction-
tuning dataset generated by OpenAl’s text-davinci-003 model. (iii) 7ulu [39]: An instruction-tuning
dataset comprising diverse data sources. (iv) SafeRLHF [40]: A dataset for safety alignment of large
language models, where each response is labeled as either safe or unsafe. Note that each evaluation
data contain a test set and a training set. We ensure that all evaluation data remain excluded from
AirRep’s optimization data to guarantee that the evaluation results reflect AirRep’s generalization to
unseen data. Appendix D provides additional dataset details.

Baselines We compare AirRep with representative gradient-based and representation-based meth-
ods. The gradient-based baselines we consider are as follows: (i) LoGra [16], an optimized version
of the influence function as described in Eq.4, based on its implementation in the Logix software
library. (ii) TracIn [22], which leverages the dot product of gradient vectors. (iii) LESS [25], which
computes projected gradients on LoRA weights and adjusts gradients using the AdamW states. (iv)
Dsdm [33], an efficient implementation of Trak [12] for LLM tasks.

The representation-based baselines we consider are as follows: (i) TF-IDF [34], (ii) DSIR [8], hashed
n-gram features, (iii) RDS [6], which utilizes the last-layer hidden states of LMs, and (iv) GTE [35],
a text embedding model trained on text similarity and retrieval tasks which was also used as the base
pre-trained model for AirRep. See Appendix E for more implementation details.

5 Evaluation of Data Attribution

Setup To evaluate these data attribution methods, we follow [1] and use the linear datamodeling
score (LDS) as our evaluation metric. For each evaluation dataset, we sample 100 different random
subsets (S1, - -, S100) of its training set, each containing n training examples, and train the target
LM on each of these subsets. For each example x in the test set, we approximate the expectation of
the model prediction r(z, S;) as the evaluation cross-entropy loss. Given the score f(x, S;) predicted
by the data attribution model, the LDS is computed as the Spearman rank correlation between the
true and estimated influence scores: p({r(z, ;) : i € [100]},{f(z,S;) : i € [100]}). Finally, the
LDS on the dataset is averaged across all test examples.
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Figure 3: LDS correlation scores on FLAN vs. inference-time cost and storage for various TDA
methods across Qwen2.5 models (0.5B—7B). Computation time (Log10 scale) is measured relative
to GTE-Small on the same machine; marker size reflects storage (smaller = more efficient). Each
method has multiple points for different model/dimension settings.

Results Table 1 presents the LDS evaluation results for attributions computed on the Qwen2.5-0.5B
model’s predictions across four evaluation datasets. AirRep achieves the best performance across all
evaluation datasets. Notably, it outperforms the competitive gradient-based approach LoGra [16],
despite being 80x more computationally efficient and 50x more storage efficient. Additionally,
previous representation-based methods exhibit low correlation scores in this evaluation, underscoring
the importance of task-aware optimization of representations.

Figure 3 illustrates the LDS correlation when applying TDA methods to different target language
models, ranging from Qwen2.5-0.5B to Qwen2.5-7B. For gradient-based methods such as LoGra
and LESS, the proxy model can be adjusted—i.e., a smaller LM can be used as a proxy to compute
influence scores for larger target LMs [25]. Additionally, the projection dimensionality can be
modified to balance computation, storage, and performance. In all cases, we use the same AirRep
model trained exclusively on data generated by Qwen2.5-0.5B. Notably, AirRep demonstrates
strong performance when applied to larger target LMs. Specifically, it consistently achieves results
comparable to the best gradient-based methods, which require significantly more resources (e.g., 84 X
to 262 x more computation time and 50x to 80x more storage). These results highlight AirRep’s
potential for efficient and effective data attribution. AirRep also demonstrates strong generalization
across different data sizes and target LM types (Figure 8 and Figure 9).

6 Evaluation of Data Selection

Setup One use of data attribution is data se- Ful DSIR GTE LoGra
lection, where we pick out the highest value © Random  © TFEIDF @ LESS (IR
training data and train only on these samples.

To evaluate each attribution method’s utility in Zj I . I e
this setting, we use the FLAN collection of o I I I
datasets. For each task in FLAN, we use each 2o 1 s

TDA method to select a high-value subset us- 2w I

ing a greedy selection strategy. First, given the 4 =
scores predicted by TDA models, we rank all 4
training examples based on their highest score 2
with respect to the test set samples and retain the Qwen-058 Qwen-1 58 Qwen3B

top 1,000 examples. We then train LMs on the

selected subset and evaluate their performance  Figure 4: Evaluation Results of Data Selection. We
on the test set. The evaluation metric is the F1  report the average F1 score of 66 tasks in FLAN,
score between the LM-generated outputs and  obtained by training Qwen2.5 LM of different sizes
the ground-truth answers. on the top-1000 selected examples for each task.

Results Figure 4 presents the results of using six TDA methods for data selection, along with
a random data selection baseline, evaluated in terms of F1 score and selection cost. Key findings



include: (i) Across all model scales, all methods (except DSIR) outperform random selection. (ii)
Gradient-based approaches (LESS and LoGra) achieve better performance than representation-based
methods (TF-IDF and GTE); however, they are computationally expensive—the time required to
select a subset exceeds the time needed to train the model on the full data, (iii) AirRep performs
comparably to gradient-based methods and full-data training, while significantly outperforming other
representation-based methods in effectiveness, all while maintaining efficiency.

7 Evaluation of Data Classification

Setup TDA methods have been applied to measuring data similarity for the purpose of model
explainability [6]. To evaluate the effectiveness of such explanations, Hanawa et al. [6] introduced the
“Identical Class Test” for image classification, which assesses whether the most influential training
example identified by TDA methods belongs to the same class as the test instance.

We extend this test to LM fine-tuning and formulate the “data classification” task, which measures
the accuracy of TDA methods by evaluating whether the top-retrieved training examples share the
same label as the test example. We consider the following sources of labels for classification: (i)
FLAN and Tulu: FLAN comprises 66 NLP tasks, while Tulu is a collection of 12 source datasets
(e.g., ShareGPT, CoT, Code-Alpaca). We use the task type or source dataset as a label, expecting that
training data from the same task or source as the test example will be more valuable. (ii) SafeRLHF:
SafeRLHF contains both safe and unsafe data annotated with safety labels. We use the safety label,
expecting that harmful training data are more likely to lead to harmful generations at test time.

Results Table 2 presents the evaluation results . . .
of LoGra, GTE-Small, and AirRep.' The results Table 2: Accuracy of Data Classification.
indicate that AirRep significantly improves data Method FLAN  Tulu  SafeRLHF
classification accuracy on FLAN compared to LoGra (Dim 1152) 71.61  76.60 78.00
GTE-Small (increasing from 50.59 to 86.41) and LoGra (Dim 18432) 85.44  86.00 83.20
also outperforms LoGra. Notably, since AirRep is GTE-Small 50.59  76.60 90.60
trained without using any data labels, this suggests AirRep 86.41  88.20 87.20
that the model can learn to represent task-related

information in an unsupervised manner. A similar trend is observed for Tulu, where AirRep demon-
strates superior performance in identifying the data source. For SafeRLHF, AirRep outperforms
LoGra but lags behind GTE-Small, likely because AirRep’s training data, generated from UltraChat,
does not contain harmful content and thus lacks the necessary learning signal.

8 Ablation Study

We conduct an ablation study to evaluate each
component’s contribution. Figure 5 presents the
results as the average LDS score across the four
datasets we consider. Starting with GTE (Small),

GTE

GTE +Attention

AirRep w/o Attention +641

which gets a score of 7.65, we first optimize the AirRep
encoder while keeping mean pooling instead of LoGra
adding the attention pooling layer. This results LoGra +Attention

in AirRep w/o Attention, which achieves a score 0 7 14 20 27
of 19.82—an improvement of 12.17—demon-

strating the effectiveness of encoder optimiza- Figure 5: Ablation Study results: average LDS
tion. Next, when we introduce the attention score on FLAN, Alpaca, Tulu, and SafeRLHF.
pooling layer and jointly optimize the model,

we observe a further improvement of 6.41. Additionally, we examine whether simply adding a
softmax attention pooling to baseline to re-weight individual influences can enhance performance.
From the results of GTE + Attention and LoGra + Attention, we observe only marginal improvements.
This suggests that while weighting data is beneficial, optimizing the weighting distribution is also
necessary to achieve significant gains. Finally, we observe that adding attention pooling not only
improves group influence estimation but also leads to a better underlying representations.

"Here we focus on a subset of most competitive or directly relevant baselines, see Appendix H.2 for more.
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Classification Accuracy. Right: GPU hours vs. number of data processed. AirRep incurs higher
training costs due to data generation (yellow region) and model training (orange region), but is more
inference-efficient.

9 Amortizing Training Cost

Compared with gradient-based methods, AirRep is more efficient at inference but requires training
on auto-generated data, which incurs additional cost. Our evaluation above shows that FLAN- or
UltraChat-pretrained AirRep generalizes well on new TDA data and tasks. We now consider another
setting where AirRep is re-trained from scratch for each TDA task, and analyze how its inference
efficiency can amortize its training cost [17].

Figure 6 (left and middle) shows AirRep’s average attribution and classification scores with different
training data sizes (measured by number of datapoints used in training). Light curves indicate
per-test-set scores. As the training size increases, AirRep achieves better performance. In particular,
AirRep outperforms LoGra (1152)—which has a comparable embedding size—when trained with
around 10° examples. We refer to this AirRep model as the “crossover checkpoint”.

Then, Figure 6 (right) compares the number of training examples that can be processed under different
A100 GPU hour budgets by AirRep (crossover checkpoint) and LoGra, accounting for both data
generation and model training costs. LoGra completes model training earlier, but AirRep—despite
longer training time—achieves nearly two orders of magnitude more throughput once model is
trained. Notably, a turning point appears around 475K examples, where both methods take 5.6 GPU
hours. Beyond this, even with retraining, AirRep is faster than LoGra. For example, with 24 GPU
hours, AirRep can attribute over 100M examples, whereas LoGra can process only around 2M. This
highlights the advantage of AirRep for large-scale TDA scenarios. We additionally emphasize that,
as shown in Section 5, AirRep can be transferred from a small model to larger models and still
attain stronger performance than all baselines, so the “re-training from scratch” results in this section
represent worst-case results for AirRep.

GPT-2

Amortizing Across Models We evaluate Air-
Rep, trained with Qwen-0.5B-generated super-
vision, using different target LMs (Qwen-0.5B,
Qwen-7B, Llama-1B, Qwen3-0.6B, Qwen3- i)
0.6B (Thinking), TinyLlama-1B, GPT-2) on
FLAN. Results in Figure 7 show that across
all targets, AirRep consistently surpasses Lo- Uama-18
Gra, even when LoGra computes gradients on

the target LMs. We also observe that LoGra is Quen7e
sensitive to the proxy used for gradient calcula-
tion—when the target model differs significantly
(e.g., GPT-2), its performance drops notably, & 1w s 20 2
whereas AirRep maintains strong performance.

This indicates the robust generalization of Air-
Rep and that its training cost can be amortized Figure 7: Evaluate with different target LMs. Ar-
across different target language models. Rep shows strong generalization.
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10 Related Work

Most existing work in TDA focuses on gradient-based methods, such as Influence Functions [3]
and their subsequent optimizations, including group influence estimation [41, 13], Hessian approx-
imation [42, 21, 43], gradient normalization [24, 25], gradient projection [22, 16], model ensem-
bling [12, 33, 44], and distillation of the proxy influence models [45—47]. However, studies have
found that the derivation of gradient-based methods may rely on incorrect assumptions in large neural
networks [48, 4]. Additionally, gradient-based methods suffer from the computational expense of
gradient calculations and Hessian inverses [21, 33].

Alternatively, representation-based approaches for TDA measure data influence in the representation
space [7, 49, 6, 9], offering computational and storage efficiency. However, current methods rely
on heuristically designed representations without task-aware and model-specific optimization, often
leading to suboptimal results [12]. Some research on TDA explores simulation-based methods
such as datamodels [50-52, 1], which are usually not tractable for LLM applications due to their
computational expense.

TDA methods have been applied to various purposes in machine learning, such as identifying
mislabeled training data points [3, 53], detecting data poisoning attacks [54, 55], and guiding data
augmentation [56, 57]. TDA methods have also been used for understanding LLM generalization [21]
and learning processes [30, 58]. Another notable line of related work is data selection for LLMs,
which focuses on curating data to optimize test performance [59]. TDA-like functions for measuring
relationships between data have been widely adopted in data selection pipelines to enhance the
quality and diversity of the selected data. Both gradient-based [60, 25, 47] and representation-
based [8, 61, 62, 10] TDA approaches have been applied. Meanwhile, studies have explored using
text embedding models to select in-context examples for LLM prompting [63—65].

11 Conclusion

This paper introduces a new approach to training data attribution called AirRep, which combines
the advantages of task-driven optimization in gradient-based approaches with the efficiency of
representation-based methods. AirRep represents training data as embeddings and scores their
influence using inner-product similarity in the representation space. AirRep’s novel attention-
based pooling mechanism captures the group effects, and the entire model is optimized using a
novel proposed weighted pairwise ranking objective over automatically generated influence signals.
Evaluation on LLM fine-tuning demonstrates the effectiveness and generalization of AirRep.

Limitations of this work include the added cost of model training and evaluation limited to the LLM
fine-tuning stage. While our current evaluation focuses on language tasks, the design of AirRep is
modality-agnostic—it relies only on the availability of suitable encoders and the ability to estimate
loss differences. In principle, this framework could be applied to other domains such as vision or
multimodal settings. For future work, we plan to extend our method to additional scenarios, such as
the pre-training stages of LLMs and multi-modal model training.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In abstract and introduction section, we have clearly claim the contributions
and scope of our paper.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: We have discussed the limitations of this paper in the conclusion section.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,

model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We have procide full set of assumptions and a complete and detailed proof in
Appendix section.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: In implementation details section, we have fully disclose the hyperparameters
to reproduce the main results. We have provided additional information about the baselines
implementation and evaluation in Appendix section. We will open source our model and
code for reproducibility of our work.
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Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have uploaded our code and data as supplemental material with sufficient
instructions.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have specified all important training and test details in datasets and
implemntation details sections.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We have included variance information of scores from repeated experiment in
Figure.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have included detailed information on the training and inference computa-
tion resources in our evaluation section. Appendix provides additional details.
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9.

10.

11.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Our research conform, in every respect, with the NeurIPS Code of Ethics.
Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We have discussed the broader impacts of out paper in the conclusion section.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
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Answer: [Yes]
Justification: We have discussed related considerations in the conclusion section.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited all the assets used in our research, and checked the licenses to
ensure justified usage.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We didn’t release any new assets but conduct all our experiment on existing
open-source datasets and models.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

» At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
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14.

15.

16.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Our research does not involve crowdsourcing / human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: Our research does not involve LLMs as any important, original, or non-standard
components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Deriving the Influence Function

Let #* denote the minimizer of the empirical risk:

0" = arg ngn L(6),

where L(0) == £ 3" | 0(2;6).

T n

Assume that £ is twice differentiable and strongly convex in 6. Thus, the Hessian
1 n
H:=V2L(6 :75 V20(z;0
aL(0) n £ 5(2:;0)

exists and is positive definite, ensuring the existence of H 1.

The perturbed parameters 67 , are defined as:

0;, = arg mein (L(0) + €l(z,0)).

€
Define the parameter change due to the perturbation as A, = 67 , — 6. Since 6* does not depend on
€, the quantity we seek can be written in terms of A.:

de:,z . dAe
de ~— de’

Because 07 , is a minimizer, its first-order optimality condition is:
0=VL(0;,) +eVL(z,0] ).
For small ¢, using the Taylor expansion around 6*:
0~ VL(0*) + eVL(z,0%) + [V?L(0*) + eV{(2,0")] A..
Neglecting higher-order terms, this reduces to:
Ao~ — [V2L(0%) + eV20(2,07)] ' [VL(6%) + €VL(z,07)] .
Since 6* minimizes L(0), it satisfies VL(6*) = 0. Dropping higher-order terms in € yields:
A~ -H 'VL(z,0%)e.

Thus, the derivative of 07 , with respect to € at e = 0 is:

do; .
de

= -H'Vi(z,0%).
e=0

To compute the influence of upweighting z on the loss at a test point x, we use the chain rule:

*

o a7,
== ng(x, 0 ) Té
e=0

= —Vol(x; 0" YH 'Vyl(z;0%).

dl(z, 0" )

s Ve, z

de

e=0

The influence function is therefore given by:

fir(z, 2) = =Vol(x; 9*)H71V9€(z; 0%).
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B Deriving the Group Influence Function

For group influence function, we interest in removing a group of training examples.

Let #* denote the minimizer of the empirical risk:

0" = arg ngm L(9),
where L(0) .= L 3% | 0(2;6).
By up-weighting a subset of examples S = (21, - - , 2, ), we define the new objective:

Ls(0) =~ | Y (1= &)(z,0) + > (1+€)l(z,0)

1
n

where é = —"—¢c. We can see if ¢ = 0 we get the original loss function L() (where none of the
training samples are removed) and if ¢ = —1, we get the loss function where samples in S are
removed from training.

The perturbed parameters 67 ¢ can be written as:
0; ¢ = arg Ingin Ls(0).

Define the parameter change as A, = 07 ¢ — 0*. Since 0* does not depend on e, the quantity we seek
to compute can be written in terms of A.:

de:,S - dAe
de — de’

B.1 Group Influence Function

Extended from Basu et al. [13] results, we show that the structure of the high-order group influence
function is given by:

1
Theorem B.1 (Group Influence Function). Let ¢(z) = Hy 2Vyl(2;0), and assume V5{(z; ) for
k > 3 is negligible. Then the k-order group influence function is given by:

k
k k
i (@,8) = o(x) 3 P enz) (=), (10)
z; €S t=1
where: cgk) are constants at the t-th order, dependent on the meta-information of the distribution of
S and oy (2) is defined as:

(=t ift=1,
TV L es aa(z)elz), ift>2.

From Eq. 10, we observe that the interaction of data samples exhibits an attention structure, with o (z;)
defining the weights of each data sample contributing to the final output. Intuitively, when k > 1,
examples z; that are closer to the group effect are assigned higher weights. We find the theoretical
analysis of high-order group influence derived a similar notion of “attention-based influence pooling”
in AirRep, though AirRep’s design can be viewed as a simplified version of B.1. These analysis also
motivate us to explore more complicated influence pooling mechanism in our future work.

The following section provide the derivation of B.1.

B.2 Deriving the First-Order Group Influence Function
Since 07 5 minimizes L (6), the first-order optimality condition is:

0=VoLs(0 ).

23



For small €, expand around § = 6* and € = 0:
OVoLs(0%)
Oe

At e = 0, the perturbed objective reduces to the original loss, so:

~ VoLs(6%) + e + ViLs(6%) A..

e=0

VoLs(0%)| _, = VoL (0") = 0.
The Hessian at € = 0 is:
VoLs(0%)|_, = ViL(6*) = H
The first-order change in the gradient with respect toeatd = 0*is:
0VeLg(6%) N
T Z V(M ZZ, 9

=0 z; €S

Substituting into the expansion, we have:

1
0~ 0 Vol(zi, 0" HA..
’ <n—m§s o)

Solving for Ag:
A, = —H! [ 9*)} €
z; €S
Thus:
do; s
de |._, n—m v

Applying the chain rule to measure the influence of the group .S on the loss at a test point x:
dl(z, 0% )

T Ao
o = Vol(z,07) —=2

de

e=0 e=0

*

ae;.
Substituting the expression for —==, we obtain the first-order group influence function:

fie(x, 8) = =MVl (z,07) H™' Y Vol(z;,0%),

z; €S

where ¢(t) = L
n—m

B.3 Deriving the Second-Order Group Influence Function
Since 0:7 g minimizes L, its gradient vanishes:
0=VyLg (9;‘75).

We perform a Taylor expansion around € = 0 and = 6*, keeping terms up to €2. Let:
Ag—Ale—FAQE +O( )

First-Order ¢ Ate =0, Lg(0) reduces to L(0), so:
VoLs(0%)| _, = VeL(6") = 0.

For the linear term (¢'), we have:

d
~ —VoLs(0*,¢)| 4+ V2aLs(6%,0)A,
Oe o

Hence:
Ay = — H!

z; €S

This result matches the first-order group influence function.
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Second-Order ¢ For the quadratic term (¢?), expanding the gradient VyLg and collecting all €2
contributions yields:

0
+ —ViLs(8")

0 ~
Oe

82
—VyLs (0"
0e? VoLs(¥)

DO =

e=0 e=0

+ HA, + %AI [V3L(6")] As.
Solving for As:
Ay = — H'[} ZV,Ls(0")
+ SVLs(67)],_, A
+ AT V%L(Q*)Al}.

e=0

Since the weights of the training examples are linear in €, the second derivative with respect to € of
these weights is zero:
Lo VoLgs(6%) =0
2 9¢2 " 070 —

Assuming higher-order terms V5¢(z; ) for k > 3 are negligible, the V3L(0*) term vanishes. Thus:
0

Ay =—H! &ngs(e*)

Aq.
e=0

From the definition of Lg, we have:

Ay = — Hl[ (Z V20(z;,0%)

1
n z; €S

- Y V) A
zi &S

Rearranging:
m

Ay =

(1 _ H*1HS) A,

n—m

_ 1
where Hg = -~ ZzieS

Influence on the Test Point For a test point z, consider ¢ (;137 0; s)- We aim to expand it as a Taylor
series in # around 6*. Following previous studies, we perform a first-order expansion rather than a
second-order one. This choice is justified because the dominant second-order effects can typically be
captured through the parameter shift A.. Thus, we obtain:

0(x, 07 g) ~ L(x,0%) + Vol(2,07) " A e
+ Vol(z,0%) T Ay €2

The term multiplying e corresponds to the first-order group influence, while the term multiplying €2
is the second-order correction. In closed form:

First-Order Group Influence:
(2, 8) = Vol (2,67) " Ay,

Second-Order Influence:
(2) _ - *\ T
i (z,5) —Veﬁ(:c,ﬁ ) Ay + Vol(z,0%) ' Ay

where:
JN—_L (I—H‘lHS)Al,
n—m
1
_ —1 . p*
Ay=-H"—— ;Svgazl,o ).
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Simplifying Terms Now clean up the expressions fl(Fz) (x, S). First, define:

d(z) = H 2V yl(z,0%),

where ¢(z) represents the preconditioned gradient of the loss.
Rearranging fl(}?)(x, S), we get:
P, 8) = Vall(z,0%) A+ —t(z,0)"

Term A

T (2,07 H H A,

n—m

Term B
where terms A and B emerge.

Substituting ¢(z) in A, we have:

A= —

1) Y 6(z).

z; €S

For term B, we have:
T m

B= 7V9£(I,9*) HileAl.

Approximating the subset Hessian Hg using the Fisher Information Matrix (FIM):
Hs = Y Vil(zi,0%) ~ Y Vol(z,0%)Vol(z;,0%)".

z; €S z, €S

Substituting this approximation into B, we have:

B o) (3 ot o)) (X o).

z; €S z;, €S

For further simplification, we define:
a(z;, §) = QS(Z%)T Z (b(Zj),
z;€S

which measures the alignment of ¢(z;) with the aggregated gradients in S. Then:
m

Br ———¢x) Y [a(z,9)d(z)].

(n—m) =
Putting together, we get:
i (z,8)=A+B
=cWe(2) Y d(zi) + Do) D [ozi, 9)(2)]

z;€S z; €S
=¢(x) Y [V + cPa(z;, 9)] ¢(2)
z; €S
(z) ) Z Jay(2,5)| ¢(2:)
z; €S t=1

where ¢(1) and ¢(2) are the constants of the first- and second-order terms, defined as:

="
n—m

@__m

C (n_m)z.
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Additionally,
al(ziv S) = 17
az(zi, 8) = ¢(z:) " Y é(2)
ZJ'ES

are the first- and second-order alignment functions.

B.4 Deriving the Third-Order Group Influence Function

For many practical purposes, second-order corrections already capture the leading “beyond first-order”
effects. However, in order to have a more complete perception of the structure of the influence
function (and also to address our curiosity), we will continue to derive the third-order group influence
function.

Since 07 ¢ minimizes L, its gradient vanishes:

0=VyLg (9:‘5)

We perform a Taylor expansion around € = 0 and 6 = 6*, keeping terms up to €3. Let:

Ac=Are+Ase® + Az 4+ O(eh).

The first-order and second-order terms, A; and A,, have been derived in the previous section. Now
focus on the third-order term, As.

Considering the €3 term and collecting all contributions of order €3, we obtain:

83
= VoLs(0")

0~ 1
6 9e3

+ V3Ls(6%,0) Ag
N———
(ii)

e=0

(i)
82
+ 1 =5 V3Ls(6%,0)

Oe? =

e=0

(iii)
a 2 *
+ &VGLS(H ,0)

e=0

(iv)
+ Al ViLs(6%,0) Ay
v)

0

e=0

(vi)
Now analyze these terms in turn:

* Term (i) vanishes since the per-sample weight depend linearly on e:

3
VoLs(0%) =0.

e=0

(i) = @
e Term (ii) can be written as:
(i) = V3Ls(0%,0) Az = HA;.
» Term (iii) vanishes because the per-sample weight is linear in e:

1 92

5 @ngs(e*,o) A, =0.

e=0

(iii) =
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e Term (iv) is:

9 .
(iv) = V(,L 5(6%,0) As.
e=0
Similar to the previous derivation, this can be rearranged as:
(iv) = (H HS> A,

where Hg = = > . V3l(z, 9*).
* Term (v) involves the third derivative with respect to 6. In most influence-function deriva-

tions, one often assumes that higher-order derivatives V3 L(6*) are negligible. Following
this convention, we consider:

(V) =A] V3Ls(0%,0) Ay = 0.

e Term (vi) is the derivative with respect to € of the third derivative with respect to 6. Since
we neglect Vgé, any derivative of it also vanishes. Thus, we have:

L1 B) §
(vi) = §A1T &VgLS(Q ,0) A =0.

e=0

Putting everything together, the €3 stationarity condition simplifies to

0~ HA; + %(H7H5>A2.

Solving for Ag yields
m

Ag = — (I—H_lHS)AQ.

n—m

Influence on the Test Point For a test point x, consider ¢ (x, 0r S). Similar to the previous section,
we can express the effects of S on x (when considering the € term) as:

) (@,8) =Vl (2,07) " (A1 + A + A3).

The terms related to Ay and A, have already been simplified in our derivation of the second-order
group influence function, and we can write them as the following simplified expression:

2 (,8) = Vo) D pzi) + Do) D [alzi, )e(zi)] - (1)
z; €S z; €S
Term A Term B

Therefore, the first two terms A and B of fl(s’) (z,.5) share the same structure, with constants slightly

adjusted due to the inclusion of additional correction terms. Moreover, fl(s) (x,S) will have an
additional term C for the € term. Let:

(2, 8) = A+ B+C.

Now, lets simplify C":
C = ( 1HS -t Z VOE Zu

z; €S

Approximating the subset Hessian H g using the Fisher Information Matrix (FIM):

Hg = Y V§l(zi,0%) = Y Vol(z,0%)Vol(z:,0%)".

z, €S z, €S

Substituting this approximation into C', we obtain:

C~ o)) ¢(Zi)¢(zi)T)2(Z ¢(21))

z; €S z; €S
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For further simplification, we define:

B(zi,9) = ¢(z:)" Y a2, 8) é(2)],

z; €S

where a(z;, S) is the same as the previous definition, that is:

a(z;,5) = o(z) Z ?(z5).

z; €8
Then, we can express C as:

O~ @ ofa) Y [Be8) o(=)]-

z; €S
Combining this with A and B, we obtain:
(@, 8)=A+B+C

= cWo(x) > ¢(2)

2z, ES
+ 6(2)¢(x) Z [Oé(zia 5)45(21)]
z; €S
+ @ o) 3 [Bler, 8) o(=0)]-
z; €S

We can then rename «, (3, and the constants to obtain:

) (,9) Z Z oz, 8 )] 6(2i),

z; €S t=1

where CE3) are constants defined by the distributional properties of .S, and

O[l(ZZ',S) = ].,

ax(zi,8) = ¢(z) " D d(2),
z; €S

az(zi, S) = ¢(Zi)T Z a2(zj,5)9(2;).-
z;€S

These are the alignment functions, which can also be defined recursively as:

B 1, ift=1,
ay(z) = 3(2)T Y, s u1(z)d(z), ift>2.

This gives us the same format as Theorem B.1.

B.5 Deriving the Higher-Order Group Influence Function

We extend the previous derivation to higher-order terms. Before manually doing this, lets first review
the effective terms (i.e., nonzero terms) of the first, second, and third-order € terms:

For first order:

)
0~ EWLS(G*,E) + V3Ls(0%,0)A;.

e=0

For second order:

)
~ &VELS(Q*,G) Ay +V3Ls(6%,0)As.

e=0

29



For third order:
0
0~ &VELS“’*’ ) Ay +V2iLs(0*,0)As.
e=0

We see that at each order k in €, the only “new” term that enters the equations (and thus the recursion
for Ay) is the first derivative with respect to ¢ multiplied by lower-order A;’s, plus the usual
expansions in powers of A, (where A, = 07 5 — 0%).

To explain this, we start with the stationarity condition at all e:
0= VQLS (9* + AE; 6).
Define:
G(Q, 6) = VgLs(o, 6).
Since 6* is the minimizer at e = 0, we know G(6*,0) = 0.

Expanding G(6* + A, ¢) using a multi-variable Taylor series and keeping terms up to first order in

A, gives:
. 1 [ortrG ,
G(0" + Acre) Zzp'r' [aaam( )}[A]
G(0%,0) + V5Ls(0%,0) A,
=1 0P
Zﬁ(f? ,0)e”
+Z Lo [V2Ls(6*,0)] e’ A
| Der
Define: P
H = V;Ls(0*,0), H = -V;Ls(0,¢) .
Oe 0=0* ,e=0

Because each training sample’s weight depends linearly on €, we have:

oP
—— [weights] =0 forp > 2.
P

. . 2 3 . . o . . .
Thus, higher-order terms in %V@ Lg, %V@LS, etc., vanish, simplifying the stationarity expansions.
In other words: ov

or
—G(6%,0 = d =—ViLg(6* =0.
o G(6%,0) o 0 an o Vo s(6%,0) o 0

Furthermore, collecting the €* terms in the stationarity condition G(6 + A, ¢) = 0 for k > 1 gives:
0=HA;+ H Ap_1.

Since Ag = 0 by definition, and A, is determined by [% G(6, O)} , we solve for:
A = —HilH/Ak_l.

By repeated substitution, we obtain closed-form expressions for all Ay:

* Order 1:
Ay =-H! [%G(O*, 0)].

e Order k > 2:
Ap=-HH'A,_;.

This leads to the recursively defined alignment functions in the final group influence function formula.
This completes the proof of Theorem B.1 for all cases where k& > 3.
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C Comparison between gradient-based and representation-based methods

From Eq. 3 and Eq. 5, it is evident that gradient-based and representation-based methods share
a similar structure: both rely on the inner product of two vectors and differ only in terms of the
calculation of these vectors. Specifically, the former utilizes gradients and and Hessian, while the latter
uses embeddings. Additionally, under typical assumptions both classes of methods produce group
influence estimates via the same aggregation process (i.e. simply summing per-example influence).

Apart from computational considerations, what factors might influence the choice between a gradient-
or representation-based data attribution method? We highlight three considerations:

* Accuracy: whether the attribution results are reliable. Gradient-based methods are designed
to simulate the model optimization process, which are theoretically accurate under certain
assumptions. However, existing representation-based methods rely on heuristic metrics that
are agnostic to the objective of data attribution, leading to sub-optimal results.

» Computation cost: Gradient-based methods generally rely on the computation of gradients
and some approximation of the Hessian, making them computationally expensive. In
practice, the cost of gradient-based methods is comparable to training the model on the all
of the target examples because computing influence involves computing loss gradients for
each target example. In contrast, representation-based methods are efficient and applicable
for large-scale retrieval [66].

» Storage cost: Influence functions can be particularly storage-intensive as they can involve
storing the full gradient (equal in size to the model parameters themselves) for each data
sample, which prevents large-scale data attribution. Follow-up work projects gradients
with random matrices [22] or low-rank approximations [25] at the cost of reduced accuracy.
Representation-based methods output fixed-size embeddings, which are more manageable
in size.

In summary, representation-based data attribution methods are cheaper than gradient-based method
but do not reflect the actual process of model optimization.

D Details of Evaluation Datasets

‘We use four datasets for evaluation:

* FLAN: We randomly sampled 100,000 examples from the original FLAN training set as the
TDA evaluation training split. For the test set, we retained the first 100 examples of each
task in the test set. Since there are 66 tasks, the test set contains 6,520 examples.

* Alpaca: We use the original Alpaca training set (https://huggingface.co/datasets/
tatsu-lab/alpaca) as the training data. For the test data, we design the test set to consist
of two parts: (i) a seen subset, where we randomly sample 250 instructions from the training
set and use a Llama model trained on the full Alpaca training set to generate the responses;
(i1) an unseen subset, where we sample 250 examples from https://huggingface.co/
datasets/tatsu-lab/alpaca_eval. Thus, the total test set consists of 500 examples.

* Tulu: We use version vl of Tulu (https://huggingface.co/datasets/allenai/
tulu-vi-sft-mixture). The original dataset contains over 490k instances. We ran-
domly sample 100,000 examples for our training set and 500 for our test set.

» SafeRLHF: SafeRLHF (https://huggingface.co/datasets/PKU-Alignment/
PKU-SafeRLHF-QA) is a dataset for safety alignment in large language models, where each
example has a safety label of either "safe" or one of 19 possible harm categories. We use the
original training set. For the test set, we sample 500 examples from the original test set,
ensuring a 250:250 ratio of safe and harmful instances for label balance.

See Table 3 for statistics of evaluation datasets.

E Details of Baselines

Our baselines include two categories: gradient-based methods and representation-based methods.

31


https://huggingface.co/datasets/tatsu-lab/alpaca
https://huggingface.co/datasets/tatsu-lab/alpaca
https://huggingface.co/datasets/tatsu-lab/alpaca_eval
https://huggingface.co/datasets/tatsu-lab/alpaca_eval
https://huggingface.co/datasets/allenai/tulu-v1-sft-mixture
https://huggingface.co/datasets/allenai/tulu-v1-sft-mixture
https://huggingface.co/datasets/PKU-Alignment/PKU-SafeRLHF-QA
https://huggingface.co/datasets/PKU-Alignment/PKU-SafeRLHF-QA

Table 3: Evaluation Data for data attribution. # Train and # Test denotes number of examples in
training and testing set.

Name # Train # Test
FLAN 100,000 6,520
Alpaca 51,760 500
Tulu 100,000 500

SafeRLHF 251,963 500

Gradient-based methods rely on the gradient of data with respect to a warmed-up model. To warm
up the model, for FLAN, we fine-tune it on 100,000 examples randomly sampled from the FLAN
training set. For Alpaca, Tulu, and SafeRLHF, we warm up the model on 100,000 examples randomly
sampled from UltraChat.

LoGra LoGra is a toolkit for efficient influence function calculation (https://github.com/
logix-project/logix), and its core techniques are introduced in Choe et al. [16]. Its key idea is
to use low-rank gradient projection to achieve implicit gradient projection during backpropagation,
thereby reducing computational cost. We experimented with different configurations and found that
the following variants achieved the best performance in our evaluation (as also described in Eq. 3):
(i) applying the LoGra module to all MLP layers, (ii) initializing the LoGra weights using PCA, (iii)
approximating the Hessian using KFAC, and (iv) performing unit normalization of vectors.

The rank value of LoGra controls the projection dimension. We set it to 4, 8, and 16, resulting in a
final dimension ranging from 1,152 to 27,648.

TracIn Tracln [22] is derived from a first-order approximation of model weights and essentially
computes the dot product between gradients without Hessian correction. For implementation effi-
ciency, we use LoGra to perform gradient projection and apply unit normalization to the vectors. The
original Tracln keeps multiple checkpoints and ensembles their influence scores, but this approach
linearly increases computation and storage costs. Instead, we use only one checkpoint (i.e., the final
checkpoint) of the warmed-up LM.

LESS LESS [25] adopts LoRA tuning instead of full fine-tuning and projects the LoRA gradient
to a lower dimension using a random matrix. Its key idea is to use AdamW states (first- and
second-order momentum) to correct the gradients. We use the official implementation (https:
//github.com/princeton-nlp/LESS) and set the projection dimensions to 768 and 8192, which
are the default dimensions in the LESS paper.

For LM warm-up, we follow their paper by setting the LoRA rank to 128 and alpha to 512, fine-
tuning for 4 epochs. Similar to Tracln, the original LESS method ensembles influence scores from 4
checkpoints. For a fair comparison, we only retain the final checkpoint.

Another note is that the official implementation does not support batched gradient calculation,
requiring a batch size of 1, which slows down execution. To better utilize the GPU, we run multiple
processes on a single GPU to accelerate computation and report the computation time. However, its
speed remains lower than LoGra, which supports batched computation.

DsDm and TRAK TRAK [12] is a representative gradient-based method that provides an efficient
implementation of the influence function. TRAK approximates the Hessian using the Fisher Informa-
tion Matrix (FIM), ensembles influence scores across multiple checkpoints, and adjusts the influence
score of each data sample by multiplying it with the model’s prediction probability. DsDm [33]
later applied TRAK to LLM data selection tasks. Since DsDm has not released its official code
(https://github.com/MadryLab/DsDm), we approximate its implementation (i.e., TRAK) using
the Logix framework, where the Hessian is approximated with FIM (also known as raw Hessian
approximation in Logix), LoGra is used to project the gradient to different dimensions with random
weight initialization, and only the final checkpoint is applied without checkpoint ensembling.

The following are representation-based baselines.
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Figure 8: LDS performance of LoGra and AirRep under different evaluation subset sizes. AirRep
consistently outperforms LoGra, especially on larger data size. Note that AirRep is trained only on
data with a subset size of 1K.

TF-IDF We use sklearn to calculate the cosine similarity of TF-IDF feature of data.

DSIR DSIR utilizes hashed n-gram features, where n-grams are mapped onto a fixed number of
buckets for efficiency and scalability. The influence estimator is parameterized by a bag-of-words
generative model on the hashed n-grams, learned simply by counting the hash bucket frequencies.
We use the official implementation (https://github.com/p-lambda/dsir).

RDS RDS was introduced in Hanawa et al. [6], which uses the model’s hidden states as data
representations. Through an evaluation of different representation design choices, we use average
pooling over the last-layer hidden states of all tokens as the sentence embedding.

GTE GTE [35] is a general text embedding model trained on a mixture of text retrieval, text
classification, text clustering, and text entailment data. It achieves strong performance on text
embedding leaderboards relative to its model size (e.g., https://huggingface.co/spaces/mteb/
leaderboard). For direct evaluation, we assessed various GTE model sizes, including Small, Base,
Large, 1.5B, and 7B.

The following are discussion about other TDA approaches which we did considered for empirical
comparison.

Datamodels AirRep is inspired by Datamodels [1], in terms of problem formulation for data
attribution and both methods focus on estimating empirical group influence scores. A key difference
lies in how embeddings are generated. Datamodels assign fixed embedding vectors for all instances
in a given data collection, and require the full retraining when new instances are added. AirRep, on
the other hand, uses a trained encoder to produce the embeddings for any new instance on the fly. As
a result, AirRep is computationally much more efficient than Datamodels in handling dynamically
changing data. Empirical findings in [12] shows that Datamodels typically incur inference costs
around 100x greater than gradient-based methods to achieve comparable performance. AirRep
addresses this issue with the trained encoder, and being 80x more efficient when handling new
instances. We will add these discussions in our revised version of the paper.

F Training Cost

For data generation, we create 10K subsets (each containing 1K data examples) and train the model
on each subset for 2 epochs. This results in a total of 10M training examples for the Qwen2.5-0.5B
LM, requiring about 20 hours on eight A100 GPUs. During the optimization stage, each training
step involves sampling 32 subsets (1K examples each), totaling 32K examples per gradient descent
step. The model is trained for up to 2K steps, completing in about 5 hours on an eight-GPU machine.
While this training cost exceeds the warm-up training requirements of gradient-based TDA methods,
it is exchanged for significant efficiency gains during inference. See Section 9 for detailed analysis.
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Figure 9: LDS scores of LoGra and AirRep when the target LM is LLaMA-1B. For LoGra, we
evaluate both variants: LoGra applied to Qwen-0.5B and LoGra applied to LLaMA-1B. AirRep
is trained on Qwen-0.5B data and directly evaluated using LLaMA-1B labels. Despite the model
shift, AirRep achieves strong LDS performance, even outperforming LoGra applied to LLaMA-1B,
demonstrating its ability to generalize across similar LMs without re-training.

Table 4: Training Cost of AirRep. Asymptotic complexity and wall-clock runtime (measured as
eight A100 GPU hours) for each training stage. n denotes the size of each subset, N, represents the
total number of subsets, E is the number of epochs for training on each subset, M is the number of
sampled subsets per training step, and 7" is the total number of training steps for AirRep.

Stage Data Generation Optimization

Complexity O(n- N - E) On-M-T)
Actual Value O(1K -10K -2) O(1K -32-2K)

G Data Selection Setup

Our data selection evaluation is conducted independently for each task in FLAN, using a greedy
search strategy to identify the most relevant training data. For a given task, the test set contains m
examples (typically m = 100 due to our data sampling strategies), denoted as (1, xa, . .., T ). Let
the training set be (21, 22, . . . , 2»). The TDA method computes an influence score f(x;, z;) for each
pair (z;,2;), where ¢ € [m] and j € [n]. Next, we determine the rank of each training example
relative to a given test example. Specifically, we define rank(z;,z;) € [n] as the position of z; among
the most influential training examples for z;. In other words, if rank(z;,z;) = 1, then z; is the
most influential training example for z;. We then define the score of each test example x; as the best
(lowest) rank it achieves across all training examples: Score(x;) = min(rank(z;,z;) | ¢ € [m]).
This represents the highest influence rank of =; among all test examples. Finally, we rank the training
data based on Score(z;) and select the top 1,000 examples.

After training the target LM on the selected data, we evaluate the model on the test set, setting the
maximum generation length to 64. We use unigram F1 as the evaluation metric for all tasks, even
though some tasks have other conventional metrics, such as accuracy for classification, ROUGE for
summarization, and BLEU for translation. Notably, unigram F1 is correlated with these task-specific
metrics since the model’s generations are typically very short. For example, in sentiment classification
task, the model is expected to generate a single token (positive or negative), making unigram F1
equivalent to accuracy. Finally, the final F1 score is averaged over 66 tasks in FLAN.

For gradient-based methods like LESS and LoGra, which can be configured to balance computational
and storage costs, we use a 0.5B LM as the proxy model to compute gradients. We set the projection
dimensions to 768 and 1152 for LESS and LoGra, respectively, as this ensures a comparable storage
requirement to AirRep (which uses a 384-dimensional representation) while remaining a practical
configuration for data selection from large-scale corpora
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H Additional Evaluation

H.1 LOO Evaluation

To analyze the effectiveness of our method on individual data influence estimation, we conducted
a leave-one-out (LOO) evaluation, in which individual examples were removed and we measured
the correlation between predicted and actual influence scores. The results on a FLAN subset are
summarized in Table 5. We find that ATRREP outperforms baseline methods in this setting as well.

Table 5: LOO correlation between predicted and actual influence scores on a FLAN subset.

Method LOO Correlation
LoGra (18432) 10.75
GTE-Small 0.72
AirRep 15.36

H.2 Data Classification Results

Table 6: Accuracy of Data Classification.

Method FLAN  Tulu SafeRLHF

LoGra (Dim 1152) 71.61  76.60 78.00
LoGra (Dim 18432) 85.44  86.00 83.20
DsDm (Dim 18432) 83.68 85.34 80.25
TracIn (Dim 18432) 77.69 7943 67.12
GTE-Small (Dim 384)  50.59  76.60 90.60
AirRep (Dim 384) 86.41 88.20 87.20

I Detailed Data Selection Results

See Table 7, 8, 9 for detailed results of data selection.
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Table 7: Data Selection Results for Qwen2.5-0.5B LM.

Data Random DSIR TF-IDF GTE LESS LoGra AirRep
aeslc 21.64 16.86 26.61 27.17 2553 272 29.61
ag_news_subset 76.86 67.61 79.41 7475 82.85 8297 77.72
anli_rl 28.14 28.02 38.9 36.04 5044 40.13 44.49
anli_r2 34.02 29.7 40.17 3291 3501 41.96 36.58
anli_r3 36.55 24.47 3555 37.54 36.7 36.17 41.98
arc_challenge 37.15 36.84 4247 4133 41.76 45.07 39.15
arc_easy 46.38 43.27 43.71 4845 51.89 48.86  48.8
bool_q 49.0 48.0 540 530 560 550 56.0
cb 12.7 31.81 38.73 34.64 56.67 70.6 56.88
cnn_dailymail 19.68 12.65 24.19 23.09 22.83 21.76 26.99
cola 57.23 62.18 63.24 63.18 61.48 63.18 63.43
common_gen 41.69 4523 4578 43.2 46.26 43.41 45.1
copa 60.29 60.59 61.79 64.53 63.94 64.54 66.34
coga 1099 6.36 39.21 28.72 37.42 4198 41.86
cosmos_qa 39.02 40.01 39.92 42.04 43.17 43.15 39.54
dart 62.73 66.65 66.08 68.98 6742 67.39  67.7
definite_pronoun 46.07 52.73 51.0 58.0 57.07 54.67 54.07
drop 8.08 13.49 10.69 13.18 19.35 20.0 14.81
e2e_nlg 63.48 68.12 6791 65.83 66.34 68.38 65.82
fix_punct 93.43 95.08 95.17 9544 9493 952 9524
gigaword 26.59 26.13  28.46 27.14 28.68 28.06 29.73
glue_mrpc 55.0 69.0 51.0 570 660 68.0 73.0
glue_qqp 66.0 72.0 780 740 780 71.0 79.0
hellaswag 29.31 28.89 37.21 38.62 45.81 46.02 433
imdb_reviews 58.57 21.88 64.85 65.76 7043 69.39 70.41
math_dataset 30 20 70 60 3.0 1.0 4.0
mnli_matched 67.0 79.0 85.0 63.0 81.0 81.0 84.0
mnli_mismatched 71.0 73.0 740 740 810 760 78.0
multi_news 1545 3.38 19.57 18.56 1098 19.47 19.24
multirc 11.06 034 3726 510 360 29.0 36.0
natural_questions 6.61 857 1041 7.04 743 779 6.77
openbookqa 48.61 37.93  48.11 49.52 52.74 50.22 54.65
opinion_abstracts_idebate 11.13 991 17.85 2044 20.1 18.82 21.31
opinion_abstracts_rotten 697 433 11.62 14.06 9.9 851 14.01
para_crawl_enes 46.02 43.37 48.66 47.28 4521 46.23 46.03
paws_wiki 53.0 51.0 61.0 63.0 830 91.0 83.0
piqa 74.34 7646 77.71 7791 7649 79.53 78.45
qnli 68.92 4449 6898 60.51 74.58 7881 71.17
quac 472 15.15 1934 17.57 2226 2823 18.75
record 18.38 1642 1838 1645 17.55 16.1 10.8
rte 64.08 47.21 56.13 67.78 57.06 52.74 65.81
samsum 28.03 13.63 34.45 3495 3429 3519 36.85
sentiment140 48.35 40.95 33.68 40.36 49.02 47.8 39.9
snli 77.1 7794 7621 7824 80.1 79.94 77.14
squad_v1 28.33 2642 34.24 38.07 39.19 37.87 40.24
squad_v2 33.24 11.64 36.8 2475 505 56.0 488
sst2 69.13 68.0 7023 71.39 69.27 71.61 69.76
story_cloze 64.36 57.71 6447 67.62 78.17 81.92 77.51
stsb 25.74 3224  29.54 3592 3452 3326 41.0
trec 4824 79.0 75.89 63.39 78.34 7525 7241
trivia_ga 9.05 10.49 9.87 1096 1097 1252  9.27
true_case 96.64 97.28 98.71 98.07 98.98 99.43 99.22
web_nlg_en 7025 735 727 7272 71.46 7495 76.62
wic 55.0 56.0 520 440 490 550 400
wiki_lingua_english_en 1599 11.87 1856 179 19.54 1691 20.95
wmtl4_enfr 46.07 37.69 44.19 46.46 46.74 46.78 47.17
wmtl6_translate_csen 24.58 2191 2457 24775 26.8 2578 27.68
wmtl6_translate_deen 46.25 43.36 464 46.2 4522 4539 46.03
wmtl6_translate_fien 22.54 19.79 24.18 22.13 2293 22.61 24.72
wmt16_translate_roen 34.01 30.65 3438 364 3256 34.17 35.65
wmtl6_translate_ruen 39.96 3599 40.59 39.13 414 40.67 40.11
wmtl6_translate_tren 29.4 2442 26.85 28.88 25.61 27.44  29.5
wali 57.14 57.14 61.43 58.57 58.57 5429 57.14
word_segment 71.65 87.1 82.68 80.29 83.79 8593 91.07
wsC 65.0 59.0 61.0 500 630 650 650
yelp_polarity_reviews 7295 63.22 73.24 73.66 73.53 71.81 74.46
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Table 8: Data Selection Results for Qwen2.5-1.5B LM.

Data Random DSIR TF-IDF GTE LESS LoGra AirRep
aeslc 21.59 20.66 28.66 28.56 27.0 2596 27.05
ag_news_subset 79.47 79.37 77.22 80.21 82.15 80.5 82.27
anli_rl 4493 4446 4875 50.67 51.04 5991 54.44
anli_r2 47.12 45.21 447 37.04 4231 488 53.12
anli_r3 39.98 36.8 40.05 43.03 44.8 4291 43.76
arc_challenge 49.39 52.05 5244 529 5732 567 @ 58.1
arc_easy 59.02 61.85 58.46 64.19 60.65 63.54  64.6
bool_q 60.0 48.0 63.0 620 740 780 720
cb 30.86 482 29.15 71.11 77.04 53.02 7522
cnn_dailymail 1845 9.19 28.8 27.6 2729 2797 27.69
cola 50.29 72.07 63.32 70.17 73.17 64.15 4532
common_gen 47.56 50.01 50.08 49.44 48.26 51.34 47091
copa 71.68 7335 75.61 7429 7453 7337 7245
coqa 9.78 4.89 31.64 2647 36.81 3224 4275
cosmos_qa 46.48 44.01 45.56 49.96 50.01 49.81 49.89
dart 65.46 66.73  68.79 69.85 66.71 68.57 68.29
definite_pronoun 50.89 50.0 53.67 520 59.0 520 57.67
drop 14.24 16.78 17.8 21.75 2323 22.89 20.68
e2e_nlg 66.71 67.82 68.02 67.35 6841 67.05 67.78
fix_punct 94.48 9498 9532 9552 9539 96.25 95.69
gigaword 29.49 27.74 29.92 28.86 30.04 29.36 31.02
glue_mrpc 49.0 70.0 76.0 68.0 730 580 67.0
glue_qqp 78.0 83.0 84.0 78.0 81.0 81.0 78.0
hellaswag 45.13 29.01 49.58 54.93 64.47 58.89 60.07
imdb_reviews 59.78 2844 71.69 68.64 67.19 66.67 66.76
math_dataset 3.0 3.0 80 30 1.0 3.0 4.0
mnli_matched 79.0 84.0 67.0 86.0 80.0 900 86.0
mnli_mismatched 84.0 83.0 79.0 79.0 86.0 840 83.0
multi_news 12.63 433 1939 19.27 11.65 19.68 19.69
multirc 227 137 2745 2348 460 53.0 480
natural_questions 11.99 1475 1647 1517 11.82 1443 13.86
openbookqa 57.04 5577 56.37 55.42 61.75 6242 58.44
opinion_abstracts_idebate 13.78 12.47 19.48 2228 20.55 21.71 23.96
opinion_abstracts_rotten 6.08 5.25 13.84 13.05 11.69 10.86 15.03
para_crawl_enes 51.87 52.19 5394 52.89 529 5294 5359
paws_wiki 62.0 71.0 770 820 870 860 920
piga 7796 719 8191 80.38 80.03 81.1 80.32
qnli 779 46.08 61.87 76.73 78.8 78.08 79.22
quac 10.77 1475 13.78 19.75 27.78 26.69 17.78
record 15.65 14.58 1345 15.16 15.67 12.53 10.62
rte 7093 63.51 66.81 71.88 71.02 62.85 58.81
samsum 34.09 21.79 40.03 40.6 38.11 38.89 39.88
sentiment140 42.67 46.46  47.87 49.02 48.57 50.72 42.49
snli 83.1 83.46 86.58 66.09 83.46 8294 76.17
squad_v1 44.56 4391 45.59 48.18 483 4695 51.21
squad_v2 39.54 2224 4342 41.07 59.0 589 61.06
sst2 70.83 7222 7032 71.79 74.05 75.64 74.07
story_cloze 73.85 792  82.17 84.04 8549 8629 86.13
stsb 26.88 43.59 37.17 3578 2936 25.6  4l1.1
trec 62.52 82.03 82.03 77.41 78.89 79.67 76.41
trivia_qa 2945 1997 1842 22.13 21.0 1928 20.09
true_case 98.75 98.99 98.88 99.5 99.75 99.73 99.75
web_nlg_en 7241 7642  76.89 77.02 75.69 7639 76.65
wic 57.0 43.0 470 63.0 450 460 56.0
wiki_lingua_english_en 18.37 12.41 19.16 20.22 2049 16.25 19.87
wmtl4_enfr 55.94 51.51 5544 5322 5523 5522 55.78
wmtl6_translate_csen 35.5 3326  36.68 35.76 37.13 3596 39.24
wmtl6_translate_deen 54.86 5196 54.89 55.12 55.78 53.42 53.88
wmtl6_translate_fien 29.23 27.37 30.5 30.86 27.53 30.09 31.11
wmt16_translate_roen 41.61 37.97 44.19 41.22 41.87 4278 4224
wmtl6_translate_ruen 4736 4548 4556 48.7 4591 47.82 49.07
wmtl6_translate_tren 38.49 34.42 38.3 40.47 38.33 36.59 38.79
wnli 62.86 57.14 67.14 58.57 4429 500 67.14
word_segment 82.06 90.72 90.31 90.78 87.07 89.64 90.36
wsC 65.0 35.0 65.0 360 650 420 570
yelp_polarity_reviews 7494 6641 77.04 62.37 76.02 76.68 74.79
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Table 9: Data Selection Results for Qwen2.5-3B LM.

Data Random DSIR TF-IDF GTE LESS LoGra AirRep
aeslc 2294 2558 31.06 30.76 2632 28.1 32.1
ag_news_subset 82.79 49.79 7593 78.6 80.28 79.08 79.92
anli_rl 56.4 43.82 5749 52.64 456 62.64 5525
anli_r2 37.08 39.16 52.42 36.01 46.08 44.18 39.18
anli_r3 38.95 44.1 43.07 39.65 44.86 58.84 48.98
arc_challenge 62.1 6091 63.18 64.28 6541 69.1 64.43
arc_easy 60.46 64.55 66.64 66.44 6747 64.67 66.84
bool_q 72.0 64.0 76.0 660 660 760  76.0
cb 36.95 68.78 73.76 7097 68.8 67.18 76.89
cnn_dailymail 21.55 8.77 29.1 27.4 15.03 2656 29.74
cola 63.34  63.0 71.0 52.13 4346 78.58 79.38
common_gen 49.08 4742 48.97 48.44 4724 48.72 48.36
copa 73.81 68.18 72.25 70.86 76.38 74.87 77.18
coqa 575 251  31.11 2445 2737 4323 4333
cosmos_qa 5396 51.83 54.15 529 5428 5699 54.0
dart 65.09 66.37 69.82 70.53 69.55 69.06 70.21
definite_pronoun 52.0 56.0 520 550 49.0 53.0 63.0
drop 1529 21.8 2024 21.74 27.99 2272 22.09
e2e_nlg 64.11 66.03 67.87 65.88 66.93 66.71 66.38
fix_punct 95.08 9446 9588 954 9594 9557 95.76
gigaword 28.77 27.11  31.32 31.37 29.66 29.92 32.01
glue_mrpc 70.0 74.0 53.0 320 79.0 720 500
glue_qqp 79.0 79.0 75.0 780 79.0 760  80.0
hellaswag 57.54 49.18 61.75 56.11 64.21 68.58 69.16
imdb_reviews 67.74 27.28 645 638 729 7013 71.74
math_dataset 533 6.0 80 50 50 7.0 5.0
mnli_matched 76.0 89.0 78.0 87.0 87.0 920 64.0
mnli_mismatched 87.0 89.0 67.0 87.0 89.0 870 850
multi_news 6.42 329 2025 2029 82 20.33 20.26
multirc 24.08 294 4553 520 540 540 46.46
natural_questions 1698 19.6 15.28 1528 1821 17.0 17.78
openbookqa 61.94 62.07 6043 63.8 62.54 6434 60.08
opinion_abstracts_idebate 14.6 10.67 22.65 21.71 19.8 20.59 23.67
opinion_abstracts_rotten 923 6.16 11.94 1647 1285 11.53 17.36
para_crawl_enes 54.92 56.77 55.78 55.94 55.08 55.51 55.55
paws_wiki 69.0 76.0 540 81.0 920 870 89.0
piga 78.8 74.89 78.67 79.4 81.72 79.95 80.78
qnli 71.33 7533 7895 66.37 79.61 70.57 77.84
quac 1329 11.81 17.9 27.32 2935 26.82 27.23
record 1974 174 19.5 17.01 1533 14.88 16.39
rte 547 66.22  59.02 50.07 68.13 6491 67.95
samsum 3246 2129 4079 41.16 38.62 38.67 424
sentiment140 4771 4572 48.66 4545 4852 5044 384
snli 74.1 59.36 8534 80.79 81.94 72.16  83.1
squad_v1 40.29 4499  41.19 48.93 51.69 4593 54.25
squad_v2 384 2621 3843 37.14 59.77 54.82 6138
sst2 7033 650 73.63 74.87 73.48 73.65 7293
story_cloze 82.93 76.82 84.51 85.94 84.14 86.27 86.43
stsb 37.82 35.56 38.11 33.6 29.03 4223 37.22
trec 64.12 80.41 57.66 74.58 85.07 79.85 80.41
trivia_qa 43.57 31.93 3572 28.77 31.63 30.28 26.53
true_case 97.48 99.22 9899 99.21 99.45 99.41 99.38
web_nlg_en 75.18 7821 7876 77.45 75.37 77.94 80.07
wic 56.0 44.0 540 440 440 420 440
wiki_lingua_english_en 17.6  10.1 19.76 19.78 17.7 16.1 19.82
wmtl4_enfr 55.52 55.11 57.02 57.87 57.51 5827 57.11
wmtl6_translate_csen 41.69 3836 41.63 40.6 41.45 39.79 43.68
wmtl6_translate_deen 55.85 55.17 56.59 56.47 55.14 56.85 57.45
wmtl6_translate_fien 31.53 31.17 33.66 34.73 3227 33.07 3254
wmt16_translate_roen 46.34 43.67 47.0 45.59 42.55 45.64 4528
wmtl6_translate_ruen 51.89 4851 52.63 50.32 52.01 5294 51.71
wmtl6_translate_tren 40.43 42.03 43.06 41.96 424 4357 4285
wnli 55.71 58.57 4571 65.71 70.0 6143 47.14
word_segment 85.99 90.12  93.99 89.57 92.07 93.04 92.66
wsC 66.0 65.0 580 360 540 350 650
yelp_polarity_reviews 69.79 62.21 76.74 74.89 7493 741 7697
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