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Abstract

Fake news data, often sampled from the same001
communities, results in the veracity of news002
being highly correlated with certain textual and003
visual entities. This correlation leads fake news004
classification models to be prone to shortcut005
learning, quickly overfitting by capturing only006
shallow spurious correlations between labels007
and features. Consequently, neural networks008
trained on such data suffer from poor gener-009
alization and potential misclassification under010
distribution shifts. In this paper, we propose a011
DIsentanglement-based Causality-awarE fake012
news detection method (DICE). DICE con-013
structs multimodal news into a graph neural014
network and effectively models causal relation-015
ships between multimodal features and verac-016
ity labels through the use of node and edge017
mask disentanglers. To reinforce this disentan-018
glement process, we designed a loss function019
aimed at minimizing extrapolation risk, which020
supervises the training and results in disentan-021
gled causal and biased representations of news.022
Extensive experiments demonstrate that DICE023
achieves superior performance on five large-024
scale fake news detection benchmarks. Addi-025
tionally, our evaluation on a heavily biased fake026
news dataset demonstrates DICE’s strong gen-027
eralization, suggesting its potential to inform a028
new paradigm in causal fake news detection.029

1 Introduction030

With the advancement of generative artificial intel-031

ligence technology, fake news has increasingly be-032

come a tool on social media for influencing public033

opinion and manipulating information. In the con-034

text of hot topics, conflicting parties manufacture035

and disseminate false information to confuse the036

public, tarnish competitors, and mislead the masses,037

ultimately achieving manipulation of online public038

opinion (Aïmeur et al., 2023; Yin et al., 2024). The039

proliferation of well-crafted multimodal fake infor-040

mation has heightened the necessity and urgency of041

developing effective methods for identifying multi- 042

modal fake news, as such content is more likely to 043

capture readers’ attention. 044

Existing paradigms for deep learning-based 045

multimodal fake news detection methods focus 046

on encoding textual and visual information into 047

task-relevant representations in a latent feature 048

space (Wang et al., 2018; Chen et al., 2019). Early 049

methods concentrated on the joint modeling of 050

posts and images (Khattar et al., 2019; Zhang et al., 051

2021; Wu et al., 2023; Zhang et al., 2024a) or es- 052

timating consistency (Qi et al., 2021; Chen et al., 053

2022). Later approaches introduced multi-view 054

fake news modeling (Wu et al., 2021; Qian et al., 055

2021; Ying et al., 2023) or incorporated logical 056

connections between news and labels (Liu et al., 057

2023; Dong et al., 2024). However, due to the 058

complex news environment, model bias remains 059

a critical unresolved issue in this field. This bias 060

often arises from distributional shifts present in the 061

training data, causing the model to overly rely on 062

shallow associations between textual and visual 063

features and the labels. For instance, while features 064

such as clickbait (Bourgonje et al., 2017), image 065

manipulation (Wang et al., 2024), or sensational- 066

ism (Subbiah et al., 2023) are often correlated with 067

fake news, the authenticity of news cannot always 068

be determined solely based on these surface-level 069

patterns. These features may represent causal re- 070

lationships in certain contexts but can also result 071

in spurious correlations due to biased data distri- 072

bution. Models trained without awareness of these 073

nuances risk relying on these spurious correlations, 074

hampering their generalization ability across un- 075

seen scenarios. It is thus crucial to disentangle 076

causally relevant patterns from spurious biases to 077

ensure robust detection. 078

Furthermore, deep neural networks are highly 079

sensitive to distributional shifts (Gawlikowski et al., 080

2023). Shortcut learning, where models rely on 081

shallow correlations (e.g., specific visual features 082
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Figure 1: Models habitually learn spurious associations
between features and labels through shortcut learning.

or text patterns) rather than causal relationships,083

exacerbates this issue (Fan et al., 2024). As noted084

by Liu et al. (2023), fake news in existing datasets085

is often correlated with sensational language, lead-086

ing to biased predictions. Similarly, Zhu et al. (Zhu087

et al., 2022) highlights how entity bias creates088

spurious correlations that hinder model general-089

ization. These biases often arise from the temporal090

or contextual sampling of training data, where older091

events or entities dominate, resulting in distribu-092

tional shifts between the training and test datasets.093

094 Such issues are vividly exemplified in widely-095

used datasets. For instance, in the Pheme dataset096

(Zubiaga et al., 2017), which is constructed from097

real-world data sampled during numerous breaking098

news events, the frequent co-occurrence of "police"099

with fake news labels in training data leads to mis-100

classification (Figure.1 a). Similarly, on benchmark101

Twitter (Detection and visualization of misleading102

content on Twitter, 2018), which are extensively103

adopted in fake detection studies, fake news often104

involves manipulated images, causing the model to105

associate spurious visual features with labels (Fig-106

ure.1 b). However, real news can be manipulated107

to emphasize certain image aspects, resulting in108

classification errors.109

These manipulations highlight the duality of cer-110

tain features, such as manipulated visuals or sensa-111

tional language: while they might reflect genuine112

patterns of fake news in certain cases, their pres-113

ence in real news due to adversarial intent or biased114

data distribution can lead the model to establish115

false causal relationships. This reliance on shallow116

patterns results in misclassification of real news as117

fake news. To evaluate the effects of these biases,118

we constructed a dataset with opposing biases be-119

tween the training and test sets (see Experiment120

for details). As shown in Figure 1(c), models re-121

lying on biased features exhibit a sharp decline in122

performance when tested on data with shifted dis-123

tributions, confirming their inability to generalize124

effectively. This observation highlights the critical125

importance of addressing biases inherent in training 126

datasets to ensure robust fake news detection. 127

In this paper, we propose a DIsentanglement- 128

based Causality-awarE fake news detection method 129

(DICE). Instead of relying on potentially biased 130

heuristics or pre-defined structures, DICE dynami- 131

cally represents posts and images as a multimodal 132

graph, where node and edge importance is adjusted 133

through learnable "maskers". This approach disen- 134

tangles causally relevant unbiased subgraphs from 135

causally irrelevant biased subgraphs within the mul- 136

timodal graph. Moreover, DICE incorporates a spe- 137

cialized loss function to adversarially encourage 138

biased subgraphs to capture superficial shortcuts 139

while compelling causal subgraphs to focus on fea- 140

tures fundamentally linked to news authenticity, 141

fostering a robust separation between bias-driven 142

and causality-driven representations. Specifically, 143

our contributions can be summarized as follows: 144

• We propose a novel fake news detection frame- 145

work, DICE, which dynamically constructs mul- 146

timodal graphs without predefined causal or bi- 147

ased relationships. DICE models intrinsic connec- 148

tions between multimodal features at the token 149

level and incorporates a training process that min- 150

imizes feature-label loss variance across diverse 151

bias environments. This approach fosters stable 152

associations between features and news veracity, 153

mitigating the influence of spurious correlations. 154

• To validate the robustness and generalization abil- 155

ity of our framework, we constructed a dataset 156

with over 17,000 samples by sampling and re- 157

structuring data from widely used datasets. Hand- 158

crafted biases were introduced with varying types 159

across splits, enabling systematic evaluation of 160

the model’s ability to maintain performance under 161

distributional shifts. 162

• We tested our framework on five commonly used 163

multimodal fake news datasets. Under the same 164

experimental settings, our framework showed an 165

average improvement of 2.68% in accuracy and 166

3.64% in F1-score. 167

2 Related Work 168

Multimodal Fake News Detection Multimodal 169

fake news detection involves using multiple data 170

modalities to detect fake news, requiring the inte- 171

gration and synergy of different modalities. On 172

one hand, researchers enhance news representation 173

by fusing multimodal features (Zhou et al., 2020; 174

Zhang et al., 2021; Lao et al., 2024; Zhang et al., 175
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2024b,a; Wu et al., 2023). For instance, models176

like CAFE (Chen et al., 2022) have focused on se-177

mantic consistency as a key approach, conducting178

extensive research. Meanwhile, models like Log-179

icDM (Liu et al., 2023) and NSLM (Dong et al.,180

2024) have incorporated symbolic logic to bring181

interpretability to multimodal fake news detection.182

However, as AI technology advances, the forms of183

fake news have become increasingly diverse. Mod-184

els such as BMR (Ying et al., 2023) have adopted a185

multi-view learning approach, considering various186

levels such as textual sentiment, image manipula-187

tion, and semantic consistency to establish a uni-188

fied framework for fake news detection (Wu et al.,189

2021; Qian et al., 2021). Yet, these methods often190

overlook the biases introduced by shortcut learning191

in models, resulting in suboptimal performance in192

real-world applications.193

Causal Learning Causal learning has garnered194

attention in the machine learning field. Studies195

have shown that models tend to exploit biases as196

shortcuts for prediction (Mo et al., 2024). Lever-197

aging causal relationships, many methods have198

achieved substantial success in various tasks (Liu199

et al., 2021; Wang et al., 2022). Some researchers200

have utilized the structure of graph neural networks201

to disentangle causal relationships, thereby provid-202

ing ample interpretability for causal learning (Fan203

et al., 2022; Wu et al., 2022).204

In the realm of fake news detection, models205

like ENDEF (Zhu et al., 2022) aim to mitigate en-206

tity bias from a causal perspective, extending fake207

news detection models to future datasets. Some208

works (Chen et al., 2023; Hu et al., 2022) employ209

counterfactual reasoning and causal intervention to210

eliminate psychological biases and image feature211

shifts. However, the shortcuts that models might212

rely on are diverse. These works address specific213

types of biases, necessitating a general framework214

to disentangle causal relationships in features.215

3 METHODOLOGY216

3.1 Problem Formulation and Causal217

Interpretation218

Let (P, I) be the image-post pair in the dataset,219

where P and I denotes the news post and the image,220

respectively. We construct a multimodal graph G221

for each news sample, representing relationships222

between features extracted from the post and image.223

Our goal is to separate G into a causal subgraph224

Gc, which contains features causally related to the225

Figure 2: The SCM of the graph generation process.
Dashed circles represent unobserved variables, while
solid circles represent observed variables.

news veracity label Y , and a biased subgraph Gb, 226

which contains features associated with Y but not 227

causally related. 228

To achieve this, we disentangle the features 229

within the original graph G into two sets of un- 230

observed variables: causal variables C and non- 231

causal variables B. In this decomposition, C in- 232

fluences both the multimodal news graph G and 233

the downstream fake news detection task, while B 234

only affects G. Importantly, B and C are condition- 235

ally independent given G, reflecting the structure 236

of a collider B → G ← C. As illustrated in the 237

Structural Causal Model (SCM) in Figure .2, where 238

Y represents the ground truth, dashed circles de- 239

note unobserved latent variables, and solid circles 240

denote observed variables. 241

In real-world testing scenarios, the variable B 242

may change, but the conditional relationship P (Y | 243

C) remains invariant across different environments. 244

The objective is to predict the label of a news sam- 245

ple as either 1 or 0 by identifying stable relation- 246

ships between multimodal features and the news ve- 247

racity label. Accordingly, we design a GNN model 248

that prioritizes these stable associations while min- 249

imizing reliance on potentially unstable relation- 250

ships involving B. 251

3.2 Model Design 252

Our framework, as illustrated in Figure.3, models 253

complex multimodal interactions by disentangling 254

causally relevant and irrelevant variables. Unlike 255

prior causal inference works relying on predefined 256

graph structures with fixed assumptions (Fan et al., 257

2022), our framework dynamically constructs fully 258

connected graphs, allowing the model to learn node 259

and edge importance directly from multimodal data 260

during training. This design avoids reliance on pre- 261

specified features and adapts to the unique com- 262

plexities of fake news detection. 263

Multimodal Graphs Construction For each 264

news sample k, we construct a cross-modal graph 265

Gk = (Hk, Ek), where Hk represents nodes and 266

Ek represents edges encoded by the adjacency ma- 267

trix Ak. Starting with a fully connected graph 268

ensures no potential causal relationships are ex- 269
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Figure 3: Overview of DICE. Initially, we extract semantic and frequency domain features of the images as well
as the features of the tokens, constructing a fully connected multimodal graph. We employ a Mask Disentangler,
comprising numerous MLPs, to determine the existence of nodes and edges, resulting in the derivation of causal
subgraphs and bias subgraphs for classification. During training, we randomly combine causal and bias features
from different samples within the mini-batch. Through risk extrapolation minimization and contrastive learning, we
promote the disentanglement of causal features.

cluded prematurely. The causal disentangler refines270

this structure by learning the relative importance271

of connections, enabling the discovery of critical272

cross-modal causal paths.273

For each post P k, we tokenize it into m tokens274

and extract their features T k = {tki ∈ Rd}mi=1275

using a frozen BERT (Devlin et al., 2019). Simi-276

larly, we split the image Ik into n patches and ex-277

tract their semantic features Vk = {vkj ∈ Rd}nj=1278

using a frozen ResNet (He et al., 2015). To fur-279

ther enhance image representation, especially for280

detecting image manipulation, we apply the Dis-281

crete Cosine Transform (DCT) (Liu and Li, 2003)282

to Ik, followed by a Multi-Head Self-Attention283

(MHSA) (Vaswani et al., 2017; Li et al., 2023)284

network, producing frequency domain features285

Fk = {fk
j ∈ Rd}nj=1. The nodes of the graph Gk286

are defined as the union of token features, seman-287

tic image features, and frequency domain features,288

i.e.,289

Hk = T k ∪ Vk ∪ Fk.290

These nodes are collectively represented as Hk =291

[T k, V k, F k] ∈ R(m+2n)×d, where T k, V k, and292

F k are the matrix representations of T k, Vk, and293

Fk.294

The edges Ek of the graph, which connect the295

nodes in Gk, are represented by the adjacency ma-296

trix Ak. To ensure that the model fully learns the297

causal patterns of multimodal fake news without in-298

troducing human bias, we adopt a fully connected299

strategy, where each element Ak
i,j = 1 indicates a 300

connection between every pair of nodes. 301

Casual Disentangler When learning the multi- 302

modal graph Gk, we leverage an MLP to quantify 303

the degree of association si between each node 304

and the veracity label Y , and the relationship eij 305

between the features hki and hkj of nodes i and j. 306

These associations are modeled by concatenating 307

the features and passing them through an MLP. We 308

scale the outputs to the [0, 1] range using the sig- 309

moid function, i.e., 310

ski = Sigmoid(MLP(hki )), 311

ekij = Sigmoid(MLP([hki , h
k
j ])), 312

This produces the node mask Sk ∈ Rm+2n and the 313

edge mask Ek ∈ R(m+2n)×(m+2n). These masks 314

do not directly indicate causal relationships but 315

guide the model to focus on features that align with 316

stable associations. 317

Subsequently, we derive the unbiased subgraph 318

Gkc = {Ak ⊙ Ek, Hk ⊙ Sk} and the biased 319

subgraph Gkb = {Ak ⊙ (1 − Ek), Hk ⊙ (1 − 320

Sk)} through a Hadamard product. These sub- 321

graphs are learned independently using two sepa- 322

rate Graph Convolutional Networks (GCNs) (Kipf 323

and Welling, 2017), defined as: 324

Hk
c = ReLU(Ãk(Hk ⊙ Sk)W ), 325

where Ãk = (Dk)
− 1

2 (Ak ⊙ Ek)(Dk)
− 1

2 , Dk is 326

the degree matrix, and W represents the learnable 327
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parameters. The final representation xkc is obtained328

through a linear transformation, i.e.,329

xkc = WcH
k
c ,330

Using another independent GCN and linear layer,331

we can obtain the biased representation xkb . During332

training, we concatenate the biased and causal rep-333

resentations and input them into two MLP-based334

classifiers, CLSc and CLSb respectively, to obtain335

the final prediction results, i.e.,336

ykc = CLSc([x
k
c , x

k
b ]),337

ykb = CLSb([x
k
c , x

k
b ]).338

3.3 Training and Optimization339

To achieve robust and disentangled representations340

for accurate fake news detection, we carefully de-341

sign our training and optimization procedure with342

a three-fold focus.343

Amplifying Bias in Subgraph Learning To344

train an accurate causal relevant model, we first345

need to rely more on shortcut learning during the346

learning process of the biased subgraph. In the347

classification process of CLSb, we use Ck
b

Ck
c

as the348

coefficient of the cross-entropy loss, i.e.,349

Lb =
∑
k∈Y

Ck
b

Ck
c

ŷklogykb ,350

where Ck
b and Ck

c represent the softmax outputs of351

CLSb and CLSc and their probabilities of belong-352

ing to the target class yk, respectively, and ŷk is the353

ground truth. The GCN and classifier generating354

the biased subgraph will highly trust and rely on355

the more convenient paths, so the classification loss356

can be represented as357

Lcls =
∑
k∈Y

ŷklogykc + Lb.358

Minimize Extrapolation Risk Although we359

have generated biased and causal news representa-360

tions, there will be statistical correlations between361

causal variables inherited from the biased observa-362

tion graph and the biased variables. To further re-363

duce the connection between them and obtain more364

robust disentangled representations, we achieve365

this goal by randomly combining biased and causal366

representations from multiple samples. Specifi-367

cally, for a mini-batch, we randomly sample U368

other samples and concatenate the causal repre-369

sentation xkc of the current news with the biased370

representations {xub }Uu=1 from other news samples. 371

This simulates news representations in different en- 372

vironments, allowing the model to perform ideal 373

extrapolation. To ensure the generation process 374

of the causal subgraph is not disturbed by exter- 375

nal environments, we minimize the variance of the 376

cross-entropy loss to achieve this purpose. The vari- 377

ance minimization ensures that the learned causal 378

features are robust across different environments, 379

i.e., 380

Lc = V(
U∑

u=1

∑
k∈Y

ŷklog(CLSc([x
k
c , x

u
b ]))). 381

Enforcing Representation Orthogonality To 382

promote disentanglement between biased and 383

causal representations in the latent space, we in- 384

corporate a contrastive learning loss. Specifically, 385

for each news sample, we sample U other sam- 386

ples from the dataset to construct two sets of la- 387

tent variables: Z+ = {zu+}Uu=1, obtained by swap- 388

ping biased representations while keeping xkc fixed, 389

and Z− = {zu−}Uu=1, obtained by swapping causal 390

representations {xuc }Uu=1 while keeping xkb fixed. 391

These sets simulate controlled environments to dis- 392

entangle the contribution of biased and causal fea- 393

tures. To enforce orthogonality, we optimize the 394

latent variable zk of the current news sample to 395

maximize cosine similarity with positive samples 396

zu+ and minimize cosine similarity with negative 397

samples zu−, formulated as: 398

Ld =
∑

⟨zk,zu⟩

DKL(s(z
k, zu) ∥ 1zu∈Z+), 399

where DKL(· ∥ ·) denotes the Kullback-Leibler 400

divergence, and 1zu∈Z+ is an indicator function 401

specifying whether zu is a positive sample. This en- 402

courages the model to learn representations where 403

biased and causal components are distinct and less 404

likely to interfere. The final optimization objective 405

integrates the classification loss Lcls, the causal loss 406

Lc, and the contrastive loss Ld, i.e., 407

L = Lcls + αLc + βLd, 408

where α and β are hyperparameters controlling the 409

contributions of the causal and contrastive losses. 410

4 Experiment 411

In this section, we present a comprehensive evalua- 412

tion of the proposed DICE framework. The exper- 413

iments are designed to validate three key aspects: 414
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Method
Twitter Weibo Fakeddit Pheme Weibo21

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1
BERT (Devlin et al., 2019) 0.733 0.717 0.823 0.823 0.860 0.859 0.815 0.781 0.852 0.848
ResNet (He et al., 2015) 0.644 0.633 0.710 0.708 0.721 0.632 0.755 0.662 0.728 0.689
DCT (Li et al., 2023) 0.741 0.728 0.619 0.619 0.790 0.789 0.551 0.462 0.700 0.667
Vanilla 0.784 0.757 0.837 0.837 0.873 0.873 0.831 0.796 0.853 0.849
CCD†

Vanilla (Chen et al., 2023) 0.800 0.785 0.855 0.855 0.889 0.889 0.831 0.808 0.871 0.868
SpotFake (Singhal et al., 2019) 0.771 0.776 0.839 0.838 0.891 0.875 0.812 0.804 0.851 0.847
MCAN (Wu et al., 2021) 0.874 0.856 0.852 0.851 0.894 0.893 0.834 0.782 0.895 0.893
CAFE (Chen et al., 2022) 0.869 0.851 0.855 0.855 0.898 0.898 0.831 0.810 0.882 0.881
EMSFM (Zeng et al., 2023) 0.804 0.784 0.834 0.805 0.820 0.807 0.782 0.768 0.843 0.832
BMR (Ying et al., 2023) 0.872 0.851 0.884 0.884 0.901 0.891 0.849 0.808 0.900 0.895
NSLM† (Dong et al., 2024) 0.810 0.782 0.866 0.866 0.895 0.895 0.850 0.815 0.853 0.849
DICE 0.930 0.926 0.897 0.897 0.926 0.926 0.870 0.846 0.917 0.916

Table 1: Comparison of DICE with the latest and most commonly used multimodal fake news detection approaches
on five datasets. Bold indicates the best performance. † indicates that the code is not open-source or that the
open-source code could not be reproduced, so we reproduced the code independently.

Figure 4: Results of DICE on Cross-Domain News.

(1) the overall performance of DICE on multimodal415

fake news detection benchmarks, (2) its robustness416

to distributional shifts and biased data, and (3) the417

interpretability of its disentangled representations418

through case studies and visualizations.419

4.1 Experiment Settings420

Public Datasets We evaluated DICE on five421

widely-used fake news detection benchmarks, in-422

cluding Twitter (Detection and visualization of423

misleading content on Twitter, 2018), Weibo (Jin424

et al., 2017), Weibo21 (Nan et al., 2022), Faked-425

dit (Nakamura et al., 2020), and Pheme (Zubiaga426

et al., 2017). Additional details about datasets can427

be found in Appendix A.428

Handcrafted Bias Dataset To validate DICE’s429

causal learning capability in more challeng-430

ing scenarios, we sampled from three English431

datasets—Twitter, Fakeddit, and Pheme—to cre-432

ate a new cross-platform fake news dataset. In433

the training set, we simulated news environment434

biases by adding specific short texts to real news435

posts and manipulating images of fake news. In436

the test set, we manipulated images of real news437

and added corresponding short texts to fake news438

posts. For all experiments, we divided the data into439

training, valid, and test sets according to the dataset440

Dataset Type Train Val Test

Real News
Sample Size 6311 1175 889
Bias Type Text Text Image

Fake News
Sample Size 6820 1143 1193
Bias Type Image Image Text

Table 2: Dataset Partitioning of the Handcrafted Bias
Dataset.

Figure 5: (a) Temporal Test. (b) Cross-platform Test.
requirements. The validation set follows the same 441

data distribution as the training set to select check- 442

points. Detailed information about the datasets is 443

presented in Table.2, and specific short texts and 444

manipulation methods are provided in Appendix D. 445

446

4.2 Baselines 447

We compared our approach with six classic or state- 448

of-the-art multimodal fake news detection meth- 449

ods: Spotfake, MCAN, CAFE, EMSFM, BMR, 450

and NSLM. Among these, BMR and NSLM are 451

considered the latest and most interpretable best- 452

performing methods. Additionally, to ensure the ef- 453

fectiveness of DICE, we conducted experiments us- 454

ing BERT and ResNet individually, where Vanilla 455

refers to the combination of BERT and ResNet. To 456

further demonstrate DICE’s generalization perfor- 457

mance, we implemented the bias correction model 458

CCD on Vanilla for a fair evaluation of DICE’s 459

capabilities. 460

To ensure fairness, we replaced the backbones 461

of the latest strong baselines BMR and NSLM with 462

BERT and ResNet, keeping the parameters consis- 463

tent. BMR suggests using MAE as a more suitable 464
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Figure 6: Performance of the different models on the
test set as a function of the proportion of manual bias
features. “Partial Overlappe” indicates a small advan-
tage in accuracy of the current model, embedded in the
previous color to show it. The colored thick line indi-
cates the actual accuracy of the model corresponding to
the previous color.

backbone for fake news detection; thus, we did465

not change its backbone. For the current state-of-466

the-art multi-modal fake news debiasing detection467

model, CCD, we utilize the “NRC Emotion In-468

tensity Lexicon” (Mohammad, 2018) to mitigate469

text bias and employ Vanilla as the base model470

for fair comparison. Detailed descriptions of the471

datasets, baselines, and the implementation of the472

handcrafted dataset are provided in the Appendix.473

4.3 Performance Analysis474

4.3.1 Comparisons475

Table.1 presents a comprehensive comparison of476

DICE with popular baseline methods in terms of477

accuracy and F1-score. The results consistently in-478

dicate that DICE outperforms other models across479

all five datasets. On average, DICE achieves an480

accuracy improvement of 2.68% and an F1-score481

improvement of 3.64% compared to the baselines,482

demonstrating its superiority.483

From the experiments, we observed that BMR’s484

results were second only to DICE, benefiting from485

its multi-angle learning of news features. However,486

further experiments revealed that BMR’s learning487

model captured many biased features, resulting in488

non-robust representations. The goal of EMSFM is489

to interpretably fuse global and local alignment fea-490

tures for multimodal fake news verification. NSLM491

aims to expose fake news patterns through logi-492

cal reasoning but is easily disrupted by entities in493

news posts, leading to prediction errors. Regarding494

DICE’s excellent performance, traditional models495

struggle to improve due to reliance on biased infor-496

mation. While the debiasing model CCD removes497

biases from psychological factors and image se-498

mantics, real-world biases are complex. Our model499

effectively judges the causal relationship between500

multimodal features and authenticity labels, suc-501

Category Settings Accuracy F1-Score
Full Model DICE 0.926 0.926

Component
w/o causal 0.905 0.905

w/o Lc 0.907 0.906
w/o Ld 0.923 0.923

Graph Learning
GAT 0.916 0.916

Factor GCN 0.919 0.919

Table 3: Ablation study of the DICE. The tests were
conducted on the Fakeddit dataset. Results on other
datasets are provided in the Appendix.

cessfully identifying challenging samples. 502

4.3.2 Verification of Causal Learning 503

To verify DICE’s capability in causal learning, we 504

conducted evaluations from multiple perspectives. 505

Cross-Domain Performance. We evaluated 506

DICE’s cross-domain performance using Weibo21, 507

which includes domain labels for news. We se- 508

lected “entertainment” and “business” news as the 509

training data and used the checkpoint from this 510

training. For testing, we chose news from the “nat- 511

ural disaster” and “military” domains, which are 512

least related to the training set. Figure.4 illustrates 513

our cross-domain detection results. Although BMR 514

achieved better results on the same domain valida- 515

tion set compared to DICE, it performed worse on 516

test set. This demonstrates DICE’s strong general- 517

ization capability. 518

Temporal Test. For the temporal test, we used 519

the Weibo data as the training set and employed 520

the checkpoint from the main experiment. We 521

then tested on the Weibo21 dataset, where the 522

data collection period differs by 4 years, show- 523

casing temporal evolution and dynamic character- 524

istics. As shown in Figure.5(a), although perfor- 525

mance testing on datasets with temporal variations 526

did not outperform random selection, the DICE 527

method demonstrates unique advantages in multi- 528

ple aspects. DICE excels in feature extraction and 529

stability, capturing the complex characteristics of 530

temporal data more effectively. Moreover, its ac- 531

curacy and F1-scores are the best among all tested 532

methods. DICE consistently maintains superior 533

performance across different testing scenarios, fur- 534

ther proving its research and application value in 535

handling complex temporal data tasks. These at- 536

tributes give it a significant edge in the study and 537

application of temporal data. 538

Cross-Platform Evaluation. To validate 539

DICE’s robustness across different social media en- 540

vironments, we trained on the Fakeddit (sampled 541

from Reddit) and tested on the Pheme (sampled 542

from Twitter). Due to significant data repetition in 543
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Figure 7: Case studies on fake news detection using DICE.

the Twitter, its analysis results are not representa-544

tive. Figure.5 (b) illustrates DICE’s robustness in545

cross-platform detection, highlighting its practical546

significance in diverse real-world applications.547

Performance on Severely Biased Datasets. To548

assess DICE’s robustness to bias, we evaluate its549

performance on a handcrafted dataset with vary-550

ing levels of injected bias (Figure. 6). While this551

synthetic bias may not fully encapsulate the com-552

plexities of real-world news bias, it allows us to553

systematically analyze our model’s debiasing ca-554

pabilities under controlled conditions. As shown555

in Figure. 6, BMR and NSLM exhibit significant556

performance degradation with the introduction of557

just 30% biased data. In stark contrast, DICE’s558

causal learning module maintains relatively sta-559

ble performance across all levels of contamination,560

demonstrating its robustness even when the specific561

nature of the bias is unknown a priori.562

For further evidence of DICE’s disentangling563

capabilities, a detailed t-SNE visualization of the564

learned representations under 80% handcrafted bias565

is provided in Appendix F. This visualization high-566

lights the clear separation between causal and bi-567

ased representations achieved by DICE.568

4.4 Ablation Study569

We conducted further analysis to examine the role570

of each module in our proposed model. The corre-571

sponding results are shown in Table.3. To validate572

the reliability of our approach, we included the573

following variations:“w/o causal” represents the574

results of using graph convolution without causal575

disentanglement. “w/o Lc” represents the results576

without performing sample swapping during opti-577

mization for correlation adjustment. “w/o Ld” rep-578

resents the results without using contrastive learn-579

ing to promote orthogonal representations of bi-580

ased and causal features. Additionally, we com-581

pared our method with GAT (Velickovic et al.,582

2017) and Factor GCN (Yang et al., 2020), a clas-583

sic method for causal learning, to demonstrate that584

our causal learning approach outperforms attention-585

based modeling methods and other graph learning 586

methods. The experimental results further empha- 587

size the advantages of our approach. 588

4.5 Case Studies 589

Figure.7 presents case studies of DICE, where 590

causal prediction and bias prediction represent the 591

prediction results of DICE-Causal and DICE-Bias, 592

respectively. Figure.7 (a) depicts a fake news in- 593

stance from the Twitter dataset, which, according 594

to MediaEval’s description, is highly likely to in- 595

volve image manipulation. In testing, DICE suc- 596

cessfully disentangled numerous frequency domain 597

feature nodes within the causal subgraph and con- 598

nected them based on their inherent causal relation- 599

ships, leading to a correct classification. Interest- 600

ingly, Figure.7 (b), a case from the Pheme dataset, 601

shows that the disentangled causal subgraph does 602

not contain any frequency domain feature nodes, 603

yet DICE-Causal still achieves an accurate clas- 604

sification. Conversely, DICE-Bias, relying on a 605

subgraph with numerous frequency domain feature 606

nodes, erroneously classifies this sample as fake 607

news. This highlights DICE’s ability to focus on 608

causally relevant features rather than incorporat- 609

ing all features into the inference process, thereby 610

improving interpretability. For additional insights 611

into the effectiveness of feature disentanglement 612

and causal learning, refer to Appendix G, where 613

we present further studies and analyses. 614

5 Conclusion 615

The goal of this work is to enhance the performance 616

of fake news detectors by disentangling the causal 617

relationships between features and news veracity. 618

We explore the challenges in fake news detection 619

from a new perspective, modeling causal relation- 620

ships by solving the intrinsic connections between 621

different modal information. By sampling other 622

examples within a mini-batch, we aim to minimize 623

extrapolation risk. We designed comprehensive ex- 624

periments to validate our method’s robust detection 625

capabilities across varying news environments. 626
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6 Limitations627

Our proposed DICE framework demonstrates628

strong performance and robustness in detecting629

multimodal fake news, but we acknowledge certain630

areas that could benefit from further exploration.631

First, the handcrafted bias dataset, while designed632

to simulate real-world distributional shifts, may not633

perfectly replicate the full complexity of naturally634

occurring biases in large-scale social media data.635

Future work could further validate our approach636

using diverse real-world datasets with annotated637

causal and biased features. Second, while DICE638

provides insights into its decision-making process639

through case studies and heatmap visualizations,640

the current analysis primarily relies on qualitative641

evaluation. Developing more systematic and quan-642

titative methods to assess causal disentanglement643

could strengthen the interpretability of the model.644

Finally, as with many approaches leveraging pre-645

trained models, DICE’s reliance on feature extrac-646

tors such as BERT and ResNet could reflect some647

inherent biases in these models. Addressing these648

aspects in future work may further enhance the gen-649

eralizability and robustness of the proposed frame-650

work.651

7 Ethics Statement652

This work seeks to enhance the detection of mul-653

timodal fake news, a pressing societal challenge,654

particularly in mitigating the spread of misinforma-655

tion on social media platforms. While our approach656

aims to improve the robustness and generalization657

of fake news detection models, we recognize the658

potential misuse of such technologies, including659

the unjust labeling of truthful content as false or660

the surveillance of user-generated content. To mini-661

mize these risks, we advocate for the ethical deploy-662

ment of our methods, ensuring transparency and663

fairness through human oversight. Additionally,664

all datasets utilized in this study are publicly avail-665

able, and we have adhered to the original licensing666

agreements and ethical guidelines governing their667

use. No personally identifiable information (PII)668

was included in the data, and efforts were made to669

ensure that the constructed datasets reflect only ar-670

tificial biases for research purposes. We encourage671

further research to address the broader ethical im-672

plications of multimodal misinformation detection673

technologies, promoting their development as tools674

for social good.675
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A Details of Public Datasets1000

Twitter was released in 2015 at MediaEval, com-1001

prising 17673 news. Weibo is the most extensively1002

used Chinese dataset with 9528 news exposing fake1003

news. Pheme is designed for detecting fake news1004

spread on social media and consists of five breaking1005

news stories, encompassing a total of 3670 news.1006

Fakeddit is a dataset sampled from reddit, contain-1007

ing 31,011 news samples for training and 6,1811008

for testing. Weibo-21 is a newly released dataset1009

containing a total of 4640 real news items and 44871010

fake news items, and we adopt the dataset parti-1011

tioning approach adopted by Ying et al(Ying et al.,1012

2023).1013

B Baslines1014

To verify DICE’s ability to detect fake news, we1015

compared DICE with the following six strong base-1016

lines:1017

SpotFake (Singhal et al., 2019) utilize the pre-1018

trained language model to learn the textual infor-1019

mation, and employ the pre-trained visual model1020

to obtain image features.1021

CAFE (Chen et al., 2022) adaptively aggregates1022

features based on the inherent cross-modal ambigu-1023

ity, addressing misclassification issues arising from1024

differences between different modalities.1025

EMSFM (Zeng et al., 2023) interpretably fuses1026

global and local alignment features of multimodal1027

news to exploit cross-modal consistency and incon-1028

sistency for fake news verification.1029

MCAN (Wu et al., 2021) integrates pattern fea-1030

tures into the co-attention network. It conducts1031

detection by incorporating multiple views that fuse1032

text, image semantics, and image pattern features.1033

CCD (Chen et al., 2023) proposes a framework1034

combining causal reasoning and counterfactual rea-1035

soning to enhance the accuracy and robustness of1036

multimodal fake news detection.1037

BMR (Ying et al., 2023) models news features1038

from multiple views through bootstrap multi-view1039

representations. It utilizes the Mixture of Experts1040

network for the fusion of multi-view features.1041

NSLM (Dong et al., 2024) predefines three typi-1042

cal deception patterns and effectively captures dif-1043

ferent deception modes in fake news through logi-1044

cal symbol reasoning.1045

C Implementation1046

We utilized PyTorch (Paszke et al., 2017),1047

DGL (Wang et al., 2019), scikit-learn (Pedregosa1048

et al., 2011), and Transformers (Wolf et al., 2020) 1049

to implement DICE. In this case, in order for the 1050

biased model to converge quickly and learn the bi- 1051

ased representation, we set its learning rate slightly 1052

higher than that of the causal model. For the 1053

model’s backbone, “bert-base-case” was employed 1054

for English datasets, while “bert-base-chinese” was 1055

used for Weibo and Weibo-21. The experiments 1056

were conducted on a RTX3090 GPU. In the exper- 1057

iment, different learning rates were used for the 1058

Chinese and English datasets. Table.4 outlines the 1059

hyperparameter settings for easy replication of ex- 1060

perimental results.

Table 4: Specific Hyperparameter Settings for our Ex-
periments.

Hyperparameter English Dataset Chinese Dataset
optimizer Adam Adam
causal learning rate 5e-4 5e-5
bias learning rate 8e-4 8e-5
α 0.4 0.4
β 0.2 0.2

1061

D Handcrafted Dataset 1062

To validate DICE’s causal learning capability in 1063

more challenging scenarios, we randomly sampled 1064

existing data according to the proportions shown in 1065

Table.5 and artificially constructed a handcrafted 1066

dataset by introducing bias information with oppo- 1067

site logic into the training and test sets.

Table 5: Sampling details from the English dataset.

Dataset Train Valid Test
Fakeddit 10000 1100 1400
Twitter 5000 550 800
Pheme 1080 120 100

1068
The specific handcrafted features added are de- 1069

tailed in the Table.6 below. We aim to demonstrate 1070

the model’s causal learning capability intuitively 1071

through the introduction of high-intensity bias in- 1072

formation. 1073

E Supplementary ablation experiments 1074

We presented the ablation study results of DICE 1075

on the Fakeddit dataset in the main text. Here, we 1076

provide its performance on other datasets, as shown 1077

in Table.7, where the values in the metric column 1078

are written as “Accuracy/F1 Score.” 1079
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Table 6: Specific bias settings. Due to the large size of
the handcrafted dataset, we will upload the specific files
at a later stage. Here, we provide detailed modification
methods for replication.

Bias Type Details

Text Bias
Add context: President Biden is concerned about this.
Add context: Shocked! I can’t believe this is happening!
Add context: Or it will affect the world landscape.

Image Bias
Color enhancement by factor 1.5 and fogging by factor 0.15.
Add Gaussian random noise with intensity 4.

Figure 8: The t-SNE visualization results at 80% pro-
portion of handcrafted bias features. (a) Despite 80%
of training data containing bias information, DICE-
Causal exhibits more distinct classification boundaries
compared to DICE-Bias. (b) DICE-Bias demonstrates
stronger correlation with different types of bias informa-
tion used as labels.

F T-SNE Visualization of Learned1080

Representations1081

To provide additional insights into DICE’s ability1082

to disentangle causal and biased representations,1083

we employ t-SNE to visualize the latent representa-1084

tions learned by the model when 80% of the dataset1085

contains handcrafted bias. As shown in Figure 8,1086

DICE’s causal learning module successfully iso-1087

lates causal representations into distinct clusters,1088

demonstrating its robustness against spurious cor-1089

relations.1090

In contrast, the biased learning module captures1091

patterns heavily influenced by the injected bias, as1092

evidenced by the overlapping or fragmented clus-1093

ters. These results underscore the effectiveness of1094

DICE in leveraging causal relationships for robust1095

and accurate predictions, even in scenarios with1096

significant data contamination.1097

Table 7: Supplementary results of DICE ablation exper-
iment.

Settings Twitter Weibo Weibo21 Pheme
w/o Casual 0.846/0.832 0.875/0.875 0.853/0.850 0.849/0.821
w/o Lc 0.871/0.861 0.870/0.870 0.850/0.843 0.859/0.835
w/o Ld 0.856/0.854 0.883/0.883 0.857/0.855 0.857/0.832
GAT 0.916/0.912 0.892/0.892 0.883/0.881 0.865/0.834
Factor GCN 0.860/0.852 0.882/0.882 0.891/0.891 0.852/0.831
DICE 0.930/0.926 0.897/0.897 0.917/0.917 0.867/0.846

Figure 9: Heatmap visualization. Each cell in the
heatmap represents the pairwise cosine similarity. The
test for (a) was conducted on the Pheme dataset. The
tests for (b) and (c) were conducted on the Handcrafted
Bias Dataset with a 30% proportion of handcrafted bias
features.

G Causal Learning Studies 1098

To evaluate the effectiveness of disentanglement, 1099

we randomly sampled 100 data points from the 1100

dataset for disentanglement analysis. As shown in 1101

Figure 9(a), biased features and unbiased causal 1102

features exhibit clear separability, indicating good 1103

orthogonality between the two during the disen- 1104

tanglement process. Figures 9 (b) and (c) present 1105

the pairwise similarity of intermediate features ob- 1106

tained by training the DICE Causal and DICE Bias 1107

classifiers on a dataset with 30% manually intro- 1108

duced biased features. Despite the interference 1109

of biased features, our method maintains strong 1110

intra-class and inter-class distinctions, whereas the 1111

biased features obtained through disentanglement 1112

demonstrate suboptimal performance. 1113
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