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Abstract

Fake news data, often sampled from the same
communities, results in the veracity of news
being highly correlated with certain textual and
visual entities. This correlation leads fake news
classification models to be prone to shortcut
learning, quickly overfitting by capturing only
shallow spurious correlations between labels
and features. Consequently, neural networks
trained on such data suffer from poor gener-
alization and potential misclassification under
distribution shifts. In this paper, we propose a
DIsentanglement-based Causality-awarE fake
news detection method (DICE). DICE con-
structs multimodal news into a graph neural
network and effectively models causal relation-
ships between multimodal features and verac-
ity labels through the use of node and edge
mask disentanglers. To reinforce this disentan-
glement process, we designed a loss function
aimed at minimizing extrapolation risk, which
supervises the training and results in disentan-
gled causal and biased representations of news.
Extensive experiments demonstrate that DICE
achieves superior performance on five large-
scale fake news detection benchmarks. Addi-
tionally, our evaluation on a heavily biased fake
news dataset demonstrates DICE’s strong gen-
eralization, suggesting its potential to inform a
new paradigm in causal fake news detection.

1 Introduction

With the advancement of generative artificial intel-
ligence technology, fake news has increasingly be-
come a tool on social media for influencing public
opinion and manipulating information. In the con-
text of hot topics, conflicting parties manufacture
and disseminate false information to confuse the
public, tarnish competitors, and mislead the masses,
ultimately achieving manipulation of online public
opinion (Aimeur et al., 2023; Yin et al., 2024). The
proliferation of well-crafted multimodal fake infor-
mation has heightened the necessity and urgency of

developing effective methods for identifying multi-
modal fake news, as such content is more likely to
capture readers’ attention.

Existing paradigms for deep learning-based
multimodal fake news detection methods focus
on encoding textual and visual information into
task-relevant representations in a latent feature
space (Wang et al., 2018; Chen et al., 2019). Early
methods concentrated on the joint modeling of
posts and images (Khattar et al., 2019; Zhang et al.,
2021; Wu et al., 2023; Zhang et al., 2024a) or es-
timating consistency (Qi et al., 2021; Chen et al.,
2022). Later approaches introduced multi-view
fake news modeling (Wu et al., 2021; Qian et al.,
2021; Ying et al., 2023) or incorporated logical
connections between news and labels (Liu et al.,
2023; Dong et al., 2024). However, due to the
complex news environment, model bias remains
a critical unresolved issue in this field. This bias
often arises from distributional shifts present in the
training data, causing the model to overly rely on
shallow associations between textual and visual
features and the labels. For instance, while features
such as clickbait (Bourgonje et al., 2017), image
manipulation (Wang et al., 2024), or sensational-
ism (Subbiah et al., 2023) are often correlated with
fake news, the authenticity of news cannot always
be determined solely based on these surface-level
patterns. These features may represent causal re-
lationships in certain contexts but can also result
in spurious correlations due to biased data distri-
bution. Models trained without awareness of these
nuances risk relying on these spurious correlations,
hampering their generalization ability across un-
seen scenarios. It is thus crucial to disentangle
causally relevant patterns from spurious biases to
ensure robust detection.

Furthermore, deep neural networks are highly
sensitive to distributional shifts (Gawlikowski et al.,
2023). Shortcut learning, where models rely on
shallow correlations (e.g., specific visual features
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Figure 1: Models habitually learn spurious associations
between features and labels through shortcut learning.

or text patterns) rather than causal relationships,
exacerbates this issue (Fan et al., 2024). As noted
by Liu et al. (2023), fake news in existing datasets
is often correlated with sensational language, lead-
ing to biased predictions. Similarly, Zhu et al. (Zhu
et al., 2022) highlights how entity bias creates
spurious correlations that hinder model general-
ization. These biases often arise from the temporal
or contextual sampling of training data, where older
events or entities dominate, resulting in distribu-
tional shifts between the training and test datasets.

Such issues are vividly exemplified in widely-
used datasets. For instance, in the Pheme dataset
(Zubiaga et al., 2017), which is constructed from
real-world data sampled during numerous breaking
news events, the frequent co-occurrence of "police"
with fake news labels in training data leads to mis-
classification (Figure.1 a). Similarly, on benchmark
Twitter (Detection and visualization of misleading
content on Twitter, 2018), which are extensively
adopted in fake detection studies, fake news often
involves manipulated images, causing the model to
associate spurious visual features with labels (Fig-
ure.l b). However, real news can be manipulated
to emphasize certain image aspects, resulting in
classification errors.

These manipulations highlight the duality of cer-
tain features, such as manipulated visuals or sensa-
tional language: while they might reflect genuine
patterns of fake news in certain cases, their pres-
ence in real news due to adversarial intent or biased
data distribution can lead the model to establish
false causal relationships. This reliance on shallow
patterns results in misclassification of real news as
fake news. To evaluate the effects of these biases,
we constructed a dataset with opposing biases be-
tween the training and test sets (see Experiment
for details). As shown in Figure 1(c), models re-
lying on biased features exhibit a sharp decline in
performance when tested on data with shifted dis-
tributions, confirming their inability to generalize
effectively. This observation highlights the critical

importance of addressing biases inherent in training
datasets to ensure robust fake news detection.

In this paper, we propose a DIsentanglement-
based Causality-awarE fake news detection method
(DICE). Instead of relying on potentially biased
heuristics or pre-defined structures, DICE dynami-
cally represents posts and images as a multimodal
graph, where node and edge importance is adjusted
through learnable "maskers". This approach disen-
tangles causally relevant unbiased subgraphs from
causally irrelevant biased subgraphs within the mul-
timodal graph. Moreover, DICE incorporates a spe-
cialized loss function to adversarially encourage
biased subgraphs to capture superficial shortcuts
while compelling causal subgraphs to focus on fea-
tures fundamentally linked to news authenticity,
fostering a robust separation between bias-driven
and causality-driven representations. Specifically,
our contributions can be summarized as follows:

We propose a novel fake news detection frame-
work, DICE, which dynamically constructs mul-
timodal graphs without predefined causal or bi-
ased relationships. DICE models intrinsic connec-
tions between multimodal features at the token
level and incorporates a training process that min-
imizes feature-label loss variance across diverse
bias environments. This approach fosters stable
associations between features and news veracity,
mitigating the influence of spurious correlations.

To validate the robustness and generalization abil-
ity of our framework, we constructed a dataset
with over 17,000 samples by sampling and re-
structuring data from widely used datasets. Hand-
crafted biases were introduced with varying types
across splits, enabling systematic evaluation of
the model’s ability to maintain performance under
distributional shifts.

We tested our framework on five commonly used
multimodal fake news datasets. Under the same
experimental settings, our framework showed an
average improvement of 2.68% in accuracy and
3.64% in F1-score.

2 Related Work

Multimodal Fake News Detection Multimodal
fake news detection involves using multiple data
modalities to detect fake news, requiring the inte-
gration and synergy of different modalities. On
one hand, researchers enhance news representation
by fusing multimodal features (Zhou et al., 2020;
Zhang et al., 2021; Lao et al., 2024; Zhang et al.,



2024b,a; Wu et al., 2023). For instance, models
like CAFE (Chen et al., 2022) have focused on se-
mantic consistency as a key approach, conducting
extensive research. Meanwhile, models like Log-
icDM (Liu et al., 2023) and NSLM (Dong et al.,
2024) have incorporated symbolic logic to bring
interpretability to multimodal fake news detection.
However, as Al technology advances, the forms of
fake news have become increasingly diverse. Mod-
els such as BMR (Ying et al., 2023) have adopted a
multi-view learning approach, considering various
levels such as textual sentiment, image manipula-
tion, and semantic consistency to establish a uni-
fied framework for fake news detection (Wu et al.,
2021; Qian et al., 2021). Yet, these methods often
overlook the biases introduced by shortcut learning
in models, resulting in suboptimal performance in
real-world applications.

Causal Learning Causal learning has garnered
attention in the machine learning field. Studies
have shown that models tend to exploit biases as
shortcuts for prediction (Mo et al., 2024). Lever-
aging causal relationships, many methods have
achieved substantial success in various tasks (Liu
et al., 2021; Wang et al., 2022). Some researchers
have utilized the structure of graph neural networks
to disentangle causal relationships, thereby provid-
ing ample interpretability for causal learning (Fan
et al., 2022; Wu et al., 2022).

In the realm of fake news detection, models
like ENDEF (Zhu et al., 2022) aim to mitigate en-
tity bias from a causal perspective, extending fake
news detection models to future datasets. Some
works (Chen et al., 2023; Hu et al., 2022) employ
counterfactual reasoning and causal intervention to
eliminate psychological biases and image feature
shifts. However, the shortcuts that models might
rely on are diverse. These works address specific
types of biases, necessitating a general framework
to disentangle causal relationships in features.

3 METHODOLOGY

3.1 Problem Formulation and Causal
Interpretation

Let (P, I) be the image-post pair in the dataset,
where P and I denotes the news post and the image,
respectively. We construct a multimodal graph G
for each news sample, representing relationships
between features extracted from the post and image.
Our goal is to separate G into a causal subgraph
G., which contains features causally related to the

Figure 2: The SCM of the graph generation process.
Dashed circles represent unobserved variables, while
solid circles represent observed variables.

news veracity label Y, and a biased subgraph Gy,
which contains features associated with Y but not
causally related.

To achieve this, we disentangle the features
within the original graph G into two sets of un-
observed variables: causal variables C' and non-
causal variables B. In this decomposition, C' in-
fluences both the multimodal news graph G and
the downstream fake news detection task, while B
only affects G. Importantly, B and C' are condition-
ally independent given G, reflecting the structure
of a collider B — G < C'. As illustrated in the
Structural Causal Model (SCM) in Figure .2, where
Y represents the ground truth, dashed circles de-
note unobserved latent variables, and solid circles
denote observed variables.

In real-world testing scenarios, the variable B
may change, but the conditional relationship P(Y |
(') remains invariant across different environments.
The objective is to predict the label of a news sam-
ple as either 1 or O by identifying stable relation-
ships between multimodal features and the news ve-
racity label. Accordingly, we design a GNN model
that prioritizes these stable associations while min-
imizing reliance on potentially unstable relation-
ships involving B.

3.2 Model Design

Our framework, as illustrated in Figure.3, models
complex multimodal interactions by disentangling
causally relevant and irrelevant variables. Unlike
prior causal inference works relying on predefined
graph structures with fixed assumptions (Fan et al.,
2022), our framework dynamically constructs fully
connected graphs, allowing the model to learn node
and edge importance directly from multimodal data
during training. This design avoids reliance on pre-
specified features and adapts to the unique com-
plexities of fake news detection.

Multimodal Graphs Construction For each
news sample k, we construct a cross-modal graph
GF = (HF,&F), where H” represents nodes and
E¥ represents edges encoded by the adjacency ma-
trix A*. Starting with a fully connected graph
ensures no potential causal relationships are ex-
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Figure 3: Overview of DICE. Initially, we extract semantic and frequency domain features of the images as well
as the features of the tokens, constructing a fully connected multimodal graph. We employ a Mask Disentangler,
comprising numerous MLPs, to determine the existence of nodes and edges, resulting in the derivation of causal
subgraphs and bias subgraphs for classification. During training, we randomly combine causal and bias features
from different samples within the mini-batch. Through risk extrapolation minimization and contrastive learning, we

promote the disentanglement of causal features.

cluded prematurely. The causal disentangler refines
this structure by learning the relative importance
of connections, enabling the discovery of critical
cross-modal causal paths.

For each post P*, we tokenize it into m tokens
and extract their features 7% = {t¥@ € R},
using a frozen BERT (Devlin et al., 2019). Simi-
larly, we split the image I” into n patches and ex-
tract their semantic features V¥ = {véc € Rd};?zl
using a frozen ResNet (He et al., 2015). To fur-
ther enhance image representation, especially for
detecting image manipulation, we apply the Dis-
crete Cosine Transform (DCT) (Liu and Li, 2003)
to I*, followed by a Multi-Head Self-Attention
(MHSA) (Vaswani et al., 2017; Li et al., 2023)
network, producing frequency domain features
FF = {fjk € Rd}?zl. The nodes of the graph G*
are defined as the union of token features, seman-
tic image features, and frequency domain features,
ie.,

HE =TFUVFUFR

These nodes are collectively represented as H* =
[Tk, VF FF] e RM+20)xd ywhere T*, V¥, and
F* are the matrix representations of 7%, V¥, and
FF.

The edges £F of the graph, which connect the
nodes in G¥, are represented by the adjacency ma-
trix A*. To ensure that the model fully learns the
causal patterns of multimodal fake news without in-
troducing human bias, we adopt a fully connected

strategy, where each element Af ; = lindicates a
connection between every pair of nodes.

Casual Disentangler When learning the multi-
modal graph G, we leverage an MLP to quantify
the degree of association si between each node
and the veracity label Y, and the relationship e;;
between the features h¥ and h? of nodes 7 and j.
These associations are modeled by concatenating
the features and passing them through an MLP. We
scale the outputs to the [0, 1] range using the sig-
moid function, i.e.,

sk = Sigmoid(MLP (hF)),
efj = Sigmoid(MLP([hf, hﬂ))v

This produces the node mask S* € R™*2" and the
edge mask EF € R(m+20)x(m+2n) - Thege masks
do not directly indicate causal relationships but
guide the model to focus on features that align with
stable associations.

Subsequently, we derive the unbiased subgraph
GF. = {A* ® EF,H* © S*¥} and the biased
subgraph G¥, = {A* © (1 — E*),H* © (1 -
S¥)} through a Hadamard product. These sub-
graphs are learned independently using two sepa-
rate Graph Convolutional Networks (GCNs) (Kipf
and Welling, 2017), defined as:

H* = ReLU(AF(H* © SFYW),

~ _1 _1
where AF = (D¥)"2(A* © E¥)(D*)"2, D* is
the degree matrix, and W represents the learnable



parameters. The final representation xlg is obtained
through a linear transformation, i.e.,

k k
x, = W.H.,

Using another independent GCN and linear layer,
we can obtain the biased representation x’g During
training, we concatenate the biased and causal rep-
resentations and input them into two MLP-based
classifiers, CLS. and CLS}, respectively, to obtain
the final prediction results, i.e.,

vy = CLSp([ze, zp]).

3.3 Training and Optimization

To achieve robust and disentangled representations
for accurate fake news detection, we carefully de-
sign our training and optimization procedure with
a three-fold focus.

Amplifying Bias in Subgraph Learning To
train an accurate causal relevant model, we first
need to rely more on shortcut learning during the

learning process of the biased subgraph. In the
k

classification process of CLS},, we use % as the

coefficient of the cross-entropy loss, i.e.,

CF
Ly = Z orY logyy,
key ~¢

where Cf and Cf represent the softmax outputs of
CLSy, and CLS, and their probabilities of belong-
ing to the target class y*, respectively, and ¥ is the
ground truth. The GCN and classifier generating
the biased subgraph will highly trust and rely on
the more convenient paths, so the classification loss
can be represented as

Lcls = Z @klogy§ + Lb-
keY

Minimize Extrapolation Risk Although we
have generated biased and causal news representa-
tions, there will be statistical correlations between
causal variables inherited from the biased observa-
tion graph and the biased variables. To further re-
duce the connection between them and obtain more
robust disentangled representations, we achieve
this goal by randomly combining biased and causal
representations from multiple samples. Specifi-
cally, for a mini-batch, we randomly sample U
other samples and concatenate the causal repre-
sentation x¥ of the current news with the biased

representations {x{}7_, from other news samples.
This simulates news representations in different en-
vironments, allowing the model to perform ideal
extrapolation. To ensure the generation process
of the causal subgraph is not disturbed by exter-
nal environments, we minimize the variance of the
cross-entropy loss to achieve this purpose. The vari-
ance minimization ensures that the learned causal
features are robust across different environments,
ie.,

U
L.= V(Z Z gklog(CLSc([x]; xlﬂ)))

u=1keY

Enforcing Representation Orthogonality To
promote disentanglement between biased and
causal representations in the latent space, we in-
corporate a contrastive learning loss. Specifically,
for each news sample, we sample U other sam-
ples from the dataset to construct two sets of la-
tent variables: Z, = {z%}U_,, obtained by swap-
ping biased representations while keeping z* fixed,
and Z_ = {2 fle, obtained by swapping causal
representations {z%}{_, while keeping z¥ fixed.
These sets simulate controlled environments to dis-
entangle the contribution of biased and causal fea-
tures. To enforce orthogonality, we optimize the
latent variable z* of the current news sample to
maximize cosine similarity with positive samples
2% and minimize cosine similarity with negative
samples 2", formulated as:

Ld = Z DKL(S(Zk,Zu) || 1z“€Z+),

(2h,2)

where Dk (- || -) denotes the Kullback-Leibler
divergence, and 1,ucz, is an indicator function
specifying whether z* is a positive sample. This en-
courages the model to learn representations where
biased and causal components are distinct and less
likely to interfere. The final optimization objective
integrates the classification loss L, the causal loss
L., and the contrastive loss L4, i.e.,

L = L5+ aL. + BLg,

where « and 3 are hyperparameters controlling the
contributions of the causal and contrastive losses.

4 Experiment

In this section, we present a comprehensive evalua-
tion of the proposed DICE framework. The exper-
iments are designed to validate three key aspects:



Method Twitter ‘Weibo Fakeddit Pheme Weibo21
Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

BERT (Devlin et al., 2019) 0.733 0.717 0.823 0.823 0.860 0.859 0.815 0.781 0.852 0.848
ResNet (He et al., 2015) 0.644 0.633 0.710 0.708 0.721 0.632 0.755 0.662 0.728 0.689
DCT (Li et al., 2023) 0.741 0.728 0.619 0.619 0.790 0.789 0.551 0.462 0.700 0.667
Vanilla 0.784 0.757 0.837 0.837 0.873 0.873 0.831 0.796 0.853 0.849
CCDI/[milla (Chen et al., 2023) 0.800 0.785 0.855 0.855 0.889 0.889 0.831 0.808 0.871 0.868
SpotFake (Singhal et al., 2019) 0.771 0.776 0.839 0.838 0.891 0.875 0.812 0.804 0.851 0.847
MCAN (Wu et al., 2021) 0.874 0.856 0.852 0.851 0.894 0.893 0.834 0.782 0.895 0.893
CAFE (Chen et al., 2022) 0.869 0.851 0.855 0.855 0.898 0.898 0.831 0.810 0.882 0.881
EMSFM (Zeng et al., 2023) 0.804 0.784 0.834 0.805 0.820 0.807 0.782 0.768 0.843 0.832
BMR (Ying et al., 2023) 0.872 0.851 0.884 0.884 0901 0.891 0.849 0.808 0.900 0.895
NSLM' (Dong et al., 2024) 0.810 0.782 0.866 0.866 0.895 0.895 0.850 0.815 0.853 0.849
DICE 0.930 0.926 0.897 0.897 0926 0.926 0.870 0.846 0.917 0.916

Table 1: Comparison of DICE with the latest and most commonly used multimodal fake news detection approaches
on five datasets. Bold indicates the best performance. { indicates that the code is not open-source or that the
open-source code could not be reproduced, so we reproduced the code independently.
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Figure 4: Results of DICE on Cross-Domain News.

(1) the overall performance of DICE on multimodal
fake news detection benchmarks, (2) its robustness
to distributional shifts and biased data, and (3) the
interpretability of its disentangled representations
through case studies and visualizations.

4.1 Experiment Settings

Public Datasets We evaluated DICE on five
widely-used fake news detection benchmarks, in-
cluding Twitter (Detection and visualization of
misleading content on Twitter, 2018), Weibo (Jin
et al., 2017), Weibo21 (Nan et al., 2022), Faked-
dit (Nakamura et al., 2020), and Pheme (Zubiaga
et al., 2017). Additional details about datasets can
be found in Appendix A.

Handcrafted Bias Dataset To validate DICE’s
causal learning capability in more challeng-
ing scenarios, we sampled from three English
datasets—Twitter, Fakeddit, and Pheme—to cre-
ate a new cross-platform fake news dataset. In
the training set, we simulated news environment
biases by adding specific short texts to real news
posts and manipulating images of fake news. In
the test set, we manipulated images of real news
and added corresponding short texts to fake news
posts. For all experiments, we divided the data into
training, valid, and test sets according to the dataset

Dataset Type Train Val Test
Sample Size 6311 1175 889
Real News Bias Type Text Text  Image
Fake News Sar.nple Size 6820 1143 1193
Bias Type Image Image Text

Table 2: Dataset Partitioning of the Handcrafted Bias
Dataset.

3 Accuracy 30 Accuracy
0.4] =5 ¥ seane 061 =5 frsame
0.3 0.5
0.4
0.2
0.3
0.1
[ } ! 0.2 | — 4
BMR NSLM DICE BMR NSLM DICE
(a) Temporal Test (b) Cross Platform

Figure 5: (a) Temporal Test. (b) Cross-platform Test.
requirements. The validation set follows the same
data distribution as the training set to select check-
points. Detailed information about the datasets is
presented in Table.2, and specific short texts and
manipulation methods are provided in Appendix D.

4.2 Baselines

We compared our approach with six classic or state-
of-the-art multimodal fake news detection meth-
ods: Spotfake, MCAN, CAFE, EMSFM, BMR,
and NSLM. Among these, BMR and NSLM are
considered the latest and most interpretable best-
performing methods. Additionally, to ensure the ef-
fectiveness of DICE, we conducted experiments us-
ing BERT and ResNet individually, where Vanilla
refers to the combination of BERT and ResNet. To
further demonstrate DICE’s generalization perfor-
mance, we implemented the bias correction model
CCD on Vanilla for a fair evaluation of DICE’s
capabilities.

To ensure fairness, we replaced the backbones
of the latest strong baselines BMR and NSLM with
BERT and ResNet, keeping the parameters consis-
tent. BMR suggests using MAE as a more suitable
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backbone for fake news detection; thus, we did
not change its backbone. For the current state-of-
the-art multi-modal fake news debiasing detection
model, CCD, we utilize the “NRC Emotion In-
tensity Lexicon” (Mohammad, 2018) to mitigate
text bias and employ Vanilla as the base model
for fair comparison. Detailed descriptions of the
datasets, baselines, and the implementation of the
handcrafted dataset are provided in the Appendix.

4.3 Performance Analysis
4.3.1 Comparisons

Table.1 presents a comprehensive comparison of
DICE with popular baseline methods in terms of
accuracy and F1-score. The results consistently in-
dicate that DICE outperforms other models across
all five datasets. On average, DICE achieves an
accuracy improvement of 2.68% and an F1-score
improvement of 3.64% compared to the baselines,
demonstrating its superiority.

From the experiments, we observed that BMR’s
results were second only to DICE, benefiting from
its multi-angle learning of news features. However,
further experiments revealed that BMR’s learning
model captured many biased features, resulting in
non-robust representations. The goal of EMSFM is
to interpretably fuse global and local alignment fea-
tures for multimodal fake news verification. NSLM
aims to expose fake news patterns through logi-
cal reasoning but is easily disrupted by entities in
news posts, leading to prediction errors. Regarding
DICE’s excellent performance, traditional models
struggle to improve due to reliance on biased infor-
mation. While the debiasing model CCD removes
biases from psychological factors and image se-
mantics, real-world biases are complex. Our model
effectively judges the causal relationship between
multimodal features and authenticity labels, suc-

Category Settings Accuracy F1-Score
Full Model DICE 0.926 0.926
w/o causal 0.905 0.905
Component w/o L. 0.907 0.906
w/o Lg 0.923 0.923
. GAT 0.916 0.916
Graph Learning - g, GCN 0919 0.919

Table 3: Ablation study of the DICE. The tests were
conducted on the Fakeddit dataset. Results on other
datasets are provided in the Appendix.

cessfully identifying challenging samples.

4.3.2 Verification of Causal Learning

To verify DICE’s capability in causal learning, we
conducted evaluations from multiple perspectives.

Cross-Domain Performance. We evaluated
DICE’s cross-domain performance using Weibo21,
which includes domain labels for news. We se-
lected “entertainment” and “business” news as the
training data and used the checkpoint from this
training. For testing, we chose news from the “nat-
ural disaster” and “military” domains, which are
least related to the training set. Figure.4 illustrates
our cross-domain detection results. Although BMR
achieved better results on the same domain valida-
tion set compared to DICE, it performed worse on
test set. This demonstrates DICE’s strong general-
ization capability.

Temporal Test. For the temporal test, we used
the Weibo data as the training set and employed
the checkpoint from the main experiment. We
then tested on the Weibo21 dataset, where the
data collection period differs by 4 years, show-
casing temporal evolution and dynamic character-
istics. As shown in Figure.5(a), although perfor-
mance testing on datasets with temporal variations
did not outperform random selection, the DICE
method demonstrates unique advantages in multi-
ple aspects. DICE excels in feature extraction and
stability, capturing the complex characteristics of
temporal data more effectively. Moreover, its ac-
curacy and F1-scores are the best among all tested
methods. DICE consistently maintains superior
performance across different testing scenarios, fur-
ther proving its research and application value in
handling complex temporal data tasks. These at-
tributes give it a significant edge in the study and
application of temporal data.

Cross-Platform Evaluation. To validate
DICE’s robustness across different social media en-
vironments, we trained on the Fakeddit (sampled
from Reddit) and tested on the Pheme (sampled
from Twitter). Due to significant data repetition in
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Figure 7: Case studies on fake news detection using DICE.

the Twitter, its analysis results are not representa-
tive. Figure.5 (b) illustrates DICE’s robustness in
cross-platform detection, highlighting its practical
significance in diverse real-world applications.

Performance on Severely Biased Datasets. To
assess DICE’s robustness to bias, we evaluate its
performance on a handcrafted dataset with vary-
ing levels of injected bias (Figure. 6). While this
synthetic bias may not fully encapsulate the com-
plexities of real-world news bias, it allows us to
systematically analyze our model’s debiasing ca-
pabilities under controlled conditions. As shown
in Figure. 6, BMR and NSLM exhibit significant
performance degradation with the introduction of
just 30% biased data. In stark contrast, DICE’s
causal learning module maintains relatively sta-
ble performance across all levels of contamination,
demonstrating its robustness even when the specific
nature of the bias is unknown a priori.

For further evidence of DICE’s disentangling
capabilities, a detailed t-SNE visualization of the
learned representations under 80% handcrafted bias
is provided in Appendix F. This visualization high-
lights the clear separation between causal and bi-
ased representations achieved by DICE.

4.4 Ablation Study

We conducted further analysis to examine the role
of each module in our proposed model. The corre-
sponding results are shown in Table.3. To validate
the reliability of our approach, we included the
following variations:*“w/o causal” represents the
results of using graph convolution without causal
disentanglement. “w/o L.” represents the results
without performing sample swapping during opti-
mization for correlation adjustment. “w/o Lg” rep-
resents the results without using contrastive learn-
ing to promote orthogonal representations of bi-
ased and causal features. Additionally, we com-
pared our method with GAT (Velickovic et al.,
2017) and Factor GCN (Yang et al., 2020), a clas-
sic method for causal learning, to demonstrate that
our causal learning approach outperforms attention-

based modeling methods and other graph learning
methods. The experimental results further empha-
size the advantages of our approach.

4.5 Case Studies

Figure.7 presents case studies of DICE, where
causal prediction and bias prediction represent the
prediction results of DICE-Causal and DICE-Bias,
respectively. Figure.7 (a) depicts a fake news in-
stance from the Twitter dataset, which, according
to MediaEval’s description, is highly likely to in-
volve image manipulation. In testing, DICE suc-
cessfully disentangled numerous frequency domain
feature nodes within the causal subgraph and con-
nected them based on their inherent causal relation-
ships, leading to a correct classification. Interest-
ingly, Figure.7 (b), a case from the Pheme dataset,
shows that the disentangled causal subgraph does
not contain any frequency domain feature nodes,
yet DICE-Causal still achieves an accurate clas-
sification. Conversely, DICE-Bias, relying on a
subgraph with numerous frequency domain feature
nodes, erroneously classifies this sample as fake
news. This highlights DICE’s ability to focus on
causally relevant features rather than incorporat-
ing all features into the inference process, thereby
improving interpretability. For additional insights
into the effectiveness of feature disentanglement
and causal learning, refer to Appendix G, where
we present further studies and analyses.

5 Conclusion

The goal of this work is to enhance the performance
of fake news detectors by disentangling the causal
relationships between features and news veracity.
We explore the challenges in fake news detection
from a new perspective, modeling causal relation-
ships by solving the intrinsic connections between
different modal information. By sampling other
examples within a mini-batch, we aim to minimize
extrapolation risk. We designed comprehensive ex-
periments to validate our method’s robust detection
capabilities across varying news environments.



6 Limitations

Our proposed DICE framework demonstrates
strong performance and robustness in detecting
multimodal fake news, but we acknowledge certain
areas that could benefit from further exploration.
First, the handcrafted bias dataset, while designed
to simulate real-world distributional shifts, may not
perfectly replicate the full complexity of naturally
occurring biases in large-scale social media data.
Future work could further validate our approach
using diverse real-world datasets with annotated
causal and biased features. Second, while DICE
provides insights into its decision-making process
through case studies and heatmap visualizations,
the current analysis primarily relies on qualitative
evaluation. Developing more systematic and quan-
titative methods to assess causal disentanglement
could strengthen the interpretability of the model.
Finally, as with many approaches leveraging pre-
trained models, DICE’s reliance on feature extrac-
tors such as BERT and ResNet could reflect some
inherent biases in these models. Addressing these
aspects in future work may further enhance the gen-
eralizability and robustness of the proposed frame-
work.

7 Ethics Statement

This work seeks to enhance the detection of mul-
timodal fake news, a pressing societal challenge,
particularly in mitigating the spread of misinforma-
tion on social media platforms. While our approach
aims to improve the robustness and generalization
of fake news detection models, we recognize the
potential misuse of such technologies, including
the unjust labeling of truthful content as false or
the surveillance of user-generated content. To mini-
mize these risks, we advocate for the ethical deploy-
ment of our methods, ensuring transparency and
fairness through human oversight. Additionally,
all datasets utilized in this study are publicly avail-
able, and we have adhered to the original licensing
agreements and ethical guidelines governing their
use. No personally identifiable information (PII)
was included in the data, and efforts were made to
ensure that the constructed datasets reflect only ar-
tificial biases for research purposes. We encourage
further research to address the broader ethical im-
plications of multimodal misinformation detection
technologies, promoting their development as tools
for social good.
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A Details of Public Datasets

Twitter was released in 2015 at MediaEval, com-
prising 17673 news. Weibo is the most extensively
used Chinese dataset with 9528 news exposing fake
news. Pheme is designed for detecting fake news
spread on social media and consists of five breaking
news stories, encompassing a total of 3670 news.
Fakeddit is a dataset sampled from reddit, contain-
ing 31,011 news samples for training and 6,181
for testing. Weibo-21 is a newly released dataset
containing a total of 4640 real news items and 4487
fake news items, and we adopt the dataset parti-
tioning approach adopted by Ying et al(Ying et al.,
2023).

B Baslines

To verify DICE’s ability to detect fake news, we
compared DICE with the following six strong base-
lines:

SpotFake (Singhal et al., 2019) utilize the pre-
trained language model to learn the textual infor-
mation, and employ the pre-trained visual model
to obtain image features.

CAFE (Chen et al., 2022) adaptively aggregates
features based on the inherent cross-modal ambigu-
ity, addressing misclassification issues arising from
differences between different modalities.

EMSFM (Zeng et al., 2023) interpretably fuses
global and local alignment features of multimodal
news to exploit cross-modal consistency and incon-
sistency for fake news verification.

MCAN (Wu et al., 2021) integrates pattern fea-
tures into the co-attention network. It conducts
detection by incorporating multiple views that fuse
text, image semantics, and image pattern features.

CCD (Chen et al., 2023) proposes a framework
combining causal reasoning and counterfactual rea-
soning to enhance the accuracy and robustness of
multimodal fake news detection.

BMR (Ying et al., 2023) models news features
from multiple views through bootstrap multi-view
representations. It utilizes the Mixture of Experts
network for the fusion of multi-view features.

NSLM (Dong et al., 2024) predefines three typi-
cal deception patterns and effectively captures dif-
ferent deception modes in fake news through logi-
cal symbol reasoning.

C Implementation

We utilized PyTorch (Paszke et al., 2017),
DGL (Wang et al., 2019), scikit-learn (Pedregosa
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et al., 2011), and Transformers (Wolf et al., 2020)
to implement DICE. In this case, in order for the
biased model to converge quickly and learn the bi-
ased representation, we set its learning rate slightly
higher than that of the causal model. For the
model’s backbone, “bert-base-case” was employed
for English datasets, while “bert-base-chinese” was
used for Weibo and Weibo-21. The experiments
were conducted on a RTX3090 GPU. In the exper-
iment, different learning rates were used for the
Chinese and English datasets. Table.4 outlines the
hyperparameter settings for easy replication of ex-
perimental results.

Table 4: Specific Hyperparameter Settings for our Ex-
periments.

Hyperparameter  English Dataset Chinese Dataset
optimizer Adam Adam

causal learning rate  Se-4 Se-5

bias learning rate 8e-4 8e-5

e} 0.4 04

B 0.2 0.2

D Handcrafted Dataset

To validate DICE’s causal learning capability in
more challenging scenarios, we randomly sampled
existing data according to the proportions shown in
Table.5 and artificially constructed a handcrafted
dataset by introducing bias information with oppo-
site logic into the training and test sets.

Table 5: Sampling details from the English dataset.

Dataset Train Valid Test
Fakeddit 10000 1100 1400
Twitter 5000 550 800
Pheme 1080 120 100

The specific handcrafted features added are de-
tailed in the Table.6 below. We aim to demonstrate
the model’s causal learning capability intuitively
through the introduction of high-intensity bias in-
formation.

E Supplementary ablation experiments

We presented the ablation study results of DICE
on the Fakeddit dataset in the main text. Here, we
provide its performance on other datasets, as shown
in Table.7, where the values in the metric column
are written as “Accuracy/F1 Score.”



Table 6: Specific bias settings. Due to the large size of
the handcrafted dataset, we will upload the specific files
at a later stage. Here, we provide detailed modification
methods for replication.

Bias Type | Details
Add context: President Biden is concerned about this.
Text Bias Add context: Shocked! I can’t believe this is happening!
Add context: Or it will affect the world landscape.
i .| Color enhancement by factor 1.5 and fogging by factor 0.15.
Image Bias Add Gaussian random noise with intensity 4.

Fake News
Real News

DICE Causal DICE Bias

(a) Fake News Label

Text Bias
Image Bias

DICE Causal
(b) Bias Label

Figure 8: The t-SNE visualization results at 80% pro-
portion of handcrafted bias features. (a) Despite 80%
of training data containing bias information, DICE-
Causal exhibits more distinct classification boundaries
compared to DICE-Bias. (b) DICE-Bias demonstrates
stronger correlation with different types of bias informa-
tion used as labels.

DICE Bias

F T-SNE Visualization of Learned
Representations

To provide additional insights into DICE’s ability
to disentangle causal and biased representations,
we employ t-SNE to visualize the latent representa-
tions learned by the model when 80% of the dataset
contains handcrafted bias. As shown in Figure 8,
DICE’s causal learning module successfully iso-
lates causal representations into distinct clusters,
demonstrating its robustness against spurious cor-
relations.

In contrast, the biased learning module captures
patterns heavily influenced by the injected bias, as
evidenced by the overlapping or fragmented clus-
ters. These results underscore the effectiveness of
DICE in leveraging causal relationships for robust
and accurate predictions, even in scenarios with
significant data contamination.
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Table 7: Supplementary results of DICE ablation exper-
iment.

Settings Twitter Weibo Weibo21 Pheme
w/o Casual ~ 0.846/0.832 0.875/0.875 0.853/0.850 0.849/0.821
w/o L. 0.871/0.861  0.870/0.870  0.850/0.843  0.859/0.835
w/o Lg 0.856/0.854  0.883/0.883 0.857/0.855 0.857/0.832
GAT 0.916/0.912  0.892/0.892 0.883/0.881 0.865/0.834
Factor GCN  0.860/0.852  0.882/0.882 0.891/0.891 0.852/0.831
DICE 0.930/0.926  0.897/0.897 0.917/0.917 0.867/0.846
Casual Bias Real Fake Real Fake

a
Figure (9): Heatmap visualization.
heatmap represents the pairwise cosine similarity. The
test for (a) was conducted on the Pheme dataset. The
tests for (b) and (c) were conducted on the Handcrafted
Bias Dataset with a 30% proportion of handcrafted bias
features.

(b)

(¢)
Each cell in the

G Causal Learning Studies

To evaluate the effectiveness of disentanglement,
we randomly sampled 100 data points from the
dataset for disentanglement analysis. As shown in
Figure 9(a), biased features and unbiased causal
features exhibit clear separability, indicating good
orthogonality between the two during the disen-
tanglement process. Figures 9 (b) and (c) present
the pairwise similarity of intermediate features ob-
tained by training the DICE Causal and DICE Bias
classifiers on a dataset with 30% manually intro-
duced biased features. Despite the interference
of biased features, our method maintains strong
intra-class and inter-class distinctions, whereas the
biased features obtained through disentanglement
demonstrate suboptimal performance.
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