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Abstract

Artificial Neural Networks (ANNs) trained with Backpropagation (BP) excel in different
daily tasks but have a dangerous vulnerability: inputs with small targeted perturbations,
also known as adversarial samples, can drastically disrupt their performance. Adversarial
training, a technique in which the training dataset is augmented with exemplary adversar-
ial samples, is proven to mitigate this problem but comes at a high computational cost.
In contrast to ANNs, humans are not susceptible to misclassifying these same adversarial
samples. Thus, one can postulate that biologically-plausible trained ANNs might be more
robust against adversarial attacks. In this work, we chose the biologically-plausible learning
algorithm Present the Error to Perturb the Input To modulate Activity (PEPITA) as a case
study and investigated this question through a comparative analysis with BP-trained ANNs
on various computer vision tasks. We observe that PEPITA has a higher intrinsic adversarial
robustness and, when adversarially trained, also has a more favorable natural-vs-adversarial
performance trade-off. In particular, for the same natural accuracies on the MNIST task,
PEPITA’s adversarial accuracies decrease on average only by 0.26% while BP’s decrease
by 8.05%.

1 Introduction

Adversarial attacks produce adversarial samples, a concept first described by Szegedy et al. (2014), where
the input stimulus is changed by small perturbations that can trick a trained ANN into misclassification.
Namely, state-of-the-art Artificial Neural Networks (ANNs) trained with Backpropagation (BP) (Rumelhart
et al., 1986; Werbos, 1982) are vulnerable to adversarial attacks (Madry et al., 2019). Although this phe-
nomenon was first observed in the context of image classification (Szegedy et al., 2014; Goodfellow et al.,
2015), it has since been observed in several other tasks such as natural language processing (Zhang et al.,
2020; Morris et al., 2020), audio processing (Takahashi et al., 2021; Hussain et al., 2021), and deep rein-
forcement learning (Gleave et al., 2020; Pattanaik et al., 2018). Nowadays, making real-world decisions
based on the suggestions provided by ANNs has become an integral part of our daily lives. Hence, these
models’ vulnerability to adversarial attacks severely threatens the safe deployment of artificial intelligence
in everyday-life applications (Sarker, 2021; Akhtar & Mian, 2018). For instance, in real-world autonomous
driving, adversarial attacks have been successful in deceiving road sign recognition systems (Eykholt et al.,
2018). Researchers have proposed several solutions to address this problem, and adversarial training emerged
as the state-of-the-art approach (Wang et al., 2022). In adversarial training, the original dataset, consisting
of pairs of input samples with their respective ground-truth labels, is augmented with adversarial data, where
the original ground-truth labels are paired with adversarial samples. This additional training data allows the
model to correctly classify adversarial samples as well (Goodfellow et al., 2015; Madry et al., 2019). Although
adversarial training increases the networks’ robustness to adversarial attacks, generating numerous training
adversarial samples is computationally costly. To reduce this additional computational burden, researchers
have developed new methods for generating adversarial samples more efficiently (Kaufmann et al., 2022;
Addepalli et al., 2022; Zheng et al., 2020; Sriramanan et al., 2021). For example, weak adversarial samples
created with the Fast Gradient Sign Method (FGSM), which are easy to compute, are used for fast adversar-
ial training (Goodfellow et al., 2015). However, if trained with fast adversarial training, the model remains
susceptible to stronger computationally-heavy adversarial attacks, such as the Projected Gradient Descent
(PGD) (Kurakin et al., 2016). In this case, the model trained with fast adversarial training can correctly
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classify FGSM adversarial samples, but its performance drops significantly (sometimes to zero in the case of
“catastrophic overfitting”) for PGD adversarial samples (Wong et al., 2020). Several adjustments have been
proposed (Kim et al., 2020; Wong et al., 2020; Golgooni et al., 2021; Kang & Moosavi-Dezfooli, 2021) to cir-
cumvent this problem and make fast adversarial training more effective, yet there is room for improvement,
and this remains still an active area of research. Another caveat to consider when using adversarial training is
the trade-off between natural performance (classification accuracy of unperturbed samples) and adversarial
performance (classification accuracy of perturbed samples) (Tsipras et al., 2019; Zhang et al., 2019; Moayeri
et al., 2022). This natural-vs-adversarial performance trade-off is a consequence of the fact that while the
naturally trained models focus on highly predictive features that may not be robust to adversarial attacks,
the adversarially trained models select instead for robust features that may not be highly predictive (Zheng
et al., 2020).

While these adversarial attacks can easily trick ANNs into misclassification, they appear ineffective for
humans (Zhou & Firestone, 2019). Given the disparity between BP’s learning algorithm and biological
learning mechanisms (Crick, 1989; Grossberg, 1987; Lillicrap et al., 2020), a fundamental research question is
whether models trained with biologically-plausible learning algorithms are more robust to adversarial attacks.
Over the recent years, due to the importance of researching biologically-inspired learning mechanisms as
alternatives to BP, numerous such learning algorithms have been introduced (Lillicrap et al., 2016; Lee
et al., 2015; Whittington & Bogacz, 2017; Scellier & Bengio, 2017; Sacramento et al., 2018; Akrout et al.,
2019; Meulemans et al., 2021; Hinton, 2022; Bohnstingl et al., 2022; Dellaferrera & Kreiman, 2022). Thus,
we investigate in detail for the first time whether biologically-inspired learning algorithms are robust against
adversarial attacks. In this work, we chose Present the Error to Perturb the Input To modulate Activity
(PEPITA), a recently proposed biologically-plausible learning algorithm (Dellaferrera & Kreiman, 2022), as
a study case. In particular, we compare BP and PEPITA’s learning algorithms in the following aspects:

• their intrinsic adversarial robustness (i.e., when trained solely on natural samples);

• their natural-vs-adversarial performance trade-off when trained with adversarial training;

• and their adversarial robustness against strong adversarial attacks when trained with weak adver-
sarial samples (i.e., samples generated by FGSM).

With this comparison, we open the door to drawing inspiration from biologically-plausible learning algorithms
to develop more adversarially robust models.

2 Background - PEPITA

PEPITA is a learning algorithm developed as a biologically-inspired alternative to BP (Dellaferrera &
Kreiman, 2022). Its core difference from BP is that it does not require a separate backward pass to compute
the gradients used to update the trainable parameters. Instead, the computation of the learning signals relies
on the introduced second forward pass – see left half of Figure 1. In BP, the network processes the inputs
x = h0 with one forward pass where hi = σi(Wihi−1), i = 1, · · · , L (indicated with black arrows) to produce
the outputs hL, given σi the activation function of layer i. The network outputs are then compared to the
target outputs y∗ through a loss function, L. The error signal e computed by L is then backpropagated
through the entire network and used to train its parameters (indicated with red arrows). In PEPITA, as
seen in the right half of Figure 1, the first forward pass is identical to BP. However, unlike BP, PEPITA
feeds the error signals directly to the input layer via a fixed random feedback projection matrix, F . That is,
the error signal, e, is added to the original input x, producing the modulated inputs x + Fe which are used
for the second forward pass (illustrated with orange arrows).

In PEPITA, the gradients used to update the synaptic weights are then computed through the difference
between the activations of the neurons in the first and second forward passes. If the network’s output
matches the target for the first forward pass, the error signal e would be zero. Thus, there would not be
any synaptic weight updates because the neural activations in the second forward pass would not differ from
the first forward pass. On the contrary, if the network made a wrong prediction in the first pass, then the
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Figure 1: Comparison of BP and PEPITA. Schematic of BP’s and PEPITA’s architectures and learning
mechanics with a single hidden layer.

Algorithm 1 PEPITA’s Training Algorithm
Given: input x, label y∗, and an activation function for each layer σi(·)
# Standard forward pass
h0 = x
for i = 1 to L do

hi = σi(Wihi−1)
e = hL − y∗

end for
# Modulated forward pass
hmod

0 = x + Fe
for i = 1 to L do

hmod
i = σi(Wihmod

i−1 )
if i < L then

∆Wi = (hi − hmod
i ) · (hmod

i−1 )T

else
∆WL = e · (hmod

L−1)T

end if
# Update forward parameters with ∆Wi and an optimizer of choice

end for

neuronal activations in the second forward pass would differ, and the synaptic weights would be updated to
reduce the mismatch. Note that for the last layer, the teaching signal is the error itself, which is why e is
also fed directly to the output layer.

With this learning scheme, PEPITA sidesteps the biologically-implausible requirement of BP to backpropa-
gate gradient information through the entire network hierarchical architecture, allowing the training of the
synaptic weights to be based solely on spatially local information through a two-factor Hebbian-like learning
rule. Therefore, while BP uses exact gradients for learning, that is, the exact derivative of the loss function
with respect to its trainable parameters, PEPITA uses a very different learning mechanism that results in
approximates of BP’s exact gradients.

To illustrate this difference, we write the explicit gradient weight updates for BP and PEPITA for the
network represented in Figure 1. For the output layer, W2 = WL, the synaptic weight updates of BP are
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computed as follows:

∆W BP
L = ∂L

∂WL
= ∂L

∂hL
· ∂hL

∂WL
(1)

= e ·
(
σ′

L(zL) · (hL−1)T
)

, (2)

where zL = WLhL−1 and e = ∂L/∂hL. For a simple mean-squared-error function (MSE) we have that
e = hL − y∗. For the output layer weight updates, PEPITA leverages the same error signal and update
structure as BP, the difference lying only on the scaling factor zL and the pre-synaptic activation hmod

L−1 being
given by the modulated forward pass:

∆W P EP IT A
L = e · (hmod

L−1)T . (3)

Hence, for the output layer, we have that ∆W P EP IT A
L ≈ ∆W BP

L , since the derivative of the activation
function is bounded, and the difference between hmod

L−1 and hL−1 is small because the feedback projection
matrix F is scaled by a small constant, which guarantees that the perturbations added to the input are
small (Dellaferrera & Kreiman, 2022). On the contrary, considering the case with one hidden layer as
illustrated in Figure 1, the synaptic weight updates of the hidden layer will differ more significantly since we
have:

∆W BP
1 = ∂L

∂W1
= ∂L

∂zL

∂zL

∂z1

∂z1

∂W1
= δ1 · xT (4)

∆W P EP IT A
1 = (h1 − hmod

1 ) · (xmod)T , (5)

where δ1 = (W T
2 δ2) · σ′

1(z1) and δ2 = e. In general, we can write ∆W BP
l = δl · hT

l−1, where δl is recursively
obtained by writing it w.r.t. δl+1: δl = (W T

l+1δl+1) · σ′
l(zl).

Like BP, the FGSM and PGD adversarial attacks rely on backpropagating the exact derivatives of the loss
function but all the way back to the input samples instead of just to the first hidden layer. For instance, the
FGSM attack involves perturbing the input stimulus in the direction of the gradient of the loss function with
respect to the input, being that a small ϵ constant typically scales the added perturbation. An adversarial
sample can computed as follows:

xadv = x + ϵ · sign
(∂L

∂x

)
(6)

= x + ϵ · sign
( ∂L

∂zL

∂zL

∂z1

∂z1

∂x

)
(7)

= x + ϵ · sign
(

W T
1 δ1

)
, (8)

where xadv is the adversarial example. Comparing Equations equation 8 and equation 4, we see that the
driving signal, δ1, is the same. Thus, we postulate that adversarial attacks have a more significant impact
on BP-trained networks. The PGD attack follows a similar gradient path, applying FGSM iteratively with
small stepsizes while projecting the perturbed input back into an ϵ ball. As PEPITA-trained models do
not use these exact derivatives for learning, they form excellent candidates to be explored in the context of
adversarial robustness. In the case of PEPITA, the attacker will still use the transposed feedforward pathway
to compute the adversarial samples. Otherwise, if the random feedback projection matrix F is used, the
adversarial samples produced would be too weak, and the model could easily classify them correctly (Akrout,
2019).

3 Results

3.1 Model training details

For our comparative study, we used four benchmark computer vision datasets: MNIST (LeCun, 1998),
Fashion-MNIST (F-MNIST) (Xiao et al., 2017), CIFAR-10 and CIFAR-100 (Krizhevsky et al., 2014). For
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both BP and PEPITA, we used the same network architectures and training schemes described in Dellaferrera
& Kreiman (2022). However, we added a bias to the hidden layer, as we observed a substantial performance
improvement. The learning rule for this bias is similar to the one for the synaptic weights, but the pre-
synaptic activation is fixed to one, i.e., hmod

i−1 := 1. Thus, similarly to the update rule for the synaptic
weights (see Algorithm 1), the bias update rule can be written as ∆bi = (hi −hmod

i ) for i < L and ∆bL = e.
The network architecture consists of a single fully connected hidden layer with 1024 ReLU neurons and a
softmax output layer (as represented in Figure 1). For all the tasks, we used: the MSE loss, 100 training
epochs with early stopping, and the momentum Stochastic Gradient Descent (SGD) optimizer (Qian, 1999).
Furthermore, we used a mini-batch size of 64, neuronal dropout of 10%, weight decay at epochs 60 and 90
with a rate of 0.1, and the He uniform initialization (He et al., 2015b) with the feedback projection matrix
F initialization scaled by 0.05. 1

We optimized the learning rate hyperparameter, η, by performing a grid search across 50 different values
with η ∈ [0.001, 0.3]. All the values presented in the result tables of this work can be reproduced using
the configurations available in the shared public repository. We defined the best-performing model as the
model with the best natural accuracy on the validation dataset, consisting of natural samples the model
has not yet seen. We chose this model selection criterion because, in real-world applications, the networks’
natural performance is most important to the user, and adversarial samples are considered outside of the
norm. Thus, unless stated otherwise, we do not select the models based on the best adversarial validation
accuracy, as we found that this comes at the cost of significantly worse natural performance. The values
reported throughout this section are the mean ± standard deviation of the test accuracy for 5 different
random seeds. The adversarial attacks were done using the open-source library advertorch.attacks (Ding
et al., 2019), which follows the original implementations of FGSM and PGD, as introduced in (Goodfellow
et al., 2015) and (Kurakin et al., 2016), respectively. We defined an attack step size of 0.1 and a maximum
distortion bound of 0.3 to create the FGSM and PGD adversarial samples and used 40 iterations for PGD.
Note that the maximum and minimum pixel values of the adversarial images are the same as those of the
original natural images.

3.2 Baseline natural and adversarial performance

Table 1 shows the models’ natural and adversarial performances when trained naturally, i.e., without adver-
sarial samples in the training dataset, and with natural validation accuracy as the hyperparameter selection
criterion. In line with the results reported in the literature (Dellaferrera & Kreiman, 2022), PEPITA achieves
a lower natural performance than BP. Notably, neither model is robust to adversarial attacks since neither has
been adversarially trained nor has their hyperparameter selection criterion set to value adversarial robustness
as an advantage.

Hyperparameter selection criterion: natural validation accuracy
Train Test Data MNIST [%] F-MNIST [%] CIFAR-10 [%] CIFAR-100 [%]

BP
(w/o adv samples)

natural
PGD

98.58±0.05

2.504±0.48
90.52±0.03

1.961±0.46
57.05±0.35

0.000±0.00
27.54±0.25

0.00±0.00

PEPITA
(w/o adv samples)

natural
PGD

98.16±0.04

0.056±0.31
86.46±0.66

0.00±0.00
52.15±0.25

0.00±0.00
25.88±0.26

0.00±0.00

Table 1: Natural test accuracy and adversarial test accuracy with the PGD attack for 5 different random
seeds. Here, the model is trained without adversarial samples, and the hyperparameter selection criterion
is the natural validation accuracy. With the following order {MNIST, F-MNIST, CIFAR-10, CIFAR-100}:
ηBP = {0.123, 0.051, 0.008, 0.035} and ηPEPITA = {0.255, 0.016, 0.012, 0.029}.

1PyTorch implementation of all methods will be available at a public repository.
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3.3 PEPITA’s higher intrinsic adversarial robustness

When using the same training procedure as in the section above (natural training) but selecting the hy-
perparameter search criterion to value accuracy on adversarial validation samples, PEPITA shows a higher
intrinsic adversarial robustness compared to BP. This manifests itself in a significantly lower drop in per-
formance when comparing the natural and the adversarial performance for BP and PEPITA, comparing
rows 1 and 2 as well as rows 3 and 4 in Table 2. Although this model selection criterion leads to a higher
level of adversarial robustness, one can observe a natural-vs-adversarial performance trade-off. For instance,
compare row 1 of Table 2) with row 1 of Table 1 for BP and row 3 of Table 2) with row 3 of Table 1
for PEPITA. However, we can conclude that PEPITA is significantly more robust against adversarial as it
exhibits a much more favorable trade-off across all datasets.

Furthermore, BP-trained models cannot become adversarially robust with more complex tasks like Fashion-
MNIST, CIFAR-10, and CIFAR-100. During the hyperparameter search of BP, it was observed that the
learning rates tended to be much larger with the current selection criterion (best accuracy on adversarial
validation samples). Consequently, the models either did not converge during learning or they did not learn
at all. In the first case, the results were highly variable (see BP Fashion-MNIST results in Table 2), and in
the second case, the natural and adversarial performances became almost random (see BP CIFAR-10 results
in Table 2).

Hyperparameter selection criterion: adversarial validation accuracy
Train Test Data MNIST [%] F-MNIST [%] CIFAR-10 [%] CIFAR-100 [%]

BP
(w/o adv samples)

natural
PGD

94.22±0.40

92.72±0.36
44±34

23±11
10.00±0.04

9.98±0.05
9.08±0.33

0.33±0.24

PEPITA
(w/o adv samples)

natural
PGD

97.69±0.16

97.56±0.18
80.65±0.74

80.48±0.73
41.82±1.57

41.73±1.49
17.10±0.72

16.76±0.65

Table 2: Natural test accuracy and adversarial test accuracy with the PGD attack for 5 different random
seeds. Here, the model is trained without adversarial samples, and the hyperparameter selection criterion is
the adversarial validation accuracy. With the following order {MNIST, F-MNIST, CIFAR-10, CIFAR-100}:
ηBP = {0.378, 0.273, 0.039, 0.180} and ηPEPITA = {0.378, 0.037, 0.025, 0.061}.

3.4 PEPITA’s advantageous adversarial training

As the next step, we investigate how advantageous adversarial training is for BP and PEPITA, i.e., how robust
to adversarial attacks the models can become when their training dataset is augmented with adversarial
samples. We set the hyperparameter search selection criterion to be the natural validation accuracy, the same
as in Section 3.2, and observe that the resulting trained models are now robust against adversarial attacks
(compare Tables 1 and 3). In particular, in Table 3, we see that PEPITA achieves a better adversarial testing
performance and less natural performance degradation compared to BP, except for CIFAR-100 where both
models are not significantly adversarially robust. Moreover, for the MNIST and Fashion-MNIST datasets, BP
has better natural test accuracies. Hence, although Table 3 suggests that PEPITA offers a better natural-vs-
adversarial performance trade-off, comparing the adversarial robustness between BP and PEPITA becomes
difficult for these datasets.

To better understand this trade-off, we chose 13 different natural accuracy values distributed between 96%
and 99% and selected the BP-trained and PEPITA-trained models with the closest natural accuracy to
these values and best adversarial performance during the hyperparameter selection. Because finding models
that perform well adversarially while maintaining high natural performance is challenging, only the 13
different learning rates (still inside the interval [0.001, 0.3] as done for all the experiments) found that
lead to models with natural performances within the desired range and good adversarial performances were
included. Then, we trained these models for 5 different random seeds and averaged over their natural
and adversarial accuracies. We plotted these results in Figure 2(A), which shows that PEPITA performs
significantly better than BP for similar values of natural performance. In particular, the average decrease in
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adversarial performance for the same values of natural performance, that is, the average value of (natural [%]
- PGD [%]) across the 13 plotted points, with each point being the average performance of the trained model
over 5 different random seeds, is 0.26% for PEPITA and 8.05% for BP. Moreover, we verified that even if we
double the number of training epochs for BP, its natural and adversarial accuracies remain approximately
the same, indicating that the model has converged in its learning dynamics – see Figure 2(B). Hence, even
after extensive hyperparameter searches and increased training epochs, we could not find BP-trained models
with a better natural-vs-adversarial performance trade-off.

Hyperparameter selection criterion: natural validation accuracy
Train Test Data MNIST [%] F-MNIST [%] CIFAR-10 [%] CIFAR-100 [%]

BP
(w/ PGD adv samples)

natural
PGD

98.73±0.06

89.93±0.03
85.16±0.17

67.42±0.21
35.83±0.37

8.58±0.16
12.45±0.38

2.11±0.15

PEPITA
(w/ PGD adv samples)

natural
PGD

98.18±0.10

97.30±0.41
83.73±0.76

83.19±0.68
45.12±0.89

44.94±0.83
22.30±0.16

2.9±1.7

Table 3: Natural test accuracy and adversarial test accuracy with the PGD attack for 5 different ran-
dom seeds. Here, the models are adversarially trained (i.e., trained with a dataset augmented by the
adversarial samples) with PGD adversarial samples. The hyperparameter selection criterion is the nat-
ural validation accuracy. With the following order {MNIST, F-MNIST, CIFAR-10, CIFAR-100}: ηBP =
{0.052, 0.030, 0.012, 0.014} and ηPEPITA = {0.067, 0.012, 0.012, 0.021}.
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Figure 2: PEPITA’s advantageous adversarial training. The results presented here are for BP and
PEPITA models trained adversarially with PGD samples on the MNIST task for 5 different random seeds.
(A) Natural-vs-adversarial performance trade-off: the most adversarially robust models were selected for
different natural accuracy values. That is, different natural accuracy values distributed between 96% and
99% were chosen, and the models with the closest natural accuracy to these values and best adversarial
performance were selected during the hyperparameter selection. Each data point’s coordinates stand for
the average performances over the 5 different random seeds, that is, the axes in the plot represent the
adversarial and natural average test accuracies across these random seeds. The values reported in the first
column (MNIST) of Table 3, which correspond to the models with the best adversarial accuracies, are marked
in red. (B) Natural (represented by the full lines) and adversarial (represented by the dashed lines) test
accuracies of the models encircled in (A). To demonstrate that the performance of BP does not increase
further, we trained both models for twice the amount of epochs. The shaded area represents the standard
deviation across the models trained with 5 different random seeds.

3.5 PEPITA’s advantageous fast adversarial training

After demonstrating PEPITA’s intrinsic adversarial robustness and beneficial natural-vs-adversarial perfor-
mance trade-off, we now investigate PEPITA’s capabilities in fast adversarial training (Goodfellow et al.,
2015). Table 4 reports the results obtained when using fast adversarial training, i.e., when augmenting the
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training dataset with FGSM adversarial samples, which are fast to compute, while evaluating the model
with the more sophisticated PGD attack, whose samples are slower to compute. Similar to Sections 3.2
and 3.4, we set the hyperparameter selection criterion to be the natural validation accuracy. We observe
that when attacking the trained models with strong attacks, such as with PGD adversarial samples, the
decrease in adversarial performance is much less significant for PEPITA than for BP, indicating that the
PEPITA-trained models can generalize better from the FGSM samples. This is an important property for
two reasons: firstly, the FGSM samples are faster to compute and, thus, reduce the computational overhead
for training, and secondly, this better generalization can be beneficial in cases where the attack method
during testing is unknown during training time. Therefore, PEPITA is in an advantageous position for this
type of scenario compared to BP. Moreover, neither BP nor PEPITA-trained models suffer from catastrophic
overfitting for this specific network architecture since the PGD testing accuracies do not drop to zero. Ac-
cording to Zhu et al. (2022), this is the case for two reasons: first, our network is wide (1024 neurons) and
in the over-parameterized regime, i.e., the network has more trainable parameters than there are samples in
the dataset, which increases adversarial robustness; and second, we use He weight initialization (He et al.,
2015a) with a shallow network (a single hidden layer), which prevents a decrease in adversarial robustness.

Hyperparameter selection criterion: natural validation accuracy
Train Test Data MNIST [%] F-MNIST [%] CIFAR-10 [%] CIFAR-100 [%]

BP
(w/ FGSM adv samples)

natural
FGSM
PGD

98.93±0.05

91.04±0.13

86.25±0.09

84.90±0.03

66.31±0.25

57.95±0.33

51.56±0.43

45.06±3.38

0.05±0.04

26.59±0.08

2.51±0.37

1.19±0.08

PEPITA
(w/ FGSM adv samples)

natural
FGSM
PGD

98.00±0.14

97.91±0.13

97.81±0.12

80.70±0.95

80.68±0.96

80.27±1.05

41.22±2.01

41.22±2.22

41.00±2.20

17.89±0.52

17.68±0.44

17.53±0.48

Table 4: Natural test accuracy and adversarial test accuracies with the PGD and FGSM attacks for
5 different random seeds. Here, the models are adversarially trained with FGSM adversarial sam-
ples. The hyperparameter selection criterion is the natural validation accuracy. With the following
order {MNIST, F-MNIST, CIFAR-10, CIFAR-100}: ηBP = {0.097, 0.010, 0.012, 0.027} and ηPEPITA =
{0.097, 0.027, 0.016, 0.041}.

4 Discussion

Our paper demonstrates for the first time that biologically-inspired learning algorithms can lead to ANNs
that are more robust against adversarial attacks than BP. We found that, unlike BP, PEPITA-trained models
can be intrinsically robust against adversarial attacks. That is, naturally trained (i.e., only using natural
samples) PEPITA models can be adversarial robust without the computationally heavy burden of adversarial
training. A similar finding of intrinsic adversarial robustness has been demonstrated by Akrout (2019) for
the biologically-plausible learning algorithm Feedback Alignment (FA) (Lillicrap et al., 2016). However, in
this previous work Akrout (2019), a non-common practice that leads to much weaker adversarial attacks
was used: the attackers use the FA’s random feedback matrices to generate adversarial samples instead
of the transposed feedforward pathway. Hence, their analysis in Akrout (2019) differs from our approach,
where we let the attacker fully access the network architecture and synaptic weights and craft its adversarial
samples through the transposed forward pathway. Moreover, we found that PEPITA does not suffer from
the natural-vs-adversarial performance trade-off as severely as BP, as its models can be more adversarially
robust than BP while losing less natural performance. Lastly, we found that PEPITA benefits much more
from fast adversarial training than BP, i.e., when trained with samples generated from weaker adversarial
attacks, it reports much better adversarial robustness against strong attacks.

Through this study, we postulate the advantage of using alternative feedback pathways, as many biologically-
plausible learning algorithms do, to enhance adversarial robustness. The feedback pathway serves as the
mechanism by which the teaching signal calculated at the output level is transmitted throughout the net-
work. This signal is then used to adjust the synaptic weights of the network. While for BP, the feedback
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pathway is simply the transposed of the forward pathway, for many alternative biologically-plausible learn-
ing algorithms, the feedback pathway is separate from the forward weights. Since classic gradient-based
adversarial attacks leverage the transposed forward pathway to generate targeted perturbations of the input
stimulus, updating synaptic weights through alternative feedback routes may bolster robustness against these
adversarial perturbations. Concluding, this work opens the door to a variety of research avenues, which are
discussed in the subsequent section.

4.1 Limitations and future work

Based on the insights gained from this work, we postulate that PEPITA’s increased adversarial robustness
arises from its alternative feedback pathway. Therefore, a natural next step would be to investigate whether
other biologically-plausible learning algorithms with alternative feedback mechanisms exhibit a similar ro-
bustness (Lee et al., 2015; Whittington & Bogacz, 2017; Scellier & Bengio, 2017; Sacramento et al., 2018;
Meulemans et al., 2021). Moreover, a theoretical understanding of the link between this alternative feedback
pathway learning mechanism and adversarial robustness can enable the identification of the exact proper-
ties that improve the natural-vs-adversarial performance trade-off, which in turn can be used to specifically
develop adversarially robust models. For instance, by analyzing the weight gradients of both PEPITA and
traditional BP, it is possible to modify BP’s gradients by introducing noise that aligns these gradients more
closely with those of PEPITA. This study could be an experimental method to evaluate if the alternative
feedback pathway used to compute the approximate gradients employed by PEPITA is crucial to the model’s
robustness to adversarial attacks. Additionally, various strategies like data augmentation and incorporating
both real and synthetic data (Li & Spratling, 2022; Carmon et al., 2019; Wang et al., 2023) offer promising
paths to boost adversarial robustness and achieve more favorable balances between natural and adversarial
performance. Exploring the potential of these strategies to enhance the effectiveness of biologically-inspired
algorithms, like PEPITA, represents an intriguing future research direction. Another limitation in general-
izing these results is that our exploration was confined to PGD and FGSM adversarial attacks. There are
numerous other methods, including additional white-box and black-box attacks Zhang et al. (2023), that
warrant investigation in future studies.

On another aspect, PEPITA has recently been extended to deeper networks (up to five hidden layers) and
tested with different parameter initialization schemes (Srinivasan et al., 2023). Thus, studying the impact of
these variable characteristics of the model, such as width, depth, and initialization, on PEPITA’s adversarial
robustness would be beneficial (as done in Zhu et al. (2022)). PEPITA’s natural performance has also been
recently improved through the learning of the feedback projection matrix (Srinivasan et al., 2023), so it
would be interesting to study whether this also improves adversarial robustness.

4.2 Conclusion

To conclude, we demonstrated that ANNs trained with PEPITA, a recently proposed biologically-inspired
learning algorithm, are more adversarially robust than BP-trained ANNs. In particular, we showed through
several computational experiments that PEPITA significantly outperforms BP in an adversarial setting.
Thus, we propose that alternative feedback pathways in these algorithms enhance the adversarial robustness
of the trained models. Our analysis opens the door to drawing inspiration from biologically-plausible learning
algorithms for designing more adversarially robust models. In conclusion, our work contributes to the
important cause of developing safer and more trustworthy artificial intelligence systems.
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