Under review as a conference paper at ICLR 2024

RELIABLE GENERATION OF EHR TIME SERIES VIA
DIFFUSION MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Electronic Health Records (EHRs) are rich sources of patient-level data, includ-
ing laboratory tests, medications, and diagnoses, offering valuable resources for
medical data analysis. However, concerns about privacy often restrict access to
EHRs, hindering downstream analysis. Researchers have explored various meth-
ods for generating privacy-preserving EHR data. In this study, we introduce a new
method for generating diverse and realistic synthetic EHR time series data using
Denoising Diffusion Probabilistic Models (DDPM). We conducted experiments
on six datasets, comparing our proposed method with eight existing methods.
Our results demonstrate that our approach significantly outperforms all existing
methods in terms of data utility while requiring less training effort. Our approach
also enhances downstream medical data analysis by providing diverse and realistic
synthetic EHR data.

1 INTRODUCTION

The Electronic Health Record (EHR) is a digital version of the patient’s medical history maintained
by healthcare providers. It includes information such as demographic attributes, vital signals, and
lab measurements that are sensitive in nature and important for clinical research. Researchers have
been utilizing statistical and machine learning (ML) methods to analyze EHR for a variety of down-
stream tasks such as disease diagnosis, in-hospital mortality prediction, and disease phenotyping
(Shickel et al., 2018; Goldstein et al., 2017). However, due to privacy concerns, EHR data is strictly
regulated, and thus the availability of EHR data is often limited, creating barriers to the development
of computational models in the field of healthcare. Widely used EHR de-identification methods to
preserve patient information privacy are criticized for having high risks of re-identification of the
individuals (Benitez & Malin, 2010).

Instead of applying privacy-preserving methods that can adversely affect EHR data utility (Janmey
& Elkin, 2018), EHR synthetic data generation is one promising solution to protect patient pri-
vacy. Realistic synthetic data preserves crucial clinical information in real data while preventing
patient information leakage (Yan et al., 2022; Yoon et al., 2023). Synthetic data also has the added
benefit of providing a larger sample size for downstream analysis than de-identifying real samples
(Gonzales et al., 2023). As a result, more research initiatives have begun to consider synthetic data
sharing, such as the National COVID Cohort Collaborative supported by the U.S. National Institutes
of Health and the Clinical Practice Research Datalink sponsored by the U.K. National Institute for
Health and Care Research (Haendel et al., 2020; Herrett et al., 2015). With the advancement in ML
techniques, applying generative models to synthesize high-fidelity EHR data is a popular research
of interest (Yan et al., 2022). Recent advances in generative models have shown significant suc-
cess in generating realistic high-dimensional data like images, audio, and texts (Gui et al., 2023; Yi
et al., 2018), suggesting the potential for these models to handle EHR data with complex statistical
characteristics.

Some representative work utilizing generative models for EHR data synthesis includes medGAN
(Choi et al., 2017), medBGAN (Baowaly et al., 2019), and EHR-Safe (Yoon et al., 2023). However,
most approaches to EHR data synthesis are GAN-based, and GANs are known for their difficulties
in model training and deployments due to training instability and mode collapse (Saxena & Cao,
2021). Recently, diffusion probabilistic models have shown superb ability over GANS in generating
high-fidelity image data (Ho et al., 2020; Nichol & Dhariwal, 2021a; Rombach et al., 2022). A few
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studies thus propose to generate synthetic EHR data via diffusion models given their remarkable
data generation performance (He et al., 2023; Yuan et al., 2023). However, most EHR data synthesis
methods, either GAN-based or diffusion-based, focus on binary or categorical variables such as
the International Classification of Diseases (ICD) codes. Additionally, there is limited prior work
on generating EHR data with temporal information, and most state-of-the-art time series generative
models are GAN-based. The sole study that employs diffusion models for EHR time series overlooks
discrete time series in its modeling process (Kuo et al., 2023). It resorts to Gaussian diffusion for
generating discrete sequences, treating them similarly to real-valued sequences but with further post-
processing of the model output. These observations motivate us to bridge the gap by introducing a
novel diffusion-based method to generate realistic EHR time series data with mixed variable types.

Specifically, we make the following contributions in this paper:

* We propose TIMEDIFF, a diffusion probabilistic model that uses a bidirectional recurrent
neural network (BRNN) architecture for high-utility time series data generation.

* By combining multinomial and Gaussian diffusions, TIMEDIFF can simultaneously gen-
erate both real and discrete valued time series directly. To the best of our knowledge,
TIMEDIFF is the first work in applying this mixed diffusion approach on EHR time series
generation.

* We experimentally demonstrate that TIMEDIFF outperforms state-of-the-art methods for
time series data generation by a big margin in terms of data utility. Additionally, our model
requires less training effort compared to GANS.

* We further evaluate TIMEDIFF on potential applications in healthcare and show it can gen-
erate useful synthetic samples for ML model development while protecting patient privacy.

Our code is available upon request, and it will be made publicly available after acceptance.

2 RELATED WORK

Time Series Generation: Prior sequential generation methods using GANSs rely primarily on binary
adversarial feedback (Mogren, 2016; Esteban et al., 2017), and supervised sequence models mainly
focus on tasks such as prediction (Dai & Le, 2015), forecasting (Lyu et al., 2018), and classification
(Srivastava et al., 2016). TimeGAN (Yoon et al., 2019) was one of the first methods to preserve
temporal dynamics in time series synthesis. The architecture comprises an embedding layer, re-
covery mechanism, generator, and discriminator, trained using both supervised and unsupervised
losses. GT-GAN (Jeon et al., 2022) considers the generation of both regular and irregular time se-
ries data using a neural controlled differential equation (NCDE) encoder (Kidger et al., 2020) and
GRU-ODE decoder (De Brouwer et al., 2019). This framework, combined with a continuous time
flow processes (CTFPs) generator (Deng et al., 2021) and a GRU-ODE discriminator, outperformed
existing methods in general-purpose time series generation. Recently, Bilo$ et al. (2023) proposed
to generate time series data for forecasting and imputation using discrete or continuous stochastic
process diffusion (DSPD/CSPD). Their proposed method views time series as discrete realizations
of an underlying continuous function. Both DSPD and CSPD use either the Gaussian or Ornstein-
Uhlenbec process to model noise and apply it to the entire time series. The learned distribution over
continuous functions is then used to generate synthetic time series samples.

Diffusion Models: Diffusion models (Sohl-Dickstein et al., 2015) have been proposed and achieved
excellent performance in the field of computer vision and natural language processing. Ho et al.
(2020) proposed denoising diffusion probabilistic models (DDPM) that generate high-quality im-
ages by recovering from white latent noise. Gu et al. (2022) proposed a vector-quantized diffusion
model on text-to-image synthesis with significant improvement over GANs regarding scene com-
plexity and diversity of the generated images. Dhariwal & Nichol (2021) suggested that the diffu-
sion models with optimized architecture outperform GANs on image synthesis tasks. Saharia et al.
(2022) proposed a diffusion model, Imagen, incorporated with a language model for text-to-image
synthesis with state-of-the-art results. Kotelnikov et al. (2022) introduced TabDDPM, an extension
of DDPM for heterogeneous tabular data generation, outperforming GAN-based models. Das et al.
(2023) proposed ChiroDiff, a diffusion model that considers temporal information and generates
chirographic data. Besides advancements in practical applications, some recent developments in
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theory for diffusion models demonstrate the effectiveness of this model class. Theoretical foun-
dations explaining the empirical success of diffusion or score-based generative models have been
established (Song & Ermon, 2019; 2020; Chen et al., 2022).

EHR Data Generation: There exists a considerable amount of prior work on generating EHR data.
Choi et al. (2017) proposed medGAN that generates EHR discrete variables. Built upon medGAN,
Baowaly et al. (2019) suggested two models, medBGAN and medWGAN, that synthesize EHR
binary or discrete variables on International Classification of Diseases (ICD) codes. Yan et al. (2020)
developed a GAN that can generate high-utility EHR with both discrete and continuous data. Biswal
et al. (2021) proposed the EHR Variational Autoencoder that synthesizes sequences of EHR discrete
variables (i.e., diagnosis, medications, and procedures). He et al. (2023) developed MedDiff, a
diffusion model that generates user-conditioned EHR discrete variables. Yuan et al. (2023) created
EHRDIff by utilizing the diffusion model to generate a collection of ICD diagnosis codes. Naseer
et al. (2023) used continuous-time diffusion models to generate synthetic EHR tabular data. Ceritli
et al. (2023) applied TabDDPM to synthesize tabular healthcare data.

However, most existing work focuses on discrete or tabular data generation. There is limited litera-
ture on EHR time series data generation, and this area of research has not yet received much attention
(Koo & Kim, 2023). Back in 2017, RCGAN (Esteban et al., 2017) was created for generating mul-
tivariate medical time series data by employing RNNs as the generator and discriminator. Until
recently, Yoon et al. (2023) proposed EHR-Safe that consists of a GAN and an encoder-decoder
module. EHR-Safe can generate realistic time series and static variables in EHR with mixed data
types. Li et al. (2023) developed EHR-M-GAN that generates mixed-type time series in EHR using
separate encoders for each data type. Moreover, Kuo et al. (2023) suggested utilizing diffusion mod-
els to synthesize discrete and continuous EHR time series. However, their approach mainly relies
on Gaussian diffusion and adopts a U-Net architecture (Ronneberger et al., 2015). The generation
of discrete time series is achieved by taking argmax of softmax over real-valued one-hot represen-
tations. By contrast, our proposed method considers multinomial diffusion for discrete time series
generation, allowing the generation of discrete variables directly.

3 DIFFUSION PROBABILISTIC MODELS

In this section, we explain diffusion models following the work of Sohl-Dickstein et al. (2015)
and Ho et al. (2020). Diffusion models belong to a class of latent variable models formulated as
po(x?) = [ pe(x®T)) dzT), where z(¥) is a sample following the data distribution ¢(z(%))
and {x(®}7_, are latents with the same dimensionality as =(°).

The forward process is defined as a Markov chain that gradually adds Gaussian noise to () via a
sequence of variances {3(*) }thlz

T

¢(207[20) = [[g(®[2¢D), ¢(2®]2=D) = N(2®; /1= FO-D, 5OT). (1)

t=1

The process successively converts data 2(°) to white latent noise (7). The noisy sample
x(®) can be obtained directly from the original sample (®) by sampling from g(x®|z(®)) =
N(z®; Va®bz® (1 — a®)I), where o =1 — @ and a®) = [;_, o).

The reverse process is the joint distribution pg (%)) = p(z(™) [T]_, pe(x®~V|x®), which is a
Markov chain that starts from white latent noise and gradually denoises noisy samples to generate
synthetic samples:

Do (m(t*1)|m(t)) = N(m(tfl);ug(w(t),t),Zg(m(t),t)), p(a:(T)) = N(m(T);O,I). (2)

Under a specific parameterization described in Ho et al. (2020), the training objective can be ex-
pressed as follows:

(t))2 2
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where C'is a constant that is not trainable. Empirically, a neural network s is trained to approximate
€. This e-prediction objective resembles denoising score matching, and the sampling procedure
resembles Langevin dynamics using sy as an estimator of the gradient of the data distribution (Song
& Ermon, 2019; 2020).

4 SYNTHETIC EHR TIME SERIES DATA WITH DIFFUSION MODELS

In this section, we discuss our methodology for generating realistic synthetic EHR time series data.
We first introduce our notations. We consider the generation of both numerical (real-valued) and
discrete time series in our framework, as both are present in EHR. Specifically, let D denote our
EHR time series dataset. Each patient in D has numerical and discrete multivariate time series
X € RP*E and C € ZPa*L, respectively. L is the number of time steps, and P, and Py are the
number of variables for numerical and discrete data types.

4.1 DIFFUSION PROCESS ON EHR TIME SERIES

To generate both numerical and discrete time series, we consider a “mixed sequence diffusion”
approach by adding Gaussian and multinomial noises. For numerical time series, we perform Gaus-
sian diffusion by adding independent Gaussian noise similar to DDPM. The forward process is thus
defined as:

T L
g(XED|xO) = TT[Ta(x31x57), )
t=11=1
where q(X_(’?|X.(’tfl)) = ./\/(X_(’tl); 1— ﬁ(t)X.(’tfl), BUI) and X ; is the I™ observation of the
numerical time series. In a similar fashion as Equation (2), we define the reverse process for numer-
ical features as pg(X (1)) = p(X (1)) Hle po(X V| X®), where

po(X DX D) = V(XD g (XD, 1), BOT),

1 s® - 1— a(
X0 ) = (X(o_s x0 ). go=17Ts0 s
In order to model discrete-valued time series, we use multinomial diffusmn (Hoogeboom et al.,
2021). The forward process is defined as:

T Pg; L

o(CM1CO) =TT TTTTa(Co1C "), (©)
t=1p=1l=1

g(COIC V) =c(Cl); (1 - pOCY Y + Y/ K), )

where C is a categorical distribution, C;(; € {0,1}* is a one-hot encoded representation of Cj,;",
and the addition and subtraction between scalars and vectors are performed element-wise. The
forward process posterior distribution is defined as follows:

g(CYTVIEY . CY)) = <C“ g/ Z¢>k>, @®)

6= () + (1-a)/K) o (' VEY + (1 -a)/K). ©)

(C(t) t)). We train our

The reverse process pg(é’étl— D \é}g"l)) is parameterized as q(é;tl—l) \C(t) @

pl+S
neural network, sy, using both Gaussian and multinomial diffusion processes:

e = s0(Vanx® 4 /1= a<t>e,t)ﬂ, (10)

Ln(0) :=Ex© ey [
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"We perform one-hot encoding on the discrete time series across the feature dimension. For example, if our
time series is {0, 1,2}, its one-hot representation becomes {[1,0,0]",[0,1,0]",[0,0,1] " }.
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where £ and L are the losses for numerical and discrete multivariate time series, respectively.
The training of the neural network is performed by minimizing the following loss:

Liain(0) = ALc(0) + L (0), (12)

where ) is a hyperparameter for creating a balance between the two losses. We investigate the effects
of A in Appendix B.3.

4.2 MISSING VALUE REPRESENTATION

In medical applications, missing data and variable measurement times play a crucial role as they
could provide additional information and indicate a patient’s health status (Zhou et al., 2023). We
thus derive a missing indicator mask M € {0,1}*% 2 for each X € D:

0, if X, is present;
M., = ’ p, 13
Pl {1, if X, ; is missing. (13)

Then M encodes the measurement time points of X. If X contains missing values, we impute
them in the initial value of the forward process, i.e., X (%), using the corresponding sample mean.
Nevertheless, M retains the information regarding the positions of missing values. Our method
generates both discrete and numerical time series, allowing us to represent and generate M as a
discrete time series seamlessly.

4.3 TIMEDIFF ARCHITECTURE

In this section, we describe our architecture for the diffusion model. A commonly used architecture
in DDPM is U-Net (Ronneberger et al., 2015). However, most U-Net-based models are tailored to
image generation tasks, requiring the neural network to process pixel-based data rather than sequen-
tial information (Song et al., 2020; Ho et al., 2020; Rombach et al., 2022). Even its one-dimensional
variant, 1D-U-Net, comes with limitations such as restriction on the input sequence length (which
must be a multiple of U-Net multipliers) and a tendency to lose temporal dynamics information
during down-sampling. On the other hand, TabDDPM (Kotelnikov et al., 2022) proposed a mixed
diffusion approach for tabular data generation but relied on a multilayer perceptron architecture,
making it improper for multivariate time series generation.

To address this challenge of handling EHR time series, we need an architecture capable of encod-
ing sequential information while being flexible to the input sequence length. The time-conditional
bidirectional RNN (BRNN) or neural controlled differential equation (NCDE) (Kidger et al., 2020)
can be possible options. After careful evaluation, we found BRNN without attention mechanism
offers superior computational efficiency and have chosen it as the neural backbone sy for all of our
experiments. A more detailed discussion of NCDE is provided in Appendix A.3.1.

Diffusion Step Embedding: To inform the model about current diffusion time step ¢, we use si-
nusoidal positional embedding (Vaswani et al., 2017). The embedding vector output from the em-
bedding layer then goes through two fully connected (FC) layers with GeLU activation in between
(Hendrycks & Gimpel, 2016). The embedding vector is then fed to a SiLU activation (Hendrycks &
Gimpel, 2016) and another FC layer. The purpose of this additional FC layer is to adjust the dimen-
sionality of the embedding vector to match the stacked hidden states from BRNN. Specifically, we
set the dimensionality of the output to be two times the size of the hidden dimension from BRNN.
We denote the transformed embedding vector as tempheq. This vector is then split into two vectors,
each with half of the current size, namely Zemped_scate a0d Eembed_shite- Both vectors share the same
dimensionality as BRNN’s hidden states and serve to inform the network about the current diffusion
time step.

Time-conditional BRNN: In practice, BRNN can be implemented with either LSTM or GRU units.
To condition BRNN on time, we follow these steps. We first obtain noisy samples from Gaussian
(for numerical data) and multinomial (for discrete data) diffusion. The two samples are concatenated
and fed to our BRNN, which returns a sequence of hidden states {h;}/, that stores the temporal

?Or alternatively, M € {0, 1}74*% if the time series is discrete.
3For simplicity in writing, we refer to X only, but this procedure can also be applied on C.
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dynamics information about the time series. To stabilize learning and enable proper utilization of
tembed, We apply layernorm (Ba et al., 2016) on {hl}le. The normalized sequence of hidden states,
{h;}L_,, is then scaled and shifted using {h; ® (tembed_scate +1) +Eembed_shift } -1 - These scaled hidden
states contain information about the current diffusion step ¢, which is then passed through an FC
layer to produce the final output. The output contains predictions for both multinomial and Gaussian
diffusions, which are extracted correspondingly and used to calculate Ly, in Equation (12).

5 EXPERIMENTS

Datasets: We use four publicly available EHR datasets to evaluate TIMEDIFF: Medical Information
Mart for Intensive Care III and IV (MIMIC III/IV) (Johnson et al., 2016; 2023), the eICU Col-
laborative Research Database (eICU) (Pollard et al., 2018), and high time resolution ICU dataset
(HiRID) (Hyland et al., 2020). In order to evaluate TIMEDIFF with state-of-the-art methods for time
series generation on non-EHR datasets, we include Stocks and Energy datasets used in studies that
proposed TimeGAN (Yoon et al., 2019) and GT-GAN (Jeon et al., 2022).

Baselines: We compare TIMEDIFF with eight methods: EHR-M-GAN (Li et al., 2023), GT-GAN
(Jeon et al., 2022), TimeGAN (Yoon et al., 2019), RCGAN (Esteban et al., 2017), C-RNN-GAN
(Mogren, 2016), RNNs trained with teacher forcing (T-Forcing) (Graves, 2013; Sutskever et al.,
2011) and professor forcing (P-Forcing) (Lamb et al., 2016), and discrete or continuous stochastic
process diffusion (DSPD/CSPD) with Gaussian (GP) or Ornstein-Uhlenbeck (OU) processes (Bilos
et al., 2023).

Metrics: (1-2) Discriminative and Predictive Scores: A GRU-based discriminator is trained to
distinguish between real and synthetic samples. The discriminative score is |0.5 — Accuracy|. For
the predictive score, a GRU-based predictor is trained on synthetic samples and evaluated on real
samples for next-step vector prediction based on mean absolute error over each sequence.

(3) Train on Synthetic, Test on Real (TSTR): We train ML models entirely on synthetic data and
evaluate them on real test data based on the area under the receiver operating characteristic curve
(AUC) for in-hospital mortality prediction. We compare the TSTR score to the Train on Real, Test
on Real (TRTR) score, which is the AUC obtained from the model trained on real training data and
evaluated on real test data.

(4) Train on Synthetic and Real, Test on Real (TSRTR): Similar to TSTR, we train ML models and
evaluate them on real test data using AUC. We fix the size of real training data to 2000 and add more
synthetic samples to train ML models. This metric evaluates the impact on ML models when their
training data includes an increasing amount of synthetic data. It also simulates the practical scenario
where practitioners use synthetic samples to increase the sample size of the training data for model
development.

(5) t-SNE: We flatten the feature dimension and use t-SNE dimension reduction visualization
(Van der Maaten & Hinton, 2008) on synthetic, real training, and real testing samples. This qualita-
tive metric measures the similarity of synthetic and real samples in two-dimensional space.

(6) Nearest Neighbor Adversarial Accuracy Risk (NNAA): This score measures the degree to which
a generative model overfits the real training data, a factor that could raise privacy-related concerns
(Yale et al., 2020). It is the difference between two discriminative accuracies, AAs and A Again.

(7) Membership Inference Risk (MIR): An F1 score is calculated based on whether an adversary can
correctly identify the membership of a synthetic data sample (Liu et al., 2019).

For all the experiments, we split each dataset into training and testing sets and use the training set
to develop generative models. The synthetic samples obtained from trained generative models are
then used for evaluation. We repeat each experiment over 10 times and report the mean and standard
deviation of each quantitative metric. Further details for our experiments and evaluation metrics are
discussed in Appendix A.
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Table 1: Comparison of predictive and discriminative scores between TIMEDIFF and the baselines.
Metric Method Stocks Energy MIMIC-IT  MIMIC-IV HiRID elCU

TIMEDIFF .048+.028 .088+.018  .028+.023  .030+.022 .333+.056 .015+.007
EHR-M-GAN  .483+.027 .4974£.006 .499+.002  .499+.001 .496+£.003  .488+.022

DSPD-GP .081£.034 .416+£.016  .491£.002  .478+.020 .489+.004 .327+.020

DSPD-OU .098+.030 .290+.010  .456+.014  .444+.037 .481+.007 .367+.018

CSPD-GP 313£.061  .392+£.007  .498+.001  .488+.010  .485+.007 .489+.010
Discriminative = CSPD-OU 283£.039  .384+.012  .494+.002  .479+.005  .489+.004 .479+.017
Score GT-GAN .077£.031 .221+£.068  .488+.026  .472+.014  .455+.015 .448+.043
() TimeGAN 102+£.021  .236+.012  473+£.019  .4524+.027  .498+.002  .434+.061
RCGAN 196£.027  .336+£.017  .498+£.001  .4904+.003  .499+.001  .490+.023
C-RNN-GAN  .399£.028 .499+.001  .500£.000  .499+.000 .499+.001 .493+.010

T-Forcing 226£.035 .483£.004  .499+.001  .4974+.002  .480+.010 .479+.011

P-Forcing 257+£.026  412+£.006  .494+.006  .498+.002  .494+.004 .367+.047

Real Data .019+.016 .016+.006 .012+.006  .014+.011 .014%+.015 .004%.003

TIMEDIFF .037+£.000 .2514+.000 .469+.003  .432+.002 .292+.018 .309+.019
EHR-M-GAN  .120+.047 .2544+.001 .861+.072  .880+£.079  .624+£.028 .913£.179

DSPD-GP .038+£.000 .260+£.001  .509+.014  .586+.026  .404+.013  .320+.018

DSPD-OU .039£.000 .252+.000 .497+.006  .474+.023  .397+.024  .317+.023

CSPD-GP .041£.000 .257£.001 1.083£.002 .496+.034  .341+.029 .624+.066

Predictive CSPD-OU .044£.000 .253£.000 .566+.006  .516+.051 .439+.010 .382+.026
Score GT-GAN .040+.000 .312£.002  .584+.010 .517+.016 .386+.033 .487+.033
(@) TimeGAN .038+£.001  .273£.004  .727£.010  .548%+.022  .729+.039  .367+.025
RCGAN .040£.001  .292+.005 .837+£.040 .700+.014  .675+.074 .890+.017
C-RNN-GAN  .038+.000 .483+.005 .933+.046  .811+.048 .727+.082 .769+.045

T-Forcing .038+£.001 .315+£.005  .840+.013  .641+.017 .364 £.018 .547+.069

P-Forcing .043£.001 .303+£.006  .683+£.031  .5574+.030 .445+.018 .345+.021

Real Data .036+.001 .250+.003  .467+.005  .433+.001 .267+£.012 .304%+.017

TIMEDIFF EHR-M-GAN DSPD-GP GT-GAN TimeGAN RCGAN

Figure 1: t-SNE for eICU (1% row) and MIMIC-IV (2 row). Synthetic samples in blue, real training
samples in red, and real testing samples in

5.1 RESULTS

Predictive and Discriminative Scores: As presented in Table 1, we observe that TIMEDIFF con-
sistently achieves the lowest discriminative and predictive scores across six datasets compared to all
baselines. TIMEDIFF achieves significantly lower discriminative scores and close-to-real predictive
scores on all four EHR datasets. For instance, TIMEDIFF yields a 95.4% lower mean discriminative
score compared to DSPD-GP and obtains a 1.6% higher mean predictive score than real testing data
on the eICU dataset. For non-EHR datasets, TIMEDIFF achieves a 37.7% lower and a 60.2% lower
mean discriminative scores on the Stocks and Energy datasets than GT-GAN while having similar
mean predictive scores as using real testing data.

t-SNE: As shown in Figure 1, the synthetic samples produced by TIMEDIFF demonstrate remarkable
overlap with both real training and testing data, indicating their high fidelity. We have the same
observations across all datasets, and the rest of the visualizations are in Appendix B.1.

Runtime: We compare the number of hours to train TIMEDIFF with EHR-M-GAN, TimeGAN, and
GT-GAN. We used Intel Xeon Gold 6226 Processor and Nvidia GeForce 2080 RTX Ti for runtime
comparison of all models. As indicated by Table 2, TIMEDIFF can produce high-fidelity synthetic
samples with less training time compared to GAN-based approaches.

In-hospital Mortality Prediction: As introduced in Section 1, in-hospital mortality prediction is
one of the most important downstream tasks utilizing EHR data (Sadeghi et al., 2018; Sheikhalishahi
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et al., 2019). To evaluate the utility of the generated EHR time series samples using TIMEDIFF,
we perform in-hospital mortality prediction using six ML algorithms: XGBoost (XGB) (Chen &
Guestrin, 2016), Random Forest (RF) (Breiman, 2001), AdaBoost (AB) (Freund & Schapire, 1997),
and /7 and /5 regularized Logistic Regression (LR L1/L2) (Friedman et al., 2010). The prediction
models are trained using synthetic samples from TIMEDIFF and assessed on real testing data.

As indicated in Figure 2, we observe that models trained using pure synthetic samples have
similar AUCs compared to those trained on the real training data. Furthermore, to simulate the
practical scenario where synthetic samples are used for data augmentation, we calculate the TSRTR
scores for each ML model. We observe that most ML models achieve better performances as
more synthetic samples are added. This observation is also consistent with our previous findings,
demonstrating the high fidelity of our synthetic data.

= TSTR
= TRTR

LRL1 LRL2

XGB RF AB LRL1 LRL2 XGB RF AB LRL1 LRL2 XGB RF AB LRL1 LRL2

0.62
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Figure 2: (Top) comparison of TSTR with TRTR scores; (Bottom) TSRTR score.
NNAA and MIR: As indicated in Table 4, Table 2: Runtime comparisons (hours).
we observe that TIMEDIFF consistently scores Dataset TIMEDIFF  EHR-M-GAN  TimeGAN ~ GT-GAN
around 0.5 for both AA. and AAu,, while MiMIC-T 2.7 18.9 10.8 21.8
having low NNAA and MIR scores. This MIMICIV 2.7 288 295 473
. . HiRID 2.5 297 4622 583
suggests that TIMEDIFF produces high-fidelity cicu 87 871 110 50.1

synthetic samples and does not overfit its train-
ing data. By contrast, although still mostly having low NNAA and MIR scores, all the baselines
have higher A A and A Ayp,. The full results are presented in Appendix B.4.

Ablation Study: We further investigate whether performing multinomial diffusion on missing indi-
cators for discrete sequence generation is useful. We compare our method with Gaussian diffusion
on the missing indicators, and these post-processing methods are applied to transform real-valued
model predictions into discrete sequences: (1) direct rounding; (2) argmax on the softmax of real-
valued, one-hot encoded representations*. We compare these methods on MIMIC-III/IV and eICU.
HiRID is excluded from this ablation study since it is complete and does not contain missing values.
Table 3 shows that the synthetic data has much higher utility when multinomial diffusion is adopted.

Table 3: Ablation study on generating missing indicators using multinomial diffusion.
Metric Method MIMIC-III MIMIC-IV elCU

with Gaussian and rounding  .355+.020  .121+£.025 .030+.018
Discriminative Score ()  with Gaussian and softmax .088+.023  .155 £.032 .042+.045

with multinomial 028+.023  .030+.022 .015+.007
with Gaussian and rounding  .486+£.005  .433+.003 .312+.031
Predictive Score ({) with Gaussian and softmax A4724.004 .4344.002  .320+.035
with multinomial 469+.003  .432+.002 .309+.019

“The synthetic one-hot encoding is not discrete since Gaussian diffusion is used. This method is also
adopted by Kuo et al. (2023) for the generation of discrete time series with diffusion models.



Under review as a conference paper at ICLR 2024

Table 4: Privacy score evaluations.
Metric Method MIMIC-IIT  MIMIC-IV HiRID elCU

AAgest (~0.5)  TIMEDIFF S574+.002 .517+.002  531+.003  .537+.001
EHR-M-GAN  .998+.000 1.000£.000 1.000£.000 .977%£.000

DSPD-GP 974+.001  .621£.002  .838+.004  .888+.000
DSPD-OU .927+£.000  .804+.003  .886+.001 .971+.000
CSPD-GP 944+.001  .623+.002  .958+.002  .851%£.001
CSPD-OU 967+.001  .875+£.002  .947+.001 .9824.000
GT-GAN .995+.000  .910+.001 .990+.001 .981+.000
TimeGAN 997£.000 .974+£.001 .6434+.003  1.000+.000
RCGAN 983+.001  .999+.000  1.000£.000 1.000+.000
Real Data .552+.002  .497+.002 511£.006  .501£.002

AAiain (~0.5)  TIMEDIFF S573+£.002  .5154+.002 .531+.002  .531+.002
EHR-M-GAN  .999+.000 1.000+.000 1.000+£.000 .965+.002

DSPD-GP .968+.002  .620+£.003  .851+.005  .888=£.001
DSPD-OU .928+.001  .788+.003  .876+.002  .971+£.000
CSPD-GP 940+.002  .629£.005  .965+.004  .852+.001
CSPD-OU .966+.001  .880£.003  .945+.002  .983+£.000
GT-GAN 995+.001  .907+.002  .989+.001 .981+.000
TimeGAN 997+£.000  .969+.003  .651+.004  1.000+.000
RCGAN .984+.001  .999£.000  1.000£.000 1.000£.000
Real Data .286£.003  .268+.004  .327£.006  .266+.002
NNAA (}) TIMEDIFF .002+.002  .002£.002  .004+.003  .006=£.002
EHR-M-GAN .000+.000 .000+.000  .000£.000  .012+£.003
DSPD-GP .005+.003  .003£.003  .013+.007  .001=+£.001
DSPD-OU .001+£.001  .016£.004  .010+.002  .000+£.000
CSPD-GP .004£.002  .007£.005  .008+.004  .001+.001
CSPD-OU .001+.001  .005£.003  .002+.001 .001+.001
GT-GAN .001£.000  .004£.002  .001+.001 .000+.000
TimeGAN .000£.000  .005£.003  .008+.004  .000+.000
RCGAN .001£.000  .000£.000  .000+.000  .000+£.000
Real Data .267+£.004  .229+.003  .184+.006  .235+.003
MIR () TIMEDIFF 191+.008  .2324+.048  .236+.179 .227+£.021
EHR-M-GAN .025+.007  .435+.031 459+.161 .049+.006
DSPD-GP .032+£.021  .050+£.009  .106 £.064  .000+.000
DSPD-OU .060+.032  .007£.006  .005+.005  .000+£.000
CSPD-GP .060+.028  .034+£.017  .004+.004  .000+£.000
CSPD-OU .066+.046  .016+£.020  .005+.003  .000+£.000
GT-GAN .005+.002  .046£.013  .109+.057  .000+£.000
TimeGAN .010+.002  .173£.020  .624+.006  .000+£.000
RCGAN .013+£.002  .277£.049  .063+.013  .000+£.000
Real Data 948+.000  .929+.005  .737£.011  .9274.001

6 CONCLUSIONS, FUTURE WORK, AND LIMITATIONS

We propose TIMEDIFF for EHR time series generation by using mixed sequence diffusion and
demonstrate its superior performance compared with all state-of-the-art time series generation meth-
ods in terms of data utility. We also demonstrate that TIMEDIFF can facilitate downstream analysis
in healthcare while protecting patient privacy. However, it is important to acknowledge the limita-
tions of our study. While our results suggest that TIMEDIFF offers some degree of patient privacy
protection, it should not be seen as a replacement for official audits, which may still be necessary
prior to data sharing. It is also interesting to investigate TIMEDIFF within established privacy frame-
works, e.g., differential privacy. Additionally, to provide better interpretability and explainability of
TIMEDIFF, subgroup analysis and theoretical analysis are to be developed. Lastly, it would also be
meaningful to investigate the modeling of highly sparse and irregular temporal data, such as lab tests
and medications. We leave the above potential improvements of TIMEDIFF for future work.
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A EXPERIMENT DETAILS

A.1 DATASETS

In this section, we provide further information on the datasets used in this study and the correspond-
ing data processing procedures. Unless specified otherwise, all datasets are normalized by min-max
scaling for model training, and the minimums and maximums are calculated feature-wise, i.e., we
normalize each feature by its corresponding sample minimum and maximum, and this procedure is
applied across all the features. For all EHR datasets, we extract the in-hospital mortality status as
our class labels for TSTR and TSRTR evaluations.

Table 5: Dataset statistics.

Dataset Sample Size Number of Features Sequence Length  Missing (%) Mortality Rate (%)
Stocks 3,773 6 24 0 —

Energy 19,711 28 24 0 —

MIMIC-III 26,150 15 25 17.9 7.98

MIMIC-1V 21,593 11 72 7.9 23.67

HiRID 6,709 8 100 0 16.83

elCU 62,453 9 276 10.5 10.63

A.1.1 STOCKS & ENERGY

As mentioned earlier in Section 5, we use the Stocks and Energy datasets for a fair comparison
between TIMEDIFF and the existing GAN-based time-series generation methods. Both datasets can
be downloaded from TimeGAN’s official repository.

Stocks: The Stocks dataset contains daily Google stock data recorded between 2004 and 2019. It
contains features such as volume, high, low, opening, closing, and adjusted closing prices. Each
data point represents the value of those six features on a single day. The dataset is available online
and can be accessed from the historical Google stock price on Yahoo.

Energy: The Energy dataset is from the UCI Appliances energy prediction data. It contains mul-
tivariate continuous-valued time-series and has high-dimensional, correlated, and periodic features.
This dataset can be obtained from UCI machine learning repository.

To prepare both datasets for training and ensure consistency with previous approaches for a fair
comparison, we use the same procedure as TimeGAN. We then apply training and testing splits for
both datasets. For the Stocks dataset, we use 80% for training and 20% for testing. For the Energy
dataset, we use 75% for training and 25% for testing.

A.1.2 MIMIC-III

The Medical Information Mart for Intensive Care-III (MIMIC-III) is a single-center database con-
sisting of a large collection of EHR data for patients admitted to critical care units at Beth Israel
Deaconess Medical Center between 2001 and 2012. The dataset contains information such as de-
mographics, lab results, vital measurements, procedures, caregiver notes, and patient outcomes. It
contains data for 38,597 distinct adult patients and 49,785 hospital admissions.

Variable Selection: In our study, we use the following vital sign measurements from MIMIC-III:
heart rate (beats per minute), systolic blood pressure (mm Hg), diastolic blood pressure (mm Hg),
mean blood pressure (mm Hg), respiratory rate (breaths per minute), body temperature (Celsius),
and oxygen saturation (%). To ensure consistency and reproducibility, we adopt the scripts in of-
ficial MIMIC-III repository for data pre-processing that selects the aforementioned features based
on itemid and filters potential outliers>. We then extract records of the selected variables within the
first 24 hours of a patient’s unit stay at one-hour intervals, where the initial measurement is treated
as time step 0. This procedure gives us a multivariate time series of length 25 for each patient.

Cohort Selection: We select our MIMIC-III study cohort by applying the outlier filter criteria
adopted by the official MIMIC-III repository. The filtering rules can be accessed here. We select

>For sake of reproducibility, the thresholds for the outliers are defined by the official repository.
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patients based on the unit stay level using icustay_id. We only include patients who have spent at
least 24 hours in their ICU stay.

We use 80% of the dataset for training and 20% for testing while ensuring a similar class ratio
between the splits.

A.1.3 MIMIC-1V

The Medical Information Mart for Intensive Care-IV (MIMIC-IV) is a large collection of data for
over 40,000 patients at intensive care units at the Beth Israel Deaconess Medical Center. It contains
retrospectively collected medical data for 299,712 patients, 431,231 admissions, and 73,181 ICU
stays. It improves upon the MIMIC-III dataset, incorporating more up-to-date medical data with
an optimized data storage structure. In our study, we use vital signs for time-series generation. To
simplify the data-cleaning process, we adopt scripts from the MIMIC Code Repository.

Variable Selection: We extracted five vital signs for each patient from MIMIC-IV. The selected
variables are heart rate (beats per minute), systolic blood pressure (mm Hg), diastolic blood pres-
sure (mm Hg), respiratory rate (breaths per minute), and oxygen saturation (%). We extract all
measurements of each feature within the first 72 hours of each patient’s ICU admission. Similar to
MIMIC-III, we encode the features using the method described in Section 4.2 for model training.

Cohort Selection: Similar to MIMIC-III, we select our MIMIC-IV study cohort by applying filter-
ing criteria provided by the official MIMIC-IV repository. The criteria can be accessed here. We
also select patients at the unit stay level and include those who stayed for at least 72 hours in ICU.

We use 75% for training and 25% for testing, and the class ratio is kept similar across the training
and testing data.

A.1.4 EICU

The eICU Collaborative Research Database is a multi-center database with 200,859 admissions to
intensive care units monitored by the eICU programs across the United States. It includes various
information for the patients, such as vital sign measurements, care plan documentation, severity of
illness measures, diagnosis information, and treatment information. The database contains 139,367
patients admitted to critical care units between 2014 and 2015.

Variable Selection: We select four vital sign variables from the vitalPeriodic table in our study:
heart rate (beats per minute), respiratory rate (breaths per minute), oxygen saturation (%), and mean
blood pressure (mm Hg). The measurements are recorded as one-minute averages and are then
stored as five-minute medians. We extract values between each patient’s first hour of the ICU stay
and the next 24 hours for the selected variables. Since the measurements are recorded at S-minute
intervals, we obtain a multivariate time series of length 276 for each patient in our study cohort.

Cohort Selection: We select patients for our eICU study cohort by filtering the time interval. Specif-
ically, we include patients who stay for at least 24 hours in their ICU stay, and the time series mea-
surements are extracted. We did not use filtering criteria for time series in e[CU. This is a design
choice that allows us to evaluate TIMEDIFF when unfiltered time series are used as the input. We
also select patients at the unit stay level.

We use 75% for training and 25% for testing while ensuring the class ratio is similar between the
two data splits.

A.1.5 HIRID

The high time resolution ICU dataset (HiRID) is a publicly accessible critical care dataset consist-
ing of data for more than 33,000 admissions to the Department of Intensive Care Medicine of the
Bern University Hospital, Switzerland. It includes de-identified demographic information and 712
physiological variables, diagnostic tests, and treatment information between January 2008 to June
2016. The physiological measurements are recorded at 2-minute intervals.

Variable Selection: We consider seven variables in our study: heart rate (beats per minute), inva-
sive systolic arterial pressure (mm Hg), invasive diastolic arterial pressure (mm Hg), invasive mean
arterial pressure (mm Hg), peripheral oxygen saturation (%), ST elevation (mm), and central venous
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pressure (mm Hg). We selected the recorded data during the first 200 minutes of each patient’s ICU
stay.

Cohort Selection: We include patients who stayed for at least 200 minutes in our HiRID study
cohort. Unlike all aforementioned EHR datasets, our HiRID study cohort only includes patients
without missing values. This design choice allows us to evaluate the performance of TIMEDIFF in
the absence of missing values on EHR datasets.

We use 80% of our study cohort as the training data and 20% as the testing data, and the mortality
rate is kept similar between the splits.

A.2 BASELINES
We reference the following source code for implementations of our baselines.

Table 6: Source code links for all baselines.

Method Source Code Link
EHR-M-GAN (Li et al., 2023) LINK
DSPD/CSPD (GP or OU) (Bilos et al., 2023) LINK
GT-GAN (Jeon et al., 2022) LINK
TimeGAN (Yoon et al., 2019) LINK
RCGAN (Esteban et al., 2017) LINK
C-RNN-GAN (Mogren, 2016) LINK
T-Forcing (Graves, 2013; Sutskever et al., 2011) LINK
P-Forcing (Lamb et al., 2016) LINK

A.3 MODEL TRAINING AND HYPERPARAMETER SELECTION

A.3.1 NEURAL CONTROLLED DIFFERENTIAL EQUATION

We attempted to use neural controlled differential equation (NCDE) (Kidger et al., 2020) as our
architecture for sg. We expect the continuous property of the NCDE to yield better results for
time-series generation. NCDE is formally defined as the following:

Definition 1 Suppose we have a time-series s = {(r1, 1), ..., (Tn,xy)} and D is the dimension-
ality of the series. LetY : [r1,7,] — RP*! be the natural cubic spline with knots at 71, ...,7,
such that Yy, = (x;,7;). s is often assumed to be a discretization of an underlying process that is
approximated by Y. Let fg : R — R'P*(P+Y) gpd ¢y - RPH — R" be any neural networks, where
h is the size of hidden states. Let z., = Cp(r1,21)

The NCDE model is then defined to be the solution to the following CDE:
2r = 2p, —|—/ fo(zs)dYs forr € (r1,my] (14)
1
where the integral is a Riemann—Stieltjes integral.

However, we find that this approach suffers from high computational cost since it needs to calculate
cubic Hermite spline and solve the CDE for every noisy sample input during training. It thus has
low scalability for generating time-series data with long sequences. Nevertheless, we believe this
direction is worth exploring for future research.

A.3.2 TIMEDIFF TRAINING

The diffusion model is trained using Ly, in Equation (12). We set A to 0.01. We use cosine

scheduling (Nichol & Dhariwal, 2021b) for the variances { ﬁ(t)}tTfl. We apply the exponential
moving average to model parameters with a decay rate of 0.995. We use Adam optimizer (Kingma
& Ba, 2015) with a learning rate of 0.00008, 81 = 0.9, and 52 = 0.99. We set the total diffusion
step 1" to be 1000, accumulate the gradient for every 2 steps, use 2 layers for the BRNN, and use a
batch size of 32 across all our experiments.
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A.3.3 BASELINES

For a fair comparison, we use a 2-layer RNN with a hidden dimension size of four times the number
of input features. We utilize the LSTM as our architecture whenever applicable. We use a hidden
dimension size of 256 for the eICU dataset.

For deterministic models such as the T-Forcing and P-Forcing, we uniformly sample the initial data
vector from the real training data. We subsequently use the initial data vector as an input to the
deterministic models to generate the synthetic sequence by unrolling.

For stochastic process diffusion, we set gp_sigma to be 0.1 for Gaussian process (GP) and ou_theta
to be 0.5 for Ornstein-Uhlenbeck (OU) process. For discrete diffusion, we set the total diffusion step
at 1000. We use Adam optimizer with a learning rate of 0.00001 and batch size of 32 across all the
experiments.

A.3.4 SOFTWARE

We set the seed to 2023 and used the following software for our experiments.

Table 7: Software packages.

Method Software
TIMEDIFF PyTorch 2.0.1
EHR-M-GAN (Li et al., 2023) TensorFlow 1.14.0
DSPD/CSPD (GP or OU) (Bilos et al., 2023) PyTorch 2.0.1
GT-GAN (Jeon et al., 2022) PyTorch 2.0.0
TimeGAN (Yoon et al., 2019) TensorFlow 1.10.0
RCGAN (Esteban et al., 2017) TensorFlow 1.10.0
C-RNN-GAN (Mogren, 2016) PyTorch 2.0.1
T-Forcing (Graves, 2013; Sutskever et al., 2011)  PyTorch 1.0.0
P-Forcing (Lamb et al., 2016) PyTorch 1.0.0

A.4 EVALUATION METRICS
A.4.1 DISCRIMINATIVE AND PREDICTIVE SCORES

To ensure consistency with results obtained from TimeGAN and GT-GAN, we adopt the same source
code from TimeGAN for calculating discriminative scores. We train a GRU time-series classification
model to distinguish between real and synthetic samples, and |0.5 — Accuracy| is used as the score.

For predictive scores, we use the implementation from GT-GAN, which computes the mean absolute
error based on the next step vector prediction (see Appendix D of the GT-GAN paper (Jeon et al.,
2022)). For consistency, we compute the predictive scores for the Stocks and Energy datasets by
employing the implementation from TimeGAN that calculates the error for the next step scalar
prediction. We apply standardization to the inputs of the discriminator and predictor and use linear
activation for the predictor for all EHR datasets.

A.4.2 T-SNE

We perform hyperparameter search on the number of iterations, learning rate, and perplexity to
optimize the performance of t-SNE (Wattenberg et al., 2016). We use 300 iterations, perplexity 30,
and scaled learning rate (Belkina et al., 2019). We flatten the input data along the feature dimension,
perform standardization, and then apply t-SNE directly to the data without using any summary
statistics. We uniformly randomly select 2000 samples from the synthetic, real training, and real
testing data for t-SNE visualizations on the eICU, MIMIC-III, MIMIC-IV, and Energy datasets. For
the HiRID and Stocks dataset, we use 1000 and 700 samples, respectively, due to the limited size of
real testing data.

19


https://pypi.org/project/torch/
https://pypi.org/project/tensorflow-gpu/1.14.0/
https://pypi.org/project/torch/
https://pypi.org/project/torch/2.0.0/
https://pypi.org/project/tensorflow/1.10.0/
https://pypi.org/project/tensorflow/1.10.0/
https://pypi.org/project/torch/
https://pypi.org/project/torch/1.0.0/
https://pypi.org/project/torch/1.0.0/

Under review as a conference paper at ICLR 2024

A.4.3 IN-HOSPITAL MORTALITY PREDICTION

Train on Synthetic, Test on Real (TSTR): We use the default hyperparameters for the six ML mod-
els described in Section 5 using the scikit-learn software package. The models are trained using two
input formats: (1) raw multivariate time-series data flattened along the feature dimension; (2) sum-
mary statistics for each feature (the first record since ICU admission, minimum, maximum, record
range, mean, standard deviation, mode, and skewness). After training, the models are evaluated on
real testing data in terms of AUC.

Train on Synthetic and Real, Test on Real (TSRTR): To evaluate the effect of the increased pro-
portion of the synthetic samples for training on model performance, we uniformly randomly sample
2,000 real training data from our training set and use this subset to train TIMEDIFF. After training
of TIMEDIFF is complete, we subsequently add different amounts of the synthetic samples to the
2,000 real samples to train ML models for in-hospital mortality prediction. We set the synthetic
percentages to be 0.1, 0.3, 0.5, 0.7, 0.9. In other words, the ML models are trained with at most
20,000 samples (18,000 synthetic and 2,000 real). This evaluation also simulates the scenario where
synthetic samples from TIMEDIFF are used for data augmentation tasks in medical applications.
Similar to computing the TSTR score, we train the ML models using either raw time-series data
or summary statistics of each feature as the input. Results obtained using summary statistics as the
input are presented in Appendix B.4.

A.4.4 NNAA RIsK

We calculate the NNAA risk score (Yale et al., 2020) by using the implementation from this repos-
itory. Similar to performing t-SNE, we flatten the data along the feature dimension and apply stan-
dardization for preprocessing. The scaled datasets are then used to calculate the NNAA risk score.

For reference, we describe the components of the NNAA score below.
Definition 2 Ler S = {a:g}), ...,xg?)}, Sk {x(l) ...735%1)} and Ss = {x(sl), ...,x(sn)} be data

samples with size n from real training, real testing, and synthetic datasets, respectively. The NNAA
risk is the difference between two accuracies:

NNAA = AAtest - AAtraim (15)
11 1 <&

Ay = 2( > Mdes(i) > dep(i)} + — > H{dse(i) > dss((i )}) (16)
=1 =1

AAtmm=< Z]I{de > drr(i)} + — ZH{dST > ds( )}) (17)

where 1{-} is the indicator function, and

(@ (4)

drs(i) = mjin Hx(T J)H dsr(i) = mjin Hazs -z, (18)
dgs(i) = mln H @ _ (j)H dsg (i) = mm H ) (19)
drr(7) = min xg,f) — :r(T“ , dss(7) = min sr:g) — a:fgj) , dge(i) = min x%) — xg)
J.J#i J:J#i e
(20)

In our experiments, there are instances where A Ay, > AAey. To consistently obtain positive
values, we use NNAA = | A Awest — AAyain| for our evaluations.

A.4.5 MIR

Our implementation of the MIR score (Liu et al., 2019) follows the source code in this repository.
To keep a similar scale of the distance across different datasets, we apply normalization on the
computed distances so that they are in the [0,1] range. We use a threshold of 0.08 for the MIMIC-
IV, MIMIC-III, and HiRID datasets. We set the decision threshold to 0.005 for eICU. All the input
data is normalized to the [0,1] range.
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B ADDITIONAL EXPERIMENTS

B.1 T-SNE VISUALIZATIONS

We present our visualizations for all the baselines in our experiments in this section. For all the
figures, synthetic samples are in blue, real samples in train split are in red, and real samples in test
split are in orange. We discuss our procedure for t-SNE visualizations in Appendix A.4.2.

CSPD-OU C-RNN-GAN T-Forcing P-Forcing

Figure 3: t-SNE dimension reduction visualization for eICU.
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DSPD-GP

CSPD-OU C-RNN-GAN T-Forcing P-Forcing

Figure 4: t-SNE dimension reduction visualization for MIMIC-III.

CSPD-OU C-RNN-GAN T-Forcing P-Forcing

Figure 5: t-SNE dimension reduction visualization for HiRID.

22



Under review as a conference paper at ICLR 2024

CSPD-OU C-RNN-GAN T-Forcing P-Forcing

Figure 6: t-SNE dimension reduction visualization for MIMIC-IV.

TIMEDIFF EHR-M-GAN DSPD-GP DSPD-OU CSPD-GP CSPD-OU

Figure 7: t-SNE dimension reduction visualization for non-EHR datasets. First row is Stocks and
second row is Energy.
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B.2 RUNTIME COMPARISONS

In this section, we present additional runtime comparisons across all EHR datasets. We consider
EHR-M-GAN, stochastic process diffusion models, TimeGAN, and GT-GAN. We use Intel Xeon
Gold 6226 Processor and Nvidia GeForce 2080 RTX Ti to train all the models for a fair comparison.

Table 8: Comparison of runtime (hours).
Dataset TIMEDIFF EHR-M-GAN TimeGAN GT-GAN DSPD-GP DSPD-OU CSPD-GP CSPD-OU

MIMIC-IIT 2.7 18.9 10.8 21.8 2.5 2.5 2.5 2.5
MIMIC-IV 2.7 28.8 29.5 47.3 2.6 2.6 2.6 2.6
HiRID 2.5 29.7 46.2 58.3 2.8 2.8 2.8 2.8
elCU 8.7 87.1 110 59.1 7.0 7.0 7.0 7.0

B.3 EFFECT OF A\

In this section, we investigate the effect of hyperparameter A on TIMEDIFF. We trained TIMED-
IFF using A € {0.001,0.01,0.1,1, 10} while keeping the other hyperparameters identical as those
described in Appendix A.3.2.

Table 9: Effect of A on data utility.
Metric Method MIMIC-II MIMIC-1V elCU

A=0.001 .106£.047 .054£.023 .018+.010

A=0.01 .028+.023  .030+.022 .015+.007

Discriminative A = 0.1 .045+£.046  .036£.026 .027+.011
Score A=1 .108+.041  .125+£.068 .068+.016

(@) A=10 430+.037  .441+£.090 .299+£.048

Real Data  .012+.006  .014%+.011 .004+.003

A=0.001 .472+£.002 .433£.002 .305+.017

A=0.01 469+.003 .432+.002  309+.019

Predictive A=0.1 469+.002  .434+£.002 .319+.036
Score A=1 A472+£.003 .435+£.002 .317£.036
) A=10 496+.002  .488+.008 .314£.018

Real Data  .467+.005 .433+.001 .304+.017

Figure 8: t-SNE visualizations. First row is MIMIC-III, second row is MIMIC-1V, and third row is
elCU dataset.
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B.4 TSTR/TSRTR AND PRIVACY RISK EVALUATIONS

In this section, we provide additional results for TSTR and TSRTR scores across all four EHR
datasets we considered in this study. We train ML models using one of two methods: flattening the
feature dimension of raw time series data, or using summary statistics such as initial measurement,

minimum, maximum, range, mean, standard deviation, mode, and skewness.

XGB  RF  AB IRLl LRL2 XGB RF  AB LRLL IRL2 XGB  RF  AB IRLl (RL2 RF AB IRLl LRL2
elCU HiRID elCU HiRID

07
06
0s
vos
3
2
03
02

01 = TSTR == TSTR

- TRTR = TRTR

*“7X6e RF AB LRLL LRL2 XGB RF  AB LRLL IRL2 XGB  RF  AB LRLl (RL2 RF AB IRLL LRL2

MIMIC-III MIMIC-IV MIMIC-III MIMIC-IV

(a) ML models are trained with raw time series values
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(b) ML models are trained with summary statistics.
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(b) ML models are trained with summary statistics.

As an additional evaluation, we train RNN classifiers on synthetic time series data from TIMEDIFF
and evaluate their performance on real testing data. We use bidirectional RNNs with a hidden
dimension of 64 for this experiment.

Table 10: TSTR and TRTR scores for RNN classifiers.

Method Metric MIMIC-III MIMIC-IV HiRID elCU

GRU TSTR  .584+.016 .516£.025 .509+.042 .5444+.020
TRTR  .543+£.018 .507£.022 .463+.050 .476+.029

LSTM  TSTR  .581+.019 .484+.010 .502+.061 .558+.037
TRTR  .587+£.026 .473£.025 .420+.051 .531+.029
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Table 11: Full results for privacy risk evaluations.

Metric Method MIMIC-IIT  MIMIC-IV HiRID elCU
AAest (~0.5)  TIMEDIFF S574+.002  517+.002  .531+.003  .537+.001
EHR-M-GAN  .998+.000 1.000£.000 1.000£.000  .977+.000
DSPD-GP .974£.001 .621+.002  .838+.004  .888+.000
DSPD-OU 927+£.000  .804+£.003  .886+.001 .971+.000
CSPD-GP .944+.001 .623+.002  .958+.002  .851£.001
CSPD-OU .967+.001 875£.002  .947+.001 .982+.000
GT-GAN .995+.000  .910+£.001 .990+.001 .981+.000
TimeGAN .997+£.000  .974+£.001 .643+.003  1.000+£.000
RCGAN .983£.001 999£.000  1.000+.000 1.000=£.000
C-RNN-GAN  1.000£.000  .9934.000  1.000£.000  1.000-+£.000
T-Forcing 1.000£.000  .928+.001 .946+.001 .999+.000
P-Forcing 1.000£.000  .977+£.001 .998+.000  1.000+.000
Real Data .552+.002 . 497+.002  511+£.006  .501+£.002
AAiain (~0.5)  TIMEDIFF S73+£.002  515+.002 .531+.002  .531+.002
EHR-M-GAN  .999+.000 1.000£.000 1.000+.000  .965+.002
DSPD-GP .968+.002  .620£.003  .8514.005 .888+.001
DSPD-OU .928+.001 .788+.003  .876+£.002  .971£.000
CSPD-GP .940+.002  .629+£.005  .965+.004  .852+.001
CSPD-OU .966+.001 .880+.003  .945+£.002  .983£.000
GT-GAN .995+.001 907+£.002  .989+.001 .981+.000
TimeGAN 997+£.000  .969+.003  .651£.004  1.000+.000
RCGAN .984£.001 .999+.000  1.000+£.000  1.000=£.000
C-RNN-GAN  1.000+£.000  .9924+.001  1.000£.000  1.000-+£.000
T-Forcing 1.000£.000  .927+£.002  .941+.001 .999+.000
P-Forcing 1.000£.000  .976£.002  .998+.000  1.000=£.000
Real Data .286£.003  .268+.004  .327+.006  .266=£.002
NNAA (}) TIMEDIFF .002£.002  .002+.002  .004+.003 .006+.002
EHR-M-GAN  .000£.000  .000+£.000  .000£.000  .0124.003
DSPD-GP .005+£.003  .003£.003  .013+£.007  .001=+.001
DSPD-OU .001£.001 .016+.004  .010£.002  .000=£.000
CSPD-GP .004+.002  .007+£.005  .008+.004  .001+.001
CSPD-OU .001+.001 .005+.003  .002+.001 .001+.001
GT-GAN .001£.000  .004+£.002  .001+.001 .000£.000
TimeGAN .000+.000  .005+£.003  .008+.004  .000+.000
RCGAN .001£.000  .000+£.000  .000£.000  .000+.000
C-RNN-GAN  .000£.000  .001+£.000  .000+.000  .000+£.000
T-Forcing .000+.000  .002+£.001 .005+.001 .000+.000
P-Forcing .000£.000  .002+.002  .000£.000  .000+.000
Real Data .267£.004  .229+.003  .184+.006  .235+.003
MIR () TIMEDIFF .191£.008  .232+.048  .236+.179  .227+.021
EHR-M-GAN  .025+.007  .435+£.031 459+.161 .049+.006
DSPD-GP .032+.021 .050+.009  .106 £.064  .000=+.000
DSPD-OU .060+.032  .007£.006  .005+.005 .000+.000
CSPD-GP .060+.028  .034+.017  .004+.004  .000=.000
CSPD-OU .066+.046  .016£.020  .005+.003 .000=+.000
GT-GAN .005+.002  .046£.013  .109£.057  .000=+.000
TimeGAN .010+.002  .173£.020  .624+.006  .000=.000
RCGAN .013+£.002  .277£.049  .063+.013 .000=+.000
C-RNN-GAN  .015£.005  .011£.006  .019+.005 .000+.000
T-Forcing .007£.003  .215+£.052  .292+.125 .000£.000
P-Forcing .004+.004  .131£.045  .362+.233 .003+.001
Real Data .948+.000  .929+.005  .737£.011  .927+.001
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B.5 REAL AND SYNTHETIC TIME SERIES VISUALIZATIONS
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Figure 11: eICU, where the mean is the solid line and £ one standard deviation is the shaded area.

“ — Synthetic 1w — Synthetic
w0 — Re: — Real

Heart Rate Respiratory Rate

—— Synthetic 1004 Synthetic
~— Real Real

994

984

974

Value

964

954

944

93

SBP Oxygen Saturation

Figure 12: MIMIC-1V, where the mean is the solid line and + one standard deviation is the shaded
area.
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28



Under review as a conference paper at ICLR 2024

— Synthetic o — Synthetic
— Real — Real

Value
Value
[
Value
g 8 &

—— Synthetic 160 4 —— Synthetic
1207 ~—— Real ~—— Real

140

120

o o
2 4 2
o T o
> > 1004
60
804
40 604
o 20 40 60 80 100 o 20 40 60 80 100
Time Time

MBP SBP

102 —— Synthetic 1.0
~—— Real
1004 054
o 984 o

E i 0.04
96

-0.5
ot

-1.04
924

o 20 40 60 80 100 o 20 40 60 80 100
Time Time
Oxygen Saturation ST Elevation
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HiRID: time series in real testing data.
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