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Abstract

Aligning large language models (LLM) with human preference plays a key role in building
modern generative models and can be achieved by reinforcement learning from human
feedback (RLHF). Despite their superior performance, current RLHF approaches often
require a large amount of human-labelled preference data, which is expensive to collect. In
this paper, inspired by the success of active learning, we address this problem by proposing
query-efficient RLHF methods. We first formalize the alignment problem as a contextual
dueling bandit problem and design an active-query-based proximal policy optimization
(APPO) algorithm with an Õ(d2/∆) instance-dependent regret bound and an Õ(d2/∆2)
query complexity, where d is the dimension of feature space and ∆ is the sub-optimality gap
over all the contexts. We then propose ADPO, a practical version of our algorithm based on
direct preference optimization (DPO) and apply it to fine-tuning LLMs. Our experiments
show that ADPO, while only making about half of queries for human preference, matches
the performance of DPO, establishing it as a data-efficient alternative to DPO.

1 Introduction

Recent breakthroughs in large language models (LLM) significantly enhance the performances across a wide
range of tasks, including common sense reasoning, world knowledge, reading comprehension and math problem
solving (Jiang et al., 2023; Touvron et al., 2023; Chiang et al., 2023; Tunstall et al., 2023). In addition to
the prominent capabilities of traditional natural language tasks (Gao et al., 2023a; Yuan et al., 2023; Han
et al., 2023; Wei et al., 2023), they also demonstrate great potential in responding to human instructions
(Ouyang et al., 2022). One key step towards building these models is aligning them with human preference,
where reinforcement learning from human feedback (RLHF) (Fürnkranz et al., 2012; Casper et al., 2023;
Ouyang et al., 2022; Ziegler et al., 2019; Christiano et al., 2017; Rafailov et al., 2024) is widely employed.
The orthodox process of RLHF (Gao et al., 2023b; Munos et al., 2023) is described as follows. At each time,
the human user prompts the LLM with an instruction. Subsequently, the model generates several candidate
responses and queries the users for their preferences. Then, a reward model is trained on this preference
data to mimic human evaluation. The language models are then updated using reinforcement learning (RL)
algorithms such as Proximal Policy Optimization (PPO) (Schulman et al., 2017) to optimize responses that
maximize the reward. However, PPO requires an additional reward model and online sampling from LLMs,
which is computational inefficient. Alternatively, Direct Preference Optimization (DPO) (Rafailov et al.,
2024) directly treats the language models themselves as the reward models and optimize the LLMs on the
offline datasets. While its objective is mathematically equivalent to its canonical counterpart, it eliminates
the requirement of additional reward modeling and online sampling.

Despite the notable success of RLHF in aligning language models with human preferences, its practical
implementation often necessitates significant amounts of human-labeled preference data. For instance, the
fine-tuning process of zephyr-7b-beta through RLHF relies on the utilization of a sizable 62k UltraCat-
binarized dataset (Ding et al., 2023). The collection of such a substantial volume of human preference data is
both costly and inefficient. Therefore, there exists a pressing need to develop query-efficient RLHF methods
for effectively aligning large language models with human preferences.
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Following recent theoretical advancements in RLHF (Xiong et al., 2023; Zhu et al., 2023; Sekhari et al.,
2024), we formulate the RLHF problem as a contextual dueling bandit problem (Yue et al., 2012; Wu & Liu,
2016; Saha, 2021; Saha & Krishnamurthy, 2022; Saha & Gaillard, 2022; Wu et al., 2023; Di et al., 2023).
In this setting, the learner proposes a pair of actions and receives noisy feedback regarding the preference
between the dueling pair for each round. While numerous studies address regret minimization in dueling
bandits, only a few works Wang et al. (2023); Zhan et al. (2023); Wu & Sun (2023); Sekhari et al. (2024)
have considered query complexity during the learning process. However, their results either exhibit a linear
dependency on the size of the action set A, limiting the practical applicability of their methods, or fail to
provide instance-dependent regret, thereby missing the opportunity to exploit favorable large-suboptimal-gap
structures in RLHF.1

In this paper, we adopt the principles of active learning (Zhang & Oles, 2000; Hoi et al., 2006) to design a
query-efficient algorithm, Active Proximal Policy Optimization (APPO) for linear contextual dueling bandits.
In each round, APPO employs the maximum likelihood estimator (Di et al., 2023) to estimate the underlying
parameter and constructs an optimistic estimator for the reward gap between different arms. Subsequently,
APPO selects the best arms and estimates the uncertainty associated with the potential feedback. To reduce
the query complexity, APPO selectively queries the dueling preference and updates the parameters only when
the uncertainty of the observation exceeds a threshold.

We further extend APPO to direct preference optimization (DPO) (Rafailov et al., 2024) and introduce a
novel query-efficient method, Active Direct Policy Optimization (ADPO). Following the methodology of
APPO, ADPO selectively queries human preference only for data where the model exhibits high uncertainty
about the observation. For data where the model is less uncertain about, we employ the pseudo label predicted
by the model to fine-tune the model itself. Our contributions are summarized as follows.

• We propose an active-learning based algorithm APPO for linear contextual dueling bandits. Theoretical
analysis shows that our algorithm enjoys a constant instance-dependent regret Õ(d2/∆)2, where d is the
dimension of the feature space, and ∆ is the minimal sub-optimal gap. Meanwhile, our proposed algorithm
only requires Õ(d2/∆2) queries in total T rounds. Compared with previous instance-dependent regret
bound Õ(A2β2d/∆) achieved by Sekhari et al. (2024)3, where A is the size of the action space, our regret
bound is independent on the size of action space A, which is more favorable in practice.

• We propose an active-learning-based DPO method named ADPO. We apply our method to train
zephyr-7b-beta on Ultrafeedback-binarized dataset (Ding et al., 2023) and zephyr-7b-gemma on dpo-
mix-7k dataset. Our experiment shows that while ADPO only make less than half numbers of queries,
the model trained by ADPO achieves a comparable or better performance than DPO on our selected
benckmarks including MT-Bench (Zheng et al., 2024) and AlpacaEval 2.0.

Notation We employ [n] to denote the set {1, . . . , n}. In this work, we use lowercase letters to represent
scalars, and denote vectors and matrices by lower and uppercase boldface letters respectively. Given a
vector x ∈ Rd, we denote the vector’s L2-norm by ∥x∥2. We further define ∥x∥Σ =

√
x⊤Σx given a positive

semidefinite matrix Σ ∈ Rd×d. We use standard asymptotic notations O(·), Ω(·), Θ(·), and further use Õ(·)
to hide logarithmic factors other than the number of rounds T . We use 1{·} denote the indicator function.

2 Related Work

Reinforcement Learning from Human Feedback Learning from human preference data dates back
to Wirth et al. (2017); Christiano et al. (2017) and is recently popularized by generative language models
(Achiam et al., 2023; Touvron et al., 2023). This procedure usually takes place after supervised finetuning
(SFT). The canonical procedure of aligning with human preference includes two stages: reward modeling and

1For instance, in the Ultrafeedback-binarized dataset, the minimal reward gap is 0.5, within a range of 0 to 10. This occurs
because users typically cannot perceive subtle quality differences between responses.

2We use notation Õ(·) to hide the log factor other than number of rounds T
3In our work, we only focused on the regret of one selected action, which is slightly different from the two-arm regret in

Sekhari et al. (2024). See Section 3 for further discussion.
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reward maximization (Ouyang et al., 2022; Bai et al., 2022; Munos et al., 2023). Another approach is direct
preference optimization (DPO) (Rafailov et al., 2024), which treats the generative models directly as reward
models and trains them on preference data. Compared with the first approach, DPO simplifies the aligning
process while maintaining its effectiveness. However, both paradigms require a large amount of human
preference data. In this work, we follow the DPO approach and study its query-efficient modification. The
empirical success of RLHF also prompts a series of theoretical works, with a predominant focus on the reward
maximization stage, modeling this process as learning a dueling bandit (Zhu et al., 2023; Xiong et al., 2023;
Sekhari et al., 2024). Among these works, Wang et al. (2023); Zhan et al. (2023); Wu & Sun (2023); Sekhari
et al. (2024) stand out for considering query complexity in the learning process. However, Wang et al. (2023);
Zhan et al. (2023); Wu & Sun (2023) focus either on worst-case regret bounds or the sample complexity to
identify an ϵ-optimal policy, but fail to provide instance-dependent guarantees (Further discussion is deferred
to Appendix A). Only Sekhari et al. (2024) offer an instance-dependent analysis; however, their upper bound
is Õ(A2β2d/∆), which depends on the size of the action set A, limiting the practical applicability of their
algorithm. Compared to this work, we provide an instance-dependent regret guarantee without dependency on
the action space. Furthermore, based on APPO, we derive a practical algorithm, ADPO, which we empirically
verify to demonstrate its superiority. We also notice two concurrent works that incorporate active learning
with DPO. Mehta et al. (2023) incorporate active learning to DPO and use the variance of log-probabilities
under different dropouts as the uncertainty estimator, which is inefficient in practice. Muldrew et al. (2024)
also proposed an active learning-based alternative of DPO and leverage reward difference as uncertainty
estimator. However, their approach does not involve pseudo labels, which is a key component of our approach.

Dueling Bandits Dueling bandits represent a variant of the multi-armed bandit problem, incorporating
preference feedback between two selected arms (Yue et al., 2012). Existing results in this domain generally
fall into two categories, shaped by their assumptions about preference probability. The first category of work
(Yue et al., 2012; Falahatgar et al., 2017; 2018; Ren et al., 2019; Wu et al., 2022; Lou et al., 2022) assumes a
transitivity property for preference probability and focuses on identifying the optimal action. Our work also
belongs to this category. The second category of work (Jamieson et al., 2015; Heckel et al., 2018; Saha, 2021;
Wu et al., 2023; Dudík et al., 2015; Ramamohan et al., 2016; Balsubramani et al., 2016) focuses on general
preferences with various criteria for optimal actions, such as Borda winner and Copeland winner.

Expanding beyond the standard dueling bandit problem, Dudík et al. (2015) was the first to incorporate
contextual information into the dueling bandit framework. Subsequently, Saha (2021) studied the K-arm
contextual dueling bandit problem and proposed an algorithm with a near-optimal regret guarantee. In
order to addressing the challenge of a potentially large action space, Bengs et al. (2022) also considered
linear function approximation and extended these results to the contextual linear dueling bandit problem and
obtained a regret guarantee of Õ(d

√
T ). Recently, Di et al. (2023) introduced a layered algorithm, improving

the results to a variance-aware guarantee of Õ(d
√∑

σ2
t ), where σ2

t denotes the variance of the observed
preference in round t.

Active Learning To mitigate the curse of label complexity, active learning serves as a valuable approach
in supervised learning . The first line of work is pool-based active learning (Zhang & Oles, 2000; Hoi et al.,
2006; Gu et al., 2012; 2014; Citovsky et al., 2021). In pool-based active learning, instead of acquiring labels
for the entire dataset, the learner strategically selects a batch of the most informative data at each step and
exclusively queries labels for this selected data batch. The learner then employs this labeled data batch to
update the model. Subsequently, guided by the enhanced model, the learner queries another mini-batch
of labels and continues the training process. These steps are iteratively repeated until the model achieves
the desired performance level. The strategic selection of informative data significantly reduces the label
complexity for supervised learning. The label complexity of pool-based active learning has been extensively
studied by Dasgupta (2005); Dasgupta et al. (2005); Balcan et al. (2006; 2007); Hanneke & Yang (2015);
Gentile et al. (2022). This strategy has also been widely applied in tasks like robotics learning (Akrour
et al., 2012; Biyik & Palan, 2019; Wilde et al., 2020). On the other hand, selective sampling (a.k.a., online
active learning) (Cesa-Bianchi et al., 2005; 2006; 2009; Hanneke & Yang, 2021) is a learning framework that
integrates online learning and active learning. In this framework, the algorithm sequentially observes different
examples and determines whether to collect the label for the observed example. In reinforcement learning,
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there are also lines of works focusing on the application of active learning. On theoretical side, Schulze &
Evans (2018); Krueger et al. (2020); Tucker et al. (2023) focuses on active reinforcement learning and directly
integrates the query cost into the received reward. Krueger et al. (2020) laid the groundwork for active
reinforcement learning by introducing a cost c associated with each reward observation and evaluated various
heuristic algorithms for active reinforcement learning. Recently, Tucker et al. (2023) studied the multi-arm
bandit problem with costly reward observation. Their work not only suggests empirical advantages but also
proves an O(T 2/3) regret guarantee. On the application side, there are also lines of works apply selective
sampling to specific circumstance of RLHF in robotics (Lee et al., 2021b;a; Liang et al., 2022).

3 Preliminaries

In this work, we formulate the RLHF problem as a contextual dueling bandit problem (Saha, 2021; Di et al.,
2023). We assume a context set X , and at the beginning of each round, a contextual variable xt is i.i.d
generated from the context set X with the distribution D. Based on the context xt, the learner then chooses
two actions y1

t , y2
t from the action space A and determines whether to query the environment for preferences

between these actions. If affirmative, the environment generates the preference feedback ot with the following
probability P(ot = 1|xt, y1

t , y2
t ) = σ

(
r(xt, y1

t )− r(xt, y2
t )
)
, where σ(·) : R→ [0, 1] is the link function and r(·, ·)

is the reward model.

We consider a linear reward model, e.g., r(x, y) = ⟨θ∗,ϕ(x, y)⟩, where θ∗ ∈ Rd and ϕ : X × A → Rd is a
known feature mapping. For the sake of simplicity, we use ϕ1

t ,ϕ2
t to denote ϕ(xt, y1

t ),ϕ(xt, y2
t ). Additionally,

we assume the norm of the feature mapping ϕ and the underlying vector θ∗ are bounded.

Assumption 3.1. The linear contextual dueling bandit satisfies the following conditions:

• For any contextual x ∈ X and action y ∈ A, we have ∥ϕ(x, y)∥2 ≤ L/2 and r(x, y) ≤ 1.

• For the unknown environment parameter θ∗, it satisfies ∥θ∗∥2 ≤ B.

For the link function σ, we make the following assumption, which is commonly employed in the study of
generalized linear contextual bandits (Filippi et al., 2010; Di et al., 2023).

Assumption 3.2. The link function σ is differentiable and the corresponding first derivative satisfied
κσ ≤ σ̇(·), where κσ > 0 is a known constant.

The learning objective is to minimize the cumulative regret defined as:

Regret(T ) =
T∑

t=1
r∗(xt)− r(xt, y1

t ),

where r∗(xt) = r∗(xt, y∗
t ) = maxy∈A r∗(xt, y) stands for the largest possible reward in context xt. It is worth

noting that prior works (Di et al., 2023; Saha & Krishnamurthy, 2022; Sekhari et al., 2024) in dueling bandits
often define the regret on both action y1

t and y2
t . However, in the context of RLHF, the model generates

multiple candidate responses, and users will choose the most preferable response from the available options.
Under this circumstance, sub-optimality is only associated with the selected response. Therefore, we choose
the regret defined only on action y1

t .

To quantify the cost of collecting human-labeled data, we introduce the concept of query complexity Query(T )
for an algorithm, which is the total number of data pairs that require human feedback for preference across
the first T rounds. Note that while some prior work (Tucker et al., 2023) counts the cost of requesting for
human feedback together with the cost paid for taking certain action, in our approach, we distinguish between
regret and query complexity as two separate performance metrics for an algorithm.

In addition, we consider the minimal sub-optimality gap (Simchowitz & Jamieson, 2019; Yang et al., 2020;
He et al., 2021), which characterizes the difficulty of the bandit problem.
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Definition 3.3 (Minimal sub-optimality gap). For each context x ∈ X and action y ∈ A, the sub-optimality
gap ∆(x, y) and the minimal gap ∆ are defined as

∆(x, y) = r∗(x)− r(x, y), ∆ = min
x∈X ,y∈A

{
∆(x, y) : ∆(x, y) ̸= 0

}
.

In general, a larger sub-optimality gap ∆ between action y and the optimal action y∗ implies that it is easier
to distinguish between these actions and results in a lower cumulative regret. Conversely, a task with a
smaller gap ∆ indicates that it is more challenging to make such a distinction, leading to a larger regret. In
this paper, we assume the minimal sub-optimality gap is strictly positive.

Assumption 3.4. The minimal sub-optimality gap is strictly positive, i.e., ∆ > 0.

Remark 3.5. In the context of RLHF, given a prompt, the minimal sub-optimality gap ∆ represents the
uniform gap between the best answers and the sub-optimal answers, where the optimal answers (or arms in
the context of bandits) might not be unique (See Definition 3.3). Typically, for arms with sub-optimality
close to 0, it is difficult for humans to discern a quality difference between them. Under this situation, we can
roughly consider these arms also as optimal arms (optimal arms may not be unique) and only consider the
gap between sub-optimal arms and these optimal arms. Therefore, Assumption 3.4 is mild in the context of
RLHF.

Algorithm 1 Active Proximal Policy Optimization (APPO)
Require: Regularization parameter λ > 0, and B, an upper bound on the ℓ2-norm of θ∗, confidence radius

β, uncertainty threshold Γ > 0, learning rate η
1: Set initial policy π1(·|·) as uniform distribution over the action set A, Σ0 ← λI, C0 = ∅
2: for t = 1, . . . , T do
3: Compute the MLE θ̂t as in (4.1) and observe A, select y2

t ∼ Uniform(A)
4: Compute D̂t(xt, y) = min

{
⟨θ̂t,ϕ(xt, y)− ϕ2

t ⟩+ β∥ϕ(xt, y)− ϕ2
t∥Σ−1

t−1
, 1
}

5: Choose y1
t = argmaxy D̂t(xt, y)

6: if ∥ϕ1
t − ϕ2

t∥Σ−1
t−1
≤ Γ then

7: Keep Σt = Σt−1, πt+1(a|s) = πt(a|s) and Ct = Ct−1
8: else
9: Sample y1

t ∼ πt(·|st), query for the preference and observe ot

10: Update Σt = Σt−1 + (ϕ1
t − ϕ2

t )(ϕ1
t − ϕ2

t )⊤ and Ct = Ct−1 ∪ {t}
11: Update πt+1(y|x) ∝ πt(y|x) exp

(
ηD̂t(y, x)

)
12: end if
13: end for

4 Algorithm

In this section, we introduce our proposed query-efficient method for aligning LLMs. The main algorithm is
illustrated in Algorithm 1. At a high level, the algorithm leverages the uncertainty-aware query criterion
(Zhang et al., 2023) to issue queries and employs Optimistic Proximal Policy Optimization (OPPO) (Cai
et al., 2020; He et al., 2022a) for policy updates. In the sequel, we introduce the key parts of the proposed
algorithm.

Regularized MLE Estimator For each round t ∈ [T ], we construct the regularized MLE estimator
(Filippi et al., 2010; Li et al., 2017) of parameter θ∗ by solving the following equation:

λθ +
∑

τ∈Ct−1

[
oτ − σ

(
⟨θ,ϕ1

τ − ϕ2
τ ⟩
)]

(ϕ1
τ − ϕ2

τ ) = 0, (4.1)

where Ct denotes the set of rounds up to the t-th round for which the preference label is required. Compared
with previous work on linear dueling bandits (Saha, 2021; Di et al., 2023), here we only requires part of

5



Under review as submission to TMLR

the human-labelled preference. We construct the MLE estimator with only rounds τ ∈ Ct. In addition, the
estimation error between θ̂t and θ∗ satisfies

∥θ∗ − θ̂t∥Σt−1 ≤ Õ
(√

d log |Ct|/κσ

)
.

After constructing the estimator θ̂t, the agent first selects a baseline action y2
t and compares each action

y ∈ A with the baseline action y2
t . For simplicity, we denote Dt(xt, y) = ⟨θ∗,ϕ(xt, y)− ϕ2

t ⟩ as the reward
gap between y and action y2

t . Then, we construct an optimistic estimator D̂t for the reward gap with linear
function approximation and Upper Confidence Bound (UCB) bonus, i.e.,

D̂t(xt, y) = min{⟨θ̂t,ϕ(xt, y)− ϕ2
t ⟩+ β∥ϕ(xt, y)− ϕ2

t∥Σ−1
t−1

, 1}.

Here we truncate the estimation since the true reward is in [0, 1] and therefore their difference is bounded by
1. With the help of UCB bonus, we can show that our estimated reward gap D̂t is an upper bound of the
true reward gap Dt.

Uncertainty-Aware Query Criterion To mitigate the expensive costs from collecting human feedback,
we introduce the uncertainty-based criterion (Line 6) (Zhang et al., 2023) to decide whether a pair of action
requires y1

t and y2
t requires human-labelled preference. Intuitively speaking, the UCB bonus β∥ϕ1

t − ϕ2
t∥Σ−1

t−1

captures the uncertainty associated with the preference feedback ot. Similar criterion has also been used in
corruption-robust linear contextual bandits (He et al., 2022b) and nearly minimax optimal algorithms for
learning linear (mixture) Markov decision processes (Zhou & Gu, 2022; He et al., 2023; Zhao et al., 2023),
where β∥ϕ∥Σ−1

t−1
represents the uncertainty of certain action. For the action pair (y1

t , y2
t ) with low uncertainty,

where the observation is nearly known and provides minimal information, we select the action y1
t , y2

t without
querying human preference feedback. In this situation, the policy π(·|·) remains unchanged as there is no
observation in this round. By employing the uncertainty-based data selection rule, we will later prove that
the query complexity is bounded.

Proximal Policy Optimization In cases where the action pair (y1
t , y2

t ) exhibits high uncertainty and the
uncertainty-aware query criterion is triggered, the agent resample the action y1

t from policy πt and queries
human feedback for the duel y1

t , y2
t . Upon observing the preference ot, this round is then added to the dataset

Ct. Subsequently, the policy πt+1 is updated using the Optimistic Proximal Policy Optimization (OPPO)
method (Cai et al., 2020; He et al., 2022a), i.e.,

πt+1(y|x) ∝ πt(y|x) exp
(
ηD̂t(y, x)

)
.

In an extreme case where the uncertainty threshold Γ is chosen to be 0, the uncertainty-aware query criterion
will always be triggered. Under this situation, Algorithm 1 will query the human-labeled preference for each
duel (y1

t , y2
t ), and Algorithm 1 will degenerate to the dueling bandit version of OPPO (Cai et al., 2020).

Under this situation, Algorithm 1 enjoys Õ(d
√

T ) regret while having a linear query complexity with respect
to the number of rounds T .

5 Theoretical Analysis

In this section, we present our main theoretical results.

Theorem 5.1. Let ∆ be the minimal sub-optimal gap in Assumption 3.4. If we set the parameters
Γ = Õ(∆/

√
d), λ = B−2, η = Õ(

√
Γ2 logA/d), and β = Õ(

√
d/κσ) in Algorithm 1, then with with

probability at least 1− δ, the regret for Algorithm 1 across the first T rounds is upper bounded by

Regret(T ) = Õ(d2/∆).

In addition, the query complexity of Algorithm 1 is upper bounded by:

Query(T ) = |CT | = Õ(d2/∆2).
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Algorithm 2 Active Direct Preference Optimization (ADPO)
Require: Regularization parameter β, uncertainty threshold γ, learning rate η, initial model parameter θ1,

batch size S
1: for t = 1, . . . , T do
2: Receive batch of data Bt = {xi, y1

i , y2
i }S

i=1
3: for i = 1, . . . , S do
4: Set the confidence Cθt(xi, y1

i , y2
i ) as in (6.3)

5: if Cθt
(xi, y1

i , y2
i ) ≤ γ then

6: Query for the human label and set oi as the queried preference.
7: else
8: Set oi ← sign

(
rθt(x, y1)− rθt(x, y2)

)
9: end if

10: end for
11: Update θt+1 ← θt − η∇θLBt

(πθt
, πθ1)

12: end for

Remark 5.2. Theorem 5.1 suggests that our algorithm achieves a constant level of regret and query
complexity respect to the number of rounds T . In theory, our algorithm requires a prior knowledge of the
sub-optimal gap ∆. In practice where ∆ is unknown, the learner can set the parameter ∆ via grid search
process.

Remark 5.3. In comparison to the instance-dependent regret Õ(A2d/∆) obtained by the AURORA algorithm
(Sekhari et al., 2024)4, our algorithm’s regret eliminates the dependency of the action space A. Moreover, we
achieve an improvement in the query complexity by a factor of A3.

6 Practical Algorithm

In this section, we introduce a practical version of our proposed algorithm based on DPO (Rafailov et al., 2024)
and the resulting algorithm is named as Active Direct Preference Optimization (ADPO) and summarized
in Algorithm 2. At a high level, our proposed method follows the basic idea of Algorithm 1 and sets an
uncertainty threshold to filter out informative training samples. However, adapting our algorithm to neural
network training requires several key modifications as below.

Direct Preference Optimization We follow the framework of DPO Rafailov et al. (2024) for policy
optimization. In detail, we consider the Bradley-Terry (BT) model (Bradley & Terry, 1952), which corresponds
to σ(x) = 1/(1 + e−x). In RLHF, the objective is to maximize the expected reward regularized by the
Kullback-Leibler (KL) divergence from the reference policy πref:

max
π

Ey∼π(·|x),x∼D
[
r(x, y)− βKL(π(·|x)||πref(·|x))

]
, (6.1)

where β > 0 is the regularization parameter, D is the distribution of the prompts and πref is the reference
policy, which corresponds to the SFT checkpoint. The optimal policy of (6.1) is follows:

π∗(y|x) ∝ πref(y|x) exp(r(x, y)).

Therefore, given the final model parameter θ, we can rewrite the reward in the following form:

rθ(x, y) = β
(

log πθ(y|x)− log πref(y|x)
)

+ βZ(x),

where Z(x) is a constant independent of y. Plugging rθ(x, y) into the BT model and fitting the model with
the preference labels in dataset D, we get the following DPO training objective:

LDPO(πθ, πref) = −E(x,y1,y2,o)∼D

[
log σ

(
o ·
(
rθ(x, y1)− rθ(x, y2)

))]
,

4In our work, we only focused on the regret of one selected action, which slightly differs from the regret in Sekhari et al.
(2024).
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where y1 and y2 are the two responses to the given prompt x, and o is the human preference such that o = 1
indicates a preference for y1, and o = −1 indicates a preference for y2. Compared to standard RLHF, DPO
bypasses the reward modeling process and thus eliminates the introduced reward noise.

Confidence Estimator The key to achieving query efficiency in Algorithm 1 is the confidence-based data
filter. However, in real applications, rewards are no longer necessarily parameterized by a linear function.
Thus, the uncertainty estimator cannot be directly transferred to empirical cases. Since the model is essentially
predicting the probability of human preference labels, i.e.,

P(o = 1|x, y1, y2) = σ(rθ(x, y1)− rθ(x, y2)), (6.2)

where o stands for the preference label and rθ is the reward model. We can use the reward model’s predicted
probability as its uncertainty. Specifically, if |rθ(x, y1)− rθ(x, y2| is large, then the predicted probability is
close to 0 or 1, which means the model is confident about its prediction. Otherwise, if |rθ(x, y1)− rθ(x, y2| is
close to 0, the predicted probability is close to 1/2, which indicates the model’s confidence is low. Therefore,
we define the following function Cθ:

Cθ(x, y1, y2) = |rθ(x, y1)− rθ(x, y2)|, (6.3)

as the confidence level of the model.

Training Objectives One key design in ADPO is the use of pseudo label, which is inspired by previous
methods such as Gentile et al. (2022). For given answer pairs, if the model is very confident in its preference
label, we then use the preference label predicted by the model (i.e., pseudo label) for training. To be specific,
given a prompt x and the corresponding answers y1 and y2, the predicted preference label can be defined as
follows:

oθ(x, y1, y2) =
{

o if Cθ(x, y1, y2) ≤ γ

sign
(
rθ(x, y1)− rθ(x, y2)

)
if Cθ(x, y1, y2) > γ

, (6.4)

where o is the human preference upon query, sign(z) is the signal of z and γ is the confidence threshold
(corresponding to the threshold Γ in APPO). With the predicted preference labels of given prompts and
answers, now we can formulate our training objective as the follows:

LD(πθ, πref) = −E(x,y1,y2)∼D

[
log σ

(
oθ(x, y1, y2) ·

(
rθ(x, y1)− rθ(x, y2)

))]
. (6.5)

To make our approach more time efficient in practice, we follow the standard approach in DPO and use
mini-batch gradient descent to update the parameters of our model. At each time step, we feed the model
with a batch of data {(xi, y1

i , y2
i )}S

i=1. We then compute the pseudo labels and update the model parameters
by one-step gradient descent.

7 Experiments

In this section, we conducted extensive experiments to verify the effectiveness of ADPO. Our experiments
reveal that ADPO outperforms DPO while requiring only up to half of the queries. Additionally, our ablation
studies show that involving pseudo-labels plays a key role in the training process.

7.1 Experimental Setup

Models and Dataset We start from two different base models zephry-7b-sft-full5 (Zephyr-Beta-SFT)
and zephyr-7b-gemma-sft-v0.16 (Zephyr-Gemma-SFT), which is supervised-finetuned from Mistral-7B
(Jiang et al., 2023) model and gemma-7B (Team et al., 2024) correspondingly. Zephyr-Beta-SFT is obtained

5https://huggingface.co/alignment-handbook/zephyr-7b-sft-full
6https://huggingface.co/HuggingFaceH4/zephyr-7b-gemma-sft-v0.1
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Table 1: Results on objective benchmarks. ADPO significantly outperforms DPO on ARC, TruthfulQA, and
performs comparably to DPO on HellaSwag, resulting higher average performances. Besides, ADPO only
makes 16k queries on Zephyr-Beta and 3.6k queries on Zephyr-Gemma, which is about only a quarter to half
of the queries made by DPO.

Models ARC TruthfulQA HellaSwag Average # Queries
Zephyr-Beta-SFT 58.28 40.36 80.72 59.79 0
Zephyr-Beta-DPO 61.17 45.15 82.08 62.80 62k
Zephyr-Beta-ADPO 62.29 52.25 83.11 65.88 16k
Zephyr-Gemma-SFT 55.03 46.92 81.45 61.13 0
Zephyr-Gemma-DPO 58.45 52.07 83.48 64.67 6751
Zephyr-Gemma-ADPO 61.01 57.55 83.16 67.24 3652

Table 2: Results on subjective benchmarks including AlpacaEval 2.0 and MT-Bench. Here WR stands for
win rate and LC stands for length controlled. ADPO achieves comparable performance with DPO on starting
from Zephyr-Beta-SFT and outperforms DPO starting from Zephyr-Gemma-SFT. Besides, ADPO only makes
16k queries for Zephyr-Beta and 3.6k queries for Zephyr-Gemma, which is about only a quarter to half of the
queries made by DPO.

Models MT-Bench Alpaca Eval 2.0
First Turn Second Turn Average LC WR WR Avg. Length

Zephyr-Beta-SFT 6.82 5.94 6.39 4.59 4.69 1741
Zephyr-Beta-DPO 7.55 7.27 7.41 13.57 12.67 1735
Zephyr-Beta-ADPO 7.31 7.08 7.20 12.67 12.02 1801
Zephyr-Gemma-SFT 5.62 5.56 5.59 0.13 0.62 4296
Zephyr-Gemma-DPO 5.94 5.49 5.72 10.70 3.68 9064
Zephyr-Gemma-ADPO 6.53 6.49 6.51 15.85 3.81 8967

by conducting SFT on Ultrachat-200k (Ding et al., 2023) dataset and Zephyr-Gemma-SFT is obtained by
conducting SFT on deita-10k-v0-sft (Liu et al., 2023). We follow the approach in alignment-handbook7 and
adopt the corresponding human-preference datasets. Specifically, we use Ultrafeedback-binarized (Ding et al.,
2023) to train Zephyr-Beta-SFT and dpo-mix-7k8 to train Zephyr-Gemma-SFT.

Baseline and Evaluation We consider DPO as our baseline and use full-finetune to optimize the models for
both DPO and ADPO. Please refer to Appendix B for more details regarding the selection of hyperparameters.
We adopt both objective and subjective evaluation techniques to evaluate the resulting models. Specifically,
we employ ARC (Clark et al., 2018), HellaSwag (Zellers et al., 2019) and TruthfulQA (Lin et al., 2021) as
benchmarks for objective evaluation. Among these datasets, ARC (Clark et al., 2018) and HellaSwag (Zellers
et al., 2019) focus on the language models’ capability of commonsense reasoning, while TruthfulQA (Lin
et al., 2021) focuses on human falsehood mimic. For subjective benchmarks, we consider AlpacaEval 2.0
(AlpacaEval) and MT-Bench (Zheng et al., 2024). AlpacaEval employs AlpacaFarm (Dubois et al., 2024),
which is made up of general human instructions, as its set of prompts. During evaluating, the model responses
and the reference response generated by GPT-4-Turbo are fed into a GPT-4-Turbo for preference annotation
and the win rate measures the models capability. MT-Bench is composed of 80 high-quality multi-turn
open-ended questions covering a variety of topics. The generated answers are also judged by GPT-4, which
gives scores directly without comparison. Please refer to Appendix B for more detailed discussion of the
datasets and evaluation.

7https://github.com/huggingface/alignment-handbook
8https://huggingface.co/datasets/argilla/dpo-mix-7k
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Figure 1: The test accuracy curve of DPO and ADPO starting from Zephyr-Beta-SFT. The x-axis is the
number of queries and the y-axis is the metric for corresponding dataset. Compared to DPO, ADPO enjoys
a faster performance improvement and a higher performance upper bound.
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Figure 2: The test accuracy curve of DPO and ADPO starting from Zephyr-Gemma-SFT. The x-axis is the
number of queries and the y-axis is the metric for corresponding dataset. Compared to DPO, ADPO enjoys
a faster performance improvement and a higher performance upper bound.

7.2 Experimental Results

Results on Objective Benchmarks The results on subjective benchmarks are presented in Table 1. We
see that DPO and ADPO improve the average score by a large margin starting from both Zephyr-Beta-SFT
and Zephyr-Gemma-SFT. As for Zephyr-Beta, on TruthfulQA, ADPO outperforms DPO prominently by
a margin of 7.1%, and also outperforms DPO on ARC and HellaSwag by 1.08% and 1.03% respectively.
Reflecting on the average score, we see that ADPO outperforms DPO by a margin of 3.08%. As for Zephyr-
Gemma, ADPO outperforms DPO prominently by a margin of 5.48% on TruthfulQA and 2.56% on ARC.
ADPO also reaches a performance comparable to DPO on HellaSwag. Finally, reflecting on the average score,
we see that ADPO outperforms DPO by a margin of 2.57%. To sum up, results on both models shows the
superiority of ADPO. Besides the performance on the benchmarks, we see that ADPO only requires 16k
queries for Zephyr-Beta and 3.6k for Zephyr-Gemma, which is only about a half of the size of the training
dataset.

Results on Subjective Benchmarks The results on subjective benchmarks are presented in Table 2.
For Zephyr-Beta, we see that ADPO achieves comparable performance with DPO. In detail, On MT-Bench,
we see that ADPO improves the average performance from 6.39 to 7.20, which is much more significant
comparing to its gap with DPO of 0.21. Similarly, on AlpacaEval, ADPO also improve the LC win rate by
ar margin of 8.08, which is much more significant than its gap to DPO. For Zephyr-Gemma, we see that
ADPO outperforms DPO by a considerable margin. In detail, On MT-Bench, we see that ADPO achieves a
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performance of 6.51 compared 5.72 achieved by DPO. Similarly, on AlpacaEval, ADPO achieves a LC win
rate of 15.85, which also surpasses DPO by a large margin.

Query Efficiency To further demonstrate the query efficiency for ADPO, we plot the test accuracy curves
for ADPO and DPO as the numbers of queries increase on selected datasets. The curves for ARC, HellaSwag
and TruthfulQA starting from Zephyr-Beta-SFT and Zephyr-Gemma-SFT are shown in Figure 1 and Figure 2
respectively. For Zephry-Beta, we see that the growth of DPO’s performance for ARC almost stops when
query number reaches about 30k. This trend can also be observed on TruthfulQA after 20k queries and
HellaSwag after about 15k queries. In contrast, the performance of ADPO enjoys a faster improvement when
training with the first about 10k results and maintains at a preferable level after that. For Zephyr-Gemma,
we observe a similar pattern. The growing speed of the performance of DPO either slows down significantly
after making 3k to 4k queries, as shown by Figure 2(a) and Figure 2(b), or maintains at a very low level
(Figure 2(c)). These results suggest that ADPO can effectively select the most informative data and only
make queries for these preference labels.

8 Ablation Studies

In this section, we consider the impact of the two important parts that are crucial in ADPO, namely
pseudo-labeling and the choice of uncertainty threshold. Due to time and computational constraint, all the
ablations starts from Zephyr-Beta-SFT and evaluated on objective benchmarks.

8.1 Impact of Pseudo Labels

Table 3: The effect of pseudo-labels. ADPO performs better than ADPO (w/o PL) in terms of average scores
with fewer queries.

Model ARC TruthfulQA HellaSwag Average # Queries
DPO 61.17 45.15 82.08 62.80 62k
ADPO (w/o PL) 61.18 45.28 82.25 62.90 34k
ADPO 62.29 52.25 83.11 65.88 16k

An alternative to active learning is to directly follow Algorithm 1 and simply neglect those training data with
high confidence. Since neglected samples will not affect the loss and the corresponding gradient, we set the
label to 0 so that they will not contribute to ∇θL in Eq. (6.5) during the learning process. Formally, we
define the label o′

θ as follows:

o′
θ(x, y1, y2) =

{
o if Cθ(x, y1, y2) ≤ γ

0 if Cθ(x, y1, y2) > γ
.

We keep the remaining part of our method the same and denote this method as “ADPO (w/o PL)”. The
performances of the trained models are shown in Table 3. We also plot the training curve in Figure 1. The
results show that, without pseudo-labels, the performance suffers from a significant downgrade in average
score compared to ADPO and does not demonstrate a clear advantage against vanilla DPO. The training
curves further indicate that, without pseudo labels, the training dynamics are much more similar to vanilla
DPO. These results show that the pseudo-labels plays a crucial role our designed active learning process.

8.2 Value of Confidence Threshold

We study the impact of different confidence thresholds. We varies the value of γ to 1.0, 1.3 and 1.5. For each γ,
we count the preference labels used by the models and evaluate the trained models on the datasets. As shown
in Table 4, when the confidence threshold is small, with more predicted labels, these models perform better
on the TruthfulQA dataset. On the other hand, when the confidence threshold goes larger, the models are
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Table 4: The effect of confidence threshold in ADPO. We vary the value of γ and report the evaluation
results. When γ is increasing, ADPO made more queries and the performance pattern is getting closer to
DPO.

Method γ ARC TruthfulQA HellaSwag Average # Queries
DPO - 61.17 45.15 82.08 62.80 62k

ADPO

1.0 61.43 52.76 82.55 65.58 13k
1.3 62.29 52.25 83.11 65.88 16k
1.5 60.75 52.97 83.29 65.67 21k

making more queries, and the performance patterns become closer to the DPO baseline. Another observation
is that for all our chosen γ, ADPO consistently outperforms the DPO baseline, which implies that ADPO is
not very sensitive to the uncertainty threshold and an coarse grid search of confidence threshold can introduce
a fairly good performance.

9 Conclusion and Future Work

In this work, we considered query-efficient methods for aligning LLMs with human preference. We first
formulated the problem as a contextual dueling bandit. Under linear reward and sub-optimal gap assumption,
we proposed an active-learning-based algorithm, APPO. Our theoretical analysis shows that our algorithm
enjoys a constant instance-dependent regret upper bound and query complexity. We then adapted our
algorithm to direct preference optimization and proposed a query efficient DPO method, ADPO. We
conducted experiments starting from two models, Zephyr-Beta-SFT and Zephyr-Gemma-SFT and evaluated
the resulting models on both objective benchmarks and subjective benchmarks. Results show that, ADPO
achieves a comparable or even better performance compared to DPO with only less than half the demands
on the human preference labels. Despite the good performance ADPO achieves, since it uses DPO as the
framework of our practical method, our theoretical analysis of APPO cannot be directly applied to ADPO.
We leave the theoretical analysis of ADPO as our future work.

Broader Impact Statement

This paper studies aligning LLMs with human preference in a query-efficient manner. We believe that this
topic has the following social impacts. First, LLM-based chatbots have demonstrated substantial capabilities
as AI assistants and they are now increasingly relied upon by individuals. The key step towards building
helpful AI assistant is aligning LLMs with human ethics and preferences. Secondly, aligning LLMs requires a
large number of human preference labels, necessitating considerable human labor and material resources. In
this paper, We propose a query-efficient method to align LLMs with human preference. Our experiments
results indicate that our method can better align LLMs with human preference with significantly fewer queries
for human preferences. Therefore, we believe that our method potentially alleviate the labor and resource
demands within this process.
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A Further Discussions on Related Work

In this section, we provide further discussion on previous works (Wang et al., 2023; Zhan et al., 2023; Wu &
Sun, 2023; Sekhari et al., 2024), which consider query complexity in the dueling bandit setting, and explain
why they fail to achieve an instance-dependent regret guarantee.

Comparison with Wang et al. (2023) Wang et al. (2023) proposed a general framework, P2R, for
efficiently querying human preferences, and later extended it to a white-box algorithm (P-OMLE) with a
specialized analysis. However, the P2R algorithm relies on a comparison oracle that is stronger than ours.
In the bandit setting, the oracle in Wang et al. (2023) can return preference labels between responses to
different prompts, which often exceeds the abilities of typical users. In contrast, our oracle only requires
preferences between responses generated from the same prompt. Furthermore, P2R algorithms necessitate
multiple independent comparisons between a baseline trajectory and user-generated trajectories, making
it impractical to ask a single user for multiple independent preferences on the same query. Our ADPO
algorithm, by contrast, only requires one preference feedback per query, making it much more user-friendly.

Additionally, in the linear reward setting, the query complexity for the Preference-based OMLE (white-box)
algorithm is Õ(d2/∆2)9, which is the same as ours. However, P-OMLE requires solving an optimization
problem over complex confidence regions, resulting in an intractable planning phase. In comparison, our APPO
algorithm introduces an explicit confidence bonus to bypass this complexity and uses a policy optimization
method, which is more tractable and closely aligned with practical RLHF methods, while still achieving the
same query complexity.

Failures in Achieving Instance-Dependent Regret Guarantees Recently, Zhan et al. (2023) proposed
a pure-exploration style algorithm (REGIME) that can identify the ϵ-optimal policy with a query complexity
of Õ(d2/ϵ2), where d is the dimension of the feature space. However, it is important to note that the output
policy may be a randomized policy, and does not guarantee a constant regret, even under the assumption of
a minimal sub-optimality gap ∆. Specifically, the minimal sub-optimality gap does not prevent a randomized
policy from incurring regret between 0 and ∆. Thus, even for an ϵ much smaller than the sub-optimality gap
∆, there is no guarantee that a randomized algorithm will always achieve zero regret. For example, a policy
that selects the optimal action with a probability of 50% and a ∆-suboptimal action with a probability of
50% will result in a regret of ϵ = ∆/2. In this situation, the REGIME algorithm may lead to linear regret
with respect to T and fail to achieve instance-dependent regret guarantees.

A similar issue arises when transferring the sample complexity guarantee in Wang et al. (2023) to an instance-
dependent regret bound. Additionally, we observe that in Proposition 5 of Wang et al. (2023), the P2R
framework achieves finite sample complexity using the UCBVI algorithm (Azar et al., 2017). It is important

9The query complexity of P-OMLE has a logarithmic dependency on the reward function space R. For the linear reward
function class, where logR = d, their complexity becomes d logR/∆2 = d2/∆2.
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to note that the original UCBVI algorithm employs deterministic policies for each episode. However, Azar
et al. (2017) only provides a

√
T regret guarantee for the first T rounds, rather than a sample complexity

guarantee. To address this, Jin et al. (2018) demonstrates that any algorithm with sublinear regret can
derive a finite sample complexity by randomly selecting a policy from the first T rounds, resulting in a final
randomized policy. After this step, the output policy may no longer be deterministic and fails to provide
instance-dependent regret guarantees.

Another related work, Wu & Sun (2023), proposed a sampling-based algorithm (PR-LSVI) that provides
a Õ(d3

√
T ) regret guarantee for the first T rounds, which is not directly related to the sub-optimality gap.

Consequently, a random mixture over the first T rounds is required to identify a near-optimal policy, and it
fails to achieve constant regret even in the presence of a positive sub-optimality gap.

As demonstrated above, all of these works can only find a random policy that achieves ϵ-optimality, which
cannot provide an instance-dependent regret guarantee, even with the assumption of a minimal sub-optimality
gap.

B Additional Experiment Details

Hyper-parameters for Training Zephyr-Beta We trained our models on 4×NVIDIA A100 GPUs, with
about 80G memory for each GPU. We set the learning rate to 5e-7 for both DPO and ADPO. We use a
linear learning rate scheduler with a warm-up ratio of 0.1. The batch size per device is set to 4 and the
gradients are accumulated every 4 steps, resulting in equivalent batch size 64. We set dropout to 0.1 and the
regularization parameter β = 0.1 for both DPO and ADPO. For both ADPO and its counterpart without
pseudo labels, we set the uncertainty threshold γ = 1.3. We trained one epoch for both DPO and ADPO,
which takes roughly 9 hours.

Hyper-parameters for Training Zephyr-Gemma We trained our models on 4×NVIDIA A100 GPUs,
with about 80G memory for each GPU. We set the learning rate to 5e-7 for both DPO and ADPO. We use
a linear learning rate scheduler with a warm-up ratio of 0.1. The batch size per device is set to 4 and the
gradients are accumulated every 4 steps, resulting in equivalent batch size 64. We set dropout to 0.1 and the
regularization parameter β = 0.1 for both DPO and ADPO. For ADPO, we set the uncertainty threshold
γ = 1.5. We trained one epoch for both DPO and ADPO, which takes roughly 1 hour.

Evaluation Setup For subjective evaluation benchmarks, we follow the standard setup specified in the
original repositories. For obejctive benchmarks, we use few-show learning to prompt the LLMs. Specifically,
the few-shot number of ARC is set to 25, HellaSwag to 10 and TruthfulQA to 0. We use acc_norm as the
metric for ARC and HellaSwag, and mc2 for TruthfulQA.

C Additional Experiment Results

In this section, we present the additional results which are obtained by starting from Zephyr-Beta-SFT and
optimizing the model with LoRA-finetuning (Hu et al., 2021).

Experiment Setup We trained our models on 4×NVIDIA RTX A6000 GPUs, with about 49G memory
for each GPU. We set the LoRA rank to 64, α = 16, and dropout to 0.1 and learning rate to 1e-5. We use
a linear learning rate scheduler with a warm-up ratio of 0.1. The batch size per device is set to 4 and the
gradients are accumulated every 4 steps, resulting in equivalent batch size 64. We set the regularization
parameter β = 0.1 for both DPO and ADPO. For ADPO, we set the uncertainty threshold γ = 1.5. We
trained one epoch for both DPO and ADPO, which takes roughly 7 hours. We only evaluate the obtained
checkpoints on objective benchmarks due to the costly nature of calling external large language models as
the judge.

Benchmark Performances The results are summarized in Table 5. We observe a similar results as for
full-finetuning. The results show that both DPO and ADPO improve the average score by a large margin.
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Table 5: Result on objective benchmarks for LoRA finetuning on Zephyr-7B-Beta. ADPO significantly
outperforms DPO on ARC, TruthfulQA and HellaSwag. Besides, ADPO only makes 32k queries, which is
about only a quarter to half of the queries made by DPO.

Models ARC TruthfulQA HellaSwag Average # Queries
Zephyr-Beta-SFT 58.28 40.36 80.72 59.79 0
Zephyr-Beta-DPO (LoRA) 60.58 41.88 82.34 61.60 62k
Zephyr-Beta-ADPO (LoRA) 61.26 45.52 83.21 63.33 32k
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Figure 3: The test accuracy curve of DPO, ADPO (w/o PL) and ADPO under LoRA-finetune. The x-axis is
the number of queries and the y-axis is the metric for corresponding dataset. Compared to DPO and ADPO
(w/o PL), ADPO enjoys a faster performance improvement and a higher performance upper bound.

ADPO outperforms DPO on TruthfulQA by a relatively large margin of 3.64% and also reaches an at-least
comparable performance on other three datasets. Finally, reflecting on the average score, we see that ADPO
outperforms DPO by a margin of 1.73%. Besides, we see that ADPO only requires 32k queries, which is only
about half of the size of the training dataset. These results show that with much less number of queries,
ADPO can reach a comparable or even superior performance than DPO, which is consistent with results
under full-finetune.

Query Efficiency We plot a set of similar test accuracy curves for ADPO and DPO for LoRA-finetuning.
The results are presented in Figure 3. Here we observe a similar pattern. The growing speed of the
performance of DPO either slows down significantly after making 15k to 30k queries, as shown by Figure 3(a)
and Figure 3(b), or maintains at a very low level (Figure 3(c)). These results suggest that ADPO can
effectively select the most informative data and only make queries for these preference labels.

C.1 Ablation Studies

Table 6: The effect of pseudo-labels under LoRA-finetune setting. ADPO performs better than ADPO (w/o
PL) in terms of average scores with fewer queries.

Model γ ARC TruthfulQA HellaSwag Average # Queries
ADPO (LoRA) (w/o PL) 0.8 60.49 41.39 82.23 61.37 38k
ADPO (LoRA) (w/o PL) 1.0 60.49 41.62 82.32 61.48 40k
ADPO (LoRA) (w/o PL) 1.2 60.49 41.79 82.47 61.58 43k
ADPO (LoRA) 1.5 61.26 45.52 83.21 63.33 32k
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Impact of Pseudo Labels Following the setup in Section 8.1, we consider the counterpart of ADPO
without pseudo labels under LoRA finetuning. We pick γ to be 0.8, 1.0, and 1.2 for ADPO without pseudo
labels. The performances of the trained models are shown in Table 6. We also plot the training curve in
Figure 3. The results show that, without pseudo-labels, the performance suffers from a significant downgrade
in average score compared to ADPO. The training curves further indicate that, without pseudo labels, the
training dynamics are much more similar to vanilla DPO. These results show the crucial role of pseudo-labels
in the active learning process.

Table 7: The effect of confidence threshold in practice setting. We vary the value of γ and report the
evaluation results. When γ is increasing, ADPO made more queries and the performance pattern is getting
closer to DPO.

Method γ ARC TruthfulQA HellaSwag Average # Queries
DPO (LoRA) - 60.58 41.88 82.34 61.60 35.7k

ADPO (LoRA)

1.0 61.01 48.41 83.35 64.26 16k
1.3 61.43 47.56 83.48 64.16 24k
1.5 61.26 45.52 83.21 63.33 32k
1.8 60.92 43.20 82.13 62.08 43k

Value of Confidence Threshold We also study the impact of different confidence thresholds in LoRA
fine-tuning setting. We varies the value of γ to 1.0, 1.3, 1.5, and 1.8. For each γ, we count the preference
labels used by the models and evaluate the trained models on the datasets. As shown in Table 7, when the
confidence threshold is small, with more predicted labels, these models perform better on the TruthfulQA
dataset. On the other hand, when the confidence threshold goes larger, the models are making more queries,
and the performance patterns become closer to the DPO baseline. Another observation is that for all our
chosen γ, ADPO consistently outperforms the DPO baseline, which implies that ADPO is not very sensitive
to the uncertainty threshold and an coarse grid search of confidence threshold can introduce a fairly good
performance.

D Proof of Theorems in Section 5

In this section, we provide the proof of Theorem 5.1 and we first introduce several lemmas. The following
lemma provides an upper bound on the query complexity and the corresponding dataset size |CT |.
Lemma D.1 (Modified from Lemma 4.5, Zhang et al., 2023). Given a uncertainty threshold 0 < Γ ≤ 1,
if we set the regularization parameter λ = B−2, then for each round t ∈ [T ], we have |Ct| ≤ |CT | ≤
16dΓ−2 log(3LBΓ−1).

For a finite dataset CT , the following lemma provides a upper bound for the estimation error between θ̂t and
θ∗.
Lemma D.2. Suppose we have ∥θ∗∥ ≤ B, ∥ϕ(x, y)∥ ≤ L/2. Then with probability at least 1− δ, for each
round t ∈ [T ], we have

∥θ∗ − θ̂t∥Σt−1 ≤
1

κµ
·
(√

λB +
√

2d log(λ + |CT |L2/dλδ)
)
,

Based on Lemmas D.1 and D.2, the following auxiliary lemma proposes a proper choice for the uncertainty
threshold Γ and confidence radius β in Algorithm 1.
Lemma D.3. If we set the uncertainty threshold Γ = κµ∆/(2dι1) and confidence radius β = κ−1

µ (1 +
4
√

dι2 +
√

2dι3), where ι1 = 42 log(126LB
√

d∆−1κ−1
µ ) +

√
8 log(1/δ), ι2 = log(3LBΓ−1) and ι3 = log

(
(1 +

16L2B2Γ−2ι2)/δ
)
, then we have 2βΓ < ∆ and

β ≥ 1
κµ
·
(√

λB +
√

2d log(λ + |CT |L2/dλδ)
)
.
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With these parameters, we now define the event E1 as

E1 = {∀t ∈ [T ], ∥θ̂t − θ∗∥Σ−1
t−1
≤ β}.

According to Lemma D.2 and Lemma D.3, we have Pr(E1) ≥ 1− δ. Conditioned on the event E1, the following
lemma suggests that our estimated discrepancy is no less than the actual discrepancy.

Lemma D.4. On the event E1, for each round t ∈ [T ], context x ∈ X and any action y ∈ A, the estimated
discrepancy D̂t(x, y) satisfied

D̂t(x, y) ≥ Dt(x, y) = ⟨θ∗,ϕ(x, y)− ϕ2
t ⟩.

On the other hand, we have

D̂t(x, y) ≤ Dt(x, y) + 2β∥ϕ(x, y)− ϕ2
t∥Σ−1

t−1
.

It is worth to notice that in Algorithm 1 (Line 11), we update the policy πt with online mirror descent and
the following lemma provides the regret guarantee for this process.

Lemma D.5 (Modified from Lemma 6.2, He et al., 2022a). For any estimated value function D̂t(x, ·), if we
update the policy πt+1(·|x) by the exponential rule:

πt+1(·|x) ∝ πt(·|x) · exp
(
ηD̂t(x, ·)

)
, (D.1)

then the expected sub-optimality gap at round T can be upper bounded as follows:

Ex∼D,y∼π∗(·|x)[D̂t(x, y)]− Ex∼D,y∼πt(·|x)[D̂t(x, y)]

≤ 2η + η−1Ex∼D

[
KL
(
π∗(·|x)∥πt(·|x)

)
−KL

(
π∗(·|x)∥πt+1(·|x)

)]
With the help of these lemmas, we are now ready to prove our main theorem.

Proof of Theorem 5.1. Now we start the regret analysis. For simplicity, for each round t ∈ [T ], we use ϕt to
denote ϕ(xt, yt). Initially, the episodes and their corresponding regret can be decomposed into two groups
based on whether episode t is added to the dataset CT :

Regret(T ) =
T∑

t=1
⟨θ∗,ϕ∗

t ⟩ − ⟨θ∗,ϕ1
t ⟩

=
T∑

t=1
Dt(xt, y∗

t )−Dt(xt, y1
t )

=
∑
t∈CT

Dt(xt, y∗
t )−Dt(xt, y1

t )︸ ︷︷ ︸
I1

+
∑
t/∈CT

Dt(xt, y∗
t )−Dt(xt, y1

t )︸ ︷︷ ︸
I2

(D.2)

where Dt(x, y) = ⟨θ∗,ϕ(x, y)− ϕ2
t ⟩ denotes the reward gap between action y ∈ A and selected action y2

t at
round t.

22



Under review as submission to TMLR

Now, we bound this two term separately. For the term I1, we have

I1 =
∑
t∈CT

Dt(xt, y∗
t )−Dt(xt, y1

t )

≤
∑
t∈CT

D̂t(xt, y1
t )−Dt(xt, y1

t )︸ ︷︷ ︸
J1

+
∑
t∈CT

D̂t(xt, y∗
t )− D̂t(xt, y1

t )

= J1 +
∑
t∈CT

Ext∼D,y∼π∗(·|x)[D̂t(xt, y)]− Ext∼D,y∼πt(·|x)[D̂t(xt, y)]︸ ︷︷ ︸
J2

+
∑
t∈CT

D̂t(xt, y∗
t )− D̂t(xt, y1

t )−
∑
t∈CT

Ext∼D,y∼π∗(·|x)[D̂t(xt, y)]− Ext∼D,y∼πt(·|x)[D̂t(xt, yt)]︸ ︷︷ ︸
J3

, (D.3)

where the inequality holds due to Lemma D.4.

For the term J1, we have

J1 =
∑
t∈CT

D̂t(xt, y1
t )−Dt(xt, y1

t )

≤
∑
t∈CT

min{4, 2β∥ϕ1
t − ϕ2

t∥Σ−1
t−1
}

≤ 4β

√
|CT | ·

∑
t∈CT

min{1, ∥ϕ1
t − ϕ2

t∥2
Σ−1

t−1
}

≤ 8β

√
|CT |d log

(
λd + |CT |L2

λd

)
, (D.4)

where the first inequality holds due to Lemma D.4 with the fact that −2 ≤ Dt(xy, y1
t ) ≤ 2, the second

inequality holds due to Cauchy–Schwarz inequality and the last inequality holds due to the elliptical potential
lemma (Lemma F.7).

The term J2 reflects the sub-optimality from the online mirror descent process and can be upper bounded by
Lemma D.5. For simplicity, we denote CT = {t1, ..., tK} where K = |CT |. Thus, we have

J2 =
K∑

k=1
Extk

∼D,y∼π∗(·|x)[D̂tk
(xtk

, y)]− Extk
∼D,y∼πtk

(·|x)[D̂tk
(xtk

, y)]

≤
K∑

k=1

(
2η + η−1Ex∼D

[
KL(π∗(·|x)∥πtk

(·|x))−KL(π∗(·|x)∥πtk+1(·|x)
])

= 2ηK + η−1Ex∼D
[
KL(π∗(·|x)∥π1(·|x))−KL(π∗(·|x)∥πtK+1(·|x)

]
≤ 2ηK + η−1Ex∼D

[
KL(π∗(·|x)∥π1(·|x))

]
≤ 2
√

32dΓ−2 log(3LBΓ−1) log |A|, (D.5)

where the first inequality holds due to Lemma D.5, the second equation holds due to policy π keeps
unchanged for t ∈ CT , the second inequality holds due to KL(·∥·) ≥ 0 and the last inequality holds due to
η =

√
Γ2 logA/

(
32d log(3LBΓ−1)

)
with the fact that π1 is uniform policy.

According to Azuma-Hoeffding’s inequality (Lemma F.6), with probability at least 1− δ, the term J3 can be
upper bounded by

J3 ≤ 2
√

2|CT | log(1/δ). (D.6)
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Substituting (D.4), (D.5) and (D.6) into (D.3), we have

I1 = J1 + J2 + J3 ≤ 8β

√
|CT |d log

(
λd + |CT |L2

λd

)
+ 2
√

32dΓ−2 log(3LBΓ−1) log |A|+ 2
√

2|CT | log(1/δ)

≤ Õ(βd/Γ)

= Õ

(
d2

∆

)
. (D.7)

where the last inequality holds due to Lemma D.1.

Now, we only need to focus on the term I2. For each round t /∈ CT , we have

Dt(xt, y∗
t )−Dt(xt, y1

t ) = ⟨θ∗ − θ̂t,ϕ
∗
t − ϕ2

t ⟩+ ⟨θ̂t,ϕ
∗
t − ϕ2

t ⟩ − ⟨θ∗,ϕ1
t − ϕ2

t ⟩

≤ β∥ϕ∗
t − ϕ2

t∥Σ−1
t−1

+ ⟨θ̂t,ϕ
∗
t − ϕ2

t ⟩ − ⟨θ∗,ϕ1
t − ϕ2

t ⟩

≤ β∥ϕ1
t − ϕ2

t∥Σ−1
t−1

+ ⟨θ̂t,ϕ
1
t − ϕ2

t ⟩ − ⟨θ∗,ϕ1
t − ϕ2

t ⟩

≤ 2β∥ϕ1
t − ϕ2

t∥Σ−1
t−1

,

where the first inequality holds due to Lemma D.4, the second inequality holds due to the selection rule of
action ϕ1

t and the last inequality holds due to Lemma D.4. According to the definition of set CT in Algorithm
1, for each round t /∈ CT , we have ∥ϕ1

t − ϕt∥Σ−1
t−1
≤ Γ. Therefore, the sub-optimality gap at round t is upper

bounded by
2β∥ϕ1

t − ϕt∥Σ−1
t−1
≤ 2βΓ < ∆,

where the second inequality holds due to Lemma D.3. According to the minimal sub-optimality assumption
(Assumption 3.4), this indicates that the regret yielded in round t /∈ CT is 0. Summing up over t /∈ CT , we
have

I2 =
∑
t∈Tt

Dt(xt, y∗
t )−Dt(xt, y1

t ) = 0. (D.8)

Combining the results in (D.7) and (D.8), we complete the proof of Theorem 5.1.

E Proof of Lemmas in Appendix D

In this section, we provide the proofs of the lemmas in Appendix D.

E.1 Proof of Lemma D.1

Proof of Lemma D.1. The proof follows the proof in Zhang et al. (2023). Here we fix the round t to be T in
the proof and only provide the upper bound of CT due to the fact that Ct is monotonically increasing w.r.t.
the round t. For all selected episode t ∈ CT , since we have ∥ϕ1

t −ϕ2
t∥Σ−1

t−1
≥ Γ, the summation of the bonuses

over all the selected episode t ∈ CT is lower bounded by∑
t∈CT

min
{

1, ∥ϕ1
t − ϕ2

t∥2
Σ−1

t−1

}
≥ |CT |min{1, Γ2} = |CT |Γ2, (E.1)

where the last equation holds due to 0 ≤ Γ ≤ 1. On the other hand, according to Lemma F.3, the summation
is upper bounded by:

∑
t∈CT

min
{

1, ∥ϕ1
t − ϕ2

t∥2
Σ−1

t−1

}
≤ 2d log

(
λd + |CT |L2

λd

)
. (E.2)
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Combining (E.1) and (E.2), we know that the total number of the selected data points |CT | satisfies the
following inequality:

Γ2|CT | ≤ 2d log
(

λd + |CT |L2

λd

)
.

For simplicity, we reorganized the result as follows:

Γ2|CT |
2d

≤ log
(

1 + 2L2

Γ2λ

Γ2|CT |
2d

)
. (E.3)

Notice that λ = B−2 and 2L2B2 ≥ 2 ≥ Γ2, therefore, if |CT | is too large such that

Γ2|CT |
2d

> 4 log
(

4L2B2

Γ2

)
+ 1 ≥ 4 log

(
4L2B2

Γ2

)
+ Γ2

2L2B2 ,

then according to Lemma F.1, (E.3) will not hold. Thus the necessary condition for (E.3) to hold is:

Γ2|CT |
2d

≤ 4 log
(

4L2B2

Γ2

)
+ 1 = 8 log

(
2LB

Γ

)
+ log(e) = 8 log

(
2LBe

1
8

Γ

)
< 8 log

(
3LB

Γ

)
.

Applying basic calculus, we obtain the claimed bound for |CT | and thus complete the proof of Lemma D.1.

E.2 Proof of Lemma D.2

Proof of Lemma D.2. This proof follows the proof in Di et al. (2023). For each round t ∈ [T ], we define the
following auxiliary quantities:

Gt(θ) = λθ +
∑

τ∈Ct−1

[
µ
(
(ϕ1

τ − ϕ2
τ )⊤θ

)
− µ

(
(ϕ1

τ − ϕ2
τ )⊤θ∗)](ϕ1

τ − ϕ2
τ )

ϵt = ot − µ
(
(ϕ1

t − ϕ2
t )⊤θ∗)

Zt =
∑

τ∈Ct−1

ϵτ (ϕ1
τ − ϕ2

τ ).

By defining θ̂t as the solution to (4.1), we plug the equation into the definition of Gt and we have

Gt(θ̂t) = λθ̂t +
∑

τ∈Ct−1

[
µ
(
(ϕ1

τ − ϕ2
τ )⊤θ̂t)− oτ + oτ − µ

(
(ϕ1

τ − ϕ2
τ )⊤θ∗)](ϕ1

τ − ϕ2
τ )

= λθ̂t +
∑

τ∈Ct−1

[
µ
(
(ϕ1

τ − ϕ2
τ )⊤θ̂t)− oτ

]
(ϕ1

τ − ϕ2
τ ) +

∑
τ∈Ct−1

[
oτ − µ

(
(ϕ1

τ − ϕ2
τ )⊤θ∗)](ϕ1

τ − ϕ2
τ )

= Zt.

Therefore, we have that
Gt(θ̂t)−Gt(θ∗) = Zt −Gt(θ∗) = Zt − λθ∗.

On the other hand, applying Taylor’s expansion, there exists α ∈ [0, 1] and θ̃t = αθ̂t + (1− α)θ∗, such that
the following equation holds:

Gt(θ̂t)−Gt(θ∗) = λ(θ̂t − θ∗) +
∑

τ∈Ct−1

[
µ
(
(ϕ1

τ − ϕ2
τ )⊤θ

)
− µ

(
(ϕ1

τ − ϕ2
τ )⊤θ∗)](ϕ1

τ − ϕ2
τ )

=
[
λI +

∑
τ∈Ct−1

µ′((ϕ1
τ − ϕ2

τ )⊤θ̃t

)
(ϕ1

τ − ϕ2
τ )(ϕ1

τ − ϕ2
τ )⊤
]
(θ̂t − θ∗)

= F (θ̃t)(θ̂t − θ∗),
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where we define F (θ̃t) = λI +
∑

τ∈Ct−1
µ′((ϕ1

τ − ϕ2
τ )⊤θ̃t

)
(ϕ1

τ − ϕ2
τ )(ϕ1

τ − ϕ2
τ )⊤. Thus, we have:

∥θ̂t − θ∗∥2
Σt−1

= (Zt − λθ∗)⊤F (θ̃t)−1Σt−1F (θ̃t)−1(Zt − λθ∗)

≤ 1
κ2

µ

(Zt − λθ∗)⊤Σ−1
t−1(Zt − λθ∗)

= 1
κ2

µ

∥Zt − λθ∗∥2
Σ−1

t−1

where the inequality holds due to F (θ̃t) ⪰ κµΣ̂t−1. Now we have:

∥θ̂t − θ∗∥Σt−1 ≤
1

κµ
∥Zt − λθ∗∥Σ−1

t−1

≤ 1
κµ

(
∥Zt∥Σ−1

t−1
+ ∥λθ∗∥Σ−1

t−1

)
≤ 1

κµ

(
∥Zt∥Σ−1

t−1
+
√

λB
)
,

where the second inequality holds due to triangle inequality and last inequality holds due to Σt−1 ⪰ λI. Now
we only need to bound ∥Zt∥Σ−1

t−1
.

According to Lemma F.2, with probability at least 1− δ, we have

∥Zt∥Σ−1
t−1
≤

√
2 log

(√
det(Σt−1)√
det(Σ0)δ

)
≤

√
2 log

(
det(Σt−1)

λdδ

)
≤

√
2d log

(
λ + |Ct|L2/d

λdδ

)
where the first inequality holds due to Lemma F.2 and the last inequality holds due to Lemma F.5. Now we
combine the two term and have

∥θ̂t − θ∗∥Σt−1 ≤
1

κµ

(
√

λB +

√
2d log

(
λ + |Ct|L2/d

λdδ

))
,

which concludes our statement.

E.3 Proof of Lemma D.3

Proof of Lemma D.3. This proof follows the proof in Zhang et al. (2023). First, we recall that Γ = ∆κµ/2dι1
and β = κ−1

µ (1 + 4
√

dι2 +
√

2dι3). We will first demonstrate that the selection of β satisfy the requirement in
Lemma D.3. Recalling that λ = B−2, through basic calculation, we have

κµβ ≥ 1 +
√

2d log
(
(1 + L2B216dΓ−2ι2)/dδ

)
≥ 1 +

√
2d log

(
(1 + L2B2|CT |)/dδ

)
=
√

λB +
√

2d log(λ + |CT |L2/dλδ),

where the first inequality holds by neglecting the positive term 4
√

dι2 and d ≥ 1, the second inequality
holds due to Lemma D.1 and the last equation holds by plugging in λ = B−2. Now we come to the second
statement. First, by basic computation, we have

√
2ι3 ≤

√
2 log((1 + 16L2B2Γ−2ι2) +

√
2 log(1/δ)).

Notice that we have L ≥ 1, B ≥ 1, and Γ ≤ 1, which further implies that LBΓ−1 ≥ 1, leading to

2 + 4√ι2 ≤ 6ι2,
√

2 log((1 + 16L2B2Γ−2ι2) ≤ 3ι2.
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Therefore, we have:

2 + 4√ι2 +
√

2ι3 ≤ 9ι2 + 2
√

log(1/δ)
≤ 9 log(6LB

√
d∆−1κ−1

µ ι1) + 2
√

log(1/δ).

By Lemma F.1, we can identify the sufficient condition for the following inequality

(6LB
√

d∆−1κ−1
µ )ι1 ≥ 9(6LB

√
d∆−1κ−1

µ ) log(6LB
√

d∆−1κ−1
µ ι1) + 2(6LB

√
d∆−1κ−1

µ )
√

log(1/δ) (E.4)

is that
ι1 ≥ 36 log(108LB

√
d∆−1κ−1

mu) +
√

8 log(1/δ),

which naturally holds due to our definition of ι1. Eliminating the 6LB
√

d∆−1κ−1
µ term in (E.4) yields that

ι1 ≥ 2 + 4√ι2 +
√

2ι3,

which implies that

2βΓ = ∆κµ

2
√

dι1

1
κµ

(1 + 2
√

dι2 +
√

2ι3) < ∆.

Thus, we complete the proof of Lemma D.3.

E.4 Proof of Lemma D.4

Proof of Lemma D.4. For each context x ∈ X and action y ∈ A, we have

|Dt(x, y)− ⟨θ̂t,ϕ(x, y)− ϕ2
t ⟩| = |⟨θ̂t − θ∗,ϕ(x, y)− ϕ2

t ⟩|

≤ ∥θ̂t − θ∗∥Σ−1
t−1
· ∥ϕ(x, y)− ϕ2

t∥Σt−1

≤ β∥ϕ(x, y)− ϕ2
t∥Σt−1 , (E.5)

where the first inequality holds due to Cauchy–Schwarz inequality and the second inequality holds due to
event E1. Therefore, we have

⟨θ̂t,ϕ(x, y)− ϕ2
t ⟩+ β∥ϕ(x, y)− ϕ2

t∥Σt−1 ≥ Dt(x, y),

where the first inequality holds due to (E.5). In addition, we have Dt(x, y) = ⟨θ∗,ϕ(x, y)−ϕ2
t ⟩ ≤ 2. Combing

these two results, we have

D̂t(x, y) = min{⟨θ̂t,ϕ(x, y)− ϕ2
t ⟩+ β∥ϕ(x, y)− ϕ2

t∥Σt−1 , 2} ≥ Dt(x, y).

On the other hand, we have

D̂t(x, y) ≤ ⟨θ̂t,ϕ(x, y)− ϕ2
t ⟩+ β∥ϕ(x, y)− ϕ2

t∥Σt−1 ≤ Dt(x, y) + 2β∥ϕ(x, y)− ϕ2
t∥Σt−1 ,

where the first inequality holds due to the definition of D̂t(x, y) and the second inequality holds due to (E.5).
Thus, we complete the proof of Lemma D.4.

E.5 Proof of Lemma D.5

Proof of Lemma D.5. The proof follows the approach in He et al. (2022a). Recall that we assume the policy
is updated in round t according to the update rule (D.1), for all contexts x ∈ X . Thus, we have:

exp
{

ηD̂t(x, y)
}

=
πt(y|x) exp

{
ηD̂t(x, y)

}
πt(y|x) = ρπt+1(y|x)

πt(y|x) , (E.6)
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where ρ =
∑

y∈A πt(y|x) exp
{

ηD̂t(x, y)
}

is the regularization term that is the same for all actions y ∈ A.
Therefore, we have∑

y∈A
ηD̂t(x, y)

(
π∗(y|x)− πt+1(y|x)

)
=
∑
y∈A

(
log ρ + log πt+1(y|x)− log πt(y|x)

)(
π∗(y|x)− πt+1(y|x)

)
=
∑
y∈A

π∗(y|x)
(

log πt+1(y|x)− log πt(y|x)
)
− πt+1(y|x)

(
log πt+1(y|x)− log πt(y|x)

)
=
∑
y∈A

π∗(y|x)
(

log π∗(y|x)− log πt(y|x)
)

+
∑
y∈A

π∗(y|x)
(

log πt+1(y|x)− log π∗(y|x)
)

−
∑
y∈A

πt+1(y|x)
(

log πt+1(y|x)− log πt(y|x)
)

= KL
(
π∗(·|x)∥πt(·|x)

)
−KL

(
π∗(·|x)∥πt+1(·|x)

)
−KL

(
πt+1(·|x)∥πt(·|x)

)
, (E.7)

where the first equation holds due to (E.6) and the second equation holds due to
∑

y∈A
(
π∗(y|x)−πt+1(y|x)

)
=

0. Consequently, we have

Ey∼π∗(·|x)
[
D̂t(x, y)

]
− Ey∼πt(·|x)

[
D̂t(x, y)

]
=
∑
y∈A

D̂t(x, y)
(
π∗(y|x)− πt(y|x)

)
=
∑
y∈A

D̂t(x, y)
(
π∗(y|x)− πt+1(y|x)

)
+
∑
y∈A

D̂t(x, y)
(
πt+1(y|x)− πt(y|x)

)
≤
∑
y∈A

D̂t(x, y)
(
π∗(y|x)− πt+1(y|x)

)
+ 2
∥∥πt+1(·|x)− πt(·|x)

∥∥
1

= η−1
(

KL
(
π∗(·|x)∥πt(·|x)

)
−KL

(
π∗(·|x)∥πt+1(·|x)

)
−KL

(
πt+1(·|x)∥πt(·|x)

))
+ 2
∥∥πt+1(·|x)− πt(·|x)

∥∥
1

≤ η−1
(

KL
(
π∗(·|x)∥πt(·|x)

)
−KL

(
π∗(·|x)∥πt+1(·|x)

))
+ 2
∥∥πt+1(·|x)− πt(·|x)

∥∥
1 −

∥∥πt+1(·|x)− πt(·|x)
∥∥2

1
2η

≤ 2η + η−1
(

KL
(
π∗(·|x)∥πt(·|x)

)
−KL

(
π∗(·|x)∥πt+1(·|x)

))
, (E.8)

where the first inequality holds due to the fact that 0 ≤ D̂t(x, y) ≤ 2, the second inequality holds due to
Pinsker’s inequality and the last inequality holds due to the fact that ax − bx2 ≤ a2/4b. Finally, taking
expectation over x ∼ D finishes the proof.

F Auxiliary Lemmas

Lemma F.1 (Lemma A.2, Shalev-Shwartz & Ben-David, 2014). Let a ≥ 1 and b ≥ 0, then x ≥ 4a log(2a)+2b
results in x ≥ a log x + b.
Lemma F.2 (Theorem 1, Abbasi-Yadkori et al., 2011). Let {Ft}∞

t=0 be a filtration. Let {ϵt}∞
t=1 be a

real-valued stochastic process such that ϵt is Ft-measurable and ϵt is conditionally R-sub-Gaussian for some
R ≥ 0. Let {ϕt}∞

t=1 be an Rd-valued stochastic process such that ϕt is Ft−1 measurable and ∥ϕt∥2 ≤ L for
all t. For any t ≥ 0, define Ut = λI +

∑t
i=1 ϕiϕ

⊤
i . Then for any δ > 0, with probability at least 1− δ, for all

t ≥ 0, we have ∥∥∥∥∥
t∑

i=1
ϕiϵi

∥∥∥∥∥
2

U−1
t

≤ 2R2 log
( √

det(Ut)√
det(U0)δ

)
.
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Lemma F.3 (Lemma 11, Abbasi-Yadkori et al. 2011). Let {ϕi}t
i=1 be a sequence in Rd, define Ui =

λI +
∑t

i=1 ϕiϕ
⊤
i , then

t∑
i=1

min
{

1, ∥ϕi∥2
U−1

i−1

}
≤ 2d log

(
λd + tL2

λd

)
.

The following auxiliary lemma and its corollary are useful

Lemma F.4 (Lemma A.2, Shalev-Shwartz & Ben-David 2014). Let a ≥ 1 and b > 0. Then x ≥ 4a log(2a)+2b
yields x ≥ a log(x) + b.

Lemma F.5 (Lemma C.7, Zhang et al., 2023). Suppose sequence {xi}t
i=1 ⊂ Rd and for any i ≤ t, ∥xi∥2 ≤ L.

For any index subset C ⊆ [t], define U = λI +
∑

i∈C xix⊤
i for some λ > 0, then det(U) ≤ (λ + |C|L2/d)d.

Lemma F.6 (Azuma–Hoeffding inequality, Cesa-Bianchi & Lugosi 2006). Let {xi}n
i=1 be a martingale

difference sequence with respect to a filtration {Gi} satisfying |xi| ≤ M for some constant M , xi is Gi+1-
measurable, E[xi|Gi] = 0. Then for any 0 < δ < 1, with probability at least 1− δ, we have

n∑
i=1

xi ≤M
√

2n log(1/δ).

Lemma F.7 (Lemma 11 in Abbasi-Yadkori et al. (2011)). Let {ϕt}+∞
t=1 be a sequence in Rd, U a d × d

positive definite matrix and define Ut = U +
∑t

i=1 ϕ
⊤
i ϕi. If ∥ϕi∥2 ≤ L and λmin(U) ≥ max(1, L2), then we

have
t∑

i=1
ϕ⊤

i (Ui−1)−1ϕi ≤ 2 log
(

det Ut

det U

)
.
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