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Abstract

The rapid growth of camera-based [[nternet of Things (IoT)|devices demands the
need for efficient video compression, particularly for edge applications where
devices face hardware constraints, often with only 1 or 2 MB of RAM and unstable
internet connections. Traditional and deep video compression methods are designed
for high-end hardware, exceeding the capabilities of these constrained devices.
Consequently, video compression in these scenarios is often limited to [Motion}
due to its high hardware efficiency and low complexity. This
paper introduces MCUCoder, an open-source adaptive bitrate video compression
model tailored for resource-limited IoT settings. MCUCoder features an ultra-
lightweight encoder with only 10.5K parameters and a minimal 350KB memory
footprint, making it well-suited for edge devices and [Microcontrollers (MCUs)
While MCUCoder uses a similar amount of energy as it reduces bitrate by
55.65% on the MCL-JCV dataset and 55.59% on the UVG dataset, measured in
MS-SSIM. Moreover, MCUCoder supports adaptive bitrate streaming by generating
a latent representation that is sorted by importance, allowing transmission based on
available bandwidth. This ensures smooth real-time video transmission even under
fluctuating network conditions on low-resource devices. Source code available at
https://github.com/ds-kiel/MCUCoder,
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Figure 1: Qualitative comparison of MCUCoder andacross various compression rates on two
videos from the MCL-JCV [[]] and UVG [2]] datasets. As we can see, MCUCoder offers a significantly
better MS-SSIM/bpp trade-off. For instance, at 0.15 bpp in the left example, with MCUCoder we can
see the person’s face whereas with[M-JPEG]| we need at least 0.34 bpp to make out the face. Note that
the images in each column do not necessarily have the same bitrate. More examples are reported in

Appendix

38th Conference on Neural Information Processing Systems (NeurIPS 2024).
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1 Introduction

Motivation: The number of camera-based[[oTs|devices using always-on[MCU]is growing rapidly,
reaching tens of billions [[12]. These devices are widely used in applications such as surveillance
cameras [13}14}15]], wearable cameras [[16], robotics [17], wildlife monitoring [18]], road monitoring
[19], and smart farming [20]. Typically, they capture raw frames through a camera sensor, encode
them, and transmit the compressed version to a server via the Internet for further processing, including
human observation or Al tasks such as object detection and classification [[19]. Therefore, a video
encoder is necessary to efficiently compress the captured frames before transmission. However, in
[[0T| environments, there are two primary limitations: constrained hardware resources and limited
communication bandwidth.

1 - Limited Hardware: Although traditional video codecs
DVC (CVPR19) m like H.264 [21]], H.265 [22]), and the newer H.266 [23]] provide
SV%?;#SXEE%Q; E excellent performance, they demand significant hardware for

Balle UGER38) extracting the intra and inter-frame correlations. For exam-
T (Y Pna) ossesssss i ple, H.265 encodipg invqlves. highlly Comquationally intensive
vufcveRa3) E tasks such as motion estimation with sub-pixel accuracy,
MCUCoder 1 [Distortion Optimization (RDO)| for choosing optimal intra-

104 106 108 prediction modes, and [Context Adaptive Binary Arithmetic]|

#Params [Coding (CABAC)|for entropy coding. Additionally, a single

Figure 2: Number of parameters of video frame at 224 x 224 resolution requires about 150 KB
MCUCoder and other learned image of RAM, which is a lot for the low-cost, low-energy
compression [3, 413, [6] [7,[8, 0] and used inlIa_TldeVices that typically have only 1-2 MB of RAM.
video compression models [10 1] Consequently, inter-frame compression or any other kind of

multi-frame analysis is not practically feasible on such con-
strained devices. Similarly, while [Neural Networks (NNs)| and Al-based compression methods
outperform traditional models [10,[11], they also often require considerable RAM and GPU resources.
For instance, just storing a model with 1M parameters requires around 4 MB of RAM; see Fig. 2]
As aresult, in such settings, devices are typically limited to using[M-JPEG][24]], a video compres-
sion format where each frame is compressed individually as a JPEG image, which is efficient and
hardware-friendly.

2 - Limited Internet: Many IoT devices are located in remote areas where Internet connection is
weak and unstable, making it necessary for the encoder to have an Adaptive Bitrate Encoding that
can generate video streams with varying bitrate. This feature allows the encoder to dynamically
adjust its quality according to the available bandwidth, ensuring continuous and smooth playback.
This is especially important for real-time applications like live monitoring, where it is crucial to
avoid interruptions and maintain a consistent user experience despite fluctuating network conditions.
However, implementing an adaptive bitrate encoder adds complexity, as it requires mechanisms to
prioritize bit stream information based on its impact on frame quality (e.g., PSNR or MS-SSIM),
which is challenging for constrained devices.

Approach: To address these challenges, we introduce MCUCoder, an adaptive bitrate deep video
compression model tailored for resource-limited IoT devices. Our approach focuses on creating an
"asymmetric" compression model that features an ultra-lightweight encoder designed to be both
computationally efficient and memory-friendly. Also, MCUCoder produces an "adaptive bitrate"
bitstream. Specifically, in MCUCoder, we train the encoder using stochastic dropout such that, instead
of explicitly detecting the important parts, it produces latent channels that are sorted based on
importance. Afterward, based on the available internet bandwidth, the encoder transmits the first
k channels to the decoder; see Fig. |1l This approach is beneficial for low-power MCUs since it
shifts the complexity of identifying important data to the training phase rather than the inference
phase. Also, by employing stochastic dropout training, the decoder can reconstruct the frame even
with partial data availability, which is essential for maintaining smooth and uninterrupted video
transmission in real-time applications, where network conditions can vary. Additionally, MCUCoder’s
encoder is INT8 quantized, allowing it to utilize [Digital Signal Processor (DSP) and CMSIS-NN [25]
accelerators for faster processing and reduced power consumption.
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Figure 3: Overview of MCUCoder architecture. The encoder compresses the input frame into a sorted
latent space. Afterward, channels are independently quantized and transmitted based on available
bandwidth. The decoder reconstructs the frame by zeroing out missing channels.

Contributions:

1. MCUCoder has an ultra-lightweight encoder with only 10.5K parameters and a minimal
memory footprint of roughly 350KB RAM on nRF5340 and STM32F7 making it
suitable for such low-resource IoT devices.

2. MCUCoder has an energy-efficient INT8 quantized encoder, which leverages the MCUJ's
[DSP|and CMSIS-NN accelerators to achieve JPEG-level energy efficiency. Compared to
its main baseline, it saves 55.65% overall bit rate on the MCL-JCV dataset and
55.59% on the UVG dataset, measured in MS-SSIM.

3. MCUCoder produces a progressive bitstream that enables adaptive bitrate streaming, allowing
robust video transmission under varying network conditions.

2 Related Work

Traditional and [NN|based video compression: Video compression is a field that has been evolv-
ing for decades. Beyond traditional codecs like H.264 [21]], H.265 [22]], and H.266 [23]], deep
learning-based approaches often replace conventional modules such as motion compensation [[10} 26],
transform coding [9} 127]], and entropy coding [28}29]. Also, some work has been done regarding the
end-to-end optimization of video compression models [30} 31,|32]]. Lu et al. [11] introduce DVC, the
first end-to-end deep video compression model. Hu et al. [33}134] extend DVC to operate in both pixel
and feature domains. Li et al.[35] and Lie et al. [36] reduce bitrates by modeling probabilities over
video frames using conditional coding. Also, in recent years, there has been growing interested in
using implicit neural representations for video compression [37,138]]. However, due to their substantial
hardware requirements, these models are unsuitable for deployment on low-resource [[oT] devices.

Video compression for [[oT: We can categorize [oT}based video encoders into two parts: hardware-
based and software-based. Hardware approaches primarily focus on designing more power-efficient
camera sensors [39, 40, 41]] and more efﬁcient@ circuits and processors [42 43| 44]]. Due to its
simplicity, scalability, low latency, and very low energy consumption, the most common software-
based video encoder on [[0T] devices is [M-JPEG] [24]. Nevertheless, there have been few works
exploring alternative software-based models: Veluri et al. [16] employ [M-JPEG|on the encoder to
capture black-and-white and colorized frames at two different resolutions and uses super-resolution
methods to interpolate and colorize frames on the decoder. However, unlike MCUCoder, it is not
adaptive and relies on a JPEG encoder onl Hu et al.[13]] propose a deep image encoder model
for [MCUs| but it is also non-adaptive. Additionally, they patchify the 1nput which significantly
increases encoding time, making it impractical for real-time video compression. MCUCoder combines
the advantages of both worlds: it offers the adaptive bitrate feature of more complex encoders, while
maintaining the efficiency necessary for low-resource devices, making it an ideal solution f0r|IG_T|
video compression.

3 MCUCoder

In this section, we introduce MCUCoder, an adaptive bitrate asymmetric video compression model,
specifically designed for IoT settings. We begin by detailing the asymmetric encoder-decoder
architecture of MCUCoder, including the customized quantization processes. Then, we present the
stochastic dropout training method, which trains the encoder of MCUCoder to store information in its
channels based on importance.
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Figure 4: MCUCoder latent channels: Early Figure 5: An example of MCUCoder bitrate adapta-
channels (important ones) capture low- tion under dynamic network bandwidth, where the
frequency features, while later channels cap- bitrate control module acts as a gate to determine
ture high-frequency features, similar to the the number of channels to send.

DCT in JPEG.

Asymmetric Compression: [MCUs|are characterized by highly constrained
hardware resources, such as limited RAM, CPU, FLASH, and power availabil-
ity. Additionally, existing[MCU}specific [NN| frameworks like TFLite Micro
support only a limited set of layers [13]. To address these constraints,
we propose an asymmetric [45] encoder-decoder architecture optimized for
constrained devices. Due to hardware constraints, MCUCoder encodes each
frame independently, as inter-frame compression is not feasible. The encoder
contains only 10.5K parameters, while the decoder utilizes approximately 3M
parameters and leverages SOTA image decompression blocks; see Fig. [12} |
The encoding process begins by passing input frame f; through three convo-
lutional layers. To maximize the data range for subsequent quantization, no
activation function is applied in the final encoder layer, avoiding the negative
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truncation caused by ReLU. Afterward, each channel of the latent is quantized
into INTS8 individually, followed by a further reduction to 5-bit precision to  Figyre 6: Stochas-
enhance compression efficiency. For the decoder, inspired by [46], we integrate
a combination of attention blocks [47] and residual bottleneck blocks [48]] to
reconstruct the frame; see Fig. @

tic dropout training

Stochastic dropout training: Bitrate adaptation is a feature that typically introduces additional
complexity to the encoding process, which can be challenging to implement on[MCUs|due to resource
constraints. In the literature, dropout serves as a powerful tool for enhancing generalization in
Building on this insight, we employ a "biased" version of dropout to train MCUCoder in a way
that instead of random dropping, it drops from the tail of the latent [50} 31]]. Specifically, on each
iteration, after the encoder E' gets the input frame f;, it generates the latent representation 2, where
N is the number of the channels of the latent. Afterward, from a uniform distribution, denoted as
U(0,1), it generates a number, denoted as k, and drops (zero out) the last |k x N | channels from zy.
As aresult, instead of zy, the decoder D gets 2[0:[kx N |]> fills the missing channels with zero, and
then reconstructs the output.

kNu(oJ) ~
Jt = E(ft) = 2n ——— 2[0:|kxN ] = D(2jo:|kxn)]) = [t (1)

This tailored version of dropout biases the training to prioritize the earlier channels over the later
ones. Consequently, the encoder learns to encode more critical information (low frequency) in the
initial feature maps and less important (high frequency) details in the subsequent ones; see Fig[6]
This prioritization enables flexible bitrate adaptation: upon encoding each frame, the encoder starts
transmitting the most significant channels first. Depending on the available bandwidth, the bitrate
control module determines how many channels need to be sent to the decoder to ensure uninterrupted
streaming; see Fig[5] Importantly, because the latent features are pre-ordered by significance, the
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Figure 7: Comparison of MCUCoder (quantized and non-quantized model) and baselines on the image
(KODAK [52], CLIC [53]]) and video (MCL-JCV [1], UVG [2]]) compression datasets. For context,
we also compare with H.264 and H.265 on video datasets, despite being impractical for[MCUs|due to
high hardware demands. All datasets are resized to 224 x 224.

bitrate control module basically acts like a simple gate and does not add any extra computational
complexity to the encoder.

4 Evaluation

We train MCUCoder on the 300K largest ImageNet images [54] and apply noise-downsampling
preprocessing [53} 3]. We use Adam with an initial learning rate of 10~* and a batch size of 16, and
train for 1M iterations, lowering the learning rate to 10~ in the final 50K iterations [46]. To address
quantization effects, we add random noise to the latent. Since MCUCoder is specifically designed
for IoT environments, where the structure of the output is more critical than fine details, we use
MS-SSIM as the loss function. We also quantize inputs, weights, and activations to INT8 for RAM
efficiency and to leverage DSP and CMSIS-NN accelerators [23] in[MCUs| We use post-training
quantization existing in TFLite-Micro [56] to reduce latency, processing power, and model size with
minimal degradation in model accuracy. For all comparisons, we report performance metrics for both
the FLOAT32 and INT8 models.

4.1 Quantitative results

Due to the limited hardware resources of inter-frame compression is not practically feasible.
As aresult, in such devices, video compression is limited to where each frame is compressed
independently. Therefore, in addition to evaluating MCUCoder and its baselines from the perspective
of video compression, we also assess its performance on image compression datasets. Given the
lower resolution commonly encountered in IoT scenarios, we resize all the videos and images to
224 x 224.

Video compression: We evaluate MCUCoder on the UVG [2] and MCL-JCV [1]] datasets, comparing
its performance to [M-JPEG], see Fig. [7] For additional context, we include comparisons with
traditional video codecs such as H.264 [21] and H.265 [22], even though these codecs are impractical
for deployment on[MCUs|due to their significant computational and hardware demands. Also, we
report the Bjgntegaard Delta (BD) rate [57]] for both datasets in Table[I] The results indicate that
MCUCoder achieves a significantly higher MS-SSIM per bit compared to highlighting its
ability to deliver better video quality at lower bitrates. This is especially valuable for IoT applications,
where achieving high compression rates with minimal computational overhead is crucial due to
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Table 2:  Resource demands 10.0
of MCUCoder on nRF5340 and .
STM32F7MCUs| 0 50 100 150 200 250 300
nRF5340  STM32F7 Frame Index
Exec (ms) 1,969 237 Figure 8: MS-SSIM and bpp for the SunBath video
RAM (KB) 344 (33%) 360 (17%) .
Flash (KB 100(10%) 107 (5% from UVG [2]] dataset. [0:k] shows the use of the first k

channels (out of 12) for decoding.

limited hardware resources. Additionally, MCUCoder has 12 "stacked" channels in its latent space,
which provides 12 levels of quality that can be dynamically adjusted based on the available network
bandwidth. In Fig.[8] we illustrate the bpp and MS-SSIM for each frame in a video from the UVG
dataset for all 12 levels of quality. The results show that using more channels for decoding leads to a
higher MS-SSIM, which verifies the effectiveness of the proposed stochastic dropout training. The
PSNR results are reported in the Appendix [B]

Image compression: To assess the image compression capabilities of MCUCoder, we conduct
experiments on the CLIC [53] and KODAK [58]] datasets, see Fig. m The results in Table |I| show that
MCUCoder achieves an impressive average bitrate reduction of 55.75% on the KODAK dataset and
49.54% on the CLIC dataset, compared to JPEG. The PSNR results are reported in the Appendix [A]

Latent ordering and DCT-JPEG alignment: Fig. 4 shows the 12 latent channels obtained after
training with the stochastic dropout method. The initial channels capture low-frequency information,
while subsequent channels focus on high-frequency details. Interestingly, this behavior mirrors the
[Discrete Cosine Transform (DCT)|basis matrix employed in JPEG compression.

Performance on MCUs: We implement MCUCoder using
TFLite-Micro [56] and Zephyr RTOS [59]] on STM32F7 and
nRF5340 The STM32F7 has 2 MB Flash, 2 MB
RAM, and a Cortex-M7 processor, while the nRF5340 has 1
MB Flash, 512 KB RAM, and a Cortex-M33 processor, with
both supporting DSP and CMSIS-NN acceleration [25]. As o 500 1000 1500 2000 Lo
reported in Table m MCUCoder uses 360 KB of RAM on the Time to compress one frame (ms) Q\'\Q{(’ O)(,Oée
STM32F7 and 344 KB on the nRF5340, which is remark- ¥
ably low and suitable for such constrained IoT devices. To Figure 9: Energy consumption of
compare MCUCoder’s energy consumption against[M-JPEG], MCUCoder compared to [M-JPEG]
we measured the energy consumption of MCUCoder and the for compressing one frame on the
optimized version of JPEG encoder for the Cortex-M series nRF5340.

[60] on the nRF5340, see Fig. E[ The results indicate that

MCUCoder matches JPEG’s energy consumption while significantly outperforming it in terms of
BD-rate, see Table[/| The nRF5340 shows considerably slower performance than the STM32F7 for
both MCUCoder and suggesting that it is better suited for event-driven applications rather
than real-time streaming.

Energy (m))

Current (mA)
o - N w S w

5 Conclusion

We introduced MCUCoder, an ultra-lightweight asymmetric video compression model for resource-
constrained [oT devices. With just 10.5K parameters and a 350KB memory footprint, compared to
MCUCoder reduces bitrate by over 55% on both the MCL-JCV and UVG datasets while
matching the efficiency of M-JPEG] Its adaptive bitrate streaming ensures smooth video transmission
under fluctuating network conditions, making it ideal for edge applications.
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A PSNR on KODAK and CLIC datasets
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Figure 10: Comparison of MCUCoder (quantized and non-quantized model) and baselines on the
KODAK [52] and CLIC [53] datasets. All datasets are resized to 224 x 224. Since MCUCoder
is specifically designed for IoT environments—where structural integrity is prioritized over fine
details—it has been optimized for MS-SSIM. Consequently, M-JPEG achieves better PSNR perfor-
mance at higher bpp.

B PSNR on the MCL-JCV and UVG datasets
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Figure 11: Comparison of MCUCoder and baselines on MCL-JCV [1]] and UVG [2]]. H.264 and H.265
are included for reference, though impractical for due to hardware demands. MCUCoder,
optimized for IoT with a focus on MS-SSIM, prioritizes structural integrity, while M-JPEG shows
better PSNR at higher bpp.

C Training logs of MCUCoder
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Figure 12: MS-SSIM values on the KODAK dataset during training. The notation [0 : k] represents
the MS-SSIM of the reconstructed image using the first k£ latent channels out of a total of 12. As
shown, with stochastic dropout training, all the sub-latents can be trained simultaneously without
overfitting to any particular sub-latent.
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D Examples of MCUCoder
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Figure 13: Some samples from the MCL-JCV [1] dataset. The columns represent different frames,
while the rows display progressively improving levels of quality from top to bottom, produced by
MCUCoder.
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while the rows display progressively improving levels of quality from top to bottom, produced by

Figure 14: Some samples from the MCL-JCV [1] dataset. The columns represent different frames,
MCUCoder.
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