
Under review as a conference paper at ICLR 2024

DIFFERENTIALLY PRIVATE PER-INSTANCE ADDITIVE
NOISE MECHANISM: A GAME THEORETIC APPROACH

Anonymous authors
Paper under double-blind review

ABSTRACT

Recently, the concept of per-instance differential privacy (pDP) has gained sig-
nificant attention by virtue of its capability to assess the differential privacy (DP)
of individual data instances within a dataset. Traditional additive mechanisms in
the DP domain, which add identical noises to all data instances, often compro-
mise the dataset’s statistical utility to guarantee DP. A main obstacle in devising
a per-instance additive noise mechanism stems from the interdependency of the
additive noises: altering one data instance inadvertently affects the pDP of oth-
ers. This intricate interdependency complicates the problem, making it resistant
to straightforward solutions. To address this challenge, we propose a per-instance
noise variance optimization (NVO) game, framed as a common interest sequential
game. Our main contribution is that we show the Nash equilibrium (NE) points
of this game inherently guarantee pDP for all data instances. We leverage the best
response dynamics (BRD) algorithm to derive strategies for achieving the NE.
To validate the efficacy of our approach, we evaluate the NVO game on various
statistical metrics including regression experimental results. The source code to
reproduce the results will be available soon.

1 INTRODUCTION

In the modern era, the rapid advancements in the field of machine learning have underscored the
pivotal role of statistical datasets. This surge of data utilization inherently attracts an escalated focus
on safeguarding against potential privacy risks. The principle of differential privacy (DP), a theoret-
ical concept introduced by Dwork (2006), sheds light on the growing privacy concerns precipitated
by the inclusion of individual data in the whole dataset. This approach strives to adeptly maneuver
the delicate equilibrium between harnessing data for analytical advancements and ensuring the pro-
tection of individual privacy, thereby standing as a strong defense against the looming dangers of
privacy breaches in today’s digital landscape (Apple, 2017; Nguyên et al., 2016).

Conventional additive noise mechanisms that add noises with identical distributions to every data
instance might not be optimal for preserving the dataset’s informational utility. This one-size-fits-all
approach fails to consider the privacy vulnerabilities of each data instance, which can vary signifi-
cantly in terms of their distributional density. In essence, the less frequent a data point, the weaker
its privacy assurance, a concept adeptly addressed in the per-instance DP (pDP) delineated by Wang
(2019). That study drew attention to the varying levels of privacy protection in data instances when
the same noise is added to each query output. However, it primarily focused on identifying and ana-
lyzing these issues, without offering concrete solutions. In contrast, our paper focuses on providing
a concrete solution, a per-instance noise mechanism better preserving datasets’ statistical utility. In
the subsequent sections of this paper, we endeavor to address the following question:

When upholding DP for a dataset, is there a tailored noise distribution approach that
can optimize its statistical utility on a per-instance basis?

In response to this question, our objective is to introduce a per-instance additive noise mechanism
grounded in the principles of pDP. To this end, we propose a noise variance optimization (NVO)
game where the Nash equilibria ensure ϵ-DP. Subsequently, we endeavor to obtain a Nash equilib-
rium (NE) strategy by executing a well-known game theory algorithm.
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Challenges A challenge on the horizon is optimizing the noise distribution to guarantee DP. One
reason this direction has not been widely pursued is that ensuring pDP for a particular data instance
is inherently dependent on the noise distribution of other data instances. Thus, altering the noise dis-
tribution for a data instance presents a tangible risk: certain instances might become non-compliant
for pDP as a consequence of such modifications. Conventional additive noise mechanisms can
guarantee mathematically well-proven assurance; however, when introducing non-identical noises,
establishing these guarantees becomes more difficult. In summary, finding a balance between pre-
serving the dataset’s original statistical utility and ensuring ϵ-pDP requires intricate adjustments to
the noise distribution, a challenge amplified by the curse of interdependency.

Contributions We introduce an innovative approach to optimize non-identical noise distribution
tailored to specific data instances. Our salient contributions are as follows:

• We propose the NVO game designed to find suitable non-identical per-instance additive
Laplace noises within a dataset. Within this game, every player (representing data in-
stances) collaboratively/sequentially acts to guarantee ϵ-pDP, all the while optimizing the
utility of data statistics.

• We prove that an NE strategy in the NVO game ensures ϵ-pDP across all data instances.

• We simulate the best response dynamics (BRD) algorithm as an example to obtain an NE
strategy for the proposed NVO game. The proposed NVO game not only assures the same
ϵ-pDP as the commonly adopted Laplace mechanism but also demonstrates superiority in
preserving statistical utility.

2 RELATED WORKS

Additive mechanisms for DP Traditional additive noise mechanisms offer straightforward and
mathematically well-proven methods to ensure DP. Efforts to refine these conventional methods
abound: Geng & Viswanath (2014); Geng et al. (2015; 2019) have proposed additive staircase-like
noise as a substitute for the Laplace distribution, aiming to optimize a given statistical utility function
while guaranteeing ϵ-DP. In addition, the IBM DP library showcases initiatives to boost additive
noise mechanisms by clipping the randomized output within a pre-defined range (Holohan et al.,
2019). In the realm of optimizing the noise distribution, Mironov (2017) has attempted to regulate
additive noise to meet Rényi DP criteria. Parallel notions have been studied for similar concepts:
sampling scenarios (Geumlek et al., 2017; Girgis et al., 2021) or deep learning (Wang et al., 2022;
Zhu & Wang, 2020). While endeavors to modify the noise distributions are evident, previous studies
have predominantly applied identical noises across all data. Such a method is not appropriate for
guaranteeing tight DP while preserving statistical utility through per-instance non-identical noise.

Relation to (ϵ, δ)-DP The pioneer of DP, Dwork & Roth (2014), defined (ϵ, δ)-DP, demonstrating
that the Gaussian mechanism can achieve this definition. Since the advent of DPSGD (Abadi et al.,
2016), there has been a surge of applications in machine learning (Ding et al., 2021; Moreau &
Benkhelif, 2021; Truex et al., 2020). It is worth noting that our method can be easily adapted to the
widely-known relaxation of DP, – namely (ϵ, δ)-DP, with the per-instance Gaussian mechanism.

Game theory We present the NVO game, designed to determine the optimal variance of additive
noises, taking cues from the game-theoretic perspective introduced by Neumann & Morgenstern
(1944). Within the context of the NVO game, we show that the NE points of the game ensure ϵ-DP.
However, identifying this NE point brings its own set of complexities. To address this, we utilize
established algorithms to reach the NE point (Taylor & Jonker, 1978; Zaman et al., 2018).

3 PRELIMINARY

In this section, we introduce the preliminary concepts underpinning this paper. For brevity, we use
scalar-form data instances in the remainder of this paper. We note that this work can be easily ex-
tended to vector-form data instances. We begin with the definition of ϵ-pDP, a concept tailored to
assess per-instance privacy loss for a dataset.
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Definition 3.1 (ϵ-pDP (Wang, 2019)). A randomized mechanism, denoted by M, has a range
R(M). For a fixed dataset Z and a fixed data instance z ∈ Z , the mechanismM meets ϵ-pDP, if
the following condition holds:∣∣∣∣ ln Pr[M(Z) ∈ S]

Pr[M(Z \ {z}) ∈ S]

∣∣∣∣ ≤ ϵ, ∀S ⊆ Range(M). (1)

We note that a randomized mechanism,M, qualifies as an ϵ-DP mechanism if it maintains ϵ-pDP for
all data instances and datasets. For guaranteeing either ϵ-DP or ϵ-pDP, the most recognized method
is the Laplace mechanism, which we detail in the subsequent definition.
Definition 3.2 (Laplace mechanism). Given any query function f : X → R with ℓ1 sensitivity of
∆f ∈ R, the Laplace mechanism is defined as:

ML(x, f(·), ϵ) = f(x) + y, (2)

where y is a random number drawn from Lap(∆f/ϵ) and X denotes the domain of variable x.

Given that the Laplace mechanism guarantees ϵ-DP by addressing the worst-case scenario, it offers
a chance to enhance dataset utility by employing a customized per-instance noise distribution. In
this study, we focus on the random sampling query, as outlined subsequently.
Definition 3.3 (Random sampling query). Given numeric dataset D, the output of the random sam-
pling query q is a random variable following the probability distribution of a dataset, i.e.,

q(D) ∼ Pr(D). (3)

This query encapsulates the statistical attributes of the dataset, given that it directly fetches an in-
stance from it.
Remark 3.1 (Extensibility of random sampling query). The random sampling query is a funda-
mental query that encompasses all possible statistical queries. This is because the random sampling
query can capture the statistical distribution of a dataset. Thus, from the post-processing theorem,
achieving pDP/DP for random sampling queries can guarantee pDP/DP for all statistical queries.

The Nash equilibrium, a foundational concept in a game theory introduced by Nash (1951), denotes
the ideal state of a game where every player makes their optimal decision based on the choices of
their counterparts as below.
Definition 3.4 (Nash equilibrium). A Nash Equilibrium is a profile of strategies (s∗i , s

∗
−i), such

that each player’s strategy is an optimal response to the other players’ strategies: Πi(s
∗
i , s

∗
−i) ≥

Πi(si, s
∗
−i), ∀i where s−i is the strategy profile of all players except for player i and Πi(s) is a

payoff function.

To solidify DP assurances, we frame the challenge of noise addition for data utility maximization as
a game, aiming to reach an NE point.

4 NOISE VARIANCE OPTIMIZATION GAME

In this section, our focus is to design a sequential/cooperative game that applies per-instance Laplace
noises to the target dataset, ensuring ϵ-pDP. We denote the target dataset byD, and its data instances
are represented by d ∈ R. We assume that the target dataset consists of real-valued data instances,
e.g., a regression dataset. The problem we aim to solve using game theory can be defined as a
constrained optimization problem:

minU(D,M(D)) s.t.
∣∣∣ln Pr[M(D)∈S]

Pr[M(D\{d})∈S]

∣∣∣ ≤ ϵ,∀d ∈ D,∀S ∈ Range(M), (4)

where the function U represents an arbitrary utility function of the original dataset D and random-
ized datasetM(D). In our work, KL divergence is used as our utility function.

An illustration of the proposed game design, including the preprocessing step, is depicted in Fig. 1.
Detailed explanations corresponding to this figure will be covered in the subsequent portions of this
section.
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Figure 1: The procedure entails identifying the best mix of noise variances for the query outputs
of each data instance. In Step 1, we represent the dataset as a histogram through normalization and
categorization. In Step 2, we aim to find an NE point for the NVO game, where multiple players
iteratively update their variance parameters to ensure ϵ-pDP while preserving statistical utility. Once
the prime set of noise variances is determined, Step 3 allows us to formulate queries that assure
ϵ-pDP by executing a random sampling query.

4.1 STEP 1: A HISTOGRAM REPRESENTATION OF THE DATASET

Normalization In the context of the NVO game, assessing the probability density function of
the mechanism’s output for every single point across all data instances is computationally daunt-
ing. Also, as pointed out by Abadi et al. (2016), the most accurate way for gauging privacy
loss is manual integration within designated intervals rather than relying on theoretical boundaries.
For the manual integration, we normalize the dataset into the [0, 1] range by min-max normaliza-
tion. We conservatively opt to set our integration’s target range to encompass p-percentile of the
Laplace mechanism with the target ϵ, which is defined by (−(∆q/ϵ) ln(2− 2p), (∆q/ϵ) ln(2− 2p))
if p > 0.51, where ∆q denotes the sensitivity of random sampling query q. For brevity, we denote
(∆q/ϵ) ln(2 − 2p) as ∆(ϵ,p). Then, the min-max linear normalization is executed in the interval
[dmin −∆(ϵ,p), dmax +∆(ϵ,p)], where dmin = mini di and dmax = maxi di.

Categorization After normalization, the continuous nature of the domain S poses a unique chal-
lenge, differing from that in ϵ-DP. In this context, it is necessary to confirm the ϵ-pDP condition
for each instance and each point within S, an endeavor impractical to accomplish in polynomial
time. To address this issue, we make K non-overlapping intervals into the range of the dataset and
allocate each data instance d ∈ D into categories based on their corresponding intervals. We set the
K uniformly divided non-overlapping intervals as follows: the i-th interval is ( i

K , i+1
K ), where the

representative value of each interval bin is the midpoint of the interval. The set of the representative
values is denoted as K. Through data categorization, the dataset can be represented in the form of a
histogram. An advantage of segmenting data instances into distinct bins is that certain data instances
can inherently ensure a non-infinite ϵ, whereas the original continuous dataset cannot2.

4.2 STEP 2: A GAME OF NOISE VARIANCE OPTIMIZATION

Here, we introduce the NVO game following data preprocessing. In this game, every data instance
possesses data values within the range [0, 1]. The classes within our proposed NVO game include:
i) sequential game, ii) fully-cooperative game, iii) potential game, and iv) common interest game.

1In our experiments, the value of p is set to be 0.9.
2Once categorized, if a category contains three data points, the inherent ϵ-pDP assurance for these instances

is given by log 3/2 ≈ 0.4.
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4.2.1 DEFINITIONS OF PLAYERS, STRATEGIES, AND PAYOFFS

Players In this study, each data instance, acting as a player, collaboratively and sequentially par-
ticipates in the NVO game. The goal of them is to establish ϵ-pDP (their respective payoffs) by
designing their strategies (variance optimization), simultaneously maximizing the dataset’s statisti-
cal utility. We note that the player of the NVO game is represented by I = {1, 2, . . . , |D|}.

Strategies With data instances cast as players, the strategy for player i is defined by the additive
noise applied to data di. Denoting the variance of additive noises to the i-th data instance di as bi,
the action of the player i is written by bi. That is, from the random sampling query in Definition 3.3,
the per-instance Laplace mechanism is articulated as

M(di) = di + yi, (5)

where yi is a random variable drawn form Lap(bi). Typically, games featuring strategy sets of
uncountable infinity might not always present an NE solution. As a result, we confine these strategy
sets to a discrete domain. In other words, the added variance is chosen from a discrete set V =
{v1, v2, . . . , vn}.

Payoffs In the context of the NVO game, the payoff should induce the player to primarily uphold
ϵ-pDP and secondarily preserve the dataset’s statistical utility. In this domain, there is a trade-
off between data statistics and privacy. Emphasizing robust privacy can reduce query output quality,
while maximizing utility might compromise privacy. The goal is to optimize utility without violating
the ϵ-pDP constraint, achievable by carefully adjusting noise variance on query results. With this in
mind, we articulate the overall payoff P (M,D) as a composite of two objectives: privacy assurance
PE(M,D) and utility preservation PU(M,D). We note that the players in the proposed NVO game
cooperate to benefit from the shared payoffs. Simply, the NVO game is characterized as a kind of
common interest game.

4.2.2 PRIVACY ASSURANCE PAYOFF

The payoff related to privacy assurance, denoted as PE, functions as an indicator of how effectively
ϵ-pDP is met for a dataset, viewed through the lens of pDP. Let us define pϵ,i as an indicator for
representing whether the i-th data instance’s pDP is satisfied or not, i.e.,

pϵ,i(M,D) =
{
1, if d ∈ D satisfies the ϵ-pDP condition in Definition 3.1,
0, otherwise.

(6)

Then, the privacy assurance payoff PE is defined as the number of data instances satisfying the
ϵ-pDP condition as

PE(M,D) =
|D|∑
i=1

pϵ,i(M,D). (7)

Having established the privacy assurance payoff, we are presented with two subsequent questions:
one concerning utility preservation and the other about ensuring privacy assurance at the NE point.

• Q1: How do we determine the utility preservation payoff?

• Q2: Does the NVO game truly ensure ϵ-pDP for all data instances using the privacy assur-
ance payoff as outlined in Equation 7?

4.2.3 UTILITY PRESERVATION PAYOFF (Answer to Q1)

In response to Q1, we formulate the utility preservation payoff PU(M,D) to measure the statistical
difference between the original dataset D and the randomized datasetM(D). Here, a higher value
indicates a smaller difference. Furthermore, we ensure the utility preservation payoff does not com-
promise the assurance of ϵ-pDP by scaling the targeted utility function U into the range [0, 1]. It is
pertinent to mention that a variety of statistical utilities can be adopted as the utility function, encom-
passing metrics like n-th order momentum, Kullback-Leibler (KL) divergence, and Jensen-Shannon
(JS) divergence, among others.
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In this paper, for example, we set the utility function by using KL divergence, i.e.,
U(q(D)||q(M(D))) = DKL(q(D)||q(M(D))), as in the following remark.

Remark 4.1 (Examples of the utility function). For a dataset D, the output probability distribution
q(D) of a query q, and a randomized functionM, the utility preservation payoff is defined as

PU(M,D) = 1− DKL(q(D)||q(M(D)))
log(K)

∈ [0, 1], (8)

where the utility function DKL(q(D)||q(M(D))) is bounded in [0, log(K)]. The minus sign is used
since the KL-divergence is a measure of information-theoretic distance between two probability
distributions, where a smaller value indicates greater similarity between the distributions. The
bound can be obtained by the fact that log(K) ≥ log q(D)

q(M(D)) .

4.2.4 GUARANTEE OF THE ϵ-DP CONDITION (Answer to Q2)

In addressing the previously posed question, Q2: “Does the NVO game truly ensure ϵ-pDP for all
data instances using the privacy assurance payoff as outlined in Equation 7?”, we set forth a proof
demonstrating that the NE strategy for the proposed NVO game can consistently ensure ϵ-pDP for a
dataset.

Theorem 4.1. Let us define the minimum variance in the set of possible action V as bmin ̸= 0. Then,
ϵ-pDP for all data instances upholds if the following condition is satisfied:

bmin ≥
1

log (1 + (|D| − 1)(exp(ϵ)− 1))
. (9)

In Theorem 4.1, we show that an NE point for the NVO game guarantees the ϵ-pDP for all d ∈ D
if the condition in Equation 9 holds. In the theorem, there always exists a value bmin that makes the
NE point of the NVO game ensure the ϵ-pDP for all ϵ ≥ 0.

Remark 4.2 (Intuition of Theorem 4.1). In Equation 9, if there are more data instances in the
dataset, the influence of the individual data point diminishes, thereby allowing us to guarantee ϵ-
pDP easily. That is, if the value of |D| increases, we can guarantee ϵ-pDP with smaller variance
noise. On the other hand, if ϵ decreases to zero, query output with and without a data point should be
statistically the same. Thus, the variance of the added noise becomes infinite, resembling a uniform
query output distribution.

5 ALGORITHM FINDING THE NASH EQUILIBRIUM OF THE NVO GAME.

In this section, we delve into an algorithm designed to secure an NE strategy within the framework
of the NVO game. We begin by showcasing the BRD algorithm, adapted specifically for this game.

BRD algorithm The BRD algorithm is a concept in game theory where players, taking into ac-
count the current strategies of their opponents, opt for their most favorable response. During this
iterative process, players sequentially decide on their best actions, which is presented in Alg. 1.
The choice of values within the variance space can be tailored to encompass all the possible noise
variance values. As the cardinality of the variance space V expands, the algorithm’s performance
improves, but there is a significant increase in computational complexity. Therefore, it is crucial to
define the variance set V considering the trade-off between computational complexity and utility.

Common interest game & potential game In a common interest game, participants share a uni-
fied payoff. A player’s strategy change directly impacts both the potential function and their own
payoff, classifying it inherently as a potential game. Essentially, every data point acts as a coopera-
tive player aiming for a joint goal. By crafting a shared payoff to maximize and iteratively selecting
the optimal noise for each data instance’s output, achieving an NE is feasible.

Convergence of BRD toward NE As shown by Boucher (2017), the BRD algorithm always con-
verges into an NE point, if the target game belongs to one of the following games: potential games,

6



Under review as a conference paper at ICLR 2024

Algorithm 1 Best response dynamics (BRD) for NVO game
Input dataset D = {di|i = 1, ...,m}, variance space V = {vi|i = 1, ..., n}, target epsilon value ϵ

i← 1 and p∗ ← 0 ▷ Initialize data index and the best payoff
V[l]← randomly initiates from v ∈ V , for l = 1, . . . , |D| ▷ Initialize the best variance set
while p∗ converges over the dataset do

PAYOFF[l]← 0, for l = 1, . . . , |V|
for j ← 1 to |V| do ▷ Explore and store payoffs for all variance options

V temp← V
V temp[i]← vj
PAYOFF[j]← GET PAYOFF(D, V temp, ϵ)

end for
p∗ ← max PAYOFF and j∗ ← argmax PAYOFF
V[i]← vj∗ ▷ get the best variance for a current element
i← (i+ 1) mod |D|

end while
return V ▷ Nash equilibrium

*GET PAYOFF() is a function of the proposed payoff by summing up Equations 7 and 8.

weakly acyclic games, aggregative games, and quasi-acyclic games. As noted above, the NVO game
is a potential game; thus, the BRD algorithm can obtain an NE point of the NVO game.

From the proof of Theorem 4.1 in the Appendix A, when every variance option exceeds bmin, there
always exists a choice that consistently increases one pDP assurance at each round. Hence, guaran-
teeing ϵ-pDP for all data instances is feasible after |D| rounds. Intuitively, as players opt for their
best responses, either sequentially or simultaneously, the potential function’s value rises, eventually
peaking. The strategy at this peak is the game’s NE.

6 EXPERIMENTS

In this section, we evaluate the NE strategy of the NVO game. Our primary focus is to observe
if the proposed NVO game has a superior dataset’s statistical utility than the conventional Laplace
mechanism while maintaining the same level of ϵ-pDP/DP.

Dataset To assess this, we conduct simulations on two publicly available datasets: 1) NBA player
dataset3 and 2) personal income dataset4. In the main manuscript, we only show the results on
the NBA player dataset. The results for the personal income dataset can be found in Appendix E.
In the NBA players dataset, we employ 1,307 data instances with the tuple of (height and weight)
for players who joined five teams from 1963 to 2021: Atlanta Hawks, Boston Celtics, Charlotte
Hornets, Chicago Bulls, and Cleveland Cavaliers. The results with a more complex dataset are
available in Appendix F.

Experimental detail In our experiments, we configure the target ϵ values in {1, 2, 4, 8}. After
normalization and discretization, the height and weight values belong to 101 categories, i.e., K =
101. For the action of the players, variance set V is defined by {3×∆q/ϵ, 2×∆q/ϵ,∆q/ϵ, 0.33×
∆q/ϵ, 0.2 ×∆q/ϵ}. From Theorem 4.1, ϵ-pDP for the smallest ϵ is achievable with the configured
variance set V , since bmin ≈ 0.129. That is, the NE points in the proposed NVO game ensure ϵ-pDP.
For comparison, we additionally implemented an approximated enumeration (AE) algorithm based
on the genetic algorithm, with excessive generations. For more details, please refer to Appendix B.

6.1 ANALYSIS 1: STATISTICAL UTILITY

Here, we first analyze the dataset’s statistical utility after executing randomized mechanisms for the
height feature of the NBA player dataset. In Fig. 2, we compare the probability distribution of the

3https://www.kaggle.com/datasets/justinas/nba-players-data
4https://www.kaggle.com/datasets/mastmustu/income
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Figure 2: Comparison of query output probability distributions for the height data with each algo-
rithm for ϵ = 1. The x-axis represents the index of the categorization bins from 0 to 100 (K = 101).

Table 1: Each algorithm’s average computation time, KL divergence, L1 loss of SD, Jaccard index
with a threshold 0.001, and cosine similarity are evaluated for the height data. The modified query
output distributions for all algorithms satisfy ϵ-pDP.

Algorithm Target ϵ Comp. time ↓
(minutes) KL divergence ↓ L1 SD loss ↓ Jaccard index ↑

(threshold=0.001) Cos. similarity ↑

BRD
ϵ=1 4 0.0066 0.0049 0.9523 0.9992
ϵ=2 5 0.0045 0.0084 0.9523 0.9997

Approx. enum.
ϵ=1 392 0.0176 0.0058 0.9523 0.9998
ϵ=2 354 0.0047 0.0080 1.0000 0.9999

Laplace mechanism
(baseline)

ϵ=1
-

1.3991 0.0261 0.1980 0.5656
ϵ=2 0.9480 0.0247 0.2631 0.7040

*Best: bold, second-best: underline.

randomized mechanisms’ output. As shown in the figure, the proposed NVO game (BRD and AE)
has more similar shapes of distribution to the original one than the conventional Laplace mechanism.

In Table. 1, we quantitatively measure various statistical utility functions: 1) KL divergence, 2) L1
loss of standard deviation (SD), 3) Jaccard index, and 4) cosine similarity of the distribution. For
more details on the metrics, please refer to Appendix C. In the table, the NVO game-related algo-
rithms have superior statistical utility than the Laplace mechanism at 99.53%. Despite its superior
performance, the AE algorithm requires much longer computation time than the BRD algorithm.

In Fig. 3, the SD of the added noise in each categorization bin is depicted. As we can observe,
compared to the conventional Laplace mechanism, the BRD and AE algorithms add relatively small
variance noises, thereby achieving superior statistical utility.

6.2 ANALYSIS 2: REGRESSION TASK Table 2: The average RMSE loss for regression
task for the entire dataset, where the samples
were generated using the noise associated with the
pDP/DP algorithms.

Algorithm
Average RMSE

ϵ = 1 ϵ = 2 ϵ = 4 ϵ = 8

Original data (reference) 0.0218

NVO game (BRD) 0.0227 0.0221 0.0219 0.0218
Laplace mechanism 0.0444 0.0380 0.0335 0.0272

*Best: bold.

In order to evaluate the practical usefulness
of the randomized mechanisms, we conduct a
simulation of a regression task to estimate the
weight feature from the height feature of the
NBA player dataset. For the regression task, we
configure a multi-layer neural network, which
consists of three layers with ten parameters ac-
tivated by the Rectified Linear Unit (ReLU)
function. There are three different neural net-
works trained with 1) the original dataset, 2) a
randomized dataset with the NVO game, and 3)
a randomized dataset with the conventional Laplace mechanism. In Fig. 4, we show the scatter di-
agram of the preprocessed original dataset, and the height-weight regression curve of the datasets.
Compared to the conventional Laplace mechanism, the regression curve of the NVO game is more
similar to that of the original data. Quantitatively, as shown in Table 2, even with the case of low
epsilon, 1-DP, the average RMSE of the BRD algorithm is apart from only 8.6% from that of the
original dataset. For 8-DP, the average RMSE for the prediction of the BRD algorithm and original
regression are almost the same.
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(a) ϵ = 1 (b) ϵ = 2

Figure 3: Distributions of average noise standard deviation for the height dataset for ϵ = 1 and 2.

(a) ϵ = 1 (b) ϵ = 4 (c) ϵ = 8

Figure 4: Linear regression result of 500 sampled data for each algorithm for ϵ = 1, 4, and 8.

7 DISCUSSION

Summary We introduce the NVO game, accounting for the optimization of the per-instance
Laplace mechanism. We directly tackle the noise variance optimization problem for ϵ-pDP, aim-
ing to maximize a pre-defined statistical utility function. We prove that the NE point of the NVO
game guarantees ϵ-pDP for all data instances, in which there have been a fluent of game theoretic
methods to achieve this. In experiments, we demonstrate that the proposed method dramatically
outperforms the conventional Laplace mechanism in various statistical utility metrics.

Extensibility to other queries As discussed in Remark 3.1, the random sampling query is a fun-
damental query that can encompass all statistical queries targeted by differential privacy. Therefore,
this study represents a universal framework applicable to the full spectrum of statistical queries.

Limitations The target distribution used in our work is based on Laplace distribution. Also, in
our proposed NVO game, the original dataset is categorized into several bins to ensure low compu-
tational complexity. More importantly, the choice of the noise variances is limited to a discrete set,
even though we have shown the convergence to the ϵ-pDP. In addition, the size of datasets is getting
extremely large, and the payoff computation exponentially increases |D|.

Further research directions We note that future work should explore the optimization of noise
variances within a discrete space and investigate alternative noise distributions beyond the Laplace
noises. Furthermore, the broader applicability of the NVO games concept across various domains
remains an exciting avenue to explore, such as classification datasets.
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A PROOF OF THEOREM 4.1

Theorem 4.1. Let us define the minimum variance in the set of possible action V as bmin ̸= 0. Then,
ϵ-DP upholds if the following condition is satisfied:

bmin ≥
1

log (1 + (|D| − 1)(exp(ϵ)− 1)/K)
. (10)
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For simplicity of the proof, we tackle the situation for the scalar dataset case of the NVO game, i.e.,
d = 1. We note that the proof can be extended to the vector version by considering each element
separately.

A.1 NOTATIONS

In this proof, we use the following notations:

• bi: Action of the player i, the variance of noise added to data di.

• (bi, b−i): Set of each players’ strategy.

• b∗ = (b∗i , b
∗
−i): An NE point of the NVO game.

• bmin = argminb∈V b.

• K: The set of possible query output values, s.t. K ⊂ [0, 1].

• mi,x: The overall probability mass added to x ∈ K by the noise assigned to the i-th data
instance.

• M−i,x =
∑

j∈[|D|]\{i} mj,x

• vmin, vmax: The minimum and maximum values of the probability mass mi,x added to
x ∈ K by additive noise to the i-th data instance.

• Πi(bi, b−i): The i-th player’s payoff for the strategy (bi, b−i).

• Pi,E, Pi,U: The i-th player’s PE and PU for the strategy.

• ∆Pi,E, ∆Pi,U: The change of PE and PU values for the i-th player, s.t. ∆Pi,E = Pi,E −
Pi−1,E and ∆Pi,U = Pi,U − Pi−1,U.

A.2 ASSUMPTION

Let us assume that we implement the NVO games with a continuous variance space V = [bmin,∞)
for bmin ̸= 0 and the set of possible query output values X = [0, 1]. We do not add noise with a
probability of occurring outside the target range of the integration (i.e., [0, 1]); thus, the probability
density function of the Laplace noise is normalized as in Equation 14.

A.3 PROOF

The worst case to ensure ϵ-pDP for an data instance For the proof of the theorem, we start with
the worst case of the ϵ-pDP of an arbitrary data instance. In order to satisfy ϵ-pDP for an element
di, the following condition should be satisfied:

max
x

mi,x +M−i,x

M−i,x · |D|
|D−1|

< max
x

mi,x +M−i,x

M−i,x
≤ exp(ϵ) (11)

⇒ max
x

mi,x +M−i,x

M−i,x
≤ max

x

mi,x +minM−i,x

minM−i,x
= max

x

mi,x + (|D| − 1)vmin

(|D| − 1)vmin
(12)

=
mi,q(di) + (|D| − 1)vmin

(|D| − 1)vmin
≤ exp(ϵ), (13)

where Equation 11 is initialized from the definition of ϵ-pDP.

Find the vmin The minimum value of the mi,x, represented by vmin is obtained by

vmin = min
i,x

mi,x = min
µ,x∈[0,1]

b≥bmin

1
2b exp(−

|x−µ|
b )∫ 1

0
1
2b exp(−

|t−µ|
b )dt

(14)

= min
µ,x∈[0,1]

b≥bmin

1
2b exp(−

|x−µ|
b )

1− 1
2 exp(

µ−1
b )− 1

2 exp(
−µ
b )

= min
µ,x∈[0,1]

b≥bmin

V (µ, b, x). (15)

12
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In Equation 14, the definition of vmin is rewritten by the Laplace distribution f(x|µ, b) =
1
2b exp(−

|x−µ|
b ). For brevity, in Equation 15, we newly define a function V (µ, b, x).

Then, our focus is to find a value of µ for the vmin, and check the critical points with following
conditions:

∂V

∂µ
= 0 (16)

⇒ 1
2b2

exp(µ−x
b )[1− 1

2 exp(µ−1
b )+ 1

2 exp(−µ
b )]− 1

2b exp(µ−x
b )[− 1

2b exp(µ−1
b )+ 1

2b exp(−µ
b )] (17)

=
1

2b2
= 0, (18)

where Equation 17 holds because of the Laplace distribution’s symmetry, thereby making us to
consider x ≥ µ. Then, from the result of Equation 18, we confirm that there is no critical point that
makes ∂V/∂µ = 0. Also, when x ≥ µ, we confirm that the sign of ∂V/∂µ is always positive; thus,
the minimizer µ of the function V (µ, b, x) is zero as follows:

sign
(
∂V

∂µ

)
= sign

(
1

2b

)
=

1

2b2
≥ 1

2b2min

> 0 (19)

⇒ argmin
µ

V (µ, b, x) = 0. (20)

Then, by substituting µ = 0 into V (µ, b, x), we confirm that the minimizer x of the function is one
as follows:

∂V

∂x
=
− 1

b2 exp(−
x
b )

1− exp(− 1
b )

< 0⇒ argmin
x∈[0,1]

V (0, b, x) = 1. (21)

Up to here, we obtained the minimizers µ = 0 and x = 1. By substituting the minimizers, we can
obtain the minimizer b as

argmin
b≥bmin

V (0, b, 1) = argmin
b≥bmin

1

exp( 1b )− 1
= argmax

b≥bmin

exp(
1

b
) = bmin (22)

∴ vmin =
1

exp( 1
bmin

)− 1
. (23)

Substitute the obtained vmin for getting the worst case From the result of Equation 23 and
Equation 13, we have the bound of ϵ, which always guarantee ϵ-pDP. Here, we assume the case the
i-th player does his best to guarantee ϵ-pDP and choose bi =∞. Then, we have

min
(
mi,q(di)

)
+ |D|−1

exp(1/bmin)−1

|D|−1

exp( 1
bmin

)−1

=
1 + |D|−1

exp(1/bmin)−1

|D|−1
exp(1/bmin)−1

≤ exp(ϵ) (24)

∴ ϵ ≥ ln

1 + |D|−1
exp(1/bmin)−1

|D|−1
exp(1/bmin)−1

 , (25)

which can be equivalently written by

bmin ≥
1

log (1 + (|D| − 1)(exp(ϵ)− 1))
. (26)

In Equation 25, we have mi,q(di) ≥ 1, where the equality holds when bi = ∞ and the PDF is
uniform. Finally, there always exists at least one choice to improve the DP guarantee payoff for all
elements.

The strategy is improved to finally guarantee ϵ-pDP for all elemnts Before the strategy set
satisfies the ϵ-pDP for all elements, we have

min
bi

∆Pi,E ≥ 1 > max
bi

∆Pi,U. (27)

Equation 27 proves that there exists at least a choice to improve the ϵ-pDP guarantee for an element,
when the ϵ is bounded like Equation 25, and by the definition of PU. Therefore, players choose a
strategy to improve ϵ-pDP until guaranteeing for all elements.

13
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The Nash equilibrium ensures ϵ-pDP for all elements Assume that the Nash equilibrium point(
b∗i , b

∗
−i

)
does not satisfy the ϵ-pDP for all elements,

Πi(b
∗
i , b

∗
−i) ≥ Πi(bi, b

∗
−i)⇒ |D| > Πi(b

∗
i , b

∗
−i) ≥ maxΠi(bi, b

∗
−i) = max

bi
(Pi,E + Pi,U) (28)

= max
bi

(Pi−1,E + Pi−1,U +∆Pi,E +∆Pi,U) = Pi−1,E + Pi−1,U +max
bi

(∆Pi,E +∆Pi,U) (29)

≥ Pi−1,E + Pi−1,U + 1 ≥ Pi−2,E + Pi−2,U + 2 ≥ . . .

≥ min
i,(bi,b−i)

(Pi,E + Pi,U) + |D| = |D|, (30)

where Equation 28 follows the definition of Nash equilibrium and the definition of NVO game’s
payoff. Because the result in Equations 27 to 30 contradicts (|D| > |D|), we show that the assump-
tion in this paragraph is false. That is, the Nash equilibrium point

(
b∗i , b

∗
−i

)
must satisfy the ϵ-pDP

for all elements.

B APPROXIMATED ENUMERATION FOR NVO GAME VIA GENETIC
ALGORITHM
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Figure 5: AE for the NVO game via ge-
netic algorithm to find an NE point.

Carrying out a precise enumeration for the proposed game
proved to be computationally daunting. In lieu of that, we
adopted an approach grounded in evolutionary game the-
ory. We conducted an AE algorithm by running simula-
tions across numerous generations. This technique tracks
the evolution of strategies over time, shedding light on
promising strategies without the necessity of exhaustively
probing every conceivable option.

Chromosome Chromosomes typically symbolize solu-
tions to the specific optimization challenge being ad-
dressed. In the framework of the NVO games, each gene
is representative of the variance variable bi tied to the noise introduced to the query output for every
sequential element.

Fitness function Fitness function serves as the criterion for selecting the most suitable chromo-
somes that fulfill the specified criteria and can pass down their traits to offspring. Hence, we adopt
the payoff P (MI,D) as our fitness function.

The initial generation’s chromosomes are created by randomly selecting values within the variance
space V for each gene. A larger population broadens the solution search space, minimizing the
risk of local optima. Some high-fitness parents are retained in the offspring generation to avoid
local optima. During offspring generation, random crossover points are used, and their optimal
number can be determined via simulation. Mutation probability is set to balance between avoiding
local optima and ensuring trait transfer. If the optimal fitness value stagnates across generations, it
indicates a Nash equilibrium approximation. The current chromosome may be optimal, but due to
randomness, other solutions might emerge.

With ample time, the AE algorithm has the potential to match the performance of the exact enumer-
ation algorithm and attain an NE point. Our experiments continued for an extended period to ensure
convergence. Nevertheless, there is no theoretical guarantee that an NE point is achievable within
polynomial time.

C EXPERIMENTAL DETAILS

Hyperparameters Our proposed BRD algorithm does not require specific hyperparameter set-
tings. In the approximate enumeration via GA, we initially set the number of chromosomes in the
population to 500, and for each generation, we involve 10 chromosomes in the mating process. We
randomly designate 2 crossover points, and we introduce a 5 % probability for each gene to undergo

14
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mutation. We employ a steady-state selection approach, retaining the top 5 parents with the highest
fitness values for the next generation. We utilized PyGad (Gad, 2021) library for the implementation.

C.1 REALISTIC VARIANCE VALUES

In Theorem 4.1, the value of bmin is sufficiently realistic as well as it is smaller than the noise added
in the Laplace mechanism. For example, Apple is known to use ϵ-DP with epsilon values ranging
between 2 and 8 5. We assume that the tightest ϵ is given, i.e., ϵ = 2, where the sensitivity after
normalizing the query output is 1. The Laplace mechanism has an additive noise with the variance
of 1/ϵ = 0.5. However, in Theorem 4.1, the value of bmin is 0.263 for a dataset of size 1,000. We
kindly note that the variance is reduced as the dataset size increases, e.g., bmin = 0.208 for a dataset
of size 10,000.

C.2 HARDWARE ENVIRONMENT

We conduct experiments using an AMD Ryzen Threadripper 1920X 12-Core Processor and 32 GB
of RAM. Since there is no need for extensive parallel computations, GPU utilization is not required.
To conserve computing resources and facilitate a fair comparison in terms of execution time on the
same evaluation criteria, we exclusively relied on CPU computations.

C.3 METRICS OF DATA STATISTICS

In this experiment, we use the following metrics related to data statistics:

• KL divergence: We measure the KL divergence between the probability distribution of
the original dataset and the randomized dataset. The lower KL divergence indicates better
preservation of the information of the original dataset.

• L1 loss of standard deviation (SD): This metric measures the ℓ1 error between the stan-
dard deviation of the original dataset and the randomized dataset.

• Jaccard index: The Jaccard index is calculated by representing values in a probability
distribution exceeding a certain threshold and then computing the intersection over union
(IoU) of the two sets. This measure quantifies the similarity between two probability distri-
butions, where a value closer to 0 indicates dissimilarity, while a value closer to 1 signifies
similarity between the distributions. We set the threshold to 0.001 to examine the probabil-
ity distribution of query output during experiments and select significant values.

• Cosine similarity (Furnas et al., 1988): The probability mass function can be viewed as a
vector with probability values. We leverage the cosine similarity to measure the similarity
between two probability distributions represented as vectors.

D ADDITIONAL EXPERIMENTAL RESULTS

Here, we discuss additional results that were not included in the main manuscript. This section
presents the results of randomized mechanisms applied to the height feature of the NBA player
dataset.

D.1 STATISTICAL UTILITY PRESERVATION

In Fig. 6, the random sampling query output of the original data, conventional Laplace mechanism,
and NVO game (BRD and AE) is depicted. As similar to the result of the main manuscript, the
NVO game better preserves the probability distribution than the conventional Laplace mechanism,
by executing per-instance noise optimization. By observing the subfigures, we can observe that
the probability distribution of the Laplace mechanism is similar to the original dataset; however,
the proposed NVO game better preserves the shape than with only using ϵ = 0.1 than the Laplace
mechanism of ϵ = 8.

5https://www.apple.com/privacy/docs/Differential Privacy Overview.pdf
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(e) ϵ = 8

Figure 6: Comparison of query output probability distributions for the height data with each algo-
rithm, when ϵ = 0.1, 0.3, 2, 4, and 8.
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Table 3: Each algorithm’s average computation time, KL divergence, L1 loss of standard deviation,
Jaccard index with a threshold 0.001, and cosine similarity are evaluated for the height data, for ϵ =
0.1, 0.3, 4, and 8. The modified query output distributions for all algorithms satisfy ϵ-DP.

Algorithm Target ϵ Comp. time ↓
(minutes) KL divergence ↓ L1 SD loss ↓ Jaccard index ↑

(threshold=0.001) Cos. similarity ↑

BRD

ϵ=0.1 8 0.0512 0.0126 0.4878 0.9989
ϵ=0.3 5 0.0393 0.0122 0.5882 0.9994
ϵ=4 5 0.0005 0.0016 1.0000 0.9999
ϵ=8 5 0.0006 0.0017 1.0000 0.9999

Approx. enum.

ϵ=0.1 287 0.0475 0.0123 0.5000 0.9995
ϵ=0.3 294 0.0248 0.0108 0.8261 0.9998
ϵ=4 182 0.0006 0.0015 1.0000 0.9999
ϵ=8 155 0.0001 0.0007 1.0000 0.9999

Laplace mechanism
(baseline)

ϵ=0.1

-

0.0475 0.0279 0.1980 0.3732
ϵ=0.3 0.0475 0.0279 0.1980 0.3732
ϵ=4 0.5064 0.0216 0.4444 0.8299
ϵ=8 0.2401 0.0170 0.6451 0.9074

*Best: bold, second-best: underline.

In Table 3, the proposed NVO game and the Laplace mechanism are quantitatively evaluated in
various statistical metrics. Similar to the results in the main manuscript, the proposed NVO game-
based algorithms (BRD and AE) outperform the Laplace mechanism.

!"#$%&'()*$+

(a) ϵ = 0.1

!"#$%&'()*$+

(b) ϵ = 0.3

(c) ϵ = 4 (d) ϵ = 8

Figure 7: Distributions of average noise standard deviation for the income dataset for ϵ = 0.1, 0.3, 4,
and 8.

In Fig. 7, we compare the average standard deviation of the added noise to each categorization bin
of the conventional Laplace mechanism and the NVO-game-based algorithms. As depicted in the
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figure, the NVO game adds lower variance at almost all bins, thereby having better data statistical
utility.

D.2 REGRESSION TASK

(a) ϵ = 0.1 (b) ϵ = 0.3 (c) ϵ = 2

Figure 8: Linear regression result of 500 sampled data for each algorithm for ϵ = 0.1, 0.3, and 2.

To evaluate the regression task of the proposed NVO game, we run the regression network with
three layers. Similarly to the main manuscript, the network consists of ten parameters and ReLU
activation functions. Figure 8 depicts the scatter diagram of the original dataset and the trained
regression line, where the neural network input is height and the output is weight. For the value of
ϵ=0.1, 0.3, and 2, the proposed NVO game closely preserves the regression line after applying the
randomized algorithm (BRD).

E EXPERIMENT 2: INCOME DATA

In addition to the NBA player dataset, we have conducted supplementary experiments on personal
income data. Detailed experiment setups and the results are discussed in the remainder of this
section.

E.1 EXPERIMENT SETUP

Personal income dataset We utilize the test dataset of the personal income dataset, crafted by
UC Irvine6. The number of data in the test dataset is 899. Similar to the NBA player dataset, the
income values belong to one of the 101 categorization bins. We note that the single feature analysis
is conducted here because there is no continuous feature in the dataset except income.

Hyperparameters Here, we use the same set of hyperparameters with the NBA player dataset’s
experiment.

E.2 ANALYSIS

In Fig. 9, we can observe that the NVO-game-based algorithms (BRD and AE) better preserve the
shape of the probability distribution of the income feature compared to the conventional Laplace
mechanism.

The qualitative results can be found in Table 4. The approximate enumeration algorithm demon-
strates an ability to maintain data statistics that were nearly equivalent, albeit at a computational
cost approximately 100-150 times higher, requiring roughly 270 generations. The BRD algorithm
achieves similar performance much more efficiently. The BRD algorithm achieved up to a 99.71 %
improvement in KL utility than the Laplace mechanism, while guaranteeing 4-DP for every element,
on the income dataset.

6https://www.kaggle.com/datasets/mastmustu/income
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(b) ϵ = 0.3
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(c) ϵ = 1
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(d) ϵ = 2
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(e) ϵ = 4
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(f) ϵ = 8

Figure 9: Comparison of query output probability distributions for the income data with each algo-
rithm, when ϵ = 0.1, 0.3, 1, 2, 4, and 8.

For the comparison of the per-instance noise variance, we depict the average standard deviation of
the added noise in Fig. 10. Similar to the results in the NBA player dataset, the proposed NVO
game allocate different amount of noise by considering its probability mass, thereby having better
statistical utility.

From these additional results, we confirm that the proposed NVO game concisely outperforms the
conventional Laplace mechanism.

F EXPERIMENT 3: LARGE INCOME DATA

Essentially, individual privacy is harder to guarantee with smaller datasets due to the increased
significance of a data point. Hence, opting for smaller datasets makes privacy assurance more chal-
lenging. As datasets grow larger, ensuring privacy becomes comparatively easier. For these reasons,
we conduct experiments on a dataset of approximately 1000 in size, but to demonstrate scalability,
we also perform experiments on a dataset ten times larger, comprising 10,000 instances.

F.1 EXPERIMENTAL SETUP

Credit profile dataset We utilize the test dataset of the credit profile dataset 7. We conduct our
experiments with randomly sampled a cohort of ten thousand individuals. We note the correlation
between age and income, and we exploit those two features in our experiments. Similar to the NBA
player dataset, the income and age values belong to one of the 101 categorization bins.

Hyperparameters Here, we use the same set of hyperparameters with the NBA player dataset’s
experiment.

7https://www.kaggle.com/datasets/yashkmd/credit-profile-two-wheeler-loan-dataset/
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Table 4: Each algorithm’s average computation time, KL divergence, L1 loss of standard deviation,
Jaccard index with a threshold 0.015 0.001, and cosine similarity are evaluated for the income data.
The modified query output distributions for all algorithms satisfy ϵ-DP.

Algorithm Target ϵ Comp. time ↓
(minutes) KL divergence ↓ L1 SD loss ↓ Jaccard index ↑

(threshold=0.001) Cos. similarity ↑

BRD

ϵ=0.1 3 0.0697 0.0015 0.5758 0.9933
ϵ=0.3 2 0.0376 0.0083 0.8500 0.9994
ϵ=1 1 0.0223 0.0068 0.9091 0.9997
ϵ=2 2 0.0087 0.0003 0.9000 0.9999
ϵ=4 2 0.0014 0.0003 1.0000 0.9999
ϵ=8 1 0.0013 0.0007 1.0000 0.9999

Approx. enum.

ϵ=0.1 183 0.0203 0.0110 0.5135 0.9989
ϵ=0.3 235 0.0179 0.0012 0.8500 0.9999
ϵ=1 148 0.0202 0.0061 0.9091 0.9998
ϵ=2 204 0.0061 0.0026 1.0000 0.9999
ϵ=4 178 0.0010 0.0017 1.0000 0.9999
ϵ=8 164 0.0000 0.0000 1.0000 1.0000

Laplace mechanism
(baseline)

ϵ=0.1

-

1.9261 0.0279 0.1980 0.3589
ϵ=0.3 1.7909 0.0278 0.1980 0.4069
ϵ=1 1.3952 0.0274 0.1980 0.5529
ϵ=2 0.9373 0.0261 0.2778 0.6959
ϵ=4 0.4758 0.0230 0.4419 0.8369
ϵ=8 0.1736 0.0178 0.5806 0.9378

*Best: bold, second-best: underline.

F.2 STATISTICAL UTILITY PRESERVATION

In Fig. 11, the random sampling query output of the original data, conventional Laplace mechanism,
and NVO game (BRD) is depicted. As similar to the result of the main manuscript, the NVO game
better preserves the probability distribution than the conventional Laplace mechanism, by execut-
ing per-instance noise optimization. As the dataset size increased, the AE took an excessively long
time to converge, preventing us from confirming its convergence within a reasonable timeframe.
Consequently, we omitted its results from our findings.

Table 5: Each algorithm’s average computation time, KL divergence, L1 loss of standard deviation,
Jaccard index with a threshold 0.001, and cosine similarity are evaluated for the large income data,
for ϵ = 1 and 2. The modified query output distributions for all algorithms satisfy ϵ-DP.

Algorithm Target ϵ Comp. time ↓
(minutes) KL divergence ↓ L1 SD loss ↓ Jaccard index ↑

(threshold=0.001) Cos. similarity ↑

BRD
ϵ=1 331 0.0000 0.0000 1.0000 1.0000
ϵ=2 633 0.0001 0.0004 1.0000 1.0000

Laplace mechanism
(baseline)

ϵ=1
-

0.9490 0.0190 0.3069 0.6876
ϵ=2 0.5668 0.0173 0.3333 0.8224

*Best: bold.

In Table 5, the proposed NVO game and the Laplace mechanism are quantitatively evaluated in vari-
ous statistical metrics. Similar to the results in the main manuscript, the proposed NVO game-based
algorithm (BRD) outperforms the Laplace mechanism. Furthermore, for larger datasets, due to the
lower individual instance contribution, privacy is better preserved, allowing us to ensure a more
robust statistical utility while maintaining the same ϵ-DP guarantee.

For extremely large datasets, our proposed method incurs high-order computational complexity for
the ϵ-pDP guarantee, scaling as O(|D|2). To mitigate this, one approach could be to group data
points with identical query outputs, allowing for computational reduction through the addition of
uniform noise.

In Fig. 12, we compare the average standard deviation of the added noise to each categorization bin
of the conventional Laplace mechanism and the NVO-game-based algorithm (BRD). As depicted
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(a) ϵ = 0.1
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(b) ϵ = 0.3

(c) ϵ = 1 (d) ϵ = 2

(e) ϵ = 4 (f) ϵ = 8

Figure 10: Distributions of average noise standard deviation for the height dataset for ϵ =0.1, 0.3,
1, 2, 4, and 8.

in the figure, the NVO game adds lower variance at all bins, thereby having better data statistical
utility.

F.3 REGRESSION TASK

To evaluate the regression task of the proposed NVO game, we run the regression network with
three layers. Similarly to the main manuscript, the network consists of ten parameters and ReLU
activation functions. Figure 13 depicts the scatter diagram of the original dataset and the trained
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(b) ϵ = 2

Figure 11: Comparison of query output probability distributions for the large income data with each
algorithm, when ϵ = 1 and 2.

(a) ϵ = 1 (b) ϵ = 2

Figure 12: Distributions of average noise standard deviation for the large income dataset for ϵ = 1
and 2.

regression line, where the neural network input is age and the output is income. For the value of ϵ=1
and 2, the proposed NVO game closely preserves the regression line after applying the randomized
algorithm (BRD). In regression tasks as well, we observe improved data characteristics for the same
ϵ-DP when dealing with larger dataset sizes.

22



Under review as a conference paper at ICLR 2024

(a) ϵ = 1 (b) ϵ = 2

Figure 13: Linear regression result of 500 sampled data for each algorithm for ϵ = 1 and 2.
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