
Proceedings of Machine Learning Research – Under Review:1–25, 2025 Full Paper – MIDL 2025 submission

Vector Representations of Vessel Trees

James Batten1,2 j.batten@imperial.ac.uk

Michiel Schaap1,2 mschaap@heartflow.com

Matthew Sinclair1,2 msinclair@heartflow.com

Ying Bai2 ybai@heartflow.com

Ben Glocker1,2 b.glocker@imperial.ac.uk
1 Imperial College London, Exhibition Road, London
2 HeartFlow, 331 E Evelyn Ave, Mountain View, California

Editors: Under Review for MIDL 2025

Abstract

We introduce a novel framework for learning vector representations of tree-structured ge-
ometric data focusing on 3D vascular networks. Our approach employs two sequentially
trained Transformer-based autoencoders. In the first stage, the Vessel Autoencoder cap-
tures continuous geometric details of individual vessel segments by learning embeddings
for sampled points along each curve. In the second stage, the Vessel Tree Autoencoder
encodes the topology of the vascular network as a single vector representation, leveraging
the segment-level embeddings from the first model. A recursive decoding process ensures
that the reconstructed topology is a valid tree structure. Compared to 3D convolutional
models, this proposed approach substantially lowers GPU memory requirements, facili-
tating large-scale training. Experimental results on a 2D synthetic tree dataset and a
3D coronary artery dataset demonstrate superior reconstruction fidelity, accurate topology
preservation, and realistic interpolations in latent space. Our scalable framework, named
VeTTA, offers precise, flexible, and topologically consistent modeling of anatomical tree
structures in medical imaging.

Keywords: Tree Autoencoders, Recursive Decoding, Coronary Artery Modeling

1. Introduction

Vector embeddings are powerful representations for mapping data from various modalities
into a universal format. Although autoencoders have been widely used to learn embeddings
from images, text, and audio, the problem of encoding and decoding graph-structured
geometry remains challenging (Zhu et al., 2022). For example, representing 3D anatomical
structures such as coronary arteries is particularly difficult due to their highly variable
topology.

Learning to encode precise topological information into a single vector representation in
a variational setting requires a particularly powerful and expressive encoder. Transformers
(Vaswani, 2017) are well-suited to this task because they effectively leverage large-scale
training compute and extensive datasets. Furthermore, the architecture can efficiently
model long-range dependencies to better capture fine-grained geometric details. These
capabilities enable transformer-based encoders to model the full complexity of branching
structures in a global latent code, preserving the geometry of tree-structured data.

Beyond reconstruction tasks, generative modeling approaches have gained traction in
medical imaging for data augmentation and shape analysis. By capturing the distribution

© 2025 CC-BY 4.0, J. Batten, M. Schaap, M. Sinclair, Y. Bai & B. Glocker.

https://creativecommons.org/licenses/by/4.0/

Batten Schaap Sinclair Bai Glocker

of anatomical variations in a latent space, generative models can create realistic synthetic
shapes to expand training data or explore morphological changes across a patient population
(Rasal et al., 2023). These avenues highlight the importance of learning powerful, flexible
encodings for complex anatomical structures.

In this paper, we demonstrate that an autoencoder capable of decoding continuous
geometric representations of trees can accurately reconstruct samples not seen during train-
ing. This approach is valuable in scenarios where models are first pre-trained on large
geometric datasets and then applied to downstream tasks requiring high precision (e.g.,
image-to-geometry problems), where memory constraints result in significant limits to scal-
ability. Our method, named VeTTA (Vessel Tree Transformer Autoencoder), employs a
recursive decoder, which provides a topological guarantee that the output geometry is tree-
structured. The latent code describes a recursive “program” for decoding the branching
structure across multiple forward passes through the model, enabling the reconstruction
process to effectively leverage the capabilities of the decoder at inference-time. Finally, we
show that when interpolating latent vectors between previously unseen samples, our method
generates plausible and topologically-correct trees, indicating that our model learns embed-
dings in a semantically meaningful latent space.

2. Related Work

Generative modeling of 3D geometry has gained momentum in numerous applications, such
as molecule design (Shi et al., 2020), vessel graph synthesis (Schneider et al., 2012) and
shape representation (Lemeunier et al., 2022). Some generative methods involve volumetric
(Brock et al., 2016) or mesh-based operations (Liu et al., 2023; Siddiqui et al., 2023), while
more recent approaches exploit implicit functions to capture geometric detail (Genova et al.,
2019). Transformers have emerged as powerful sequence-to-sequence models for 3D data,
where positional embeddings or local structural features can be encoded directly (Mialon
et al., 2021).

Graph-centric generative models typically aim to produce discrete connectivity along
with position information, prominent in vascular network generation (Prabhakar et al.,
2024; Feldman et al., 2023). They often adopt variational inference (Gómez-Bombarelli
et al., 2018) or adversarial training (De Cao and Kipf, 2018) to learn expressive latent
representations, supporting tasks like structure optimization (Simonovsky and Komodakis,
2018) or hierarchical composition (Jin et al., 2018).

Another line of work, relevant to representation learning of curvilinear structures, focuses
on trajectory and sequence modeling with autoencoders, including motion analysis (Jadhav
and Farimani, 2021), agent trajectory prediction (Chen et al., 2023), or large-scale spatio-
temporal synthesis (Chen et al., 2021). Approaches like hierarchical RL and trajectory-level
variational autoencoders have also been explored to learn stable latent spaces for planning
(Co-Reyes et al., 2018), while specialized architectures can discover compact embeddings
for trajectory clustering (Olive et al., 2020). In parallel, shape-specific generative mod-
els—especially for blood vessels (Wolterink et al., 2018)—highlight the need for topologi-
cally consistent representations, whether through tube-like primitives, implicit constraints,
or recursion on branch structures.

2

Vector Representations of Vessel Trees

3. Method

Vessel Encoder

Full Vessel
Tree Encoder

Vessel Tree
Decoder

Vessel Decoder

Partial Vessel
Tree Encoder

Vessel Samples

Input Vessel

Full Input
Vessel Tree

Partial Output
Vessel Tree

(step n)

Partial Output
Vessel Tree
(step n+1)

Vector
Representation

of the Vessel

Predicted
vessel properties

corresponding to t

Query

Predicted
Nodes

Vessel Autoencoder Vessel Tree Autoencoder

Encoder Branch

Decoder Branch

Figure 1: Diagram of the two-stage proposed method. The first stage (shown left) is the
Vessel Autoencoder which encodes a continuous vessel segment sv of shape (n, 4) into a
vector embedding zv. The second stage (shown right) is the Vessel Tree Autoencoder

which encodes a whole tree into a vector representation zt, and recursively decodes nodes
from this global embedding.

Vessel Autoencoder. We begin by training a Vessel Autoencoder to represent a single
generalized cylinder of shape (n), where each sample (x, y, z, r, t) is lifted to sinusoidal
Fourier features (Tancik et al., 2020) before being processed by a transformer encoder and
small MLP layers. Let zv ∈ R64 be the final encoded vessel embedding. A 2-layer MLP
fd(·) then predicts a residual to a linear interpolation between the first and second node
positions (and radii), as

gd(zv, t) = a + (b− a) · t + fd(zv, t) ·m(t), (1)

where t ∈ [0, 1] and (a, b) are the normalized endpoints with the radius terms: ((pa, ra), (pb, rb)).
During training we set m(t) = 1 and we normalize each vessel by placing pa at the origin, pb
on the unit sphere and linearly rescaling the radius such that ra = 1. We split each vessel
into 64 segments of equal Gaussian-smoothed curvature and sample one point per segment
for the encoder. We further re-weight the reconstruction loss to emphasize longer and more
tortuous vessels (see Appendix for details). For each batch sample, scalar values t are then
drawn to compare the reconstruction gd(zv, t) with the ground-truth (x, y, z, r) via

LVessel =
∥∥ gd(zv + ϵ, t) − (x, y, z, r)

∥∥2
2
, (2)

where a small amount of Gaussian noise ϵ of standard deviation 0.05 is added to zv to
locally regularize the latent space. Because fd(·) is a small MLP with a GeLU activation,
it yields a continuous path ideally suited for vascular modeling.

3

Batten Schaap Sinclair Bai Glocker

Vessel Tree Autoencoder. In the second stage, we train a Vessel Tree Autoencoder
on a tree connectivity structure, i.e. a set of directed edges. Each edge comprises node
coordinates (again lifted to Fourier features), topological attributes, and in the 3D setting a
concatenated zv from the Vessel Autoencoder. We pass the full set of edges {efulli } through
a transformer to produce a global tree representation zt = EncoderBranch

(
{efulli }

)
which

can be viewed as a “program” describing how to reconstruct the tree (c.f. Fig 1).

In the variational configuration, instead of predicting a single vector zt, the encoder
outputs two vectors (zµ,t, zσ,t), and we sample zt via the reparametrization trick. We then
add a Kullback-Leibler divergence term to the total loss:

LKL = λKLDKL

(
N (zµ,t, z

2
σ,t) ∥N (0, I)

)
, (3)

where λKL is a hyperparameter. This term is present only in the variational setting.

Recursive Decoding. During inference, we decode the tree in a recursive fashion. At
each step, we choose one node in a partial tree whose children remain unknown, marking it
with a binary “query” flag in the directed edges {epartialj }. A transformer encoder processes
these partial edges, concatenating zt to each edge embedding as context. To handle the
special case where the partial tree is empty at the start of decoding (i.e. predicting the root
node), we add a learned “start token” to avoid an entirely empty input. After the root
node is predicted in the first step, we use a “semi-edge” that connects the root node to
itself so that the partial tree still has at least one valid edge for the encoder to process (see
Appendix for details). Once all the nodes in the partial tree have been expanded, the entire
tree is decoded and recursive process halts.

The encoded partial tree (plus zt) serves as the “memory” of a transformer decoder
whose input is a fixed set of slots (learned vectors). The decoder uses cross-attention

to extract relevant information from zt and {epartialj }, and produces predictions for each

slot: {(sp, st)} = DecoderBranch
(
{epartialj }, zt

)
. Here sp and st denote, respectively, the

predicted positional and topological attributes; in 3D, a vessel embedding, a log radius and
a skip-vessel flag are also predicted for each slot. Because any node in the tree can have
at most two children, the network learns to bind its set of predicted slots to either one or
two ground-truth child nodes. We then cluster the slot predictions to form discrete child
nodes (the cluster count is given by the query node’s predicted topology). This clustering
approach is described in more detail in the Appendix. In the experiments with our proposed
model, we use 32 slots.

To reconstruct the continuous vessel geometry from each predicted child, we interpolate
between the parent (pa, ra) and child (pb, rb) and refine curvature via Eq. 1. In practice, we
reweight different properties in the decoder loss (position, topology, radius, and so on) to
balance the relative scales of each quantity.

Recursive Reconstruction Loss. To train this decoder, we define Φ(·) as a lifting func-
tion that maps positional coordinates, topological vectors, and (for 3D) vessel embeddings
into a high-dimensional space, enabling a distance measure between predicted slot-vectors
S = {si} in the lifted domain and target nodes G = {gj} in the original domain. We form
the cost matrix ∥si−Φ(gj)∥22 and compute a custom matching in both directions to produce
the matrices L and R, such that each slot is matched to exactly one target and each target

4

Vector Representations of Vessel Trees

has as least k slots matched to it (In our experiments we set k to 3, see Appendix for more
details). By minimising the reconstruction loss, the model learns to recursively decode valid
tree-structured reconstructions from a single global embedding. The total reconstruction
loss for a single decoding step is:

LTree =
1

|L|

s∑
si∈S

t∑
gj∈G

Lij ∥si − Φ(gj)∥22 +
1

|R|

s∑
si∈S

t∑
gj∈G

Rij ∥si − Φ(gj)∥22, (4)

Variational Autoencoder. In the variational setting, we add λKLDKL(·) as described
above to obtain the full training objective. In the variational case, we can also linearly
interpolate between two distinct zt samples to synthesize novel plausible morphologies.

4. Experimental Setup

We train autoencoder models on two datasets. The first is the publicly available SSA dataset
(https://zenodo.org/record/10076802), which contains 2D synthetic trees (15248 train-
ing trees, 3812 test trees) with associated segmentations. The second is the VesselTrees
dataset, composed of semi-automatically annotated 3D coronary meshes (and centerlines)
derived from cardiac CT angiography (CTA) through HeartFlow’s commercial processing
pipeline. In both datasets, we limit each node in the tree connectivity structure to having
either 0, 1, or 2 children. The VesselTrees dataset is divided into 3996, 754 and 250 full
coronary trees for the train, test and val splits respectively.

For both the SSA and VesselTrees datasets, we conduct two sets of experiments in which
each model is trained as a standard autoencoder and as a variational autoencoder (respec-
tively indicated with suffixes -AE and -VAE). On the VesselTrees dataset, we subsample
10 random “sub-trees” per full coronary tree, with a maximum arc length from root to
leaf of 60mm. We exclude both subsampled vessel trees that have fewer than 3 segments
and samples with no bifurcations. In order to train the Vessel Autoencoder, we crop single
vessels in the range 2.5 to 40mm. The subsampled vessel trees contain segments between 0
and 40mm in length. Segments smaller than 2.5mm in length are explicitly represented by
a skip-vessel flag.

On the 2D SSA dataset, we compare the proposed autoencoder model, VeTTA, against
a convolutional autoencoder baseline (Conv-2D). We use two variants of this convolutional
architecture: one with batch normalization (Ioffe, 2015) and ReLU activations, and another
with GroupNorm (Wu and He, 2018) and GELU (Hendrycks and Gimpel, 2016). Both
baselines are trained to encode and decode the 2D segmentation masks. After decoding,
we take the largest connected component of the output and skeletonize it to extract the
predicted centerline. By contrast, our method directly predicts the tree structure via recur-
sive decoding; we then sample 100 points down each predicted edge to form a centerline.
Centerline-based metrics are computed to compare the predicted trees to the ground truth.
All models trained on the SSA dataset use a latent code size of 256.

On the 3D VesselTrees dataset, we compare VeTTA against three convolutional archi-
tectures: GDVM-AE (Brock et al., 2016), Conv-3D-AE (our extension of GDVM-AE with
residual connections and GroupNorm), and VesselVAE (Feldman et al., 2023). We train each
model to learn shape representations from 1283 voxel grids. For GDVM-AE and Voxel-AE,

5

https://zenodo.org/record/10076802

Batten Schaap Sinclair Bai Glocker

we convert the resulting 3D volumes into meshes with marching cubes, and then extract the
centerline through skeletonization. We also generate a point cloud from the segmentation
by sampling points within the volume. In contrast, our method first predicts continuous
centerline curves (with radius) structured in a tree. To obtain a reconstructed mesh, we
create a surface point cloud from these curves by placing points around each predicted
radius; we then apply Poisson surface reconstruction (Kazhdan et al., 2006) to produce a
watertight mesh. From this mesh, we additionally derive 3D volumes and volumetric point
clouds (by uniform sampling in the interior). These four representations—mesh, centerline,
point cloud, and voxel grid—are evaluated for both the proposed approach and the convo-
lutional baselines (except for VesselVAE, where we do not compute the dice score since the
output mesh is not always watertight). All models trained on the VesselTrees dataset use
a latent code of size 8192.

We train the Vessel Autoencoder for 140k steps with a batch size of 1750. The learning
rate is linearly increased to 5×10−5 and then exponentially decayed by a factor of 10 every
50k steps. The Vessel Tree Autoencoder is trained for 250k steps with a batch size of 1100,
linearly ramping up the learning rate to 10−5 with a factor 10 decay every 200k steps. We
use the AdamW optimizer (Loshchilov, 2017) to train all the models described in this paper.
For the variational models, we weight the KL-divergence term by a factor λKL = 1e−6.
All models are implemented using Pytorch (Paszke et al., 2019) and are trained on a single
NVIDIA V100 32GB GPU. Further architectural and implementation details for both our
approach and the baselines can be found in the Appendix. The code to train these models
will be made publicly available.

5. Results and Discussion

Model CHD ↓ (×101) ACD ↓ (×102) CF1 ↑

Conv-2D-AE (BN) 0.327 0.522 0.417
Conv-2D-AE (GN) 0.644 0.707 0.328
VeTTA-AE 0.184 0.348 0.504

Conv-2D-VAE (BN) 4.09 6.94 0.0848
Conv-2D-VAE (GN) 0.241 0.493 0.415
VeTTA-VAE 0.225 0.405 0.439

Table 1: Performance comparison of different models on the SSA Dataset, with the metrics
CHD (centerline Hausdorff distance), ACD (average centerline distance), and CF1 (center-
line F1 score). CHD and ACD values are scaled by factors of 101 and 102, respectively,
for improved readability. For the F1 score, predicted centerline points that fall within a
distance threshold of 0.05 of a ground truth centerline point are considered true positives.

Comparison on SSA Dataset.
As summarized in Table 1, our proposed method produces reconstructions that outper-

form the baseline convolutional autoencoders on the synthetic 2D tree dataset, in both the
standard and variational configurations. All methods here use the same latent size of 256.
The aim of the 2D experiment is to demonstrate that our approach can accurately handle

6

Vector Representations of Vessel Trees

Model Dice ↑ Mesh HD ↓ ASD ↓ ACD ↓ APCD ↓

GDVM-AE 46.5 5.42 1.10 1.34 0.946
Conv-3D-AE 71.8 2.22 0.525 0.587 0.527
VeTTA-AE 85.4 2.09 0.288 0.326 0.478

VesselVAE - 15.9 7.13 2.70 2.47
GDVM-VAE 33.0 8.97 1.89 1.64 1.60
Conv-3D-VAE 51.3 2.87 0.830 0.776 0.650
VeTTA-VAE 78.5 2.50 0.377 0.458 0.537

Table 2: Performance comparison of different models on the VesselTrees Dataset, with
the metrics Dice (Dice Score), Mesh HD (Mesh Hausdorff distance), ASD (Average Surface
Distance), ACD (Average Centerline Distance) and APCD (Average Point Cloud Distance).

tree-structured data in the simplest possible setting, and both our model and the convolu-
tional baselines produce highly accurate reconstructions. The 2D trees are contained within
the [0, 1]× [0, 1] domain; all distance metrics are computed in this space.

We observe a contrast in performance between the two convolutional baselines, one
using BatchNorm with ReLU (Conv-AE (BN)) and the other using GroupNorm+GELU
(Conv-AE (GN)). In the classic autoencoder setting, Conv-AE (BN) exhibits slightly better
metrics. However, in the variational setting, the BatchNorm model fails to reconstruct
reliably, whereas Conv-AE (GN) is on par with our proposed method. Motivated by this
discrepancy, we use the GN variant for our 3D volumetric baselines so that performance
remains stable across both configurations.

Figure 2: Example reconstruction with the proposed model. Left: ground truth validation
mesh from the VesselTrees dataset. Middle: reconstruction using the proposed model.
Right: Overlay of the ground truth centerline (yellow) and the reconstructed centerline
predicted by the proposed model (red).
Comparison on VesselTrees Dataset.

In the 3D setting (Table 2), all models share a larger bottleneck dimension of 8192.
To handle the variability in vessel tree size and location, each sample is normalized during
training and inference by computing the bounding box and applying the similarity mapping
its longest side to the range [−0.25, 0.25] and its center to the origin. During evaluation,
this normalization mapping is inverted to measure final reconstruction errors in millimeters.
Our method demonstrates higher Dice overlap, improved Hausdorff distances, and superior
centerline-based metrics compared to the convolutional baselines. Visual examples (see Fig-

7

Batten Schaap Sinclair Bai Glocker

ure 2) illustrate that VeTTA recovers topologically correct, plausible 3D coronary trees, and
outputs continuous centerlines. By contrast, the 3D CNN baselines rely on skeletonization
of their volumetric predictions to compute the centerlines, and these segmentations often
suffer small disconnects or spurious branches on the voxel grid, which degrades reconstruc-
tion accuracy.

Although we also compare to VesselVAE, its primary purpose is generative modeling of
vascular networks rather than precise reconstruction. In contrast to the parallel transformer-
based encoder in our proposed model (which encodes the structure in a single forward pass),
VesselVAE employs a multi-step encoder which may pose challenges for backpropagation,
potentially explaining its weaker reconstruction performance in our experiments.
Latent Interpolations. Beyond quantitative metrics, both our 2D and 3D models produce
smooth, semantically meaningful interpolations between previously unseen trees, as shown
in Figure 3. The recursive decoding architecture ensures topologically valid intermediate
shapes when linearly mixing latent codes, contrasting favorably with the convolutional
methods (c.f. Figure 9), which often yield partial or malformed trees when interpolations are
attempted. These results underscore the benefits of a continuous geometric representation
combined with a recursive, topology-aware decoder.

Figure 3: (First row) Interpolations produced by the proposed 3D vessel tree autoencoder
between two VesselTrees validation set examples. (Second row) Interpolations produced by
the proposed 2D tree autoencoder between two SSA validation set examples.

6. Conclusion

In this paper, we introduced a two-stage Transformer-based framework that learns vector
representations of tree-structured anatomical data by separately encoding continuous vessel
geometry and overall vascular topology. Through sequential training of the Vessel Autoen-
coder and Vessel Tree Autoencoder, our method achieves high reconstruction fidelity while
ensuring topological consistency via a recursive decoding scheme. Notably, the approach re-
quires significantly less GPU memory than 3D convolutional baselines, making large-batch
training feasible. Experiments on a synthetic 2D tree dataset and a 3D coronary artery
dataset demonstrate superior reconstruction accuracy and topology preservation. Further-
more, we demonstrate that our framework can produce smooth and plausible latent-space
interpolations. Overall, these findings underscore the promise of vector encodings for scal-
able, precise, and topologically reliable modeling of complex anatomical trees.

8

Vector Representations of Vessel Trees

Acknowledgments

This research was funded by HeartFlow, Inc.; James Batten was supported by the UKRI
CDT in AI for Healthcare (Grant No. EP/S023283/1).

References

Andrew Brock, Theodore Lim, J. M. Ritchie, and Nick Weston. Generative and dis-
criminative voxel modeling with convolutional neural networks, 2016. URL https:

//arxiv.org/abs/1608.04236.

Hao Chen, Jiaze Wang, Kun Shao, Furui Liu, Jianye Hao, Chenyong Guan, Guangyong
Chen, and Pheng-Ann Heng. Traj-MAE: Masked autoencoders for trajectory prediction,
2023. URL https://arxiv.org/abs/2303.06697.

Xinyu Chen, Jiajie Xu, Rui Zhou, Wei Chen, Junhua Fang, and Chengfei Liu. TrajVAE: A
variational autoencoder model for trajectory generation. Neurocomputing, 428:332–339,
March 2021. doi: 10.1016/j.neucom.2020.03.120.

John D. Co-Reyes, YuXuan Liu, Abhishek Gupta, Benjamin Eysenbach, Pieter Abbeel,
and Sergey Levine. Self-consistent trajectory autoencoder: Hierarchical reinforcement
learning with trajectory embeddings, 2018. URL https://arxiv.org/abs/1806.02813.

Nicola De Cao and Thomas Kipf. MolGAN: An implicit generative model for small molec-
ular graphs, 2018. URL https://arxiv.org/abs/1805.11973.

Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language under-
standing. arXiv preprint arXiv:1810.04805, 2018.

Paula Feldman, Miguel Fainstein, Viviana Siless, Claudio Delrieux, and Emmanuel Iarussi.
VesselVAE: Recursive variational autoencoders for 3d blood vessel synthesis, 2023. URL
https://arxiv.org/abs/2307.03592.

Kyle Genova, Forrester Cole, Avneesh Sud, Aaron Sarna, and Thomas Funkhouser. Local
deep implicit functions for 3d shape, 2019. URL https://arxiv.org/abs/1912.06126.

Rafael Gómez-Bombarelli, Jennifer N. Wei, David Duvenaud, José Miguel Hernández-
Lobato, Benjamı́n Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Tim-
othy D. Hirzel, Ryan P. Adams, and Alán Aspuru-Guzik. Automatic chemical design
using a data-driven continuous representation of molecules. ACS Central Science, 4(2):
268–276, 2018. doi: 10.1021/acscentsci.7b00572. PMID: 29532027.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

Sergey Ioffe. Batch normalization: Accelerating deep network training by reducing internal
covariate shift. arXiv preprint arXiv:1502.03167, 2015.

9

https://arxiv.org/abs/1608.04236
https://arxiv.org/abs/1608.04236
https://arxiv.org/abs/2303.06697
https://arxiv.org/abs/1806.02813
https://arxiv.org/abs/1805.11973
https://arxiv.org/abs/2307.03592
https://arxiv.org/abs/1912.06126

Batten Schaap Sinclair Bai Glocker

Yayati Jadhav and Amir Barati Farimani. Dominant motion identification of multi-particle
system using deep learning from video, 2021. URL https://arxiv.org/abs/2104.

12722.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder
for molecular graph generation, 2018. URL https://arxiv.org/abs/1802.04364.

Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. Poisson surface reconstruction.
In Proceedings of the fourth Eurographics symposium on Geometry processing, volume 7,
2006.

Clément Lemeunier, Florence Denis, Guillaume Lavoué, and Florent Dupont. Representa-
tion learning of 3d meshes using an autoencoder in the spectral domain. Computers &
Graphics, 107:131–143, October 2022. doi: 10.1016/j.cag.2022.07.011.

Zhen Liu, Yao Feng, Michael J Black, Derek Nowrouzezahrai, Liam Paull, and Weiyang
Liu. Meshdiffusion: Score-based generative 3d mesh modeling. arXiv preprint
arXiv:2303.08133, 2023.

Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner, Aravindh Mahendran, Georg
Heigold, Jakob Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf. Object-centric learning
with slot attention. Advances in neural information processing systems, 33:11525–11538,
2020.

I Loshchilov. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101,
2017.

Grégoire Mialon, Dexiong Chen, Margot Selosse, and Julien Mairal. GraphiT: Encoding
graph structure in transformers, 2021. URL https://arxiv.org/abs/2106.05667.

Xavier Olive, Luis Basora, Benôıt Viry, and Richard Alligier. Deep trajectory clustering
with autoencoders. In Proceedings of SESAR Innovation Days, Aug 2020. URL https:

//enac.hal.science/hal-02916241/document.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An im-
perative style, high-performance deep learning library. Advances in neural information
processing systems, 32, 2019.

Chinmay Prabhakar, Suprosanna Shit, Fabio Musio, Kaiyuan Yang, Tamaz Amiranashvili,
Johannes C. Paetzold, Hongwei Bran Li, and Bjoern Menze. 3D Vessel Graph Genera-
tion Using Denoising Diffusion, pages 3–13. Springer Nature Switzerland, 2024. ISBN
9783031721205. doi: 10.1007/978-3-031-72120-5 1.

Alec Radford. Improving language understanding by generative pre-training. 2018.

Rajat Rasal, Daniel C. Castro, Nick Pawlowski, and Ben Glocker. Deep structural causal
shape models. In Leonid Karlinsky, Tomer Michaeli, and Ko Nishino, editors, Com-
puter Vision – ECCV 2022 Workshops, pages 400–432, Cham, 2023. Springer Nature
Switzerland. ISBN 978-3-031-25075-0.

10

https://arxiv.org/abs/2104.12722
https://arxiv.org/abs/2104.12722
https://arxiv.org/abs/1802.04364
https://arxiv.org/abs/2106.05667
https://enac.hal.science/hal-02916241/document
https://enac.hal.science/hal-02916241/document

Vector Representations of Vessel Trees

Matthias Schneider, Johannes Reichold, Bruno Weber, Gábor Székely, and Sven Hirsch.
Tissue metabolism driven arterial tree generation. Medical Image Analysis, 16(7):1397–
1414, 2012. ISSN 1361-8415. doi: https://doi.org/10.1016/j.media.2012.04.009. URL
https://www.sciencedirect.com/science/article/pii/S1361841512000576. Spe-
cial Issue on the 2011 Conference on Medical Image Computing and Computer Assisted
Intervention.

Chence Shi, Minkai Xu, Zhaocheng Zhu, Weinan Zhang, Ming Zhang, and Jian Tang.
GraphAF: a flow-based autoregressive model for molecular graph generation, 2020. URL
https://arxiv.org/abs/2001.09382.

Yawar Siddiqui, Antonio Alliegro, Alexey Artemov, Tatiana Tommasi, Daniele Sirigatti,
Vladislav Rosov, Angela Dai, and Matthias Nießner. MeshGPT: Generating triangle
meshes with decoder-only transformers, 2023. URL https://arxiv.org/abs/2311.

15475.

Martin Simonovsky and Nikos Komodakis. GraphVAE: Towards Generation of Small
Graphs Using Variational Autoencoders, pages 412–422. Springer, 2018. doi: 10.1007/
978-3-030-01418-6 41.

Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan,
Utkarsh Singhal, Ravi Ramamoorthi, Jonathan Barron, and Ren Ng. Fourier features let
networks learn high frequency functions in low dimensional domains. Advances in neural
information processing systems, 33:7537–7547, 2020.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems,
2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and
Yoshua Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Jelmer M. Wolterink, Tim Leiner, and Ivana Isgum. Blood vessel geometry synthesis using
generative adversarial networks, 2018. URL https://arxiv.org/abs/1804.04381.

Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the European conference
on computer vision (ECCV), pages 3–19, 2018.

Xi Yang, Ding Xia, Taichi Kin, and Takeo Igarashi. Intra: 3d intracranial aneurysm dataset
for deep learning. In The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2020.

Yanqiao Zhu, Yuanqi Du, Yinkai Wang, Yichen Xu, Jieyu Zhang, Qiang Liu, and Shu Wu.
A survey on deep graph generation: Methods and applications. In Proceedings of the
First Learning on Graphs Conference, volume 198 of Proceedings of Machine Learning
Research, pages 47:1–47:21, Dec 2022. doi: 10.48550/arXiv.2203.06714.

11

https://www.sciencedirect.com/science/article/pii/S1361841512000576
https://arxiv.org/abs/2001.09382
https://arxiv.org/abs/2311.15475
https://arxiv.org/abs/2311.15475
https://arxiv.org/abs/1804.04381

Batten Schaap Sinclair Bai Glocker

Appendix A. Vessel Autoencoder

A.1. Gaussian-Smoothed Curvature

The gaussian-smoothed curvature is computed in the data pre-processing stage. For each
vessel of shape (n, 4), we compute a curvature term using:

Given a sequence P(i), i = 1, . . . , n,

(1) Compute the first derivative: D(i) = P(i+ 1)−P(i), (5)

(2) Smooth D with a Gaussian filter: D̃(i) = Gσ ∗D(i), (6)

(3) Compute the second derivative of the smoothed data: D(2)(i) = D̃(i+ 1)− D̃(i), (7)

(4) Define the smoothed curvature: cσ(i) =
∥∥D(2)(i)

∥∥. (8)

A.2. Vessel Segments

We segment the vessel into 64 partitions according to the compute segments algorithm (c.f.
Algorithm 4) using a sensitivity of 0.75. During training, within each segment, a 5-dim (x,
y, z, r, t) value is sampled. The resulting set of samples of shape (64, 5) is then passed to
the Vessel Encoder.

A.3. Sinusoidal features

For the x, y, z terms, we lift these to sinusoidal “fourier features”, using octaves [1, 2, 4, 8,
16, 32] according to Eq. 18. This lifting is performed to the values which are passed both
to the encoder and the decoder (x, y, z, t). Note that on the output of the decoder, the
values are predicted in the original Euclidean domain. We find that this lifting technique
significantly improves the reconstruction accuracy of the Vessel Autoencoder.

A.4. Loss function reweighting

In our initial experiments training the Vessel Autoencoder, we observed that the recon-
struction accuracy was lower for longer and more tortuous vessels, despite the fact that all
vessels are normalized to the same domain during training. In order to remedy this, we
re-weight the loss function to increase the importance of these cases. For each vessel, we
compute the euclidean distance de between the endpoints in the original domain, in addition
to the arc length of the vessel da. The MSE loss for each vessel in the training batch is then
multiplied by:

α · da√
de

(9)

In our experiments we set α to 0.3. Furthermore, we re-weight the MSE loss to encourage
the model to focus more on the position terms x, y, z and less on the radius terms r. We
compute these separately and multiply the position and radius loss terms by 1.0 and 0.01
respectively.

12

Vector Representations of Vessel Trees

A.5. Vessel Autoencoder Architecture

Vessel Encoder. The Vessel Encoder is composed of a Transformer Encoder and two 2-
layer MLPs. Both MLPs have a hidden dimension of size 2048 and use a GELU activation.
The first MLP takes as input the set of (x, y, z, r, t) values (lifted to sinusoidsal features)
and outputs a set of vectors of dimension 512. These are then passed through a Transformer
Encoder with 6 layers and 12 heads. The resulting features are pooled over the set dimension
into a single vector of size 512, which is passed through the second MLP to produce the
vector representation of the vessel of size 64.

Vessel Decoder. The Vessel Decoder is composed of a single 2-layer MLP using a
GELU activation. It takes as input the vector representation of the vessel zv and a scalar
value t (lifted to sinusoidal features) concatenated over the feature dimension and outputs
the 4-dim vector fd(zv, t). We then interpolate between the vessel endpoints a and b using
Formula 1 to calculate gd(zv, t).

A.6. Matching endpoints

During training we set m(t) = 1 as shown in Formula 1. During evaluation, we use m(t) =
0.5−0.2 · t0.1(1− t)0.1. Using this function has the benefit of guaranteeing that the endpoints
of the reconstructed vessel match pa and pb since m(0) = 0 and m(1) = 0 (and that the
endpoint radii match ra and rb). Using m(t) = 1 during training results in better stability.

Appendix B. Vessel Tree Autoencoder

Full Vessel Tree Edges
Vessel Tree
Encoding

Encoder
Branch

Decoder
Branch

Edges of
Partial Vessel Tree

(with query)

Set of position
topology, vessel

embedding, log radius
and skip-vessel tuples

for each slot

Figure 4: Diagram of the Vessel Tree autoencoder model. The encoder branch outputs a
global vector zt, and the decoder branch uses fixed learnable slots (via a Transformer

Decoder) to predict child nodes from the partial tree, conditioned on zt.

B.1. Vessel Tree Autoencoder: Edge features and Encoder Branch

Input edge features. We describe the full input tree connectivity structure as a set
of directed edges {efulli }. Concatenating the (positional and topological) features of the
outgoing node na and the incoming node nb creates each directed edge (c.f. Figure 5).

These features include the topological vectors ta and tb, as well as the positional infor-
mation pa and pb (in practice, we raise the 2D or 3D scalar coordinates to “fourier feature”

13

Batten Schaap Sinclair Bai Glocker

sinusoidal embeddings) (Tancik et al., 2020). These topological terms ta and tb are one-hot
vectors that represent the number of children of the corresponding nodes. For instance, the
one-hot representation of a leaf node node nleaf would be (0, 0, 1), whereas the one-hot rep-
resentation of a bifurcation node nbifurcation would be (1, 0, 0). Note that, in principle, these
topological features can be removed from the edge representations, since the connectivity
structure can be inferred from the edge positional information alone. We found, however,
that including these features leads to improved performance with the proposed model.

Additionally, as mentioned above, these input edge features also contain an optional
query flag (which is a binary scalar value equal either to 0.0 or 1.0). This query value is
absent from the full tree edge representations (input to the encoder branch) {efulli } and is

only used in the partial tree edges {epartialj }.

(x, y) positions lifted
into sinusoidsal encodings

one-hot encodings of toplogy
classes (leaf, one-child,

two-children)

(optional) binary encoding of
the query node (only one of

the edges can contain an
active query node b)

MLP2

Edge
Encoding

Figure 5: Diagram of the Single Edge Encoder in the 2D case. On the 3D VesselTrees
dataset, we concatenate the radius terms of the two endpoints ra and rb, in addition to

the vessel embedding zv to this vector.

This set of edge vector encodings {ẽi} is a sufficiently complete representation of the
input tree geometry to enable the encoder branch to represent both the discrete connectivity
graph and (in the 3D case) the continuous structure as a single vector. We demonstrate
this empirically by adding a decoder to this model and training the resulting autoencoder
to reconstruct the original tree from the vector representation of the tree zt.

Single Edge Encoder. A two-layer MLP with a GELU activation makes up the initial
part of the encoder branch, which we refer to as the Single Edge Encoder (c.f. Eq 10). The

edge features from the input set ({efulli } or {e
partial
j }) are consumed by this MLP, which lifts

them to an edge embedding ẽ with a feature dimension of size 64× nheads. In this and the
following sections we write nheads as the number of heads in the transformer encoder and
decoders).

ẽi = SingleEdgeEncoder(ei) (10)

Edges Encoder. We pass the resulting set {ẽi} through a Transformer Encoder and to
produce a set of vectors {êi}. Note that the vector in the sets {ẽi} and {êi} are of the same
size 64 × nheads. The Edges Encoder is the name of the component which includes both
the Single Edge Encoder and the Transformer Encoder (c.f. Eq. 11 and Fig. 6). Since the
same edge encoding scheme is used in the encoder and decoder branches, we use the same

14

Vector Representations of Vessel Trees

notation here for these edges. On the SSA dataset we use a Transformer Encoder with 6
layers and 12 heads. On the VesselTrees dataset we use a Transformer Encoder with 12
layers and 16 heads.

{êi} = EdgesEncoder({ẽi}) (11)

A key benefit of processing lifted edge encodings using the transformer encoder architec-
ture is that it preserves permutation equivariance with respect to the input set. Since the
directed edges do not possess a canonical ordering, this property enables the transformer to
generalise its feature representations across arbitrary permutations of the input set, instead
of considering different permutations of these edges as independent samples in the data
distribution.

MLP2 Transformer
Encoder

Edge
Encodings

Edges
Encoder

Edge
Data

Figure 6: Diagram of the Edges Encoder

Pooling Head. We include a pooling head at the end of the encoder pathway that
first applies a two-layer MLP to map the edge encodings {êi} to the target embedding size
zdim before taking the mean of the resulting representations over the edge dimension (c.f.
Figure 7).

zt = mean(MLP2({êfulli })) (12)

As an additional implementation detail, we include an “edge mask” for both the full
and partial trees. This edge mask indicates which edges are “active” in the input set. The
pooling described in this section is performed with respect to this mask (only the active
edge features are included in the final vector representation).

B.2. Partial Tree Encoder

Start token. The decoder branch must be capable of accepting empty partial tree rep-
resentations as input in order to correctly perform the first step in the tree reconstruction
process. We add a “start token” to the set of partial edge encodings {epartialj }. This start
token is implemented as a learnable vector of size (64 × nheads) initialized from a uniform
random distribution in the interval [−1.0, 1.0]. When the partial tree is empty at the start

of the decoding process, we have: {epartialj } = {tokenstart}.
Many sequence-to-sequence learning models, including BERT (Devlin, 2018), GPT

(Radford, 2018), and the original Transformer (Vaswani, 2017), use unique tokens like

15

Batten Schaap Sinclair Bai Glocker

Full Tree Edges

Pool over
edge dimension

Map to z_dim
with MLP2

+

Tree
Encoding

Edge
Encodings

Full Tree Encoder

Edges
Encoder

Figure 7: Diagram of the Encoder Branch. The Edges Encoder in this branch is the Full
Tree Encoder, which is followed by a pooling operation to obtain the vector representation

of the full tree zt.

Edges of
Partial Tree

(with query node
highlighted)

Edge encodings of
Partial Tree

Partial Tree
Encoder

Concatenate full tree
vector with the partial tree

edge vectors

Vector
Representation of

Full Tree

Slots

Predict position
and topology

terms for each
slot

(no pooling)

Edges
Encoder

Transformer
Decoder

MLP2

Figure 8: Diagram of the Decoder Branch. The Edges Encoder in this branch is the Partial
Tree Encoder, which is not followed by a pooling operation. The vector representation of
the full tree zt is concatenated along the feature dimension of each of the partial tree edge
encoding. This set of concatenated vectors is then passed as context to the Transformer
Decoder which predicts properties for each slot vector. Note that this example illustrates
the slot predictions in the 2D case. In the 3D case, there are additional properties that are

predicted for each slot: the log radius, the vessel embedding and the skip-vessel flag

16

Vector Representations of Vessel Trees

CLS to indicate the start of a sequence. These tokens aid the models in distinguishing the
initial state from the other states. The presence of the “start token” enables the model to
be prompted with an empty set. As such, in the sitution where {epartialj } = {tokenstart},
the decoder model is in the first state of the recursive decoding process and is tasked with
decoding the root node properties from the full tree vector representation zt.

Semi Edge. After the initial decoding step the partial tree is exclusively composed of
the root node. However, since the decoder expects a set of input edges, it’s necessary to
introduce another technique enabling the model to correctly handle this situation. In the
VeTTA model, we propose a straightforward addition to the partial tree representation that
we refer to as the “Semi Edge” to get around this problem. This semi-edge connects the
root node to itself, and is included in both the full and partial tree edges. After the first
step in the decoder process, we simply add the semi edge esemi to this set:

{epartialj } = {tokenstart, esemi}, where esemi = (nroot, nroot) (13)

Although the concept of incorportating “self-loops” has been studied in the field of deep
geometric learning (Veličković et al., 2017) the “Semi Edge” presents a fresh application of
this idea to the tree decoding problem. Thus, with this new edge, the model can distin-
guish between the empty partial tree (which only has the start token), and the partial tree
containing only the root node (corresponding to the start token and the semi edge).

Non-proximal edge filtering. The partial tree decoder method leverages another
technique that involves filtering out edges that do not belong to the sequence of nodes
connecting the root node to the query node. We call these the “non-proximal” edges in the
partial tree representation (since they are not proximal to the query node). This filtering
procedure involves setting the corresponding edge masks to zero. In our experiments, we
found that this filtering improves the stability of the optimization during training.

Filtering additional information in the partial tree. Additionally, we found in
our experiments that removing the vessel embeddings and the radius terms before passing
them to the partial tree encoder improves reconstruction accuracy on the 3D experiments.
We hypothesize that this may be due to errors which can compound in the recursive de-
coding. By removing this information from the edges before they are fed into the partial
tree encoder, we mitigate this behavior. In terms of implementation this simply involves
not concatenating these properties along the feature dimension of the edges {epartialj } (c.f.
Fig. 5).

Skip-vessel flag. In our experiments we found that trying to include vessels smaller
than 2.5mm into the training set of the Vessel Autoencoder caused a number of issues such
as making training more unstable. In the VesselTrees dataset, trifurcations are typically
represented by two bifurcations close to one another. In order to solve this problem we
introduce an explicit binary “skip-vessel” flag into the edge-vector representations on the
input to the recursive model, and include this as a feature predicted by the slot-vectors on
the output of the model. For the steps in the recursive decoding where the ground-truth
child node skip-vessel flag is set to 1, we exclude the vessel embedding terms from the cost-
matrix. This has the effect of ignoring the embeddings predicted by the recursive decoder
for these targets. During evaluation, if a skip-vessel flag of value 1 is predicted by the
decoder, then for the corresponding vessel we decode a linearly-interpolated vessel between
the endpoint properties (pa, ra) and (pb, rb).

17

Batten Schaap Sinclair Bai Glocker

Injecting the Full Tree Vector. In our approach, we concatenate the full tree embed-
ding zt to each of the partial tree edge encodings {êpartiali } (on the final layer of the edges
encoder in the decoder branch) in order to condition the decoder branch on the vector
representation of the tree produced by the encoder pathway (c.f. Figure 8).

Slots-based Decoder. The last component of the decoder branch binds a set of slots
to the query’s child nodes. To do this, we use a Transformer Decoder, performs a layer-by-
layer updating of a set of learnt high-dimensional slot vectors, conditioned on the encoded
partial tree edges {ẽpartialj }. We train an unordered set of vector “slots”, which are then
processed by the transformer decoder. We define this set of slots as:

S = {si ∈ RDslots | 1 ≤ i ≤Mslots} (14)

Where Mslots = 32 represents the number of slots, and Dslots = 64×nheads is the feature
dimension of these vectors. This approach is strongly related to Slot Attention (Locatello
et al., 2020).

MLP Predictor Head. We add a two-layer MLP with a GELU activation at the end
of the decoder branch (c.f. Figure 8). This MLP serves to transform the slot embeddings on
the transformer decoder’s output {slmax

i } into the properties of the target objects. Applying
the MLP to each slot in {slmax

i } results in the transformed slots Sprop:

Sprop = {MLP(slmax
i) | 1 ≤ i ≤Mslots} (15)

Set Prediction. Each recursive step in the tree decoding process can be described as
a set prediction problem. To decode the properties of the child nodes, we first partition the
slots Stransformed into groups using a clustering algorithm.

Cluster(Sprop)→ {C1, C2, . . . , CK} (16)

Where Ck represents the k-th cluster of slots, and K is the number of clusters. This
number, which should equal the number of child nodes, is always predicted by the topology
term in the previous recursive step. In this paper, the maximum number of clusters is 2,
however this method also works with target sets of cardinality greater than 2.

Then, by aggregating the slots in each cluster, we predict each child node’s attributes:

pk = Aggregate(Ck), 1 ≤ k ≤ K (17)

The function Aggregate in our implementation simply averages the slot characteristics
inside each cluster to obtain a single vector per cluster. In practice, we find that the
“average” connecting agglomerative clustering algorithm performs well on this task.

Clustering in the lifted domain. As mentioned previously, we lift the positional
coordinates pa and pb in the edge features to the fourier/sinusoidal domain. To do this, we
use the sine and cosine functions specified in Eq. 18 with various octaves (alpha) for each
coordinate.

F (α, x, y) = (cos(2παx), sin(2παx), cos(2παy), sin(2παy)) . (18)

In addition, the model regresses the slot properties on the VeTTA decoder’s output in
the same lifted domain as the inputs. We concatenate these positional Fourier features with

18

Vector Representations of Vessel Trees

the one-hot topology vectors to produce the final co-domain. In 3D we also concatenate the
log radius, the vessel embedding zv and the skip-vessel flag to this representation. We write
the lifted targets at each recursive step as Φ(gj), where Φ is the lifting function described
above.

In order to perform the clustering, we compute the pairwise distances between predicted
slots and target nodes in the lifted domain, as illustrated in Equation 19:

Cij = ∥si − Φ(gj)∥2, (19)

Where i and j are indices of the predicted slots and target nodes, respectively, and
Cij denotes an entry in the cost/distance matrix. We then use this distance matrix C to
compute the agglomerative clustering. The key idea here is that performing this clustering
operation in the lifted co-domain simultaneously resolves multiple properties of the slots into
a small number of set-structured predictions (where each prediction is a vector describing the
properties of one element of the output set). In particular, we find that performing this type
of clustering of positional information in the sinusoidal domain significantly outperforms the
same approach applied in the original spatial domain. In, since 3D these properties include
the vector embedding of the vessel zv, we can describe one aspect of this operation as a
clustering over continuous trajectories.

Inverting the lifting function. While the model takes as input and outputs features in
the lifted domain during training, a location in the original Euclidean domain corresponding
to this high-dimensional feature must be computed in order to interpret these outputs
during evaluation. We simply generate a dense sequence of 1000 linearly-spaced values
in the predefined range (in our case, we choose [−3.0, 3.0]) and select the coordinate that
minimises the distance in the sinusoidal domain in our implementation rather than offering
a closed form solution to the minimization problem (c.f. Eq. 20). The closest matching
coordinate along each axis is found separately rather than creating a dense 2D (or 3D) grid
because the lifting formula 18 remains identical along each cartesian axis.

(x, y) = argmin
x,y∈R2

∥F (α, x, y)− F (α, xp, yp)∥2, (20)

B.3. Loss Function

Right hand matching. Given a cost matrix and a target mask, the right-hand matching algorithm
(c.f. Algorithm 3) seeks to identify two minimum-cost directed matchings between a set of
predictions and targets. The active members in the target set are indicated by the target
mask, a binary tensor. The algorithm initially determines active targets and generates an
active cost matrix. The Hungarian matching technique is then used to calculate the best
assignment between predictions and active targets. The matching matrix R is then updated
by setting the slot matched to each of the active targets and returned.

Top-k Matching. Given a cost matrix, target mask, and integer k, the Top-K Match-
ing Algorithm (c.f. Algorithm 2) is devised to identify the top-k minimum-cost directed
matches between a collection of predictions and targets. The procedure begins by figur-
ing out how many targets there are and initializing the L and R matching matrices. The
right hand matching algorithm is then executed k times, updating the matching matrices

19

Batten Schaap Sinclair Bai Glocker

L and R as well as the cost matrix copy C’ every cycle. The algorithm determines the
remaining unmatched predictions after k iterations and modifies the cost matrix copy C’
to take into account only active targets. The remaining predictions are then given the
nearest target indices, and the matching matrix L is subsequently updated. Two matching
matrices, L and R are the algorithm’s final output.

B.4. Augmentation

We employ two types of augmentation in the proposed method to prevent overfitting: global
transformations of the tree and local jitter.

Global Augmentations. Three categories of global augmentation – translation, rota-
tion, and zooming – are used for the 2D and 3D data. In 2D we sample rotations from a
uniform distribution in the range [−45.0, 45.0] degrees, and in 3D we use fully random 3D
rotations. Zoom factors are sampled in the range [0.75, 1.5].

Local Jitter. Due to the recursive nature of the decoding, inconsistencies can quickly
compound and lead the prediction to deviate significantly from the original structure. We
add a slight gaussian “jitter” augmentation (with standard deviation σ = 0.005) to the
nodes in the partial tree in order to reduce this behavior.

Appendix C. Interpolation Experiments on the SSA dataset

Figure 9: (First row) Interpolations produced using the baseline model Conv-2D-VAE (GN).
(Second row) Interpolations produced using the baseline model Conv-2D-VAE (BN).

In Figure 9, we show interpolations between the two test set examples we use to produce
the 2D interpolations in Figure 3 with the proposed model. Here we show the reconstruc-
tions for the latent codes interpolated at corresponding steps for the two convolutional
baseline models, using group and batch normalization (Conv-2D-VAE (GN) and Conv-
2D-VAE (BN) respectively). Note that this figure also illustrates the poor reconstruction
behavior of the batch norm + ReLU model in the variational setting compared to the model
trained using group norm + GELU.

20

Vector Representations of Vessel Trees

We emphasize here that the reporting the reconstruction accuracy on the SSA dataset is
not the main focus of the paper, since this is a toy dataset and is not meant to be represen-
tative of real-world vasculature. The convolutional baseline Conv-2D-VAE (GN) achieves
almost perfect reconstructions of the input segmentations in a variational setting, and the
numbers we report in the results table primarily serve to show that the reconstruction ac-
curacy of our method is on-par with this baseline. The interpolation experiments shown
in the above figure better illustrate what we seek to demonstrate in this paper using this
dataset: that convolutional methods fail to learn topologically-sound latent spaces, and in-
terpolations between validation samples consistently fail to reconstruct plausible trees. Our
method, however, can be empirically shown to produce highly plausible trees with correct
topology throughout the latent domain (c.f. Fig. 3).

Appendix D. Baseline Model Architectures and Training

D.1. Conv-2D (GN) and Conv-2D (BN)

The Conv-2D models have three different levels in the encoder and the decoder, with chan-
nels [1, 32, 64, 128]. At each level we use 4 residual layers. The models marked with (GN)
use group normalization and GELU activations, the models marked with (BN) use batch
normalization and ReLU activations. We train these models with a batch size of 128, lin-
early ramping up the learning rate to 3e−4 over 1000 steps, and then decaying by a factor
10 every 20k steps. All the models are trained for 34k steps. These convolutional models
are trained using translation, zooming and rotation augmentations.

D.2. GDVM

We adapt the architecture proposed in (Brock et al., 2016) to volumes of size 1283. In
our implementation, which we refer to as GDVM in this paper, to make it compatible with
volumes of this size with minimal changes, we take the architecture proposed by the authors
and increase the number of units in the dense layer enc fc1 from 343 to 32768, and increase
the bottleneck dimension from 512 to 8192.

We train the resulting autoencoder in both a standard and variational configuration
with a batch size of 16 for 80k steps. We use a linear ramp up of the learning rate over the
first 1000 steps to reach a peak learning rate of 3e−4, then we decay the learning rate by
a factor 10 every 40k steps. The models are trained using full 3D rotation, translation and
zooming augmentations.

The original code for the GDVMmodel can be found at https://github.com/ajbrock/
Generative-and-Discriminative-Voxel-Modeling/blob/master/Generative/VAE.py.

D.3. Conv-3D

The Conv-3D model are adapted from the GDVM architecture with some more modern
techniques. Since we observe in the 2D experiments that using group normalisation and
GELU leads to more stable performance in both configurations, we use that in this model
(replacing batch norm and ELU activations in the GDVM model). We increase the channels
in the encoder from [1, 8, 16, 32, 64] to [1, 16, 64, 256, 1024] and add a residual layer at each

21

https://github.com/ajbrock/Generative-and-Discriminative-Voxel-Modeling/blob/master/Generative/VAE.py
https://github.com/ajbrock/Generative-and-Discriminative-Voxel-Modeling/blob/master/Generative/VAE.py

Batten Schaap Sinclair Bai Glocker

level. We apply the same changes to the decoder. We find that these changes substan-
tially improve the reconstruction accuracy of the resulting model in both the standard and
variational configurations.

We train these autoencoders with a batch size of 16 for 40k steps. We use a linear ramp
up of the learning rate over the first 1000 steps to reach a peak learning rate of 3e−4, then
we decay the learning rate by a factor 10 every 20k steps. The models are trained using full
3D rotation, translation and zooming augmentations.

D.4. VesselVAE

We take the architecture proposed in (Feldman et al., 2023), and adapt our data to work
with their code. We linearly transform the VesselTrees dataset to match the statistics of
their preprocessed data and set the root node to be always located at the origin. In addition,
we resample the number of nodes down each vessel such that these statistics also match.
We train with a batch size of 10 for 23k steps with a constant learning rate of 1e−4, with
the goal of replicating their methodology to the best extent. One of the changes we make
is to increase the bottleneck dimension to 8192 in order to maintain an apples-to-apples
comparison with respect to the other models.

It should be well noted that the VesselVAE paper is positioned as a generative method,
where the authors clearly state that their objective is to use the resulting model to sam-
ple novel vessel geometries, and the evaluations they perform are based on sampled tree
statistics. As such, comparing against this method on reconstruction metrics is somewhat
unfair since it is not the intended goal of their approach. We include it in the results table
since it is the model in the literature which bears the greatest similarity to our method.
Another point of note for the VesselVAE method is that it is trained on IntrA (Yang et al.,
2020) dataset, which is generated from 103 models of brain vessels. This dataset is on a
much smaller scale than the VesselTrees dataset, and is likely less suitable for the training
of larger models.

We hypothesize that the encoder in their model does not retain significant aspects of the
input structure in the latent embedding, which explains the degraded performance of this
method compared to the other models in the results table. In order to test this hypothesis,
we downloaded the checkpoint they provided on their HuggingFace demo and provided it
with one of the preprocessed trees from their dataset. We observe that the mesh produced
on the output of their model has significant differences compared to the original mesh (c.f.
Fig. 10), which supports this hypothesis.

For more details, we refer the reader to the VesselVAE GitHub repository at https://
github.com/LIA-DiTella/VesselVAE and the HuggingFace demo at https://huggingface.
co/spaces/paufeldman/vv.

Appendix E. Algorithms

22

https://github.com/LIA-DiTella/VesselVAE
https://github.com/LIA-DiTella/VesselVAE
https://huggingface.co/spaces/paufeldman/vv
https://huggingface.co/spaces/paufeldman/vv

Vector Representations of Vessel Trees

Figure 10: (Left) Original mesh of the preprocessed sample passed as input to the VesselVAE
encoder. (Right) Reconstructed mesh taken from the output of the VesselVAE decoder.

Algorithm 1: Loss Calculation Algorithm

Input: Cost matrix C of shape (s, t), target mask M of shape (t), integer k
Output: Scalar loss value
L, R ← top k matching(C,M, k);
loss lhs← sum(C · L)/sum(L) ; // Compute loss lhs

loss rhs← sum(C ·R)/sum(R) ; // Compute loss rhs

loss← loss lhs + loss rhs ; // Compute final loss

return loss;

Algorithm 2: Top-K Matching Algorithm

Input: Cost matrix C of shape (s, t), target mask M of shape (t), integer k
Output: Matching matrices L and R of shape (s, t)
N ←

∑
M ; // Number of targets

C ′ ← copy(C); // Copy of cost matrix

max value← max(C) + 1.0; // Maximum value for update

L← zeros like(C); // Initialize matching matrices

R← zeros like(C)
for i← 0 to k − 1 do // Loop from 0 to k − 1

, Ri ← right hand matching(C ′,M); // Matching RHS

L← L+Ri; // Update matching accumulators

R← R+Ri

P ← argwhere(Ri > 0.5)[:, 0]; // Matched prediction indices

C ′[P, :]← max value; // Update cost matrix copy

end
P ← argwhere

(
sum(L, axis = 1) < 0.5

)
[:, 0]; // Remaining prediction indices

C ′ ← C ′ +max value× reshape(1.0−M, (1, −1)); // Update cost matrix copy

T ← argmin(C ′[P, :], axis = 1); // Closest target indices

L[P, T]← 1.0; // Update matching matrix L
return L, R;

23

Batten Schaap Sinclair Bai Glocker

Algorithm 3: Right Hand Matching Algorithm

Input: Cost matrix C of shape (s, t), target mask M of shape (t)
Output: Matching matrix R of shape (s, t)
s← C.shape[0]; // Number of predictions

t← C.shape[1]; // Number of targets

active tgt idxs← argwhere(M > 0.5); // Active target indices

Cactive ← C[:, active tgt idxs[:, 0]]; // Active cost matrix

row ind, col ind← linear sum assignment
(
Cactive

)
; // Bipartite matching

R← zeros(s, t)
R[row ind, active tgt idxs[col ind, 0]]← 1; // Update matching R
return R;

24

Vector Representations of Vessel Trees

Algorithm 4: Compute Segments Algorithm

Input: curvature: 1D array of length n, integer n segments, float sensitivity
Output: segments: List of (start index, end index) pairs
minval← min(curvature);
maxval← max(curvature);

tcurvature← curvature−minval
maxval−minval ;

tcurvature← (tcurvature)sensitivity;
ccurvature← cumsum(tcurvature);
segment boundaries← linspace

(
0, max(ccurvature), n segments + 1

)
;

segments← [];
last index← 0;
for i← 0 to n segments− 1 do

indices← argwhere
(
ccurvature ≥ segment boundaries[i] ∧ ccurvature <

segment boundaries[i+ 1]
)
;

if |indices| > 0 then
index 0← max(indices[0], last index);
if i < n segments− 1 then

index 1← max(indices[−1] + 1, index 0 + 1);
append (index 0, index 1) to segments;

end
else

append (index 0, n) to segments;
end
last index← segments[−1][1];

end
else

append (last index, last index + 1) to segments;
last index← last index + 1;

end

end
return segments;

25

	Introduction
	Related Work
	Method
	Experimental Setup
	Results and Discussion
	Conclusion
	Vessel Autoencoder
	Gaussian-Smoothed Curvature
	Vessel Segments
	Sinusoidal features
	Loss function reweighting
	Vessel Autoencoder Architecture
	Matching endpoints

	Vessel Tree Autoencoder
	Vessel Tree Autoencoder: Edge features and Encoder Branch
	Partial Tree Encoder
	Loss Function
	Augmentation

	Interpolation Experiments on the SSA dataset
	Baseline Model Architectures and Training
	Conv-2D (GN) and Conv-2D (BN)
	GDVM
	Conv-3D
	VesselVAE

	Algorithms

