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Abstract

We present Imagen Video, a text-conditional video generation system based on a cascade of
video diffusion models. Given a text prompt, Imagen Video generates high definition videos
using a base video generation model and a sequence of interleaved spatial and temporal
video super-resolution models. We describe how we scale up the system as a high defini-
tion text-to-video model including design decisions such as the choice of fully-convolutional
temporal and spatial super-resolution models at certain resolutions, and the choice of the
v-parameterization of diffusion models. In addition, we confirm and transfer findings from
previous work on diffusion-based image generation to the video generation setting. Finally,
we apply progressive distillation to our video models with classifier-free guidance for fast,
high quality sampling. We find Imagen Video not only capable of generating videos of high
fidelity, but also having a high degree of controllability and world knowledge, including the
ability to generate diverse videos and text animations in various artistic styles and with 3D
object understanding.

Figure 1: Imagen Video sample for the prompt: “A bunch of autumn leaves falling on a calm lake to form
the text ‘Imagen Video’. Smooth.” The generated video is at 1280×768 resolution, 5.3 second duration and
24 frames per second.

1 Introduction

Generative modeling has made tremendous progress with recent text-to-image systems like
DALL-E 2 (Ramesh et al., 2022), Imagen (Saharia et al., 2022b), Parti (Yu et al., 2022), CogView (Ding
et al., 2021) and Latent Diffusion (Rombach et al., 2022). Diffusion models (Sohl-Dickstein et al., 2015;
Ho et al., 2020) in particular have found considerable success in multiple generative modeling tasks (Nichol
& Dhariwal, 2021; Ho et al., 2022a; Dhariwal & Nichol, 2022) including density estimation (Kingma et al.,
2021), text-to-speech (Chen et al., 2021a; Kong et al., 2021; Chen et al., 2021b), image-to-image (Saharia
et al., 2022c;a; Whang et al., 2022), text-to-image (Rombach et al., 2022; Nichol et al., 2021; Ramesh et al.,
2022; Saharia et al., 2022b) and 3D synthesis (Poole et al., 2022; Watson et al., 2022).
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A colorful professional animated logo for ’Imagen Video’ written using paint brush in cursive. Smooth animation.

Blue flame transforming into the text “Imagen”. Smooth animation

Wooden figurine surfing on a surfboard in space.

Balloon full of water exploding in extreme slow motion.

Melting pistachio ice cream dripping down the cone.

A british shorthair jumping over a couch.

Coffee pouring into a cup.

Figure 2: Videos generated from various text prompts. Imagen Video produces diverse and temporally-
coherent videos that are well-aligned with the given prompt.
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A small hand-crafted wooden boat taking off to space.

A person riding a bike in the sunset.

Drone flythrough interior of Sagrada Familia cathedral

Wooden figurine walking on a treadmill made out of exercise mat.

Origami dancers in white paper, 3D render, ultra-detailed, on white background, studio shot, dancing modern dance.

Campfire at night in a snowy forest with starry sky in the background.

An astronaut riding a horse.

Figure 3: Videos generated from various text prompts. Imagen Video produces diverse and temporally-
coherent videos that are well-aligned with the given prompt.
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A person riding a horse in the sunrise.

A happy elephant wearing a birthday hat walking under the sea.

Studio shot of minimal kinetic sculpture made from thin wire shaped like a bird on white background.

A bunch of colorful candies falling into a tray in the shape of text ’Imagen Video’. Smooth video.

A group of people hiking in a forest.

A goldendoodle playing in a park by a lake.

Incredibly detailed science fiction scene set on an alien planet, view of a marketplace. Pixel art.

Figure 4: Videos generated from various text prompts. Imagen Video produces diverse and temporally-
coherent videos that are well-aligned with the given prompt.
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A bunch of autumn leaves falling on a calm lake to form the text ’Imagen Video’. Smooth.

Pouring latte art into a silver cup with a golden spoon next to it.

Shoveling snow.

Drone flythrough of a tropical jungle covered in snow

A beautiful sunrise on mars, Curiosity rover. High definition, timelapse, dramatic colors

A shark swimming in clear Carribean ocean.

A hand lifts a cup.

Figure 5: Videos generated from various text prompts. Imagen Video produces diverse and temporally-
coherent videos that are well-aligned with the given prompt.

5



Under review as submission to TMLR

Our work aims to generate videos from text. Prior work on video generation has focused on more restricted
datasets with autoregressive models (Ranzato et al., 2014; Shi et al., 2015; Finn et al., 2016; Kalchbrenner
et al., 2017; Babaeizadeh et al., 2021), latent-variable models with autoregressive priors (Mathieu et al., 2016;
Vondrick et al., 2016; Babaeizadeh et al., 2018; Kumar et al., 2020), and more recently non-autoregressive
latent-variable approaches (Gupta et al., 2022). Diffusion models have also shown promise for video gener-
ation (Ho et al., 2022b) at moderate resolution. Yang et al. (2022) showed autoregressive generation with
a RNN-based model with conditional diffusion observations. The concurrent work of Singer et al. (2022)
also applied text-to-video modelling with diffusion models, but built on a pretrained text-to-image model.
Harvey et al. (2022) generates videos up to 25 minutes in length with video diffusion models, however the
domain is restricted.

In this work, we introduce Imagen Video, a text-to-video generation system based on video diffusion models
(Ho et al., 2022b) that is capable of generating high definition videos with high frame fidelity, strong temporal
consistency, and deep language understanding. Imagen Video scales from prior work of 64-frame 128×128
videos at 24 frames per second to 128 frame 1280×768 high-definition video at 24 frames per second. Imagen
Video has a simple architecture: The model consists of a frozen T5 text encoder (Raffel et al., 2020), a
base video diffusion model, and interleaved spatial and temporal super-resolution diffusion models. Our key
contributions are as follows:

1. We demonstrate the simplicity and effectiveness of cascaded diffusion video models for high definition
video generation.

2. We confirm that recent findings in the text-to-image setting transfer to video generation, such as
the effectiveness of frozen encoder text conditioning and classifier-free guidance.

3. We show new findings for video diffusion models that have implications for diffusion models in
general, such as the effectiveness of the v-prediction parameterization for sample quality and the
effectiveness of progressive distillation of guided diffusion models for the text-conditioned video
generation setting.

4. We demonstrate qualitative controllability in Imagen Video, such as 3D object understanding, gen-
eration of text animations, and generation of videos in various artistic styles.

2 Imagen Video

Our model, Imagen Video, is a cascade of video diffusion models (Ho et al., 2022a;b). It consists of 7
sub-models which perform text-conditional video generation, spatial super-resolution, and temporal super-
resolution. With the entire cascade, Imagen Video generates high definition 1280×768 (width × height)
videos at 24 frames per second, for 128 frames (≈ 5.3 seconds)—approximately 126 million pixels. We
describe the components and techniques that constitute Imagen Video in the following sections.

2.1 Diffusion models

Imagen Video is built from diffusion models (Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Ho et al.,
2020) specified in continuous time (Tzen & Raginsky, 2019; Song et al., 2021; Kingma et al., 2021). We use
the formulation of Kingma et al. (2021): the model is a latent variable model with latents z = {zt | t ∈ [0, 1]}
following a forward process q(z|x) starting at data x ∼ p(x). The forward process is a Gaussian process that
satisfies the Markovian structure:

q(zt|x) = N (zt;αtx, σ2
t I), q(zt|zs) = N (zt; (αt/αs)zs, σ2

t|sI) (1)

where 0 ≤ s < t ≤ 1, σ2
t|s = (1−eλt−λs)σ2

t , and αt, σt specify a noise schedule whose log signal-to-noise-ratio
λt = log[α2

t /σ
2
t ] decreases monotonically with t until q(z1) ≈ N (0, I). We use a continuous time version of

the cosine noise schedule (Nichol & Dhariwal, 2021). The generative model is a learned model that matches
this forward process in the reverse time direction, generating zt starting from t = 1 and ending at t = 0.
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Learning to reverse the forward process for generation can be reduced to learning to denoise zt ∼ q(zt|x)
into an estimate x̂θ(zt, λt) ≈ x for all t. Like (Song & Ermon, 2019; Ho et al., 2020) and most follow-up
work, we optimize the model by minimizing a simple noise-prediction loss:

L(x) = Eε∼N (0,I),t∼U(0,1)
[
‖ε̂θ(zt, λt)− ε‖2

2
]

(2)

where zt = αtx+σtε, and ε̂θ(zt, λt) = σ−1
t (zt−αtx̂θ(zt, λt)). We will drop the dependence on λt to simplify

notation. In practice, we parameterize our models in terms of the v-parameterization (Salimans & Ho, 2022),
rather than predicting ε or x directly; see Section 2.4.

For conditional generative modeling, we provide the conditioning information c drawn jointly with x to the
model as x̂θ(zt, ct). We use these conditional diffusion models for spatial and temporal super-resolution in
our pipeline of diffusion models: in these cases, c includes both the text and the previous stage low resolution
video as well as a signal λ′t that describes the strength of conditioning augmentation added to c. Saharia
et al. (2022b) found it critical to condition all the super-resolution models with the text embedding, and we
follow this approach.

We use the discrete time ancestral sampler (Ho et al., 2020), with sampling variances derived from lower and
upper bounds on reverse process entropy (Sohl-Dickstein et al., 2015; Ho et al., 2020; Nichol & Dhariwal,
2021). This sampler can be formulated by using a reversed description of the forward process as q(zs|zt,x) =
N (zs; µ̃s|t(zt,x), σ̃2

s|tI) (noting s < t), where

µ̃s|t(zt,x) = eλt−λs(αs/αt) zt + (1− eλt−λs)αsx and σ̃2
s|t = (1− eλt−λs)σ2

s . (3)

Starting at z1 ∼ N (0, I), the ancestral sampler follows the rule

zs = µ̃s|t(zt, x̂θ(zt)) +
√

(σ̃2
s|t)1−γ(σ2

t|s)γε (4)

where ε is standard Gaussian noise, γ is a hyperparameter that controls the stochasticity of the sam-
pler (Nichol & Dhariwal, 2021), and s, t follow a uniformly spaced sequence from 1 to 0. See Section 3 for
sampler hyperparameter settings.

Alternatively, the deterministic DDIM sampler (Song et al., 2020) can be used for sampling. This sampler
is a numerical integration rule for the probability flow ODE (Song et al., 2021; Salimans & Ho, 2022),
which describes how a sample from a standard normal distribution can be deterministically transformed
into a sample from the video data distribution using the denoising model. The DDIM sampler is useful for
progressive distillation for fast sampling, as described in Section 2.7.

2.2 Cascaded Diffusion Models and text conditioning

Cascaded Diffusion Models (Ho et al., 2022a) are an effective method for scaling diffusion models to high
resolution outputs, finding considerable success in both class-conditional ImageNet (Ho et al., 2022a) and
text-to-image generation (Ramesh et al., 2022; Saharia et al., 2022b). Cascaded diffusion models generate
an image or video at a low resolution, then sequentially increase the resolution of the image or video through
a series of super-resolution diffusion models. Cascaded Diffusion Models can model very high dimensional
problems while still keeping each sub-model relatively simple. Imagen (Saharia et al., 2022b) also showed
that by conditioning on text embeddings from a large frozen language model in conjunction with cascaded
diffusion models, one can generate high quality 1024× 1024 images from text descriptions. In this work we
extend this approach to video generation.

Figure 6 summarizes the entire cascading pipeline of Imagen Video. In total, we have 1 frozen text encoder, 1
base video diffusion model, 3 SSR (spatial super-resolution), and 3 TSR (temporal super-resolution) models
– for a total of 7 video diffusion models, with a total of 11.6B diffusion model parameters. The data used to
train these models is processed to the appropriate spatial and temporal resolutions by spatial resizing and
frame skipping. At generation time, the SSR models increase spatial resolution for all input frames, whereas
the TSR models increase temporal resolution by filling in intermediate frames between input frames. All
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T5-XXL (4.6B) Base (5.6B)

16x40x24 3fps

TSR (1.7B)

32x40x24 6fps

TSR (780M)

64x320x192 12fps

TSR (630M)

128x320x192 24fps

SSR (1.4B)

32x80x48 6fps

SSR (340M)

128x1280x768 24fps

SSR (1.2B)

32x320x192 6fps

Input Text Prompt

Figure 6: The cascaded sampling pipeline starting from a text prompt input to generating a 5.3-second,
1280×768 video at 24fps. “SSR” and “TSR” denote spatial and temporal super-resolution respectively, and
videos are labeled as frames×width×height. In practice, the text embeddings are injected into all models,
not just the base model.

models generate an entire block of frames simultaneously – so for instance, our SSR models do not suffer
from obvious artifacts that would occur from naively running super-resolution on independent frames.

One benefit of cascaded models is that each diffusion model can be trained independently, allowing one to
train all 7 models in parallel. Additionally, our super-resolution models are general purpose video super-
resolution models, and they can be applied to real videos or samples from generative models other than the
ones presented in this paper. This is similar to how Imagen’s super-resolution models helped improve the
fidelity of the images generated by Parti (Yu et al., 2022), which is an autoregressive text-to-image model.
We intend to explore hybrid pipelines of multiple model classes further in future work.

Similar to Saharia et al. (2022b), we utilize contextual embeddings from a frozen T5-XXL text encoder
(Raffel et al., 2020) for conditioning on the input text prompt. We find these embeddings to be critical for
alignment between generated video and the text prompt. Similar to the findings of Saharia et al. (2022b), we
observe evidence of deeper language understanding, enabling us to generate the videos displayed in Figs. 2
to 5.

2.3 Video diffusion architectures

Diffusion models for image generation typically use a 2D U-Net architecture (Ronneberger et al., 2015;
Salimans et al., 2017; Ho et al., 2020) to represent the denoising model x̂θ. This is a multiscale model
consisting of multiple layers of spatial attention and convolution at each resolution, combined with shortcuts
between layers at the same resolution. In earlier work on Video Diffusion Models, Ho et al. (2022b) introduced
the Video U-Net , which generalizes the 2D diffusion model architecture to 3D in a space-time separable
fashion using temporal attention and convolution layers interleaved within spatial attention and convolution
layers to capture dependencies between video frames. Our work builds on the Video U-Net architecture: see
Figure 7. Following Video Diffusion Models, each of our denoising models x̂θ operate on multiple video frames
simultaneously and thereby generate entire blocks of video frames at a time, which we find to be important
to capture the temporal coherence of the generated video compared to frame-autoregressive approaches. Our
spatial super-resolution (SSR) and temporal super-resolution (TSR) models condition on their input videos
by concatenating an upsampled conditioning input channelwise to the noisy data zt, the same mechanism as
SR3 (Saharia et al., 2022c) and Palette (Saharia et al., 2022a): spatial upsampling before concatenation is
performed using bilinear resizing, and temporal upsampling before concatenation is performed by repeating
frames or by filling in blank frames.

Our base video model, which is the first model in the pipeline that generates data at the lowest frame count
and spatial resolution, uses temporal attention to mix information across time. Our SSR and TSR models, on
the other hand, use temporal convolutions instead of temporal attention. The temporal attention in the base
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Spatial Conv Spatial Conv Spatial Conv

Spatial Attention Spatial Attention

Temporal Attention / Convolution

Spatial Attention

Spatial Conv

Spatial Attention

Frame 1 Frame 2 Frame 3 Frame N

...

Figure 7: Video U-Net space-time separable block. Spatial operations are performed independently over
frames with shared parameters, whereas the temporal operation mixes activations over frames. Our base
model uses spatial convolutions, spatial self-attention and temporal self-attention. For memory efficiency,
our spatial and temporal super-resolution models use temporal convolutions instead of attention, and our
models at the highest spatial resolution do not have spatial attention.

model enables Imagen Video to model long term temporal dependencies, while the temporal convolutions in
the SSR and TSR models allow Imagen Video to maintain local temporal consistency during upsampling.
The use of temporal convolutions lowers memory and computation costs over temporal attention—this is
crucial because the very purpose of the TSR and SSR models is to operate at high frame rates and spatial
resolutions. In our initial experiments, we did not find any significant improvements when using temporal
attention over temporal convolutions in our SSR and TSR models, which we hypothesize is due to the
significant amount of temporal correlation already present in the conditioning input to these models.

Our models also use spatial attention and spatial convolutions. The base model and the first two spatial
super-resolution models have spatial attention in addition to spatial convolutions. We found this to improve
sample fidelity. However, as we move to higher resolutions, we switch to fully convolutional architectures, like
Saharia et al. (2022b), to minimize memory and compute costs in order to generate 1280×768 resolution data.
The highest resolution SSR model in our pipeline is a fully convolutional model trained on random lower
resolution spatial crops for training time memory efficiency, and we find that the model easily generalizes to
the full resolution during sampling time.

2.4 v-prediction

We follow Salimans & Ho (2022) and use v-prediction parameterization (vt ≡ αtε− σtx) for all our models.
The v-parameterization is particularly useful for numerical stability throughout the diffusion process to
enable progressive distillation for our models. For models that operate at higher resolution in our pipeline,
we also discovered that the v-parameterization avoids color shifting artifacts that are known to affect high
resolution diffusion models, and in the video setting it avoids temporal color shifting that sometimes appears
with ε-prediction models. Our use of v-parameterization also has the benefit of faster convergence of sample
quality metrics: see Section 3.3.

2.5 Conditioning Augmentation

We use noise conditioning augmentation (Ho et al., 2022a) for all our temporal and spatial super-resolution
models. Noise conditioning augmentation has been found to be critical for cascaded diffusion models for
class-conditional generation (Ho et al., 2022a) as well as text-to-image models (Saharia et al., 2022b). In
particular, it facilitates parallel training of different models in the cascade, as it reduces the sensitivity to
domain gaps between the output of one stage of the cascade and the inputs used in training the subsequent
stage.

Following Ho et al. (2022a), we apply Gaussian noise augmentation with a random signal-to-noise ratio to
the conditioning input video during training, and this sampled signal-to-noise ratio is provided to the model
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as well. At sampling time we use a fixed signal-to-noise ratio such as 3 or 5, representing a small amount of
augmentation that aids in removing artifacts in the samples from the previous stage while preserving most
of the structure.

2.6 Video-Image Joint Training

We follow Ho et al. (2022b) in jointly training all the models in the Imagen Video pipeline on images
and videos. During training, individual images are treated as single frame videos. We achieve this by
packing individual independent images into a sequence of the same length as a video, and bypass the
temporal convolution residual blocks by masking out their computation path. Similarly, we disable cross-
frame temporal attention by applying masking to the temporal attention maps. This strategy allows us to
use to train our video models on image-text datasets that are significantly larger and more diverse than
available video-text datasets. Consistent with Ho et al. (2022b), we observe that joint training with images
significantly increases the overall quality of video samples. Another interesting artifact of joint training is the
knowledge transfer from images to videos. For instance, while training on natural video data only enables
the model to learn dynamics in natural settings, the model can learn about different image styles (such as
sketch, painting, etc.) by training on images. As a result, this joint training enables the model to generate
interesting video dynamics in different styles. See Fig. 8 for such examples.

2.6.1 Classifier Free Guidance

We found classifier free guidance (Ho & Salimans, 2021) to be critical for generating high fidelity samples
which respect a given text prompt. This is consistent with earlier results on text-to-image models (Nichol
et al., 2021; Ramesh et al., 2022; Saharia et al., 2022b; Yu et al., 2022).

In the conditional generation setting, the data x is generated conditional on a signal c, which here represents
a contextualized embedding of the text prompt, and a conditional diffusion model can be trained by using
this signal c as an additional input to the denoising model x̂θ(zt, c). After training, Ho & Salimans (2021)
find that sample quality can be improved by adjusting the denoising prediction x̂θ(zt, c) using

x̃θ(zt, c) = (1 + w)x̂θ(zt, c)− wx̂θ(zt), (5)

where w is the guidance strength, x̂θ(zt, c) is the conditional model, and x̂θ(zt) = x̂θ(zt, c = ∅) is an
unconditional model. The unconditional model is jointly trained with the conditional model by dropping
out the conditioning input c. The predictions of the adjusted denoising model x̃θ(zt, c) are clipped to respect
the range of possible pixel values, which we discuss in more detail in the next section. Note that the linear
transformation in Equation 5 can equivalently be performed in v-space (ṽθ(zt, c) = (1 + w) v̂θ(zt, c) −
w v̂θ(zt)) or ε-space (ε̃θ(zt, c) = (1 + w) ε̂θ(zt, c)− w ε̂θ(zt)).

For w > 0 this adjustment has the effect of over-emphasizing the effect of conditioning on the signal c,
which tends to produce samples of lower diversity but higher quality compared to sampling from the regular
conditional model (Ho & Salimans, 2021). The method can be interpreted as a way to guide the samples
towards areas where an implicit classifier p(c|zt) has high likelihood; as such, it is an adaptation of the
explicit classifier guidance method proposed by Dhariwal & Nichol (2022).

2.6.2 Large Guidance Weights

When using large guidance weights, the resulting x̃θ(zt, c) must be projected back to the possible range of
pixel values at every sampling step to prevent train-test mismatch. When using large guidance weights, the
standard approach, i.e., clipping the values to the right range (e.g., np.clip(x, -1, 1)), leads to significant
saturation artifacts in the generated videos. A similar effect was observed in Saharia et al. (2022b) for text-
to-image generation. Saharia et al. (2022b) use dynamic thresholding to alleviate this saturation issue.
Specifically, dynamic clipping involves clipping the image to a dynamically chosen threshold s followed by
scaling by s (i.e., np.clip(x, -s, s) / s) (Saharia et al., 2022b).

Although dynamic clipping can help with over-saturation, we did not find it sufficient in initial experiments.
We therefore also experiment with letting w oscillate between a high and a low guidance weight at each
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alternating sampling step, which we find significantly helps with these saturation issues. We call this sampling
technique oscillating guidance. Specifically, we use a constant high guidance weight for a certain number
of initial sampling steps, followed by oscillation between high and low guidance weights: this oscillation
is implemented simply by alternating between a large weight (such as 15) and a small weight (such as 1)
over the course of sampling. We hypothesize that a constant high guidance weight at the start of sampling
helps break modes with heavy emphasis on text, while oscillating between high and low guidance weights
helps maintain a strong text alignment (via high guidance sampling step) while limiting saturation artifacts
(via low guidance sampling step). We however observed no improvement in sample fidelity and more visual
artifacts when applying oscillating guidance to models past the 80×48 spatial resolution. Thus we only apply
oscillating guidance to the base and the first two SR models.

2.7 Progressive Distillation with Guidance and Stochastic Samplers

Salimans & Ho (2022) proposed progressive distillation to enable fast sampling of diffusion models. This
method distills a trained deterministic DDIM sampler (Song et al., 2020) to a diffusion model that takes
many fewer sampling steps, without losing much perceptual quality. At each iteration of the distillation
process, an N -step DDIM sampler is distilled to a new model with N/2-steps. This procedure is repeated
by halving the required sampling steps each iteration. Meng et al. (2022) extend this approach to samplers
with guidance, and propose a new stochastic sampler for use with distilled models. Here we show that this
approach also works very well for video generation.

We use a two-stage distillation approach to distill a DDIM sampler (Song et al., 2020) with classifier-free
guidance. At the first stage, we learn a single diffusion model that matches the combined output from
the jointly trained conditional and unconditional diffusion models, where the combination coefficients are
determined by the guidance weight. Then we apply progressive distillation to that single model to produce
models requiring fewer sampling steps at the second stage.

After distillation, we use a stochastic N -step sampler: At each step, we first apply one deterministic DDIM
update with twice the original step size (i.e., the same step size as a N/2-step sampler), and then we perform
one stochastic step backward (i.e., perturbed with noise following the forward diffusion process) with the
original step size, inspired by Karras et al. (2022). See Meng et al. (2022) for more details. Using this
approach, we are able to distill all 7 video diffusion models down to just 8 sampling steps per model without
any noticeable loss in perceptual quality.

3 Experiments

We train our models on a combination of an internal dataset consisting of 14 million video-text pairs and
60 million image-text pairs, and the publicly available LAION-400M image-text dataset (Schuhmann et al.,
2021). To process the data into a form suitable for training our cascading pipeline, we spatially resize
images and videos using antialiased bilinear resizing, and we temporally resize videos by skipping frames.
Throughout our model development process, we evaluated Imagen Video on several different metrics, such
as FID on individual frames (Heusel et al., 2017), FVD (Unterthiner et al., 2019) for temporal consistency,
and frame-wise CLIP scores (Hessel et al., 2021; Park et al., 2021) for video-text alignment. Below, we
explore the capabilities of our model and investigate its performance in regards to 1) scaling up the number
of parameters in our model, 2) changing the parameterization of our model, and 3) distilling our models so
that they are fast to sample from.

3.1 Unique video generation capabilities

We find that Imagen Video is capable of generating high fidelity video, and that it possesses several unique
capabilities that are not traditionally found in unstructured generative models learned purely from data. For
example, Fig. 8 shows that our model is capable of generating videos with artistic styles learned from image
information, such as videos in the style of van Gogh paintings or watercolor paintings. Fig. 9 shows that
Imagen Video possesses an understanding of 3D structure, as it is capable of generating videos of objects
rotating while roughly preserving structure. While the 3D consistency over the course of rotation is not
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A cat eating food out of a bowl, in style of Van Gogh.

A drone flythrough over a watercolor painting of a forest.

Drone flythrough of a pixel art of futuristic city.
Figure 8: Snapshots of frames from videos generated by Imagen Video demonstrating the ability of the model
to generate dynamics in different artistic styles.

A 3D model of a 1800s victorian house. Studio lighting.

A 3D model of a car made out of sushi. Studio lighting.

A 3D model of an elephant origami. Studio lighting.
Figure 9: Snapshots of frames from videos generated by Imagen Video demonstrating the model’s under-
standing of 3D structures.

A colorful professional animated logo for ’Diffusion’ written using paint brush in cursive. Smooth animation.

Sprouts in the shape of text ’Imagen’ coming out of a fairytale book.

Thousands of fast brush strokes slowly forming the text ’Imagen Video’ on a light beige canvas. Smooth animation.
Figure 10: Snapshots of frames from videos generated by Imagen Video demonstrating the ability of the
model to render a variety of text with different style and dynamics.
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exact, we believe Imagen Video shows that video models can serve as effective priors for methods that do
force 3D consistency. Fig. 10 shows that Imagen Video is also reliably capable of generating text in a wide
variety of animation styles, some of which would be difficult to animate using traditional tools. We see
results such as these as an exciting indication of how general purpose generative models such as Imagen
Video can significantly decrease the difficulty of high quality content generation.

3.2 Scaling

In Figure 11 we show that our base video model strongly benefits from scaling up the parameter count of the
video U-Net. We performed this scaling by increasing the base channel count and depth of the network. This
result is contrary to the text-to-image U-Net scaling results by Saharia et al. (2022b), which found limited
benefit from diffusion model scaling when measured by image-text sample quality scores. We conclude that
video modeling is a harder task for which performance is not yet saturated at current model sizes, implying
future benefits to further model scaling for video generation.
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(a) Scaling Comparison on FVD scores.
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Figure 11: Scaling Comparison for the base 16×40×24 video model on FVD and CLIP scores (on 0-100
scale). Both FVD and CLIP scores are computed on 4096 video samples. We see clear signs of improvement
on both metrics when scaling from 500M to 1.6B to 5.6B parameters.

3.3 Comparing prediction parameterizations

In early experiments we found that training ε-prediction models (Ho et al., 2020) performed worse than
v-prediction (Salimans & Ho, 2022) especially at high resolutions. Specifically, for high resolution SSR
models, we observed that ε-prediction converges relatively slowly in terms of sample quality metrics and
suffers from color shift and color inconsistency across frames in the generated videos. Fig. 12 shows the
comparison between ε-prediction and v-prediction on a 80×48 → 320×192 video spatial super-resolution
task. It is clear that ε-parameterization produces worse generations than v-parameterization. Fig. 13 shows
the quantitative comparison between the two parameterizations as a function of training steps. We observe
that v parameterization converges much more faster than ε parameterization.

3.4 Perceptual quality and distillation

In Table 1 we report perceptual quality metrics (CLIP score and CLIP R-Precision) for our model samples,
as well as for their distilled version. Samples are generated and evaluated at 192×320 resolution for 128
frames at 24 frames per second. For CLIP score, we take the average score over all frames. For CLIP
R-Precision (Park et al., 2021) we compute the top-1 accuracy (i.e. R = 1), treating the frames of a video
sample as images sharing the same text label (the prompt). We repeat these over four different runs and
report the mean and standard error.

We find that distillation provides a very favorable trade-off between sampling time and perceptual quality:
the distilled cascade is about 18× faster, while producing videos of similar quality to the samples from the
original models. In terms of FLOPs, the distilled models are about 36× more efficient: The original cascade
evaluates each model twice (in parallel) to apply classifier-free guidance, while our distilled models do not,
since they distilled the effect of guidance into a single model. We provide samples from our original and
distilled cascade in Figure 14 for illustration.
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80×48 input video frames

SSR to 320×192 with ε-prediction

SSR to 320×192 with v-prediction

Figure 12: Comparison between ε-prediction (middle row) and v-prediction (bottom row) for a
8×80×48→8×320×192 spatial super-resolution architecture at 200k training steps. The frames from the
ε-prediction model are generally worse, suffering from unnatural global color shifts across frames. The
frames from the v-prediction model do not and are more consistent.
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Figure 13: Comparison between 80×48 → 320×192 SSR models trained with ε- and v-prediction parame-
terizations. We report FID evaluated on the first upsampled frame; FVD score is excessively noisy for the
ε-prediction model. We observe that the sample quality of the ε-prediction model converges much more
slowly than that of the v-prediction model.

4 Limitations and Societal Impact

Generative modeling has made tremendous progress, especially in recent text-to-image models (Saharia
et al., 2022b; Ramesh et al., 2022; Rombach et al., 2022). Imagen Video is another step forward in generative
modelling capabilities, advancing text-to-video AI systems. Video generative models can be used to positively
impact society, for example by amplifying and augmenting human creativity. However, these generative
models may also be misused, for example to generate fake, hateful, explicit or harmful content. We have taken
multiple steps to minimize these concerns, for example in internal trials, we apply input text prompt filtering,
and output video content filtering. However, there are several important safety and ethical challenges
remaining. Imagen Video and its frozen T5-XXL text encoder were trained on problematic data (Bordia &
Bowman, 2017; Birhane et al., 2021; Bender et al., 2021). While our internal testing suggests much of explicit
and violent content can be filtered out, there still exists social biases and stereotypes which are challenging
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Guidance w Base Steps SR Steps CLIP Score CLIP R-Precision Sampling Time

constant=6 256 128 25.19±.03 92.12±.53 618 sec
oscillate(15,1) 256 128 25.02±.08 89.91±.96 618 sec
constant=6 256 8 25.29±.05 90.88±.50 135 sec

oscillate(15,1) 256 8 25.15±.09 88.78±.69 135 sec
constant=6 8 8 25.03±.05 89.68±.38 35 sec

oscillate(15,1) 8 8 25.12±.07 90.97±.46 35 sec

ground truth 24.27 86.18

Table 1: CLIP scores and CLIP R-Precision (Park et al., 2021) values for generated samples and ground
truth videos on prompts from our test set. Cells highlighted in green represent distilled models. We
compare three different combinations: original pipeline, distilled SR models on top of original base model,
and fully distilled pipeline. The original base models use 256 sampling steps, and original SR models use
128 steps. All distilled models use 8 sampling steps per stage. Sampling from the original pipeline takes 618
seconds for one batch of samples, while sampling from the distilled pipeline takes 35 seconds, making the
distilled pipeline about 18× faster. We also explored two different classifier-free guidance settings for the
base models: constant guidance with w = 6 and oscillating guidance which alternates between w = 15 and
w = 1, following Saharia et al. (2022b). When using oscillating guidance, the fully distilled pipeline performs
the same as the original model, or even slightly better. When using fixed guidance, our fully distilled pipeline
scores slightly lower than the original model, though the difference is minor. Combining the original base
model with fixed guidance and distilled super-resolution models produced the highest CLIP score. For all
models, generated samples obtain better perceptual quality metrics than the original ground truth data:
By using classifier-free guidance our models sample from a distribution tilted towards these quality metrics,
rather than from an accurate approximation of the original data distribution.

Figure 14: Frames from videos generated by Imagen Video for the text prompt “A teddy bear wearing
sunglasses playing guitar next to a cactus.” The samples on the left are produced by our original model
cascade, while the samples on the right are from our distilled cascade with 8 sampling steps per stage. Both
used constant guidance with w = 6 and static clipping.

to detect and filter. We have decided not to release the Imagen Video model or its source code until these
concerns are mitigated.

5 Conclusion

We presented Imagen Video: a text-conditional video generation system based on a cascade of video diffusion
models. By extending the text-to-image diffusion models of Imagen (Saharia et al., 2022b) to the time
domain, and training jointly on video and images, we obtained a model capable of generating high fidelity
videos with good temporal consistency while maintaining the strong features of the original image system,
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such as the ability to accurately spell text. We transferred multiple methods from the image domain to
video, such as v-parameterization (Salimans & Ho, 2022), conditioning augmentation (Ho et al., 2022a), and
classifier-free guidance (Ho & Salimans, 2021), and found that these are also useful in the video setting.
Video modeling is computationally demanding, and we found that progressive distillation (Salimans & Ho,
2022; Meng et al., 2022) is a valuable technique for speeding up video diffusion models at sampling time.
Given the tremendous recent progress in generative modeling, we believe there is ample scope for further
improvements in video generation capabilities in future work.
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